JP4831574B2 - Structure manufacturing method and apparatus - Google Patents
Structure manufacturing method and apparatus Download PDFInfo
- Publication number
- JP4831574B2 JP4831574B2 JP2006248191A JP2006248191A JP4831574B2 JP 4831574 B2 JP4831574 B2 JP 4831574B2 JP 2006248191 A JP2006248191 A JP 2006248191A JP 2006248191 A JP2006248191 A JP 2006248191A JP 4831574 B2 JP4831574 B2 JP 4831574B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- substrate
- forming material
- hole
- structure forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Micromachines (AREA)
- Extrusion Of Metal (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
本発明は、基板の任意の場所に、任意の数だけ、簡便に、材料の種類を選ばず、かつ形状に自由度を有する構造体を形成するための当該構造体の製造方法、及びそれを可能とする加工装置に関するものであり、更に詳しくは、本発明は、金型の貫通穴を介して押出し、成形して、基板の面上に、従来の加工方法よりも、加工性に自由度を有する、すなわち、特に、構造体の高さに制限のないアスペクト比の高い2次元的な形状を有する構造体、もしくはそれを任意の方向に変形させた3次元的な形状を有する構造体を基板の面上の任意の場所に形成することを可能とする基板の上に形成される構造体の作製方法、及びその加工装置に関するものである。 The present invention relates to a method of manufacturing a structure for forming a structure having an arbitrary number of materials in any place, simply and without any kind of material, and having a degree of freedom in shape, and The present invention relates to a processing apparatus that can be used. More specifically, the present invention extrudes and molds through a through hole of a mold, and has a degree of freedom in workability on a surface of a substrate as compared with a conventional processing method. In other words, a structure having a two-dimensional shape with a high aspect ratio that is not particularly limited in the height of the structure, or a structure having a three-dimensional shape obtained by deforming the structure in an arbitrary direction. The present invention relates to a method for manufacturing a structure formed on a substrate that can be formed at an arbitrary position on the surface of the substrate, and a processing apparatus for the structure.
今日の産業界において、マイクロマシン、医療機器、センサー機器、電子機器等、様々な分野で、様々な形状の加工が要求されている。当該分野では、多様化する技術的要求に応えるため、各装置を構成する部品には複雑な形状、特に、アスペクト比の高い構造体、及び3次元的な形状を有する構造体等、形状の自由度の高い加工を可能とする加工技術の発展が求められている。そのような形状を有する部品として、例えば、ヒートシンク、DNAの分析チップに組み込まれているアレイ構造体(非特許文献1)、半導体集積回路を検査するコンタクトプローブ(非特許文献2)等が例示される。 In today's industry, processing of various shapes is required in various fields such as micromachines, medical devices, sensor devices, and electronic devices. In this field, in order to respond to diversifying technical demands, the components that make up each device can be freely shaped, such as complex shapes, especially structures with a high aspect ratio and structures with a three-dimensional shape. There is a need for the development of processing technology that enables high-level processing. Examples of components having such a shape include a heat sink, an array structure incorporated in a DNA analysis chip (Non-Patent Document 1), and a contact probe (Non-Patent Document 2) for inspecting a semiconductor integrated circuit. The
従来の、固体工具、すなわち切削工具や砥石を用いて、材料の不要な部分を削り取るという加工法である機械加工の代表的な装置である、旋盤、フライス盤、研削盤を挙げると、アスペクト比の高い構造体を作製する場合、旋盤においては、面上に形成できる構造体は1つであり、構造体の高さが高くなると、構造体自身が回転によりしなり、より高い構造体を作製することが困難である。フライス盤においては、任意の場所に任意の数だけ加工が可能となるが、工具の高さが構造体の高さの制限となる。研削盤においては、円筒研削盤においては、旋盤と同じことが問題点として挙げられ、平面研削盤においては、フライス盤と同じことが問題点として挙げられる。3次元形状を有する構造体を作製する場合、旋盤、円筒研削盤では不可能であり、フライス盤、平面研削盤においては、加工工具と材料の角度を変化させることにより、ある程度の3次元加工は可能であるが、その場合は、その度、角度を変える必要があるため、工程数が多くなる。更に、被加工材質によって、工具や材料の回転速度、送り速度等を変更させる必要があり、熟練した技術を要する。 A typical lathe, milling machine, and grinding machine, which is a typical machining method that uses a solid tool, that is, a cutting tool or a grindstone to scrape off unnecessary parts of the material. When a high structure is manufactured, in a lathe, only one structure can be formed on the surface. When the height of the structure is increased, the structure itself is rotated and a higher structure is manufactured. Is difficult. In a milling machine, an arbitrary number of machinings can be performed at an arbitrary place, but the height of the tool is a limitation on the height of the structure. In a grinding machine, the same thing as a lathe is mentioned as a problem in a cylindrical grinding machine, and the same thing as a milling machine is mentioned as a problem in a surface grinding machine. When producing a structure with a three-dimensional shape, it is not possible with a lathe or a cylindrical grinder. With a milling machine or a surface grinder, a certain degree of three-dimensional machining is possible by changing the angle between the machining tool and the material. However, in this case, the number of steps increases because the angle needs to be changed each time. Furthermore, it is necessary to change the rotation speed, feed speed, and the like of the tool and the material depending on the material to be processed, and skilled techniques are required.
次に、放電加工において、高さの高い構造体を作製する方法として、ワイヤ放電研削法(WEDG法)が考えられる。しかしながら、やはり、この場合も、上記旋盤と同様に、面上に形成できる柱状は1つであり、アスペクト比が高くなると、構造体自身が回転によりしなり、より高い構造体を作製することが困難である。また、3次元形状の加工は不可能である。ワイヤカット放電加工においては、高さの高い構造体は作製でき、一般的に、2.5次元形状と言われている加工の程度は可能であるが、3次元形状の加工は不可能である。更に、放電加工での対象材料は導電性材料に限られる。 Next, in electric discharge machining, a wire electric discharge grinding method (WEDG method) can be considered as a method for manufacturing a structure having a high height. However, in this case as well, similarly to the lathe, only one columnar shape can be formed on the surface. When the aspect ratio is high, the structure itself is rotated to produce a higher structure. Have difficulty. In addition, it is impossible to process a three-dimensional shape. In wire-cut electric discharge machining, a structure with a high height can be produced, and generally, a degree of machining called 2.5-dimensional shape is possible, but 3-dimensional shape machining is impossible. . Furthermore, the target material in electric discharge machining is limited to a conductive material.
また、金型を用いた鍛造、鋳造、プレス、射出成形、インプリント法を挙げると、高さの高い構造体を作製する場合、任意の場所に任意の数だけ加工が可能となるが、アスペクト比が高くなると、充填の不具合が生じ、また、充填できたとしても、離型の際に、金型への癒着等による構造体の変形、破損が問題点として挙げられる。インプリント法において、癒着による形状崩壊を解決する方法として、金型に表面処理をする方法が取られているが、開発段階にあり、また、効果のある材料は樹脂系材料に限られる(非特許文献3、4)。 In addition, when forging, casting, pressing, injection molding, and imprinting using a mold are used, when producing a high-height structure, an arbitrary number of processing can be performed at an arbitrary location. When the ratio is high, a filling failure occurs, and even if the filling can be performed, deformation and breakage of the structure due to adhesion to the mold and the like are cited as problems when releasing. In the imprint method, as a method for solving the shape collapse due to adhesion, a method of performing surface treatment on the mold is taken, but it is in the development stage, and effective materials are limited to resin-based materials (non- Patent Documents 3 and 4).
更に、インプリント法の改良された方法として、構造体の金型凹部に充填された材料を金型剥離時に伸長させることにより、アスペクト比の高い構造を製造する方法がある(非特許文献5)。該方法は、高アスペクト比構造を金型により作製する場合、金型と構造体材料の間の摩擦力、及び残存する気体の影響による金型への構造体材料の充填の不十分を解決する方法である。しかしながら、該方法は、離型の際に、金型凹部に充填された材料が伸長することで構造体を高くする方法であるため、凹部にプールできる材料の量は一定であることから、構造体の高さは制限される。また、該方法に用いる金型は、表面処理が必要であり、現段階では、樹脂材料しか適応できていない。また、これら金型を用いた加工において、3次元形状を有する構造体を作製することは困難である。 Furthermore, as an improved method of the imprint method, there is a method of manufacturing a structure having a high aspect ratio by extending a material filled in a mold concave portion of the structure at the time of mold peeling (Non-patent Document 5). . The method solves insufficient filling of the structure material into the mold due to the frictional force between the mold and the structure material and the influence of the remaining gas when producing a high aspect ratio structure with the mold. Is the method. However, since this method is a method of raising the structure by elongating the material filled in the mold recess during mold release, the amount of material that can be pooled in the recess is constant. Body height is limited. Moreover, the metal mold | die used for this method needs surface treatment, and only the resin material can be adapted at this stage. Moreover, it is difficult to produce a structure having a three-dimensional shape in processing using these molds.
更に、例えば、マイクロマシン、電子部品等の技術分野において、部品加工に主に利用されている、リソグラフィー法、該方法と電気めっき等の堆積加工、及び該方法とイオンシャワー等の除去加工を使用して部品を作製する加工技術に関して、高さの高い構造体を作製する場合、例えば、シンクロトロン放射X線を使用した、深いPMMA等のリソグラフィーの使用等が試みられている(非特許文献6)。しかしながら、該方法では、数ミリ程度の高さが限度であり、それ以上高い構造体を作製する場合、レジスト層を面上に形成した後、パターンとするマスクを用いて、レジスト層を露光し、そして、現像を行い、レジストパターンを形成し、レジストパターンを有する面を、電気めっき等により金属の構造物を堆積させるという工程を所望の高さまで、繰り返し行わなければならず、多くの工程数を要し、更に、位置あわせを行う必要があり、注意を要する。 Further, for example, in the technical field of micromachines, electronic parts, etc., the lithography method, the deposition method such as electroplating, and the removal method such as ion shower are used mainly for the part processing. With regard to the processing technology for manufacturing parts, when manufacturing a structure having a high height, for example, the use of lithography such as deep PMMA using synchrotron radiation X-ray has been attempted (Non-patent Document 6). . However, in this method, the height of about several millimeters is the limit, and in the case of producing a structure higher than that, after the resist layer is formed on the surface, the resist layer is exposed using a mask as a pattern. Then, development is performed, a resist pattern is formed, and a process of depositing a metal structure on the surface having the resist pattern by electroplating or the like must be repeatedly performed to a desired height. In addition, it is necessary to perform alignment, and attention is required.
更に、一般的に、2.5次元形状と言われている加工程度は可能であるが面を傾ける必要があり、かつ前記した工程が繰り返し必要であることから、位置合わせに高い技術が必要となる。また、リソグラフィー法とイオンシャワー等による除去加工においては、レジスト層とレジスト層が除去され、表面にでている材料とを同時に加工するため、構造体の高さはレジスト層の消失した時点で決定され、その高さは、一般に、レジスト層の高さより低く、高さの高い構造体は作製できないことから、形状の自由度に制限がある。 Furthermore, in general, a processing level called a 2.5-dimensional shape is possible, but it is necessary to incline the surface, and since the above-described steps are necessary repeatedly, a high technique is required for alignment. Become. Also, in removal processing by lithography and ion shower, the resist layer and the resist layer are removed and the material on the surface is processed at the same time, so the height of the structure is determined when the resist layer disappears In general, the height is lower than the height of the resist layer, and a structure with a high height cannot be manufactured. Therefore, the degree of freedom in shape is limited.
また、除去加工、堆積加工を可能とする加工装置として、集束イオンビーム(FIB)がある。該装置は、除去加工においては、ほとんどすべての材質に関して加工が可能であるが、ビームの届く深度が小さいため、高さの高い構造体を作製することは困難であり、また、3次元形状の加工も難しい。しかしながら、堆積加工においては、かなりの自由度を持つ加工が可能である(非特許文献7)。しかしながら、材料は、タングステン、及びカーボンに限定される。 Further, there is a focused ion beam (FIB) as a processing apparatus that enables removal processing and deposition processing. In the removal processing, almost all materials can be processed in the removal processing. However, since the depth of the beam reaches is small, it is difficult to produce a structure with a high height. Processing is also difficult. However, in deposition processing, processing with a considerable degree of freedom is possible (Non-Patent Document 7). However, the material is limited to tungsten and carbon.
金属系微細構造物を電気めっき法により作製する方法で、基板の上に、貫通穴を具備する金型を駆動可能に設置し、上記貫通穴を介して基板の上にめっき処理を行うと同時に、上記金型を基板から離れていく方向に移動させることにより、基板上に金属系構造物を形成する金属系微細構造物の作製方法がある。しかし、この方法は、金型が絶縁体材料に限られ、構造体形成材料も電気めっきが可能な材料の種類に限定され、かつ形成箇所周辺がめっき液にさらされるため、周囲を絶縁体材料で構成する必要がある。また、基板と金型がきちんと密着していないと、形成部以外の面にめっき液が流れ込み、形成部以外のところにめっきが施され、所望の構造体を形成できなくなり、形成速度はめっき速度に依存し、そのため、高さの高い構造体を形成するのに時間がかかり、かつ、基板の面上の構造体形成材料接着位置と貫通穴位置を相対的に変化させるように移動させる駆動手段がないため、3次元構造体を形成することができない(特許文献1)。 At the same time that a metal microstructure is produced by electroplating, a mold having a through hole is driven on the substrate, and plating is performed on the substrate through the through hole. There is a method for producing a metal-based fine structure in which a metal-based structure is formed on a substrate by moving the mold in a direction away from the substrate. However, in this method, since the mold is limited to the insulator material, the structure forming material is also limited to the type of material that can be electroplated, and the periphery of the formation site is exposed to the plating solution. It is necessary to consist of. In addition, if the substrate and the mold are not in close contact with each other, the plating solution will flow into the surface other than the formation area, and plating will be applied to areas other than the formation area, making it impossible to form the desired structure. Therefore, it takes time to form a structure with a high height, and the driving means moves the structure forming material adhesion position and the through hole position on the surface of the substrate so as to change relative to each other. Therefore, a three-dimensional structure cannot be formed (Patent Document 1).
このような状況の中で、本発明者は、上記従来技術に鑑みて、基板面上の任意の場所に、任意の数だけ、簡便に、材料の種類を選ばず、かつ、形状に自由度を有する構造体を形成することが可能な当該構造体の製造方法と、それを実現するための装置の研究を開発することを目標として鋭意研究を積み重ねた結果、金型の貫通穴を介して押出し、成形する方法を採用することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。本発明は、構造体形成材料を金型の貫通穴を介して押出し、成形して、基板の上に、当該貫通穴に対応した2次元的な形状を有する構造体、あるいはこれを更に任意の方向に変形させた3次元的な形状を有する構造体の作製方法及びその装置を提供することを目的とするものである。 Under such circumstances, the present inventor, in view of the above-described conventional technology, can easily select any number of materials at any location on the substrate surface, and can freely select the type of material. As a result of intensive research aimed at developing research on a method of manufacturing the structure capable of forming a structure having a structure and an apparatus for realizing the structure, through the through hole of the mold It has been found that the intended purpose can be achieved by adopting the extrusion and molding methods, and the present invention has been completed. According to the present invention, a structure-forming material is extruded through a through-hole of a mold and molded, and a structure having a two-dimensional shape corresponding to the through-hole is formed on a substrate, or an arbitrary structure. It is an object of the present invention to provide a method for manufacturing a structure having a three-dimensional shape deformed in a direction and an apparatus therefor.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)構造体形成材料を金型の貫通穴を介して押出し、成形して、基板の上に当該貫通穴に対応した2次元的な形状を有する構造体又はそれを任意の方向に変化させた3次元的な形状を有する構造体を作製する方法であって、
1)構造体形成材料を加熱する、
2)構造体形成材料を所望の輪郭を有する1つ又は複数個の貫通穴を具備する金型の貫通穴を介して金型逆面にまで流動させる、
3)金型に基板を接触、又は近接させて、基板の構造体形成面と構造体形成材料とを接着させる、
4)構造体形成材料を所定の押込み速度で金型の貫通穴を介して押出し、金型逆面にまで流動させつつ、金型及び/又は基板を相互に離れていく方向に移動させることにより、基板上に押出し、成形された構造体を形成する、
5)その際に、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも遅くする又は速くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を大きくする又は小さくすることで、ひとつの金型で構造体の断面形状を変化させる、
6)任意の位置で構造体形成材料の押込みを終了させて構造体形成材料の貫通穴を介しての金型逆面への流動を停止させることにより、構造体の形成を終了する、
ことを特徴とする、構造体の作製方法。
(2)構造体形成材料を押出し、金型の貫通穴を介して、金型逆面にまで流動させつつ、金型及び/又は基板を相互に離れていく方向に移動させ、かつ形成面上の構造体形成材料接着位置と金型の貫通穴位置を相対的に変化させる速度と方向を一定にする又は変化させることにより、基板上に押出し、成形された構造物を形成する、前記(1)に記載の構造体の作製方法。
(3)構造体形成材料が、樹脂、金属、それらの複合材料、又はそれらとセラミックスの複合材料である、前記(1)又は(2)に記載の構造体の作製方法。
(4)基板の上に、金型の貫通穴に対応した2次元的な形状を有する構造体を作製する、前記(1)から(3)のいずれかに記載の構造体の作製方法。
(5)基板の上に、金型の貫通穴に対応した2次元的な形状を有する構造体を更に任意の方向に規則的又は不規則的に変形させた形状を有する構造体を作製する、前記(1)から(4)のいずれかに記載の構造体の作製方法。
(6)構造体形成材料を所定の押込み速度で複数の貫通穴を有する金型の該貫通穴を介して押出し、成形して基板の上に当該貫通穴に対応する2次元的な形状を有する構造体を作製する加工装置であって、
構造物を形成する面を有する基板と、該基板の面に構造体を形成するための所望の貫通穴を具備する金型と、構造体形成材料を加熱するための加熱手段と、該金型及び/又は基板が相互に離れていく方向に移動させる駆動手段と、金型に基板を接触、又は近接させて、基板の構造体形成面と構造体形成材料とを接着させる手段と、継続して構造体形成材料を貫通穴を介して金型逆面に流動させると共に、任意の位置で構造体形成材料の押込みを終了させて構造体形成材料の貫通穴を介しての金型逆面への流動を停止させる手段と、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも遅くする又は速くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を大きくする又は小さくするように制御する手段と、を有し、ひとつの金型で構造体の断面形状を変化させるようにしたことを特徴とする、上記加工装置。
(7)上記金型及び/又は基板が相互に離れていく方向と基板の面上の構造体形成材料接着位置と貫通穴位置を相対的に変化させる速度と方向を一定にする又は変化させる駆動手段を有する、前記(6)に記載の加工装置。
(8)上記駆動手段が、ねじ、ギア、ピエゾ素子、又はそれらの複合駆動方式である、前記(6)又は(7)に記載の加工装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) extruding a structure forming material through the through hole of the mold, and molded structural bodies or in any direction that have a two-dimensional shape corresponding to the through hole on a substrate A method for producing a structure having a three-dimensional shape changed to
1) heating the structure forming material,
2) flowing the structure-forming material to the opposite surface of the mold through the through-hole of the mold having one or more through-holes having a desired contour;
3) The substrate is brought into contact with or close to the mold, and the structure forming surface of the substrate and the structure forming material are bonded.
4) through the through hole of the die structures forming material at a predetermined pushing speed extrusion, while flowing to the mold surface opposite, by moving the mold and / or substrate in a direction moving away from each other , Extruded onto a substrate to form a molded structure,
5) At that time, the cross-section of the through hole is made by making the speed of separating the mold and the substrate slower or faster than the speed at which the structure forming material comes out to the opposite surface of the mold through the through hole. Change the cross-sectional shape of the structure with one mold by increasing or decreasing the cross-sectional shape of the structure rather than the shape.
6) Finishing the formation of the structure by terminating the pushing of the structure-forming material at an arbitrary position and stopping the flow of the structure-forming material to the opposite surface of the mold through the through hole.
A structure manufacturing method characterized by the above.
(2) Extrude the structure forming material and move it to the opposite side of the mold through the through hole of the mold while moving the mold and / or the substrate away from each other, and on the forming surface The structure-forming material adhesion position of the metal mold and the through-hole position of the mold are relatively changed or the speed and direction of the mold are made constant or changed to be extruded onto the substrate to form a molded structure (1) The manufacturing method of the structure as described in).
(3) the structure-forming material, tree butter, metals, composites thereof, or a composite material thereof with ceramic scan, a method for manufacturing a structure according to (1) or (2).
(4) The structure manufacturing method according to any one of (1) to (3), wherein a structure having a two-dimensional shape corresponding to a through hole of a mold is formed on a substrate.
(5) On the substrate, a structure having a shape obtained by further regularly or irregularly deforming a structure having a two-dimensional shape corresponding to the through hole of the mold in an arbitrary direction is produced. The method for manufacturing a structure according to any one of (1) to (4).
(6) the structure forming material through the through hole of the die having a plurality of through holes at a predetermined pushing speed extrusion, molding to have a two-dimensional shape corresponding to the through hole on a substrate A processing apparatus for producing a structure,
A substrate having a surface for forming a structure, a mold having a desired through-hole for forming a structure on the surface of the substrate, a heating means for heating a structure forming material, and the mold And / or drive means for moving the substrate away from each other, and means for bringing the substrate into contact with or close to the mold and bonding the structure-forming surface of the substrate and the structure-forming material. The structure forming material is allowed to flow to the mold reverse surface through the through hole, and the pushing of the structure forming material is terminated at an arbitrary position to the mold reverse surface through the structure forming material through hole. and means for stopping the flow of, the rate of release of the mold and the substrate, by the structure forming material to or faster or slower than the rate at which emerges into the mold opposite surface via the through hole, the through hole than the cross-sectional shape having, to that or less increasing the structure cross-section A means for controlling, and is characterized in that so as to vary the cross-sectional shape of the structure in one of the mold, the machining apparatus.
(7) Driving to make constant or change the direction in which the mold and / or the substrate are separated from each other, the speed and direction for relatively changing the structure forming material adhesion position and the through hole position on the surface of the substrate. The processing apparatus according to (6), including means.
(8) The processing apparatus according to (6) or (7), wherein the driving unit is a screw, a gear, a piezo element, or a composite driving method thereof.
次に、本発明について、更に詳細に説明する。
本発明の方法は、構造体形成材料を金型の貫通穴を介して押出し、成形して、基板の上に当該貫通穴に対応した2次元的な形状を有する構造体を作製する方法であって、(1)構造体形成材料を加熱する、(2)構造体形成材料を所望の輪郭を有する1つ又は複数個の貫通穴を具備する金型の貫通穴を介して金型逆面にまで流動させる、(3)金型に基板を接触、又は近接させて、基板の構造体形成面と構造体形成材料とを接着させる、(4)構造体形成材料を押出し、金型の貫通穴を介して、金型逆面にまで流動させつつ、金型及び/又は基板を相互に離れていく方向に移動させることにより、基板上に押出し、成形された構造物を形成する、(5)構造体形成材料の貫通穴を介しての金型逆面への流動を停止させることにより、構造体の形成を終了する、ことを特徴とするものである。
Next, the present invention will be described in more detail.
The method of the present invention is a method for producing a structure having a two-dimensional shape corresponding to the through hole on a substrate by extruding and forming the structure forming material through the through hole of the mold. (1) heating the structure forming material, (2) the structure forming material on the opposite surface of the mold through the through hole of the mold having one or a plurality of through holes having a desired contour. (3) The substrate is brought into contact with or close to the mold, and the structure forming surface of the substrate and the structure forming material are adhered to each other. (4) The structure forming material is extruded and the through hole of the mold The mold and / or the substrate are moved away from each other while flowing to the opposite surface of the mold, and extruded onto the substrate to form a molded structure (5) By stopping the flow of the structure forming material to the opposite side of the mold through the through hole, the structure To end the formation, it is characterized in.
本発明の方法について、図1に示した、本発明の構造物の作製を可能とする構造物の作製装置の概略図を参照して具体的に説明する。本発明の装置は、構造物を形成する面を有する基板(12)と、該基板の表面に形成するための所望の形状に略対応した貫通穴を具備する金型(13)と、該金型と形成面が離れていく方向と基板の面上の構造体形成材料接着位置と貫通穴位置を相対的に変化させるように移動させる3次元に駆動する手段を有する駆動部(11)と、継続して、安定的に構造体形成材料(15)を供給するための加熱手段部(14)と、上記金型に負荷をかけて構造体形成材料(15)を押し出す駆動手段を有する構造体形成材料流動手段部(16)、を有する。 The method of the present invention will be specifically described with reference to the schematic view of the structure manufacturing apparatus shown in FIG. 1, which enables the structure of the present invention to be manufactured. The apparatus of the present invention comprises a substrate (12) having a surface on which a structure is formed, a mold (13) having a through hole substantially corresponding to a desired shape to be formed on the surface of the substrate, A drive unit (11) having means for three-dimensionally moving the mold and the forming surface to move so as to relatively change the structure forming material adhesion position and the through hole position on the substrate surface; A structure having a heating means (14) for supplying the structure forming material (15) stably and a driving means for applying a load to the mold and pushing out the structure forming material (15). A forming material flow means section (16).
3次元に駆動する手段を有する駆動部(11)は、所望の構造体の寸法、数により、任意の方式の駆動手段を適宜選択して使用できるが、何れの方法でも、基本的に構造体形成は可能であり、例えば、駆動方式は、ねじ、ギア、ピエゾ素子による方式、もしくはそれらの複合駆動方式等が例示される。 The drive unit (11) having means for driving three-dimensionally can be used by appropriately selecting any type of drive means depending on the size and number of desired structures. For example, the drive system may be a system using screws, gears, piezo elements, or a composite drive system thereof.
基板(12)の材質は、適宜選択して使用されるが、構造体形成材料が基板面上に接着可能であり、金型と構造体形成材料が加熱されている温度で構造体が形成される面形状が保持されており、金型との反応がない材質であれば、樹脂系材料、金属系材料、半導体材料、セラミックス系材料、それら複合材料等、何れの材質でも使用可能である。 The material of the substrate (12) is appropriately selected and used, but the structure forming material can be bonded onto the substrate surface, and the structure is formed at a temperature at which the mold and the structure forming material are heated. Any material such as a resin material, a metal material, a semiconductor material, a ceramic material, or a composite material thereof can be used as long as the surface shape is maintained and the material does not react with the mold.
金型(13)の材質は、適宜選択して使用されるが、構造体形成材料が加熱されている温度で、構造体、及び基板材料との反応がなく、かつ構造体形成材料が金型逆面に流動される際にかかる荷重下で、形状が保持される材質であれば、樹脂系材料、金属系材料、半導体材料、セラミックス系材料、それら複合材料等、何れの材質でも使用可能である。金型の貫通穴の形状及びサイズは目的とする構造物の形状に合わせて任意に設計することができる。 The material of the mold (13) is appropriately selected and used. At the temperature at which the structure forming material is heated, there is no reaction with the structure and the substrate material, and the structure forming material is the mold. Any material such as resin-based material, metal-based material, semiconductor material, ceramic-based material, or composite material can be used as long as the material retains its shape under the load applied when flowing on the opposite surface. is there. The shape and size of the through hole of the mold can be arbitrarily designed according to the shape of the target structure.
加熱手段部(14)は、何れの方式でも問題はないが、加熱する温度により、適宜加熱手段部の方式を選択するべきであり、例えば、ニクロム線、カーボン、タングステン線、ペルチェ素子等が例示される。また、熱伝対、放射温度計等で温度を測定し、その結果をフィードバックする方式をとり、温度制御する手段を講じることが好ましい。また、本装置の概略図では、構造体形成材料(15)を加熱手段部(14)と構造体形成材料流動手段部(16)と金型(13)により囲っているが、加熱手段部(14)と構造体形成材料(15)が直接接触することを避けるため、構造体形成材料との間にブロック等を設置することが望ましい。この場合、ブロックは、加熱されている温度で、形状が保持され、加熱手段部、金型、及び構造体形成材料との反応がない材質であれば、樹脂系材料、金属系材料、半導体材料、セラミックス系材料、それら複合材料等、何れの材質でも問題はない。 There is no problem with the heating means section (14), but the heating means section should be selected as appropriate depending on the heating temperature. Examples include nichrome wire, carbon, tungsten wire, and Peltier element. Is done. Further, it is preferable to take a method of measuring the temperature with a thermocouple, a radiation thermometer, etc., and feeding back the result, and to take a temperature control means. In the schematic view of the apparatus, the structure forming material (15) is surrounded by the heating means (14), the structure forming material flow means (16), and the mold (13). In order to avoid direct contact between 14) and the structure-forming material (15), it is desirable to install a block or the like between the structure-forming material. In this case, the block is a resin-based material, a metal-based material, or a semiconductor material as long as the shape is maintained at the heated temperature and does not react with the heating unit, the mold, and the structure-forming material. There is no problem with any material such as ceramic materials and composite materials thereof.
構造体形成材料(15)の材質は、適宜選択して使用されるが、加熱されている温度で、金型、ブロックとの反応がなく、かつ荷重下で、金型の貫通穴を介して逆面流動され、かつ基板との接着が可能である材質であれば、樹脂系材料、金属系材料、半導体材料、セラミックス系材料、それら複合材料等、何れの材質でも問題はない。また、構造体形成材料(15)と基板(12)との接着に際しては、接着を十分に促すため、適宜、保持時間を設けることが好ましい。 The material of the structure forming material (15) is appropriately selected and used, but does not react with the mold or block at a heated temperature, and passes through the through hole of the mold under load. There is no problem with any material such as resin material, metal material, semiconductor material, ceramic material, and composite material as long as it is a material that can flow on the opposite surface and can be bonded to the substrate. In addition, when adhering the structure forming material (15) and the substrate (12), it is preferable to appropriately provide a holding time in order to sufficiently promote the adhesion.
構造体形成材料を金型の貫通穴を通じて逆面に流動させるための手段である構造体形成材料流動手段部(16)は、所望の構造体の寸法、数により、適宜選択して使用されるが、何れの方法でも、基本的に構造体形成は可能であり、駆動方式は、例えば、ねじ、ギア、ピエゾ素子、もしくはそれらの複合駆動方式等が例示される。また、本装置の概略図では、構造体形成材料を加熱手段部と構造体形成材料流動手段部と金型により囲っているが、構造体形成材料と構造体形成材料流動手段部が直接接触することを避けるため、構造体形成材料との間にブロック等を設置することが望ましい。この場合、ブロックは、金型と構造体形成材料が加熱されている温度で、形状が保持され、加熱手段部と構造体形成材料との間のブロック、金型、及び構造体形成材料との反応がない材質であれば、樹脂系材料、金属系材料、半導体材料、セラミックス系材料、それら複合材料等、何れの材質でも問題はない。 The structure forming material flow means section (16), which is a means for causing the structure forming material to flow to the opposite side through the through hole of the mold, is appropriately selected and used depending on the size and number of desired structures. However, any method can basically form the structure, and examples of the driving method include a screw, a gear, a piezo element, or a combined driving method thereof. In the schematic view of the apparatus, the structure forming material is surrounded by the heating means, the structure forming material flow means, and the mold, but the structure forming material and the structure forming material flow means are in direct contact with each other. In order to avoid this, it is desirable to install a block or the like between the structure forming material. In this case, the shape of the block is maintained at a temperature at which the mold and the structure forming material are heated, and the block, the mold, and the structure forming material between the heating unit and the structure forming material There is no problem with any material such as a resin material, a metal material, a semiconductor material, a ceramic material, or a composite material thereof as long as it does not react.
次に、図2、及び図3に示した、本発明の構造物の作製を可能とする構造物の作製工程の概略図を参照にして、本発明の工程を具体的に説明する。まず、2次元的な構造体の作製方法として、図2(a)では、構造体形成材料を加熱する。図2(b)では、構造体形成材料流動手段部により、構造体形成材料を金型の貫通穴を介して金型逆面にまで流動させ、構造体形成材料流動手段部を停止する。図2(c)では、基板を金型に近づける方向に駆動させ、金型に形成面を接触、又は近接させて、構造体形成材料と、基板を接着させる。図2(d)では、構造体形成材料流動手段部により、構造体形成材料を金型の貫通穴を介して、金型逆面にまで流動させつつ、金型と形成面を離れていく方向に移動させる。図2(e)では、構造体形成材料の金型逆面への流動を停止させることにより、基板上に構造物を形成する。 Next, the steps of the present invention will be described in detail with reference to the schematic diagrams of the steps for producing a structure that enables the production of the structure of the present invention shown in FIGS. First, as a two-dimensional structure manufacturing method, the structure forming material is heated in FIG. In FIG. 2 (b), the structure forming material flow means part causes the structure forming material to flow to the opposite side of the mold through the through hole of the mold and stops the structure forming material flow means part. In FIG. 2C, the substrate is driven in a direction approaching the mold, and the formation surface is brought into contact with or close to the mold to bond the structure forming material and the substrate. In FIG. 2D, the structure forming material flow means part causes the structure forming material to flow to the opposite side of the mold through the through hole of the mold and away from the mold and the forming surface. Move to. In FIG.2 (e), a structure is formed on a board | substrate by stopping the flow to the metal mold | die reverse surface of a structure formation material.
次に、3次元的な構造体の作製方法としては、図2(c)までは、2次元的な構造体の作製方法と工程は同じである。その後、図3(a)、(b)では、構造体形成材料流動手段部により、構造体形成材料を金型の逆面にまで流動させつつ、金型と形成面を離れていく方向に移動させ、かつ形成面上の構造体形成材料接着位置と金型の貫通穴位置を相対的に変化させる、図2(c)では、構造体形成材料の金型逆面への流動を停止させることにより、基板上に構造物を形成する。 Next, as a method for manufacturing a three-dimensional structure, the steps are the same as the method for manufacturing a two-dimensional structure up to FIG. Thereafter, in FIGS. 3A and 3B, the structure forming material flow means moves the structure forming material to the opposite surface of the mold and moves away from the mold and the forming surface. In FIG. 2 (c), the flow of the structure forming material to the opposite surface of the mold is stopped by relatively changing the adhesion position of the structure forming material on the forming surface and the through hole position of the mold. Thus, a structure is formed on the substrate.
上記の、構造体形成材料と基板を接着させる、までの工程は、適宜変更することができる。例えば、(a)構造体形成材料を加熱する、次に、(b)基板を金型に近づける方向に駆動させ、金型に形成面を接触、又は近接させる、その後、(c)構造体形成材料流動手段部により、構造体形成材料を金型の貫通穴を介して金型逆面にまで流動させて、構造体形成材料と、基板を接着させる、という工程手順がある。 The above steps up to bonding the structure forming material and the substrate can be appropriately changed. For example, (a) the structure forming material is heated, then (b) the substrate is driven in a direction approaching the mold, and the formation surface is brought into contact with or close to the mold, and (c) the structure is formed. There is a process procedure in which the structure forming material is caused to flow to the opposite surface of the mold through the through hole of the mold and the structure forming material and the substrate are adhered by the material flow means unit.
あるいは、例えば、(a)基板を金型に近づける方向に駆動させ、金型に形成面を接触、又は近接させる、次に、(b)構造体形成材料を加熱する、その後、(c)構造体形成材料流動手段部により、構造体形成材料を金型の貫通穴を介して金型逆面にまで流動させて、構造体形成材料と、基板を接着させる、という工程手順がある。 Alternatively, for example, (a) the substrate is driven in a direction approaching the mold, and the forming surface is brought into contact with or close to the mold, and then (b) the structure forming material is heated, and then (c) the structure There is a process procedure in which the structure forming material is caused to flow to the opposite side of the mold through the through hole of the mold and the structure forming material and the substrate are bonded by the body forming material flow means unit.
図1の装置の模式図では、上部に基板(12)、及び駆動部(3軸駆動)(11)、下部に金型(13)、構造体形成材料(15)、及び構造体形成材料流動手段部(16)としているが、上部、下部が逆でもよく、また、3軸駆動部は、金型、構造体形成材料、及び構造体形成材料流動手段部側に設置されていてもよい。更には、3軸駆動は、分割されていてもよく、例えば、図1の装置の模式図において、3次元駆動部の箇所に、金型と基板が離れていく方向のみの駆動部を設置し、形成面上の構造体形成材料接着位置と金型の貫通穴位置を相対的に変化させる方向への駆動部を金型、構造体形成材料、及び構造体形成材料流動手段部側に設置してもよい。場合によっては、両側を3次元駆動させる方式を採用することも適宜可能である。 In the schematic diagram of the apparatus of FIG. 1, the substrate ( 12 ) and the drive unit (3-axis drive) (11) are on the top, the mold (13), the structure forming material (15), and the structure forming material flow are on the bottom. Although the means part (16) is used, the upper part and the lower part may be reversed, and the triaxial driving part may be installed on the mold, the structure forming material, and the structure forming material flow means part side. Furthermore, the three-axis drive may be divided. For example, in the schematic diagram of the apparatus in FIG. 1, a drive unit only in the direction in which the mold and the substrate are separated from each other is installed at the three-dimensional drive unit. The drive unit in the direction to relatively change the adhesion position of the structure forming material on the forming surface and the position of the through hole of the mold is installed on the mold, the structure forming material, and the structure forming material flow means side. May be. Depending on the case, it is also possible to adopt a method in which both sides are driven three-dimensionally.
金型における所望の構造体の底面形状に対応した輪郭を有する1つ又は複数個の貫通穴の形状、大きさ及び個数等は、目的とする構造物の形状、構造等に応じて任意に設計することができる。金型と基板とを離す速度は、設計した貫通穴の大きさ、数、及び構造体形成材料流動手段部の速度、加熱手段部、もしくはブロックを構成している構造体形成材料が蓄えられている部分の断面積と、貫通穴の断面積の変化の程度に伴い、ほぼ決定される。すなわち、金型と基板とを離す速度は、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度と同程度の速度となる。 The shape, size, number, etc. of one or more through holes having a contour corresponding to the bottom shape of the desired structure in the mold are arbitrarily designed according to the shape, structure, etc. of the target structure can do. The speed of separating the mold and the substrate is the size and number of the designed through holes, the speed of the structure forming material flow means section, the heating means section, or the structure forming material constituting the block. It is almost determined according to the degree of change in the cross-sectional area of the portion and the cross-sectional area of the through hole. That is, the speed at which the mold and the substrate are separated is the same speed as the speed at which the structure-forming material comes out to the opposite surface of the mold through the through hole.
また、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも遅くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を大きくすることや、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも速くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を小さくすることができ、ひとつの金型で構造体の断面形状を変化させることができる。更に、形成面上の構造体形成材料接着位置と金型の貫通穴位置を相対的に変化させる速度と方向を一定にすることで、規則的な形状を有する3次元形状構造体を、あるいは相対的に変化させる速度と方向を各箇所により変化させることで、不規則な形状を有する3次元形状構造体を作製することができる。 In addition, by making the speed at which the mold and the substrate are separated from each other slower than the speed at which the structure-forming material comes out to the opposite side of the mold through the through-hole, the cross-section of the structure can By making the shape larger and making the speed of separating the mold and the substrate faster than the speed at which the structure-forming material comes out of the mold through the through-hole, the cross-sectional shape of the through-hole However, the cross-sectional shape of the structure can be reduced, and the cross-sectional shape of the structure can be changed with a single mold. Furthermore, by making constant the speed and direction of changing the structure forming material adhesion position on the forming surface and the through hole position of the mold, a three-dimensional shape structure having a regular shape, or relative The three-dimensional shape structure having an irregular shape can be produced by changing the speed and direction of the change at each location.
成形の終了は、構造体形成材料流動手段部の駆動を停止させることにより可能であり、それにより、構造体の高さを任意に設計することで、ひとつの金型で構造体の高さを変化させた構造体を作製することができる。従来法による構造体作製方法と本発明の構造体作製方法の比較表を表1に示す。本発明は、様々な形状の加工が要求されるマイクロマシン、医療機器、センサー機器、電子デバイス等の部品に関して、特に、アスペクト比の高い2次元的な形状を有する構造体及びそれを任意の方向に変形させた3次元的な形状を有する構造体を、基板任意の場所に、任意の数だけ、簡便に、材料の種類を選ばず、かつ形状に自由度を持たせて形成することが可能であり、例えば、ヒートシンク、DNA分析用のアレイ構造物、半導体集積回路検査用プローブ等の加工技術として有用である。 Completion of molding is possible by stopping the driving of the structure forming material flow means section, thereby arbitrarily designing the height of the structure, so that the height of the structure can be adjusted with one mold. A changed structure can be manufactured. Table 1 shows a comparison table between the conventional structure manufacturing method and the structure manufacturing method of the present invention. The present invention relates to parts such as micromachines, medical devices, sensor devices, and electronic devices that require processing of various shapes, in particular, a structure having a two-dimensional shape with a high aspect ratio and the structure in an arbitrary direction. A deformed structure having a three-dimensional shape can be formed in any number of locations on the substrate, in any number, simply and without any kind of material, and with freedom in shape. For example, it is useful as a processing technique for heat sinks, array structures for DNA analysis, probes for testing semiconductor integrated circuits, and the like.
本発明の作製方法と作製装置により、以下のような効果が奏される。
(1)構造形成材料を金型の貫通穴を介して押出し、成形することにより、特に、アスペクト比の高い2次元的な形状及び3次元的な形状を有する構造体を作製することができる。
(2)基板の上に、金型の貫通穴に対応した2次元的な形状を有する構造体を作製し、提供することができる。
(3)基板の上に、上記2次元的な形状を有する構造体を更に任意の方向に規則的又は不規則的に変形させた3次元的な形状を有する構造体を作製し、提供することができる。
(4)代表的な機械加工機である旋盤、研削盤、及びフライス盤、放電加工機であるワイヤ放電研削法(WEDG法)、及びワイヤカット放電加工法、従来の金型を用いた鍛造、鋳造、プレス、射出成形、インプリント法、主に微細構造体を作製する際に用いられるリソグラフィー法、LIGA法、集束イオンビーム装置(FIB)、及び金属系微細構造物を電気めっき法により作製する装置、方法に関する先願発明(特願2006−078125)において、作製が困難であるとしてそれぞれ問題とされているアスペクト比の高い構造体に関し、本発明は、構造体形成材料を金型の貫通穴を介して押出し、成形する手法を利用することで、基板の面上の任意の場所に、任意の数だけ、簡便に、材料の種類を選ばず、かつ形状に自由度を有する構造体を作製できる当該構造体の作製方法と構造物の作製装置を提供できる。
(5)上記手法よりも多くの材料種の構造体を作製できる装置を提供できる。
The following effects are produced by the manufacturing method and the manufacturing apparatus of the present invention.
(1) A structure having a two-dimensional shape and a three-dimensional shape having a particularly high aspect ratio can be produced by extruding and forming the structure-forming material through a through-hole of a mold.
(2) A structure having a two-dimensional shape corresponding to the through hole of the mold can be produced and provided on the substrate.
(3) Producing and providing a structure having a three-dimensional shape obtained by regularly or irregularly deforming the structure having the two-dimensional shape on a substrate in an arbitrary direction. Can do.
(4) Lathes, grinders, and milling machines, which are typical machining machines, wire electric discharge grinding method (WEDG method), and wire cut electric discharge machining methods, which are electric discharge machines, forging and casting using conventional molds , Press, injection molding, imprint method, lithography method mainly used for producing fine structures, LIGA method, focused ion beam device (FIB), and apparatus for producing metal-based fine structures by electroplating method In the prior invention relating to the method (Japanese Patent Application No. 2006-078125), the present invention relates to a structure having a high aspect ratio, which is considered to be difficult to manufacture. By using the method of extruding and forming through, it is possible to select any number of materials in any place on the surface of the substrate, simply, without any kind of material, and to have flexibility in shape. It can provide a manufacturing apparatus of a manufacturing method and the structure of the structure can be fabricated structure.
(5) It is possible to provide an apparatus that can produce structures of more material types than the above method.
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
(1)構造物の作製装置の構築
本実施例では、直径が500μmの貫通穴を1つ有する厚さ1mmのSUS303板を金型として用いた。加熱手段部と構造体形成材料との間、及び構造体形成材料流動手段部と構造体形成材料との間には、SUS303製のブロックを使用した。構造体形成材料には、すず合金を、基板には真鍮、及びニッケルを用いた。基板は上部に設置し、上方へ駆動することで構造体を形成する機構とした。
(1) Construction of Structure Manufacturing Device In this example, a 1 mm thick SUS303 plate having one through hole having a diameter of 500 μm was used as a mold. A block made of SUS303 was used between the heating unit and the structure forming material and between the structure forming material flow unit and the structure forming material. Tin alloy was used as the structure forming material, and brass and nickel were used as the substrate. The substrate is installed at the top and driven upward to form a structure.
(2)構造物の形成
次いで、表2に示す条件で、成形を行った。基板と構造体材料を接着させて20分後に基板を上方に駆動させた。図4に、成形中の写真を示す。任意の位置で構造体形成材料の金型逆面への流動を終了させた。
(2) Formation of structure Next, molding was performed under the conditions shown in Table 2. 20 minutes after bonding the substrate and the structural material, the substrate was driven upward. FIG. 4 shows a photograph during molding. The flow of the structure forming material to the opposite surface of the mold was terminated at an arbitrary position.
(3)構造物の評価
基板移動速度10mm/min.と20mm/min.で得られた構造物の外観写真を図5に示す。基板材料の違いに関わらず、成形が可能であることがわかる。それぞれの基板移動速度で得られた構造物の走査型電子顕微鏡写真を図6に示す。直径はそれぞれ、基板移動速度5mm/min.のとき900μm、基板移動速度10mm/min.のとき650μm、基板移動速度20mm/min.のとき450μm、基板移動速度30mm/min.のとき400μmであり、基板速度を変化させることで、構造物の直径を変化させることができる。任意の位置で構造体形成材料の押込みを終了させて、構造体の形成を終了させたので、更に長い構造体を作製することは可能であるが、例えば、基板移動速度20mm/min.のときの長さは147mmであり、アスペクト比は約327となり、高アスペクト比の構造物を作製することができた。
(3) Evaluation of structure Substrate moving speed 10 mm / min. And 20 mm / min. The appearance photograph of the structure obtained in Fig. 5 is shown in FIG. It can be seen that molding is possible regardless of the substrate material. Scanning electron micrographs of the structures obtained at the respective substrate moving speeds are shown in FIG. Each of the diameters is 5 mm / min. 900 μm, substrate moving speed 10 mm / min. 650 μm, substrate moving speed 20 mm / min. In this case, the substrate moving speed is 30 mm / min. In this case, it is 400 μm, and the diameter of the structure can be changed by changing the substrate speed. Since the pushing of the structure forming material is finished at an arbitrary position and the formation of the structure is finished, it is possible to produce a longer structure, but for example, the substrate moving speed is 20 mm / min. In this case, the length was 147 mm, the aspect ratio was about 327, and a structure having a high aspect ratio could be produced.
(1)構造物の作製装置の構築
本実施例では、直径が500μmの貫通穴を1つ有する厚さ1mmのSUS303板を金型として用いた。加熱手段部と構造体形成材料との間、及び構造体形成材料流動手段部と構造体形成材料との間には、SUS303製のブロックを使用した。構造体形成材料には、すず合金を、基板にはアルミニウムを用いた。基板は上部に設置し、上方へ駆動することで構造体を形成し、金型を有する下部がX、Y方向へ駆動する機構とした。
(1) Construction of Structure Manufacturing Device In this example, a 1 mm thick SUS303 plate having one through hole having a diameter of 500 μm was used as a mold. A block made of SUS303 was used between the heating unit and the structure forming material and between the structure forming material flow unit and the structure forming material. A tin alloy was used as the structure forming material, and aluminum was used as the substrate. The substrate was installed at the upper part, and the structure was formed by driving upward, and the lower part having the mold was driven in the X and Y directions.
(2)構造物の形成
次いで、表3に示す条件で、成形を行った。基板と構造体材料を接着させて20分後に基板を上方に駆動させた。任意の位置で構造体形成材料の金型逆面への流動を終了させた。
(2) Formation of structure Subsequently, molding was performed under the conditions shown in Table 3. 20 minutes after bonding the substrate and the structural material, the substrate was driven upward. The flow of the structure forming material to the opposite surface of the mold was terminated at an arbitrary position.
(3)構造物の評価
得られた構造物の外観写真を図7に示す。3次元の形状を有する構造物を作製することができたことがわかる。
(3) Evaluation of structure The external appearance photograph of the obtained structure is shown in FIG. It can be seen that a structure having a three-dimensional shape could be produced.
(1)構造物の作製装置の構築
本実施例では、直径が500μmの貫通穴を1つ有する厚さ1mmのSUS303板を金型として用いた。加熱手段部と構造体形成材料との間、及び構造体形成材料流動手段部と構造体形成材料との間には、SUS303製のブロックを使用した。構造体形成材料には、すず合金を、基板にはアルミニウムを用いた。基板を下部に、そして構造金型を上部に設置し、構造金型を上方へ駆動することで構造体を形成し、下部がX、Y方向へ駆動する機構とした。
(1) Construction of Structure Manufacturing Device In this example, a 1 mm thick SUS303 plate having one through hole having a diameter of 500 μm was used as a mold. A block made of SUS303 was used between the heating unit and the structure forming material and between the structure forming material flow unit and the structure forming material. A tin alloy was used as the structure forming material, and aluminum was used as the substrate. The substrate was placed at the bottom and the structural mold was placed at the top, and the structural body was formed by driving the structural mold upward, and the lower part was driven in the X and Y directions.
(2)構造物の形成
次いで、表4に示す条件で、成形を行った。基板と構造体材料を接着させて20分後に基板を上方に駆動させた。図8に成形中の写真を示す。任意の位置で構造体形成材料の金型逆面への流動を終了させた。
(2) Formation of structure Next, molding was performed under the conditions shown in Table 4. 20 minutes after bonding the substrate and the structural material, the substrate was driven upward. FIG. 8 shows a photograph during molding. The flow of the structure forming material to the opposite surface of the mold was terminated at an arbitrary position.
(3)構造物の評価
得られた構造物の外観写真を図9に示す。3次元の形状を有する構造物を作製することができたことがわかる。実施例1、2、3から、金型、基板、及びX、Y、Z方向へ駆動する機構の設置位置は、上部、下部、いずれでもよいことがわかる。
(3) Evaluation of structure The external appearance photograph of the obtained structure is shown in FIG. It can be seen that a structure having a three-dimensional shape could be produced. From Examples 1, 2, and 3, it can be seen that the installation position of the mold, the substrate, and the mechanism that drives in the X, Y, and Z directions may be either the upper part or the lower part.
(1)構造物の作製装置の構築
本実施例では、直径が500μmの貫通穴を1つ有する厚さ2mmの真鍮板を金型として用いた。加熱手段部と構造体形成材料との間、及び構造体形成材料流動手段部と構造体形成材料との間には、SUS303製のブロックを使用した。構造体形成材料には、ポリエステル樹脂を、基板にはアクリル樹脂を用いた。基板は上部に設置し、上方へ駆動することで構造体を形成する機構とした。
(1) Construction of Structure Manufacturing Device In this example, a 2 mm thick brass plate having one through hole having a diameter of 500 μm was used as a mold. A block made of SUS303 was used between the heating unit and the structure forming material and between the structure forming material flow unit and the structure forming material. Polyester resin was used for the structure forming material, and acrylic resin was used for the substrate. The substrate is installed at the top and driven upward to form a structure.
(2)構造物の形成
次いで、表5に示す条件で、成形を行った。基板と構造体材料を接着させて直ちに基板を上方に駆動させた。任意の位置で構造体形成材料の金型逆面への流動を終了させている。
(2) Formation of structure Next, molding was performed under the conditions shown in Table 5. The substrate and the structural material were adhered, and the substrate was immediately driven upward. The flow of the structure forming material to the opposite surface of the mold is terminated at an arbitrary position.
(3)構造物の評価
基板移動速度10mm/min.と20mm/min.で得られた構造物の外観写真を図10に示す。樹脂材料においても、成形が可能であることがわかる。
(3) Evaluation of structure Substrate moving speed 10 mm / min. And 20 mm / min. The appearance photograph of the structure obtained in is shown in FIG. It can be seen that the resin material can also be molded.
(1)構造物の作製装置の構築
本実施例では、直径が500μmの貫通穴を2つ有する厚さ2mmの真鍮板を金型として用いた。加熱手段部と構造体形成材料との間、及び構造体形成材料流動手段部と構造体形成材料との間には、SUS303製のブロックを使用した。構造体形成材料には、ポリエステル樹脂を、基板にはアクリル樹脂を用いた。基板を下部に、そして構造金型を上部に設置し、構造金型を上方へ駆動することで構造体を形成する機構とした。
(1) Construction of Structure Manufacturing Device In this example, a 2 mm thick brass plate having two through holes with a diameter of 500 μm was used as a mold. A block made of SUS303 was used between the heating unit and the structure forming material and between the structure forming material flow unit and the structure forming material. Polyester resin was used for the structure forming material, and acrylic resin was used for the substrate. The mechanism is formed by placing the substrate at the bottom and the structural mold at the top and driving the structural mold upward.
(2)構造物の形成
次いで、表6に示す条件で、成形を行った。基板と構造体材料を接着させて直ちに基板を上方に駆動させた。任意の位置で構造体形成材料の金型逆面への流動を終了させている。
(2) Formation of Structure Next, molding was performed under the conditions shown in Table 6. The substrate and the structural material were adhered, and the substrate was immediately driven upward. The flow of the structure forming material to the opposite surface of the mold is terminated at an arbitrary position.
(3)構造物の評価
得られた構造物の外観写真を図11に示す。複数の構造体の成形が可能であることがわかる。
(3) Evaluation of structure The external appearance photograph of the obtained structure is shown in FIG. It can be seen that a plurality of structures can be formed.
以上詳述したように、本発明は、構造物の作製方法、及びその装置に係るものであり、本発明は、構造形成材料を金型の貫通穴を介して押出し、成形して、基板の面上の任意の場所に、任意の数だけ、簡便に、材料の種類を選ばず、かつ、形状に自由度を有する構造体を形成することを可能とする当該構造物の作製方法とその作製装置を提供することを可能とする。本発明は、例えば、ヒートシンク、DNA分析用のアレイ構造体、半導体集積回路検査用プロ−グ等の構造体の加工技術に関して、特に、アスペクト比の高い構造体を作製することを実現可能にする当該構造体の加工技術を提供するものとして有用である。 As described above in detail, the present invention relates to a method of manufacturing a structure and an apparatus therefor. The present invention extrudes and forms a structure-forming material through a through-hole of a mold to form a substrate. A method for manufacturing the structure, and a method for manufacturing the structure, which can form a structure having an arbitrary number of materials and a degree of freedom in shape, in an arbitrary number on a surface, simply and in any number It is possible to provide a device. The present invention makes it possible to produce a structure having a high aspect ratio, particularly with respect to a processing technique of a structure such as a heat sink, an array structure for DNA analysis, a probe for testing a semiconductor integrated circuit, and the like. This is useful as a technique for processing the structure.
(図1の符号)
11 駆動部(3軸駆動)
12 基板
13 金型
14 加熱手段部
15 構造体形成材料
16 構造体形成材料流動手段部
(Reference in FIG. 1)
11 Drive unit (3-axis drive)
DESCRIPTION OF SYMBOLS 12 Substrate 13 Mold 14 Heating means 15 Structure forming material 16 Structure forming material flow means
Claims (8)
(1)構造体形成材料を加熱する、
(2)構造体形成材料を所望の輪郭を有する1つ又は複数個の貫通穴を具備する金型の貫通穴を介して金型逆面にまで流動させる、
(3)金型に基板を接触、又は近接させて、基板の構造体形成面と構造体形成材料とを接着させる、
(4)構造体形成材料を所定の押込み速度で金型の貫通穴を介して押出し、金型逆面にまで流動させつつ、金型及び/又は基板を相互に離れていく方向に移動させることにより、基板上に押出し、成形された構造体を形成する、
(5)その際に、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも遅くする又は速くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を大きくする又は小さくすることで、ひとつの金型で構造体の断面形状を変化させる、
(6)任意の位置で構造体形成材料の押込みを終了させて構造体形成材料の貫通穴を介しての金型逆面への流動を停止させることにより、構造体の形成を終了する、
ことを特徴とする、構造体の作製方法。 The structure forming material extruded through the through hole of the mold, by molding, the two-dimensional shape corresponding to the through-hole structure, or it is changed in any direction that Yusuke on the substrate A method of manufacturing a structure having a three-dimensional shape,
(1) heating the structure-forming material;
(2) The structure-forming material is caused to flow to the opposite surface of the mold through the through-hole of the mold having one or a plurality of through-holes having a desired contour.
(3) The substrate is brought into contact with or close to the mold to bond the structure forming surface of the substrate and the structure forming material.
(4) extruding the structure forming material through the through hole of the mold at a predetermined pushing speed, while flow to the mold surface opposite, to move in the direction going mutually away the mold and / or substrate Extrude on the substrate to form a molded structure,
(5) At that time, the through hole has a speed by separating or increasing the speed at which the mold and the substrate are separated from the speed at which the structure forming material comes out to the opposite surface of the mold through the through hole. Change the cross-sectional shape of the structure with one mold by making the cross-sectional shape of the structure larger or smaller than the cross-sectional shape,
(6) The formation of the structure is finished by terminating the pushing of the structure-forming material at an arbitrary position and stopping the flow of the structure-forming material to the mold reverse surface through the through hole.
A structure manufacturing method characterized by the above.
構造物を形成する面を有する基板と、該基板の面に構造体を形成するための所望の貫通穴を具備する金型と、構造体形成材料を加熱するための加熱手段と、該金型及び/又は基板が相互に離れていく方向に移動させる駆動手段と、金型に基板を接触、又は近接させて、基板の構造体形成面と構造体形成材料とを接着させる手段と、継続して構造体形成材料を貫通穴を介して金型逆面に流動させると共に、任意の位置で構造体形成材料の押込みを終了させて構造体形成材料の貫通穴を介しての金型逆面への流動を停止させる手段と、金型と基板とを離す速度を、構造体形成材料が貫通穴を介して金型逆面へ出てくる速度よりも遅くする又は速くすることにより、貫通穴が有する断面形状よりも、構造体断面形状を大きくする又は小さくするように制御する手段と、を有し、ひとつの金型で構造体の断面形状を変化させるようにしたことを特徴とする、上記加工装置。 The structure forming material through the through hole of the die having a plurality of through holes at a predetermined pushing speed extrusion, molding to a structure having a two-dimensional shape corresponding to the through hole on a substrate A processing device to be manufactured,
A substrate having a surface for forming a structure, a mold having a desired through-hole for forming a structure on the surface of the substrate, a heating means for heating a structure forming material, and the mold And / or drive means for moving the substrate away from each other, and means for bringing the substrate into contact with or close to the mold and bonding the structure-forming surface of the substrate and the structure-forming material. The structure forming material is allowed to flow to the mold reverse surface through the through hole, and the pushing of the structure forming material is terminated at an arbitrary position to the mold reverse surface through the structure forming material through hole. and means for stopping the flow of, the rate of release of the mold and the substrate, by the structure forming material to or faster or slower than the rate at which emerges into the mold opposite surface via the through hole, the through hole than the cross-sectional shape having, to that or less increasing the structure cross-section A means for controlling, and is characterized in that so as to vary the cross-sectional shape of the structure in one of the mold, the machining apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006248191A JP4831574B2 (en) | 2006-09-13 | 2006-09-13 | Structure manufacturing method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006248191A JP4831574B2 (en) | 2006-09-13 | 2006-09-13 | Structure manufacturing method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008068490A JP2008068490A (en) | 2008-03-27 |
JP4831574B2 true JP4831574B2 (en) | 2011-12-07 |
Family
ID=39290509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006248191A Expired - Fee Related JP4831574B2 (en) | 2006-09-13 | 2006-09-13 | Structure manufacturing method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4831574B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118358112B (en) * | 2024-04-29 | 2024-10-29 | 仪征和鑫模塑有限公司 | Plastic part forming device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179313A (en) * | 1988-12-29 | 1990-07-12 | Showa Alum Corp | Manufacture of aluminum extruded/bent products as automobile frame, bumper, side seal, and the like |
US5121329A (en) * | 1989-10-30 | 1992-06-09 | Stratasys, Inc. | Apparatus and method for creating three-dimensional objects |
JP2597778B2 (en) * | 1991-01-03 | 1997-04-09 | ストラタシイス,インコーポレイテッド | Three-dimensional object assembling system and assembling method |
JPH0952275A (en) * | 1996-02-01 | 1997-02-25 | Tsuneo Sugito | Plate-like stereoscopic air-gap structure made of strand |
JP2002052593A (en) * | 2000-08-11 | 2002-02-19 | Taiyo Kasei:Kk | Method for extrusion molding linear network gap structure |
JP4590493B2 (en) * | 2003-07-31 | 2010-12-01 | 独立行政法人産業技術総合研究所 | Manufacturing method of three-dimensional structure |
-
2006
- 2006-09-13 JP JP2006248191A patent/JP4831574B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008068490A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Levy et al. | Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives | |
Gao et al. | Recent advances in micro-and nano-machining technologies | |
US5555481A (en) | Method of producing solid parts using two distinct classes of materials | |
Singh et al. | Recent advancements in additive manufacturing (AM) techniques: a forward-looking review | |
Lantada et al. | Toward mass production of microtextured microdevices: linking rapid prototyping with microinjection molding | |
JP2008291315A (en) | Method for producing three-dimensionally shaped object | |
JP4867790B2 (en) | Manufacturing method of three-dimensional shaped object | |
JP4831574B2 (en) | Structure manufacturing method and apparatus | |
JPWO2008053693A1 (en) | Microchip, molding die and electroforming master | |
KR20230129573A (en) | Processes and/or machines for producing continuous plastic deformation, and/or compositions and/or articles produced thereby | |
JPH068062A (en) | Method for processing partially fabricated plastic item with small recess on one side | |
Equbal et al. | Rapid prototyping Application in manufacturing of EDM Electrode | |
KR101741668B1 (en) | Fabrication Methods of Micromeshes | |
Groß et al. | New sequential manufacturing process for micro and finishing machining | |
JP2004211162A (en) | Method for producing die for press | |
Lu et al. | Process chain for the mass production of polymeric microfluidic chips | |
Fateri et al. | Jewelry fabrication via selective laser melting of glass | |
KR20090046811A (en) | Microreplication on a complex surface | |
Torabi et al. | Investigating the effects of electrochemical discharge machining (ECDM) on the dimensional accuracy and surface integrity of the PDMS microchannel | |
CN109228053A (en) | A kind of combined machining method of micro-fluidic chip injection mold mold core | |
Puspaputra | A Study of Resin as Master Jewellery Material, Surface Quality and Machining Time Improvement by Implementing Appropriate Cutting Strategy | |
Ganesh et al. | Fabrication of micro-cutting tools for mechanical micro-machining | |
Chavan et al. | Micromachining techniques for manufacturing high aspect ratio microelectrodes: A review | |
JP2001260204A (en) | Method for producing mouthpiece for extrusion molding, and mouthpiece for extrusion molding | |
Kumar et al. | Sheet based process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110822 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110913 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |