[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4830944B2 - Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization - Google Patents

Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization Download PDF

Info

Publication number
JP4830944B2
JP4830944B2 JP2007086459A JP2007086459A JP4830944B2 JP 4830944 B2 JP4830944 B2 JP 4830944B2 JP 2007086459 A JP2007086459 A JP 2007086459A JP 2007086459 A JP2007086459 A JP 2007086459A JP 4830944 B2 JP4830944 B2 JP 4830944B2
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
xylene
weight
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007086459A
Other languages
Japanese (ja)
Other versions
JP2008238136A (en
Inventor
亮嗣 市岡
英一 蓑宮
裕 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007086459A priority Critical patent/JP4830944B2/en
Publication of JP2008238136A publication Critical patent/JP2008238136A/en
Application granted granted Critical
Publication of JP4830944B2 publication Critical patent/JP4830944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、エチルベンゼンの脱アルキル化機能及びキシレン異性化機能を有する二元触媒に関するものである。   The present invention relates to a binary catalyst having a dealkylation function and an xylene isomerization function of ethylbenzene.

キシレン異性体のうち、最も重要なものはパラキシレンである。パラキシレンは、現在ナイロンと並んで主要ポリマーであるポリエステルのモノマー、テレフタル酸の原料に使われており、近年その需要はアジアを中心として旺盛である。   Of the xylene isomers, paraxylene is the most important. Paraxylene is currently used as a raw material for polyester monomer, terephthalic acid, which is the main polymer, along with nylon. In recent years, demand for it has been strong mainly in Asia.

パラキシレンは、通常ナフサを改質処理し、その後芳香族抽出或いは分留により得られるC8芳香族炭化水素混合物、又は、ナフサの熱分解により副生する分解ガソリンを芳香族抽出或いは分留により得られるC8芳香族炭化水素混合物などから製造される。このC8芳香族炭化水素混合物原料の組成は広範囲に変わるが、通常エチルベンゼンを10〜40重量%、パラキシレンを12〜25重量%、メタキシレンを30〜50重量%、オルソキシレンを12〜25重量%含む。通常C8芳香族炭化水素混合物原料は炭素数9以上高沸点成分を含んでいるため、これを蒸留により除去し、得られたC8芳香族炭化水素をパラキシレン分離工程に供給されパラキシレンは分離回収される。しかしながらパラキシレンとメタキシレンの沸点はそれぞれ、138.4℃、139℃とその差が僅か約1℃しかなく蒸留分離による回収は工業的に極めて非効率である。従って一般的に融点差を利用して分離する深冷分離法か、ゼオライト吸着剤により吸着性の差を利用して分離する吸着分離法がある。分離工程を出たパラキシレンに乏しいC8芳香族炭化水素は次に異性化工程に送られ、主にゼオライト触媒により熱力学的平衡組成に近いパラキシレン濃度までに異性化され、蒸留分離により低沸点である副生物を除去した後、上記の新たなC8芳香族炭化水素原料と混合されて高沸点成分を除去する蒸留塔にリサイクルされ、炭素数9以上の高沸点成分を蒸留除去後、パラキシレン分離工程で再度パラキシレンを分離回収する。この一連の循環系を以後「分離−異性化サイクル」と呼ぶ。   Para-xylene is usually obtained by reforming naphtha, then C8 aromatic hydrocarbon mixture obtained by aromatic extraction or fractional distillation, or cracked gasoline by-produced by thermal decomposition of naphtha by aromatic extraction or fractional distillation. Produced from a C8 aromatic hydrocarbon mixture. The composition of this C8 aromatic hydrocarbon mixture raw material varies widely, but usually 10 to 40% by weight of ethylbenzene, 12 to 25% by weight of paraxylene, 30 to 50% by weight of metaxylene, and 12 to 25% by weight of orthoxylene % Is included. Usually, C8 aromatic hydrocarbon mixture raw material contains 9 or more high-boiling components, so it is removed by distillation, and the resulting C8 aromatic hydrocarbon is supplied to the paraxylene separation process, and paraxylene is separated and recovered Is done. However, the boiling points of para-xylene and meta-xylene are 138.4 ° C. and 139 ° C., respectively, which are only about 1 ° C., and the recovery by distillation separation is industrially inefficient. Accordingly, there are generally a cryogenic separation method in which separation is performed using a difference in melting point, and an adsorption separation method in which separation is performed using a difference in adsorptivity with a zeolite adsorbent. The paraxylene-poor C8 aromatic hydrocarbons that have left the separation step are then sent to the isomerization step, where they are isomerized mainly to the paraxylene concentration close to the thermodynamic equilibrium composition by the zeolite catalyst, and low boiling point by distillation separation. The by-product is removed and then recycled to a distillation tower mixed with the above-mentioned new C8 aromatic hydrocarbon raw material to remove high-boiling components, and after removing high-boiling components having 9 or more carbon atoms by distillation, paraxylene Paraxylene is separated and recovered again in the separation step. This series of circulating systems is hereinafter referred to as the “separation-isomerization cycle”.

この「分離−異性化サイクル」に供給されるC8芳香族炭化水素は上記の通り、かなりの量のエチルベンゼンを含んでいるが、上記「分離−異性化サイクル」においては、このエチルベンゼンは除去されずに、サイクル中に残り、エチルベンゼンが蓄積してしまう。このエチルベンゼンの蓄積を防ぐために、何らかの方法でエチルベンゼンを除去すれば、その除去率に応じた量のエチルベンゼンが「分離−異性化サイクル」を循環する。このエチルベンゼンの循環量が少なくなれば全体の循環量も少なくなるので、パラキシレン分離工程以降の工程の用役使用量が少なくなり経済的なメリットが大きい。   As described above, the C8 aromatic hydrocarbon supplied to the “separation-isomerization cycle” contains a considerable amount of ethylbenzene. However, in the “separation-isomerization cycle”, this ethylbenzene is not removed. In addition, ethylbenzene accumulates during the cycle. If ethylbenzene is removed by any method to prevent the accumulation of ethylbenzene, an amount of ethylbenzene corresponding to the removal rate circulates in the “separation-isomerization cycle”. If this amount of ethylbenzene is reduced, the total amount of circulation is also reduced, so that the amount of utility used in the steps subsequent to the paraxylene separation step is reduced, resulting in great economic merit.

エチルベンゼン除去として一般的な方法は2つあり、1つは異性化工程でキシレンの異性化を行うと同時にエチルベンゼンをキシレンに異性化する改質法、もう1つは同じくキシレンの異性化工程でエチルベンゼンを水素化脱アルキルしてベンゼンに転換し、その後の蒸留分離工程でベンゼンを蒸留分離する脱アルキル化法である。両者ともキシレンの異性化と同時に行う、エチルベンゼンの異性化、或いは脱アルキル化は、それぞれ異なる2種類の触媒を用いて行う場合と、二元機能を持つ1種類の触媒により行う場合があるが、2種類の触媒を使用する場合、もし反応条件がそれぞれで異なれば同じ反応器に一緒に入れて反応させることができないなどの欠点もあることから、二元機能を持つ1種類の触媒を使用されるのが一般的である。また、異性化法はエチルベンゼンとキシレンとの間にある平衡により、エチルベンゼン転化率は20〜30%程度しかならないのに対し、脱アルキル化反応は実質的に非平衡反応であるので、エチルベンゼン転化率を高くすることが可能であるため、現在は脱アルキル化法でエチルベンゼンを除去する方法が一般的である。   There are two general methods for removing ethylbenzene, one is a reforming method in which xylene is isomerized in the isomerization process and ethylbenzene is isomerized to xylene, and the other is ethylbenzene in the xylene isomerization process. This is a dealkylation method in which benzene is hydrodealkylated and converted to benzene, and benzene is distilled and separated in a subsequent distillation separation step. In both cases, xylene isomerization or ethylbenzene isomerization or dealkylation may be performed using two different types of catalysts or one type of catalyst having a dual function. When two types of catalysts are used, if the reaction conditions are different from each other, there is a disadvantage that they cannot be put together in the same reactor to be reacted, so one type of catalyst having a dual function is used. It is common. In addition, the isomerization method has an equilibrium between ethylbenzene and xylene, so that the ethylbenzene conversion rate is only about 20-30%, whereas the dealkylation reaction is a substantially non-equilibrium reaction. Therefore, the method of removing ethylbenzene by a dealkylation method is generally used.

エチルベンゼンを含むキシレン異性体混合物原料からエチルベンゼンを脱アルキル化し、ベンゼンに変換し、オルソーキシレン、メターキシレンをパラーキシレンに異性化させるに際し、エチルベンゼン転化率、及び反応液中のパラキシレン濃度、つまりキシレン異性体中のパラキシレン濃度(以下、パラキシレン異性化率という)を出来るだけ高くすることは、パラーキシレン分離コストを低減させるのに好ましく、又キシレン損失を出来るだけ小さくすることはパラーキシレン製造のキシレン原単位を低減させパラーキシレン製造コストを下げるので好ましい。   When ethylbenzene is dealkylated from xylene isomer mixture raw material containing ethylbenzene and converted to benzene, and ortho xylene and meta-xylene are isomerized to para-xylene, ethylbenzene conversion rate and para-xylene concentration in the reaction solution, that is, xylene isomerism Increasing the concentration of paraxylene in the body (hereinafter referred to as “paraxylene isomerization rate”) as much as possible is preferable for reducing the separation cost of paraxylene, and reducing xylene loss as much as possible is xylene produced by paraxylene. This is preferable because it reduces the basic unit and lowers the production cost of para-xylene.

単一触媒の場合、上記パラキシレン異性化率とエチルベンゼン転化率が高く、キシレン損失が小さい触媒設計をすることが重要であるが、パラキシレン異性化率やエチルベンゼン転化率を高くすべく活性を上げるように、例えばゼオライトの酸強度を強くするようなイオン交換を行うと、キシレン損失の原因となる、所望しない不均化反応、トランスアルキル化反応、芳香族の水添分解反応などの副反応が多くなる。特に、エチルベンゼンの脱アルキル化反応と違って、キシレンの異性化反応は平衡反応であるため、パラキシレン異性化率の温度に対する依存性は比較的小さく、従ってキシレン損失を小さく抑え、高いキシレン異性化活性を持つ触媒系を見つけることが極めて重要である。   In the case of a single catalyst, it is important to design a catalyst that has a high paraxylene isomerization rate and ethylbenzene conversion rate and low xylene loss, but increases the activity to increase the paraxylene isomerization rate and ethylbenzene conversion rate. Thus, for example, when ion exchange that increases the acid strength of zeolite is performed, side reactions such as undesired disproportionation reaction, transalkylation reaction, and aromatic hydrogenolysis reaction that cause xylene loss. Become more. In particular, unlike the dealkylation reaction of ethylbenzene, the isomerization reaction of xylene is an equilibrium reaction. Therefore, the dependence of the paraxylene isomerization rate on temperature is relatively small, so that the xylene loss is kept small and high xylene isomerization is achieved. Finding an active catalyst system is extremely important.

高いキシレン異性化活性を得るためには、外部からの反応体及び/または生成物の迅速な拡散が重要であり、その手段として1つはゼオライトの結晶径をナノサイズのように非常に小さいレベルまでに微細化する方法(例えば特許文献1)があるが、小ゼオライト結晶は結晶構造崩壊が起こりやすく、使用中に失活し易い。もう1つは孔径2〜50nmのいわゆるメソ細孔を多く形成させることにより、反応体及び/または生成物の迅速な拡散を容易にさせる方法があり、多くの特許文献で提案されている。例えば有機ケイ素化合物などをゼオライトと溶媒中に混合懸濁させて反応させた後、焼成により有機分を燃焼除去して細孔を形成する方法(例えば特許文献2)、あるいはゼオライト合成の段階で、細孔形成体としてカーボンブラックをシリカ源、アルミナ源とともに混合してゼオライトを合成した後、これを焼成してカーボンを燃焼除去することにより、メソ細孔を有するゼオライトを得る方法(例えば特許文献3)が公開されている。然しながら、上記記載されている触媒組成物は粉末であり、成型体については未だメソ細孔を多く有する触媒、特に、その成型体の中でもキシレン損失が小さくて、エチルベンゼンの脱アルキル化とキシレンの異性化の両者性能に適した触媒系については、未だ見いだされていない。また、粉末の場合、これを反応器へ充填すれば非常に大きな圧力損失を生じさせるため、原料などの輸送機器能力を大きくする必要があること、更にはその輸送機器の動力消費量が大きくなることから経済的でなく、実用的でない。仮に圧力損失を増大させないように、先述の先行技術で得られるメソ細孔触媒粉末をペレット型や球型、といった成型体にした場合、当然のことながら成型の過程で外部から受ける機械的負荷により、粉末の状態と異なった細孔分布に変化し、これにより触媒性能が大きく変わることが容易に予想される。
米国特許出願公開第200102463号明細書 特表2002−510345号公報 特開2005−139190号公報
In order to obtain high xylene isomerization activity, rapid diffusion of reactants and / or products from the outside is important, and one of the means is that the crystal diameter of the zeolite is at a very small level such as nano-size. However, small zeolite crystals are prone to crystal structure collapse and are easily deactivated during use. The other is a method of facilitating rapid diffusion of reactants and / or products by forming a large number of so-called mesopores having a pore diameter of 2 to 50 nm, which has been proposed in many patent documents. For example, a method in which an organic silicon compound or the like is mixed and suspended in zeolite and a solvent and reacted, and then the organic component is burned and removed by firing to form pores (for example, Patent Document 2), or at the stage of zeolite synthesis, A method of obtaining zeolite having mesopores by mixing carbon black as a pore former together with a silica source and an alumina source to synthesize zeolite, and then firing the carbon to burn and remove carbon (for example, Patent Document 3). ) Is published. However, the catalyst composition described above is a powder, and the molded body still has a lot of mesopores. In particular, the xylene loss is small in the molded body, and the dealkylation of ethylbenzene and the isomerization of xylene. A catalyst system suitable for both performances has not yet been found. In addition, in the case of powder, if this is charged into the reactor, a very large pressure loss occurs, so it is necessary to increase the capacity of the transportation equipment such as raw materials, and the power consumption of the transportation equipment increases. It is not economical and practical. If the mesopore catalyst powder obtained by the above-mentioned prior art is formed into a pellet type or spherical type so as not to increase the pressure loss, it is naturally due to the mechanical load received from the outside during the molding process. The pore distribution is different from the powder state, and it is easily expected that the catalyst performance will greatly change.
US Patent Application Publication No. 200102463 Japanese translation of PCT publication No. 2002-510345 JP 2005-139190 A

本発明は、C8芳香族炭化水素を含む原料中のエチルベンゼンを高い転化率でベンゼンに脱アルキル化(脱エチル化)し、高いパラキシレン異性化率でキシレンを異性化する、触媒成型体を提供することを課題とする。   The present invention provides a molded catalyst body in which ethylbenzene in a raw material containing C8 aromatic hydrocarbon is dealkylated to benzene (deethylation) at a high conversion rate, and xylene is isomerized at a high paraxylene isomerization rate. The task is to do.

本発明者らは、高いパラキシレン異性化率を得るべく、最適化された機械的成型方法にて得られた、メソ細孔を多く有する、実質的に粉末でない、触媒成型体を、更にキシレン損失を小さくさせるために、ゼオライトのイオン交換処理と水素化金属担持を行うことにより、上記課題を達成し得ることを見出し、本発明に到達した。   In order to obtain a high paraxylene isomerization rate, the present inventors further obtained a catalyst molded body having a lot of mesopores and substantially non-powder obtained by an optimized mechanical molding method. In order to reduce the loss, the inventors have found that the above-described problems can be achieved by performing ion exchange treatment of zeolite and metal hydride loading, and the present invention has been achieved.

すなわち、本発明はMFI型ゼオライトと無機酸化物からなる組成物で、細孔径5〜20nmの細孔群をもち、細孔容積が0.45mL/g以上からなる成型体であって、アルカリ土類金属を含有することを特徴とする、エチルベンゼン脱アルキル化及びキシレン異性化機能を有する二元機能触媒である。   That is, the present invention is a composition comprising an MFI-type zeolite and an inorganic oxide, having a pore group having a pore diameter of 5 to 20 nm and having a pore volume of 0.45 mL / g or more, It is a bifunctional catalyst having ethylbenzene dealkylation and xylene isomerization functions, characterized by containing a similar metal.

メソ細孔容積を0.45mL/g以上有する、実質的に粉末でない、触媒成型体について、ゼオライトのカチオンの一部を水素型か及びアルカリ土類金属へ交換し、VII族、VIII族の金属の中から少なくとも1つの成分を担持することにより、パラキシレン異性化率とエチルベンゼン転化率を高くし、更にキシレン損失が小さくすることができる。   For catalyst moldings that have a mesopore volume of 0.45 mL / g or more and are substantially non-powdered, a part of the cation of the zeolite is exchanged for hydrogen type or alkaline earth metal, and metals of group VII and group VIII By supporting at least one component from the above, the paraxylene isomerization rate and the ethylbenzene conversion rate can be increased, and the xylene loss can be further reduced.

本発明は、MFI型ゼオライトと無機酸化物からなる組成物で、細孔径4〜20nmの細孔群をもち、細孔容積が0.45mL/g以上からなる成型体であって、アルカリ土類金属を含有することを特徴とする、エチルベンゼン脱アルキル化及びキシレン異性化機能を有する二元機能触媒であり、より具体的には、細孔径4〜20nmのメソ細孔容積を0.45mL/g以上有する、実質的に粉末でない、触媒成型体について、ゼオライトのカチオンの一部を水素型か及びアルカリ土類金属へ交換し、VII族、VIII族の金属の中から少なくとも1つの金属成分を担持した、エチルベンゼンの脱アルキル化機能及びキシレン異性化機能を有する二元触媒に関するものである。   The present invention is a composition comprising an MFI-type zeolite and an inorganic oxide, having a pore group having a pore diameter of 4 to 20 nm, and having a pore volume of 0.45 mL / g or more, comprising an alkaline earth A bifunctional catalyst having a function of ethylbenzene dealkylation and xylene isomerization, characterized by containing a metal, more specifically, a mesopore volume with a pore diameter of 4 to 20 nm is 0.45 mL / g. For a catalyst molded body that is substantially non-powder, replace part of the cation of the zeolite with hydrogen or alkaline earth metal, and carry at least one metal component from Group VII and Group VIII metals In addition, the present invention relates to a binary catalyst having a dealkylation function of ethylbenzene and a xylene isomerization function.

上記触媒は、通常下記の方法により製造される。   The catalyst is usually produced by the following method.

(1)ゼオライト、無機酸化物、水、バインダーなどの成型助剤を混合した後、これを過度に練りすぎないよう、混練り機内での滞留時間が少ない方法で練り、水分を55〜65%含有するような、少し柔らかめの状態でヌードル状にて押し出し成型した後、予備乾燥を行って含まれる多くの水分を飛ばし、最後に成型体の長さを揃えたり、角を丸めるために、例えばマルメライザーなどにより整粒処理することで、細孔径4〜20nmのメソ細孔容積が0.45mL/g以上を持つ成型体を製造する。   (1) After mixing molding aids such as zeolite, inorganic oxide, water, binder, etc., knead by a method with a short residence time in the kneader so that the kneading is not excessively kneaded, and moisture is 55 to 65%. After being extruded and molded in noodle form in a slightly soft state like containing, pre-drying to remove much of the moisture contained, and finally to align the length of the molded body and round the corners, For example, a granulated product having a mesopore volume of 4 to 20 nm and a mesopore volume of 0.45 mL / g or more is produced by performing a sizing treatment with a Malmerizer or the like.

(2)上記メソ細孔成型体に含まれるゼオライトのカチオンの一部を水素型、及びアルカリ土類金属へ交換する。   (2) A part of the cation of the zeolite contained in the mesopore compact is exchanged for hydrogen type and alkaline earth metal.

(3)更にVII族、VIII族の金属の中から少なくとも1つの成分を担持する。   (3) Further, at least one component is supported from the group VII and group VIII metals.

本発明に使用される触媒ゼオライトとしては、10員酸素環の細孔を有するペンタシル型(MFI型)ゼオライト(例えば、特公昭60−35284号公報第4−5頁の実施例1、特公昭46−10064号公報第7頁の例1参照)を使用することができる。ゼオライトとしては、天然品、合成品何れでも使用できるが、好ましくは、合成ゼオライトである。又、同じゼオライト構造であっても、その組成、特に、シリカ/アルミナモル比(SiO/Alモル比)、或いは、ゼオライト結晶子の大きさ等によってもその触媒性能は変化する。 The catalyst zeolite used in the present invention is a pentasil type (MFI type) zeolite having 10-membered oxygen ring pores (for example, Example 1 of JP-B-60-35284, page 4-5, JP-B-46). No. 10064, page 7, example 1) can be used. As the zeolite, both natural products and synthetic products can be used, but synthetic zeolite is preferred. Even if the zeolite structure is the same, the catalyst performance varies depending on the composition, particularly the silica / alumina molar ratio (SiO 2 / Al 2 O 3 molar ratio), the size of the zeolite crystallites, and the like.

ゼオライトを構成するシリカ/アルミナモル比の好ましい範囲は、ゼオライト構造にも依存している。例えば、合成ペンタシル型ゼオライトでは、好ましいシリカ/アルミナモル比は10〜70、より好ましくは20〜55である。ゼオライト合成時の組成比を制御することによって、達成できる。更には、ゼオライト構造を構成するアルミニウムを塩酸等の酸水溶液、或いは、アルミニウムキレート剤、例えば、エチレンジアミン4酢酸(EDTA)等で除去することにより、ゼオライトのシリカ/アルミナモル比を増加させることが出来る。又、逆に、アルミニウムイオンを含む水溶液、例えば、硝酸アルミニウム水溶液、アルミン酸ソーダ水溶液等で処理することによりゼオライト構造の中にアルミニウムを導入しゼオライトのシリカ/アルミナモル比を増加させ好ましいシリカ/アルミナモル比にすることも可能である。シリカ/アルミナモル比の測定は、原子吸光法、蛍光X線回折法、ICP(誘導結合プラズマ)発光分光法等で容易に知ることが出来る。   The preferable range of the silica / alumina molar ratio constituting the zeolite also depends on the zeolite structure. For example, in the synthetic pentasil type zeolite, the preferred silica / alumina molar ratio is 10 to 70, more preferably 20 to 55. This can be achieved by controlling the composition ratio during zeolite synthesis. Further, the silica / alumina molar ratio of the zeolite can be increased by removing aluminum constituting the zeolite structure with an acid aqueous solution such as hydrochloric acid or an aluminum chelating agent such as ethylenediaminetetraacetic acid (EDTA). On the contrary, a preferable silica / alumina molar ratio is obtained by increasing the silica / alumina molar ratio of the zeolite by introducing aluminum into the zeolite structure by treatment with an aqueous solution containing aluminum ions, such as an aqueous aluminum nitrate solution or an aqueous sodium aluminate solution. It is also possible to make it. The measurement of the silica / alumina molar ratio can be easily known by atomic absorption method, fluorescent X-ray diffraction method, ICP (inductively coupled plasma) emission spectroscopy or the like.

かかるゼオライトを適宜、選択して触媒として利用するが、触媒に、後述する水素化活性金属を高度に分散担持させるため、ゼオライトに無機酸化物を混合することが必須である。無機酸化物としてはアルミナ、シリカ・アルミナ、シリカ、チタニア及びマグネシア等が知られている。いずれの無機酸化物でも使用できるが、好ましくはアルミナである。アルミナとしてはベーマイト、ベーマイトゲル、ジブサイト、バイアライト、ノルストランダイト、ジアスポア、無定形アルミナゲル等が知られている。いずれのアルミナでも使用できるが、好ましくはベーマイトである。アルミナは焼成過程でγ、η、δ等のアルミナになることはよく知られており、これら構造形態のアルミナも使用できる。触媒中での無機酸化物の量はゼオライトが100重量部に対して、100〜750重量部好ましくは250〜500重量部である。無機酸化物の量が多すぎると触媒に占めるゼオライト量が減少し、脱アルキル化活性、異性化活性が低下する。一方、無機酸化物の量が少なすぎると水素化活性金属の分散性が悪くなり、エチルベンゼンの脱アルキル化により生成するエチレンの水素化能が低下する。このためエチルベンゼンの転化率が低くなり、また生成したエチレンが重合したオリゴマーが被毒物となり、触媒寿命も低下する。   Such a zeolite is appropriately selected and used as a catalyst. However, in order to highly disperse and carry the hydrogenation active metal described later on the catalyst, it is essential to mix an inorganic oxide with the zeolite. Known inorganic oxides include alumina, silica / alumina, silica, titania, and magnesia. Any inorganic oxide can be used, but alumina is preferred. Known aluminas include boehmite, boehmite gel, dibsite, vialite, norstrandite, diaspore, amorphous alumina gel, and the like. Any alumina can be used, but boehmite is preferred. It is well known that alumina becomes alumina such as γ, η, δ, etc. in the firing process, and alumina having these structural forms can also be used. The amount of the inorganic oxide in the catalyst is 100 to 750 parts by weight, preferably 250 to 500 parts by weight with respect to 100 parts by weight of zeolite. If the amount of the inorganic oxide is too large, the amount of zeolite occupying the catalyst decreases, and the dealkylation activity and isomerization activity decrease. On the other hand, when the amount of the inorganic oxide is too small, the dispersibility of the hydrogenation active metal is deteriorated, and the hydrogenation ability of ethylene produced by dealkylation of ethylbenzene is lowered. For this reason, the conversion rate of ethylbenzene is lowered, and the oligomer produced by polymerization of ethylene becomes a poison, and the catalyst life is also reduced.

合成ゼオライト及び無機酸化物は、一般に粉末であるので、使用に当たっては、先述のとおり成型することを必須とする。ここで成型法には、圧縮成型、転動法、押出法等が例として挙げられるが、より好ましくは、押出法である。押出法では、合成ゼオライト粉末に無機酸化物、またアルミナゾル、アルミナゲル、ベントナイト、カオリン等のバインダー、更に必要に応じて、ドデシルベンゼンスルフォン酸ナトリウム、スパン、ツインなどの界面活性剤が成型助剤として添加され、混練りされる。尚、アルミナゾル等の無機酸化物のバインダーは先述の水素化活性金属を高度に分散担持させる役割を果たすことができるため、これらバインダーの添加についても無機酸化物として取り扱い、無機酸化物の配合量に含めて考えるものとする。   Since the synthetic zeolite and the inorganic oxide are generally powders, it is essential to mold them as described above before use. Here, examples of the molding method include a compression molding method, a rolling method, and an extrusion method, but an extrusion method is more preferable. In the extrusion method, inorganic oxides, binders such as alumina sol, alumina gel, bentonite and kaolin, and surfactants such as sodium dodecylbenzenesulfonate, span and twin are used as molding aids if necessary. Add and knead. In addition, since the binder of inorganic oxides such as alumina sol can perform the role of highly dispersing and supporting the above-mentioned hydrogenation active metal, the addition of these binders is also handled as an inorganic oxide, and the amount of the inorganic oxide is adjusted. Including.

成型に際しては必要に応じて、例えばバッチニーダーや、スクリュー型連続混練り機などの機械が使用されるのが通常である。従来は触媒成型体の強度アップや嵩密度アップのため、混練りの際、できるだけ混練り時間を長くし、混練り負荷を上げて、よく練ることが一般的であったが、本発明では、過度に練りすぎないよう、例えば、混合する水分を多くし、混練り機内での滞留時間が少ない方法で練ることが必要とされる。混練りの際に加える水分としては、ゼオライト、無機酸化物、および必要に応じて配合するバインダー及び、界面活性剤に、追加する水も含めた全体の質量に対して、好ましくは55〜65%となるよう含有させ、混練り機内の滞留時間、即ち混練り時間としては、好ましくは1時間以内となるようにする。   In molding, a machine such as a batch kneader or a screw-type continuous kneader is usually used as necessary. Conventionally, in order to increase the strength and bulk density of the molded catalyst, it was common to knead well by increasing the kneading time as much as possible during kneading, increasing the kneading load, In order to avoid excessive kneading, for example, it is necessary to increase the water content to be mixed and knead by a method having a short residence time in the kneader. The moisture to be added at the time of kneading is preferably 55 to 65% with respect to the total mass including water added to the zeolite, inorganic oxide, and a binder to be blended as necessary and the surfactant. The residence time in the kneader, that is, the kneading time is preferably within 1 hour.

混練りされた混練り物は、スクリーンから押し出される。工業的には、例えば、エクストリューダーと呼ばれる押出機が使用される。スクリーンから押し出された混練り物はヌードル状物となる。使用するスクリーン径により成型体の大きさが決定される。スクリーン径としては、好ましくは0.2〜1.8mm、直径(φ)が用いられる。スクリーンから押し出されたヌードル状成型体は、予備乾燥を行い含有する水分を好ましくは25〜35%ほどに調整し、成型品の長さを揃えたり、角を丸めるためにマルメライザーにより整粒処理される。ヌードル状成型体の水分含有量が上記範囲より多いと、軟性があるためマルメライザーで処理の際、その遠心力により外部から力がかかり、成型体内の細孔が押しつぶされて細孔容量が小さくなり、更に水分含有量が多いと成型体表面に出てくる水分が多くなって成型体同士がくっついて団子状になって、所望の成型体が得られず、歩留まりが悪くなる。また一方で乾燥しすぎると、今度は成型体自身の摩耗・粉化が激しくなり、歩留まりが悪くなったり、あるいは細かい破砕品が多くなって反応器に充填した場合の圧損増加の原因になってしまう。このようにして成型された成型体は、50〜250℃で乾燥される。乾燥後、成型強度を向上させる為、250〜600℃、好ましくは350〜600℃で焼成される。   The kneaded material is extruded from the screen. Industrially, for example, an extruder called an extruder is used. The kneaded product extruded from the screen becomes a noodle-like product. The size of the molded body is determined by the screen diameter to be used. As the screen diameter, 0.2 to 1.8 mm and a diameter (φ) are preferably used. The noodle-shaped molded body extruded from the screen is pre-dried and the moisture content is preferably adjusted to about 25 to 35%, and the size of the molded product is adjusted by a mulmerizer to adjust the length of the molded product and round the corners. Is done. If the water content of the noodle-shaped molded body is larger than the above range, since it is soft, when it is processed with a Malmerizer, external force is applied by the centrifugal force, and the pores in the molded body are crushed and the pore volume is reduced. If the water content is further high, the amount of moisture that appears on the surface of the molded body increases, and the molded bodies stick together to form a dumpling, so that a desired molded body cannot be obtained, resulting in poor yield. On the other hand, if it is too dry, the molded body itself will be worn and pulverized severely, resulting in poor yields or increased pressure loss when filling the reactor with many finely crushed products. End up. The molded body molded in this way is dried at 50 to 250 ° C. After drying, in order to improve the molding strength, baking is performed at 250 to 600 ° C, preferably 350 to 600 ° C.

成型体のメソ細孔容積の測定方法には窒素吸脱着法や水銀圧入法などあるが、窒素吸脱着法は得られた吸着等温線から細孔容積を算出する場合に使用される解析モデルにより数値が変わるため、より精度を必要とする場合には水銀圧入法で行う。上記成型法で得られた成型体を水銀圧入法でメソ細孔容積を測定をすると、0.45mL/g以上であり、細孔径4〜50nmの細孔群からなるが、特に細孔径の分布については細孔径4〜20nmの細孔群からなり、且つ細孔分布の微分曲線において6〜10nmにピークがあること、メソ細孔容積については0.45〜1.2mL/gであることが、さらには0.50〜1.0mL/gであることが、反応体及び/または生成物の迅速な拡散の観点から好ましい。   Methods for measuring the mesopore volume of molded products include nitrogen adsorption / desorption method and mercury intrusion method, but nitrogen adsorption / desorption method depends on the analytical model used to calculate the pore volume from the obtained adsorption isotherm. Since the numerical value changes, the mercury intrusion method is used when higher accuracy is required. When the mesopore volume of the molded body obtained by the above molding method is measured by a mercury intrusion method, it is 0.45 mL / g or more and consists of pore groups having a pore diameter of 4 to 50 nm. Is a group of pores having a pore diameter of 4 to 20 nm and has a peak at 6 to 10 nm in the differential curve of pore distribution, and the mesopore volume is 0.45 to 1.2 mL / g. Furthermore, it is preferably 0.50 to 1.0 mL / g from the viewpoint of rapid diffusion of reactants and / or products.

このようにして成型されたメソ細孔成型体は、固体酸性を付与するためのイオン交換処理が行われる。固体酸性を付与する方法としては、アンモニウムイオンを含む化合物(例えば、NHCl、NHNO、(NHSO等)でイオン交換処理し、ゼオライトのイオン交換サイトにNHイオンを導入し、しかる後、乾燥、焼成により、水素イオンに変換する方法、或いは、直接、酸を含む化合物(例えば、HCl、HNO、HPO等)で、ゼオライトのイオン交換サイトに水素イオンを導入する方法もあるが、後者は、ゼオライト構造を破壊する恐れがあるので、好ましくは前者、即ち、アンモニウムイオンを含む化合物でイオン交換処理される。 The mesopore molded body thus molded is subjected to ion exchange treatment for imparting solid acidity. As a method for imparting solid acidity, ion exchange treatment is performed with a compound containing ammonium ions (for example, NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4, etc.), and NH 4 ions are added to the ion exchange site of the zeolite. After that, it is converted into hydrogen ions by drying and calcination, or directly with an acid-containing compound (for example, HCl, HNO 3 , H 3 PO 4, etc.) at the ion exchange site of the zeolite. Although there is a method of introducing ions, the latter is preferably subjected to ion exchange treatment with the former, that is, a compound containing ammonium ions, because the latter may destroy the zeolite structure.

さらに、2価金属イオンをゼオライトイオン交換サイトに導入することにより、固体酸性強度の調整を行う。2価金属イオンとしては、アルカリ土類金属イオンであるMg2+、Ca2+、Sr2+、Ba2+を例として挙げることが出来て、特にCa2+がより好ましい。2価金属イオンを導入する方法とアンモニウムイオン或いは直接水素イオンを導入する方法と組み合わせて用いることもできるし、より好ましい時もある。イオン交換処理は通常水溶液で、バッチ法或いは流通法で行われる。処理温度は、室温から100℃で行われるのが通常である。この方法により、触媒中に含有されるアルカリ土類金属は、好ましくは、500〜3000重量ppmである。 Furthermore, the solid acid strength is adjusted by introducing divalent metal ions into the zeolite ion exchange site. Examples of the divalent metal ions include alkaline earth metal ions Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+, and Ca 2+ is particularly preferable. It can be used in combination with a method of introducing divalent metal ions and a method of introducing ammonium ions or hydrogen ions directly, and is sometimes more preferable. The ion exchange treatment is usually carried out with an aqueous solution by a batch method or a distribution method. The treatment temperature is usually from room temperature to 100 ° C. By this method, the alkaline earth metal contained in the catalyst is preferably 500 to 3000 ppm by weight.

このようにしてイオン交換処理された後、水素化活性金属が担持される。触媒反応系に水素を存在させ、水素化活性金属を担持することにより、触媒の経時劣化を防止することが出来る。水素化活性金属としては、白金、パラジウム、レニウム、等が好ましく用いられる。担持する金属により好ましい担持量が異なるのは言うまでもない。例えば、白金の場合は、触媒全体に対して0.005〜0.5重量%であり、より好ましくは0.01〜0.3重量%である。パラジウムの場合は、0.05〜1重量%が好ましく用いられる。レニウムの場合には好ましい担持量は0.01〜5.0重量%であり、より好ましくは0.1〜2重量%である。水添金属担持量が多くなると芳香族炭化水素が核水添され好ましくない。また水添金属担持量が少なくすぎると、脱アルキル化反応の際の水素供給が十分でなくなるため触媒活性低下を招く。従って選ばれる金属種類、及び組み合わせと、その担持量は目標性能にあわせ適宜調整する必要がある。これら金属の担持法は、白金、パラジウム、レニウムのうちいずれか少なくとも一つを含む溶液、一般には、水溶液に触媒を浸漬し、担持される。白金成分としては、塩化白金酸、塩化白金酸アンモニウム等が、パラジウム成分としては、酢酸パラジウム、アセチルアセトンパラジウム、塩化パラジウム、硝酸パラジウム等が、レニウム成分としては、過レニウム酸、過レニウムアンモニウム等が利用される。   After the ion exchange treatment in this way, the hydrogenation active metal is supported. By allowing hydrogen to be present in the catalytic reaction system and supporting the hydrogenation active metal, it is possible to prevent deterioration of the catalyst with time. As the hydrogenation active metal, platinum, palladium, rhenium, or the like is preferably used. Needless to say, the preferred loading varies depending on the metal to be carried. For example, in the case of platinum, it is 0.005-0.5 weight% with respect to the whole catalyst, More preferably, it is 0.01-0.3 weight%. In the case of palladium, 0.05 to 1% by weight is preferably used. In the case of rhenium, the supported amount is preferably 0.01 to 5.0% by weight, more preferably 0.1 to 2% by weight. When the amount of the hydrogenated metal is increased, the aromatic hydrocarbon is nuclear hydrogenated, which is not preferable. On the other hand, if the amount of hydrogenated metal supported is too small, the hydrogen supply during the dealkylation reaction will be insufficient, leading to a decrease in catalyst activity. Therefore, it is necessary to appropriately adjust the metal types and combinations selected, and the supported amounts in accordance with the target performance. These metals are supported by immersing the catalyst in a solution containing at least one of platinum, palladium and rhenium, generally an aqueous solution. Platinum components include chloroplatinic acid, ammonium chloroplatinate, etc., palladium components such as palladium acetate, acetylacetone palladium, palladium chloride, palladium nitrate, etc., rhenium components such as perrhenic acid and perrhenium ammonium are used. Is done.

このようにして調製された触媒は、50〜250℃で30分以上乾燥され、使用に先立って、350〜600℃で30分以上焼成される。   The catalyst thus prepared is dried at 50 to 250 ° C. for 30 minutes or longer, and calcined at 350 to 600 ° C. for 30 minutes or longer prior to use.

懸かる触媒組成物を用いて、C8芳香族炭化水素を含む原料(「供給原料」あるいは「供給原料油」と称する場合もある)と接触させることにより、供給原料中に含まれるエチルベンゼンを脱アルキル化し、パラキシレン、メタキシレン、オルソキシレンからなるキシレン異性体をより熱力学的平衡に近い組成までに異性化させることができ、これまで説明してきた通り、パラキシレンを分離・製造するのに好ましい反応組成物を得ることができる。尚、この接触は水素存在下で行われるのが好ましい。また、上記のようにエチルベンゼンを脱アルキル化し、パラキシレン、メタキシレン、オルソキシレンからなるキシレン異性体をより熱力学的平衡に近い組成までに異性化して得られた反応生成物からパラキシレンを分離した後、そのラフィネートを再度、本発明の二元機能触媒に再度接触させることによりパラキシレンを効率的に製造することができる。   Dehydrogenation of ethylbenzene contained in the feedstock by contacting the feedstock containing the C8 aromatic hydrocarbon (sometimes referred to as “feedstock” or “feedstock oil”) using the catalyst composition , Xylene isomers consisting of para-xylene, meta-xylene, and ortho-xylene can be isomerized to a composition closer to thermodynamic equilibrium, and as described so far, a preferable reaction for separating and producing para-xylene A composition can be obtained. This contact is preferably performed in the presence of hydrogen. In addition, as described above, ethylbenzene is dealkylated to separate paraxylene from the reaction product obtained by isomerizing xylene isomers consisting of paraxylene, metaxylene and orthoxylene to a composition closer to thermodynamic equilibrium. After that, paraxylene can be efficiently produced by bringing the raffinate into contact with the bifunctional catalyst of the present invention again.

以上、述べたようにして調製された触媒は、従来知られている種々の反応操作に準じて行うことが出来る。反応方式は、固定床、移動床、流動床何れの方法も用いられるが、操作の容易さから固定床反応方式が、特に、好ましい。これら反応方式で、触媒は、次のような反応条件のもとで使用される。即ち、反応操作温度は200〜500℃、好ましくは、250〜450℃である。反応操作圧力は大気圧から10MPa、好ましくは、0.3〜2MPaである。反応の接触時間を表す重量時間空間速度(WHSV)は0.1〜50hr−1、好ましくは0.5〜20.0hr−1である。水素対供給原料油のモル比率は0.5〜10mol/molで、好ましくは1.5〜5.0mol/molである。供給原料油は、液相或いは気相状態どちらでもよい。 The catalyst prepared as described above can be carried out according to various conventionally known reaction operations. As the reaction method, any of a fixed bed, moving bed, and fluidized bed method can be used, but the fixed bed reaction method is particularly preferable because of the ease of operation. In these reaction modes, the catalyst is used under the following reaction conditions. That is, the reaction operation temperature is 200 to 500 ° C, preferably 250 to 450 ° C. The reaction operation pressure is from atmospheric pressure to 10 MPa, preferably 0.3 to 2 MPa. The weight hourly space velocity (WHSV) representing the contact time of the reaction is 0.1 to 50 hr −1 , preferably 0.5 to 20.0 hr −1 . The molar ratio of hydrogen to feedstock oil is 0.5 to 10 mol / mol, preferably 1.5 to 5.0 mol / mol. The feedstock oil may be in a liquid phase or a gas phase.

(ペンタシル(MFI)型ゼオライトの合成)
苛性ソーダ水溶液(NaOH含量25.2重量%、HO含量74.8重量%、東亞合成株式会社)650キログラム、酒石酸粉末(酒石酸含量99.7重量%、HO含量0.3重量%、株式会社カーク)129.3キログラム、イオン交換水を4025.3キログラムに溶解した。この溶液にアルミン酸ソーダ溶液(Al含量18.8重量%、Na2O含量19.7重量%、HO含量61.5重量%、住友化学工業株式会社)102.6キログラムを加え、均一な溶液とした。この混合液に含水ケイ酸(SiO含量88.9重量%、Al含量0.3重量%、Na2O含量0.2重量%、HO含量61.5重量%、ニップシールVN−3、日本シリカ工業株式会社)800キログラムを撹拌しながら徐々に加え、均一なスラリー状水性反応混合物を調製した。この反応混合物の組成比(モル比)は次のとおりであった。
SiO/Al:55
OH/SiO: 0.26
A/Al: 4.00 (A:酒石酸塩)
O/SiO: 22。
(Synthesis of pentasil (MFI) type zeolite)
Caustic soda aqueous solution (NaOH content 25.2 wt%, H 2 O content 74.8 wt%, Toagosei Co., Ltd.) 650 kg, tartaric acid powder (tartaric acid content 99.7 wt%, H 2 O content 0.3 wt%, Kirk Co., Ltd.) 129.3 kilograms and ion-exchanged water were dissolved in 4025.3 kilograms. To this solution, 102.6 kg of sodium aluminate solution (Al 2 O 3 content 18.8 wt%, Na 2 O content 19.7 wt%, H 2 O content 61.5 wt%, Sumitomo Chemical Co., Ltd.) In addition, a uniform solution was obtained. Hydrous silicic acid (SiO 2 content 88.9% by weight, Al 2 O 3 content 0.3% by weight, Na 2 O content 0.2% by weight, H 2 O content 61.5% by weight, nip seal VN -3, Nippon Silica Kogyo Co., Ltd.) 800 kg was gradually added with stirring to prepare a uniform slurry-like aqueous reaction mixture. The composition ratio (molar ratio) of this reaction mixture was as follows.
SiO 2 / Al 2 O 3: 55
OH / SiO 2 : 0.26
A / Al 2 O 3 : 4.00 (A: tartrate)
H 2 O / SiO 2 : 22.

反応混合物は、6m3のオートクレーブに入れ密閉し、その後120rpmで撹拌しながら160℃で72時間反応させた。反応終了後、蒸留水で5回水洗、濾過を繰り返し、約120℃で12時間乾燥した。 The reaction mixture was sealed in a 6 m 3 autoclave and then reacted at 160 ° C. for 72 hours with stirring at 120 rpm. After completion of the reaction, washing with distilled water 5 times and filtration were repeated, followed by drying at about 120 ° C. for 12 hours.

得られた生成物を、Cu管球、Kα線を用いるX線回折装置で測定した結果、得られたゼオライトはペンタシル型ゼオライトであることがわかった。   As a result of measuring the obtained product with an X-ray diffractometer using Cu tube and Kα ray, it was found that the obtained zeolite was a pentasil-type zeolite.

このペンタシル型ゼオライトのシリカ/アルミナモル比は蛍光X線回折分析の結果、42.0であった。   The silica / alumina molar ratio of this pentasil-type zeolite was 42.0 as a result of fluorescent X-ray diffraction analysis.

実施例1
(触媒Aの製造)
上記のようにして合成されたペンタシル(MFI)型ゼオライトを絶対乾燥基準(500℃、20分間焼成した時の灼熱減量から計算)で16.4キログラム、擬ベーマイト構造を有する含水アルミナ(住友化学工業株式会社製)を絶対乾燥基準で46.3キログラム、アルミナゾル(Al含量10重量%、日産化学工業株式会社製)を49.3キログラム、アルミナゲル(Al含量70重量%、触媒化成工業株式会社製)を6.3キログラム、成型助剤として界面活性剤であるレオドールSP(花王株式会社製)2.4キログラムを加えて充分混合し、さらにこれに全体の水分が57%となるようイオン交換水を追加し、更に混合した。混合にはハイスピードミキサーを使用し合計の混合時間はおよそ15分とした。その後、スクリュータイプの2軸の連続混練り機を用いて、150〜200kg/時で原料を供給し、更に400cc/分のイオン交換水を補給水として加えながら、連続的に混練りし、粘土状の混練り物を得た。尚、上記連続混練り機の滞留時間は約5〜10分であった。その混練り物を1.2mmφの穴を有するスクリーンをつけたエクストリューダーでヌードル状に押出し、押出し成型物を、ベルトメッシュコンベア式の乾燥機にて、40〜50℃に温度制御した乾燥機内で押出し成型物の水分が約25%になるまで乾燥し、次いで、マルメライザーにて回転数350rpmの60分の条件で整粒した。このうち、約1kgほどをサンプルとして取り、実験室内の乾燥機にて120℃にて一晩乾燥させた後、350℃から徐々に540℃に昇温し、540℃で2時間焼成した。このペンタシル型ゼオライト成型体の細孔容積及び細孔分布を水銀圧入法の測定装置(水銀ポロシメータ)で測定した結果、図1の触媒細孔分布図(微分曲線)に示すとおり、細孔径が5〜20nmの細孔群からなり、微分曲線において細孔径8nmにピークを持つ、細孔容積が0.517mL/gのメソ細孔ペンタシル型ゼオライト成型体であることが確認できた。
Example 1
(Manufacture of catalyst A)
16.4 kg of the pentasil (MFI) type zeolite synthesized as described above (calculated from loss of ignition when calcined at 500 ° C. for 20 minutes), hydrous alumina having a pseudo boehmite structure (Sumitomo Chemical Industries) 46.3 kg on an absolute dry basis, 49.3 kg of alumina sol (Al 2 O 3 content 10 wt%, manufactured by Nissan Chemical Industries, Ltd.), alumina gel (Al 2 O 3 content 70 wt%), 6.3 kg of Catalyst Chemical Industries, Ltd.) and 2.4 kg of Rhedol SP (made by Kao Corporation), a surfactant as a molding aid, are mixed well, and the total moisture is 57%. Ion exchange water was added so that A high speed mixer was used for mixing, and the total mixing time was about 15 minutes. Then, using a screw-type biaxial continuous kneader, the raw material is supplied at 150 to 200 kg / hour, and further kneaded continuously while adding 400 cc / min of ion exchange water as make-up water. A shaped kneaded product was obtained. The residence time of the continuous kneader was about 5 to 10 minutes. The kneaded product was extruded into an noodle shape with an extruder equipped with a screen having a 1.2 mmφ hole, and the extruded product was dried in a dryer controlled at a temperature of 40 to 50 ° C. by a belt mesh conveyor type dryer. It dried until the water | moisture content of the extrusion-molded product became about 25%, and then sized under a condition of 60 minutes at a rotation speed of 350 rpm with a Malmerizer. About 1 kg of the sample was taken as a sample, dried at 120 ° C. overnight with a dryer in the laboratory, gradually heated from 350 ° C. to 540 ° C., and baked at 540 ° C. for 2 hours. As a result of measuring the pore volume and pore distribution of this pentasil-type zeolite molding with a mercury intrusion measuring apparatus (mercury porosimeter), the pore diameter was 5 as shown in the catalyst pore distribution diagram (differential curve) of FIG. It was confirmed to be a mesoporous pentasil-type zeolite molded body comprising pore groups of ˜20 nm and having a peak at a pore diameter of 8 nm in the differential curve and a pore volume of 0.517 mL / g.

このメソ細孔ペンタシル型ゼオライト成型体20グラムを対成型体絶対乾燥基準100重量部あたり、11重量部のNHClと5重量部のCaClを溶かした水溶液に入れ、純水にて固液比2.0Kg/Lに調製し、温度80℃、1時間接触させた。その後、純水で洗浄し、純水でバッチ的に6回水洗した。その後、Reとして80ミリグラム含む過レニウム酸水溶液40ml中に室温で浸漬し、30分毎に撹拌しながら2時間放置した。その後、液を切り、ペンタシル型ゼオライト成型体を120℃で一晩乾燥した。触媒反応の使用に先立って、硫化水素気流中250℃で2時間硫化処理を行い、大気中にて540℃で2時間焼成し、触媒Aとした。触媒Aのレニウム、及びカルシウム含有量をICP法で測定した結果、それぞれ2,010重量ppm、1,200重量ppmであった。 20 grams of this mesoporous pentasil-type zeolite molded body was put into an aqueous solution in which 11 parts by weight of NH 4 Cl and 5 parts by weight of CaCl were dissolved per 100 parts by weight of the absolute dry basis of the molded body, and the solid-liquid ratio in pure water It was adjusted to 2.0 kg / L and contacted at a temperature of 80 ° C. for 1 hour. Then, it wash | cleaned with the pure water and washed with the pure water 6 times in batch. Then, it was immersed at room temperature in 40 ml of perrhenic acid aqueous solution containing 80 milligrams of Re, and left for 2 hours with stirring every 30 minutes. Thereafter, the liquid was cut off, and the pentasil-type zeolite molding was dried at 120 ° C. overnight. Prior to the use of the catalytic reaction, a sulfidation treatment was performed in a hydrogen sulfide stream at 250 ° C. for 2 hours, and calcined in the atmosphere at 540 ° C. for 2 hours to obtain Catalyst A. The rhenium and calcium contents of Catalyst A were measured by ICP method, and were found to be 2,010 ppm by weight and 1,200 ppm by weight, respectively.

比較例1
(触媒Bの製造)
上記ゼオライト合成で得られたペンタシル(MFI)型ゼオライトを使用し、別の成型方法であるバッチ式小型ニーダーで成型体を作った。すなわちペンタシル型ゼオライトを絶対乾燥基準(500℃、20分間焼成した時の灼熱減量から計算)で328グラム、擬ベーマイト構造を有する含水アルミナ(住友化学工業株式会社製)を絶対乾燥基準で926グラム、アルミナゾル(Al含量10重量%、日産化学工業株式会社製)を986グラム、アルミナゲル(Al含量70重量%、触媒化成工業株式会社製)を126グラム、成型助剤として界面活性剤であるレオドールSP(花王株式会社製)48グラムを加え、更にこれに全体の水分が49%となるようイオン交換水を追加し、小型バッチニーダーにて混合・混練りをおよそ2時間行い、粘土状の混練り物を得た。その混練り物を1.2mmφの穴を有するスクリーンをつけたエクストリューダーでヌードル状に押出し、押出し成形物を、小型の熱風ドライヤにて、水分が約40%になるまで乾燥し、次いで、マルメライザーにて回転数350rpmの60分の条件で整粒した。このうち、約1kgほどをサンプルとして取り、実験室内の乾燥機にて120℃にて一晩乾燥させた後、350℃から徐々に540℃に昇温し、540℃で2時間焼成した。このペンタシル型ゼオライト成型体の細孔容積及び細孔分布を、細孔径の最小測定限界が4nmである水銀圧入法の測定装置(水銀ポロシメータ)で測定した結果、図1の触媒細孔分布図(微分曲線)に示すとおり、細孔径が5〜20nmの細孔群からなり、微分曲線において細孔径7nmにピークを持つ、細孔容積が0.434mL/gのメソ細孔ペンタシル型ゼオライト成型体であることが確認できた。このペンタシル型ゼオライト成型を、触媒Aと同様の方法でイオン交換処理、レニウム担持、硫化・焼成処理を行い、触媒Bとした。念のため触媒Bにおけるレニウム及びカルシウムの含有量を測定したところ、触媒Aと同等の含有量であることを確認した。
Comparative Example 1
(Manufacture of catalyst B)
Using a pentasil (MFI) type zeolite obtained by the above zeolite synthesis, a molded body was made with a batch type small kneader which is another molding method. That is, 328 grams of pentasil-type zeolite based on absolute drying (calculated from loss of ignition when calcined at 500 ° C. for 20 minutes), hydrated alumina having a pseudo-boehmite structure (manufactured by Sumitomo Chemical Co., Ltd.), 926 grams based on absolute drying, 986 grams of alumina sol (Al 2 O 3 content 10% by weight, manufactured by Nissan Chemical Industries, Ltd.), 126 grams of alumina gel (Al 2 O 3 content 70% by weight, manufactured by Catalyst Chemical Industries, Ltd.), interface as a molding aid Add 48 grams of the active agent Rheodor SP (manufactured by Kao Corporation), and add ion-exchanged water so that the total moisture becomes 49%. Mix and knead in a small batch kneader for approximately 2 hours. A clay-like kneaded product was obtained. The kneaded product was extruded into a noodle shape with an extruder equipped with a screen having a 1.2 mmφ hole, and the extruded product was dried with a small hot air dryer until the water content was about 40%. The particles were sized with a riser under the condition of a rotation speed of 350 rpm for 60 minutes. About 1 kg of the sample was taken as a sample, dried at 120 ° C. overnight with a dryer in the laboratory, gradually heated from 350 ° C. to 540 ° C., and baked at 540 ° C. for 2 hours. As a result of measuring the pore volume and pore distribution of this pentasil-type zeolite molding with a mercury intrusion measuring apparatus (mercury porosimeter) having a minimum pore diameter measurement limit of 4 nm, the catalyst pore distribution diagram of FIG. As shown in the differential curve), a mesoporous pentasil-type zeolite molded body consisting of a group of pores having a pore diameter of 5 to 20 nm and having a peak at a pore diameter of 7 nm in the differential curve and a pore volume of 0.434 mL / g. It was confirmed that there was. This pentasil-type zeolite molding was subjected to ion exchange treatment, rhenium support, sulfurization / calcination treatment in the same manner as Catalyst A, and Catalyst B was obtained. As a precaution, the rhenium and calcium contents in the catalyst B were measured, and it was confirmed that the contents were the same as in the catalyst A.

実施例2,比較例2
上記触媒AとBについてそれぞれ反応管に充填して反応テストを行った。使用した供給原料4種類の組成を表1に示す。尚、供給原料及び反応生成物の組成分析は水素炎検出器付きガスクロマトグラフィー3台を用いた。分離カラムは次の通りである。
Example 2 and Comparative Example 2
Each of the catalysts A and B was filled in a reaction tube and subjected to a reaction test. Table 1 shows the composition of the four feedstocks used. In addition, the composition analysis of the feedstock and the reaction product used three gas chromatographs with a hydrogen flame detector. The separation column is as follows.

(1)ガス成分(ガス中のメタンからn−ブタンまでの成分):
充填剤:“ユニパックS”(“Unipak S” )100〜150メッシュ、
カラム:ステンレス製 長さ4m 内径3mmφ
:1.65kg/cm−G
温度:80℃
(1) Gas components (components from methane to n-butane in the gas):
Filler: “Unipak S” (“Unipak S”) 100-150 mesh,
Column: Made of stainless steel 4 m long 3 mm inside diameter
N 2: 1.65kg / cm 2 -G
Temperature: 80 ° C

(2)液成分中のベンゼン周りの沸点を有する成分(液中に溶解しているメタンからn−ブタンと液成分の2−メチル−ブタンからベンゼン成分まで):
充填剤 25%ポリエチレングリコール20M/担体“シマライト” 60〜80メッシュ、
カラム:ステンレス製 長さ12m 内径3mmφ
:2.25kg/cm−G
温度:68℃から2℃/分の昇温速度で180℃まで実施した。
(2) Component having boiling point around benzene in liquid component (from methane dissolved in liquid to n-butane and liquid component 2-methyl-butane to benzene component):
Filler 25% polyethylene glycol 20M / carrier "Simalite" 60-80 mesh,
Column: Stainless steel, 12m long, 3mm inner diameter
N 2: 2.25kg / cm 2 -G
Temperature: It carried out from 68 degreeC to 180 degreeC with the temperature increase rate of 2 degree-C / min.

(3)液成分ベンゼンより沸点の重い成分(ベンゼンからヘビーエンド成分まで):
スペルコ ワックス フューズド シリカキャピラリィー; 長さ60m 内径0.32mmφ、膜厚0.5μm
He線速;23cm/秒
温度;67℃から1℃/分の昇温速度、80℃から2℃/分の昇温速度で200℃まで実施した。
(3) Components with boiling points higher than liquid components benzene (from benzene to heavy-end components):
Spellco wax fused silica capillary; length 60m, inner diameter 0.32mmφ, film thickness 0.5μm
He linear velocity; 23 cm / second temperature; from 67 ° C. to 1 ° C./min, and from 80 ° C. to 2 ° C./min.

Figure 0004830944
Figure 0004830944

尚、TOLはトルエン、EBはエチルベンゼン、PXはパラキシレン、MXはメタキシレン、OXはオルソキシレン、を表す。またC9+はC9以上の炭素数を有する化合物を表す。   TOL represents toluene, EB represents ethylbenzene, PX represents para-xylene, MX represents meta-xylene, and OX represents ortho-xylene. C9 + represents a compound having C9 or more carbon atoms.

上記原料油について、触媒A及びBを反応管に7.5グラム充填して次の条件で反応させた。
反応条件
WHSV(hr−1): 5.1
反応温度(℃): 370
反応圧力(MPa): 0.66
/Feed(mol /mol ):3.0
About the said raw material oil, the catalyst A and B were filled into reaction tube 7.5g, and it was made to react on the following conditions.
Reaction conditions WHSV (hr −1 ): 5.1
Reaction temperature (° C): 370
Reaction pressure (MPa): 0.66
H 2 / Feed (mol / mol): 3.0

表2にそのテスト結果を示す。   Table 2 shows the test results.

Figure 0004830944
Figure 0004830944

実施例2と比較例2の結果より、同じ反応温度において、メソ細孔容積が大きい触媒AはEB転化率、PX異性化率が共に高い。また、反応温度を調整して同じEB転化率となるようにした例で比較しても、触媒Aがより低い温度でEB転化率、PX異性化、XY収率の3者の活性バランスで優れることが示され、大量に反応をさせる工業生産において極めて有用であることも解る。   From the results of Example 2 and Comparative Example 2, catalyst A having a large mesopore volume has a high EB conversion rate and PX isomerization rate at the same reaction temperature. In addition, even when the reaction temperature is adjusted so that the same EB conversion rate is obtained, the catalyst A is excellent in the activity balance of the three components of EB conversion rate, PX isomerization, and XY yield at a lower temperature. It is also found that it is extremely useful in industrial production in which a large amount of reaction is performed.

比較例3
実施例1において得られたメソ細孔ペンタシル型ゼオライト成型体20グラムを対成型体絶対乾燥基準100重量部あたり、11重量部のNHClのみを溶かした水溶液に入れ、純水にて固液比2.0Kg/Lに調製し、温度80℃、1時間接触させた。その後、純水で洗浄し、純水でバッチ的に6回水洗した。その後、Reとして80ミリグラム含む過レニウム酸水溶液40ml中に室温で浸漬し、30分毎に撹拌しながら2時間放置した。その後、液を切り、ペンタシル型ゼオライト成型体を120℃で一晩乾燥し、触媒Cを得た。触媒Cのレニウム含有量をICP法で測定した結果、2,000重量ppmであった。
Comparative Example 3
20 grams of the mesoporous pentasil-type zeolite molded body obtained in Example 1 was put into an aqueous solution in which only 11 parts by weight of NH 4 Cl was dissolved per 100 parts by weight of the absolute dry basis of the molded body, and the solid liquid was obtained with pure water. The ratio was adjusted to 2.0 kg / L, and contact was performed at a temperature of 80 ° C. for 1 hour. Then, it wash | cleaned with the pure water and washed with the pure water 6 times in batch. Then, it was immersed at room temperature in 40 ml of perrhenic acid aqueous solution containing 80 milligrams of Re, and left for 2 hours with stirring every 30 minutes. Thereafter, the liquid was cut off, and the pentasil-type zeolite molding was dried at 120 ° C. overnight to obtain Catalyst C. As a result of measuring the rhenium content of the catalyst C by the ICP method, it was 2,000 ppm by weight.

実施例3
同じく実施例1において得られた、メソ細孔ペンタシル型ゼオライト成型体20グラムを対成型体絶対乾燥基準100重量部あたり、11重量部のNHClと5重量部のSrCl2を溶かした水溶液に入れ、純水にて固液比2.0Kg/Lに調製し、温度80℃、1時間接触させた。その後、純水で洗浄し、純水でバッチ的に6回水洗した。その後、Reとして80ミリグラム含む過レニウム酸水溶液40ml中に室温で浸漬し、30分毎に撹拌しながら2時間放置した。その後、液を切り、同じく120℃で一晩乾燥し、触媒Dを得た。触媒Dのレニウム含有量をICP法で測定した結果、2,000重量ppmであった。、又、同法で触媒DのSr含有量を測定した結果、1,000重量ppmであった。
Example 3
Similarly, 20 grams of the mesoporous pentasil-type zeolite molded body obtained in Example 1 was dissolved in an aqueous solution in which 11 parts by weight of NH 4 Cl and 5 parts by weight of SrCl 2 were dissolved per 100 parts by weight of the absolute dry basis of the molded body. The solid-liquid ratio was adjusted to 2.0 kg / L with pure water, and contacted at a temperature of 80 ° C. for 1 hour. Then, it wash | cleaned with the pure water and washed with the pure water 6 times in batch. Then, it was immersed at room temperature in 40 ml of perrhenic acid aqueous solution containing 80 milligrams of Re, and left for 2 hours with stirring every 30 minutes. Then, the liquid was drained and dried at 120 ° C. overnight to obtain catalyst D. As a result of measuring the rhenium content of catalyst D by the ICP method, it was 2,000 ppm by weight. Moreover, as a result of measuring the Sr content of the catalyst D by the same method, it was 1,000 ppm by weight.

実施例4、比較例3
上記触媒CとDについてそれぞれ反応管に充填して反応テストを行った。、
触媒反応の使用に先立って、硫化水素気流中250℃で2時間硫化処理を行い、大気中にて540℃で2時間焼成した。
Example 4, Comparative Example 3
Each of the catalysts C and D was filled in a reaction tube and subjected to a reaction test. ,
Prior to the use of the catalytic reaction, sulfidation treatment was performed at 250 ° C. for 2 hours in a hydrogen sulfide gas stream and calcined at 540 ° C. for 2 hours in the atmosphere.

上記表1に記載の原料油について、触媒C及びDを反応管に7.5グラム充填して、実施例2と同じ条件で反応させた。表3にそのテスト結果を示す。   About the raw material oil of the said Table 1, catalyst C and D were filled into reaction tube 7.5g, and it was made to react on the same conditions as Example 2. FIG. Table 3 shows the test results.

Figure 0004830944
Figure 0004830944

実施例2と、実施例4及び比較例3の結果を比較すると、メソ細孔容積が大きい成型品において、アルカリ土類金属を含有しない触媒CはEB転化率の活性が反応温度にして5℃分高い割には、活性が強すぎてXY収率が0.5重量%も低く、この差は大量に反応させる工業生産において、極めて経済的に不利である。また、同じくアルカリ土類金属であるSrを含有した触媒Dはにおいては、収率は0.2重量%良いが、PX異性化率が低いことから、同じアルカリ土類金属を含有した触媒において、やはりCaを含有した触媒Aが、EB転化率、PX異性化、XY収率の3者の活性バランスで最も優れているることが示唆される。   Comparing the results of Example 2 with Example 4 and Comparative Example 3, in a molded article having a large mesopore volume, the catalyst C containing no alkaline earth metal has an EB conversion activity of 5 ° C. at the reaction temperature. For a high price, the activity is too strong and the XY yield is as low as 0.5% by weight. This difference is extremely economically disadvantageous in industrial production in which a large amount is reacted. Further, in the catalyst D containing Sr which is also an alkaline earth metal, the yield is good by 0.2% by weight, but since the PX isomerization rate is low, in the catalyst containing the same alkaline earth metal, It is also suggested that the catalyst A containing Ca is the most excellent in the three activity balances of EB conversion, PX isomerization, and XY yield.

比較例5
実施例1と同じメソ細孔ペンタシル型ゼオライト成型体20グラムを対成型体絶対乾燥基準100重量部あたり、11重量部のNHClと5重量部のCaClを溶かした水溶液に入れ、純水にて固液比2.0Kg/Lに調製し、温度80℃、1時間接触させた後、純水で洗浄し、純水でバッチ的に6回水洗した。その後、Reとして20ミリグラム含む過レニウム酸水溶液40ml中に室温で浸漬し、30分毎に撹拌しながら2時間放置した。その後、液を切り、ペンタシル型ゼオライト成型体を120℃で一晩乾燥し、触媒Eを得た。触媒EのRe含有量をICP法で測定した結果、500重量ppmであった。実施例2と同様、触媒Eを反応管に充填して反応テストを行った。、触媒反応の使用に先立って、硫化水素気流中250℃で2時間硫化処理を行い、大気中にて540℃で2時間焼成した。
Comparative Example 5
20 grams of the same mesoporous pentasil-type zeolite molded product as in Example 1 was put into an aqueous solution in which 11 parts by weight of NH 4 Cl and 5 parts by weight of CaCl were dissolved per 100 parts by weight of the absolute dry basis of the molded product. The mixture was adjusted to a solid-liquid ratio of 2.0 kg / L and contacted at a temperature of 80 ° C. for 1 hour, washed with pure water, and then washed six times with pure water. Then, it was immersed at room temperature in 40 ml of perrhenic acid aqueous solution containing 20 milligrams of Re, and left for 2 hours with stirring every 30 minutes. Thereafter, the liquid was cut off, and the pentasil-type zeolite molding was dried at 120 ° C. overnight to obtain Catalyst E. The Re content of the catalyst E was measured by ICP method and found to be 500 ppm by weight. In the same manner as in Example 2, the reaction test was performed by filling the reaction tube with the catalyst E. Prior to the use of the catalytic reaction, sulfidation treatment was performed at 250 ° C. for 2 hours in a hydrogen sulfide stream, and calcination was performed at 540 ° C. for 2 hours in the atmosphere.

上記表1に記載の原料油について、触媒Eを反応管に7.5グラム充填して、実施例2と同じ条件で反応させた。表4にそのテスト結果を示す。   About the raw material oil of the said Table 1, 7.5g of catalyst E was filled into the reaction tube, and it was made to react on the same conditions as Example 2. FIG. Table 4 shows the test results.

Figure 0004830944
Figure 0004830944

実施例2と比較例5の結果を比較すると、メソ細孔容積が大きい成型品において、レニウム含有量の少ない触媒EはEB転化率の活性が反応温度にして10℃分低く、XY収率も約3重量%も低く、この差は大量に反応させる工業生産において、極めて経済的に不利である。   When the results of Example 2 and Comparative Example 5 are compared, in a molded product having a large mesopore volume, the catalyst E having a low rhenium content has an EB conversion activity reduced by 10 ° C. at the reaction temperature, and the XY yield is also low As low as about 3% by weight, this difference is extremely economically disadvantageous in industrial production that reacts in large quantities.

実施例1、比較例で製造したペンタシル型ゼオライト成型体の触媒細孔分布図(微分曲線)である。It is a catalyst pore distribution map (differential curve) of the pentasil type zeolite molding manufactured in Example 1 and a comparative example.

Claims (11)

MFI型ゼオライトと無機酸化物を配合してなる組成物で、細孔径4〜20nmの細孔群をもち、細孔容積が0.45mL/g以上からなる成型体であって、アルカリ土類金属を含有することを特徴とする、エチルベンゼン脱アルキル化及びキシレン異性化機能を有する二元機能触媒。 A composition comprising an MFI-type zeolite and an inorganic oxide, having a pore group having a pore diameter of 4 to 20 nm and a pore volume of 0.45 mL / g or more, comprising an alkaline earth metal A bifunctional catalyst having ethylbenzene dealkylation and xylene isomerization functions, comprising: 無機酸化物がアルミナである、請求項1記載の二元機能触媒。 The bifunctional catalyst according to claim 1, wherein the inorganic oxide is alumina. アルミナをゼオライト100重量部に対し、100重量部〜750重量部含有することを特徴とする、請求項2記載の二元機能触媒。 The bifunctional catalyst according to claim 2, wherein alumina is contained in an amount of 100 to 750 parts by weight based on 100 parts by weight of zeolite. さらに白金、パラジウム、レニウムの少なくとも1つの成分を含有してなる、請求項1〜3のいずれか記載の二元機能触媒 The bifunctional catalyst according to any one of claims 1 to 3, further comprising at least one component of platinum, palladium, and rhenium. 触媒中のレニウム含有量が0.01重量%〜5重量%である請求項1〜4のいずれか記載の二元機能触媒。 The bifunctional catalyst according to any one of claims 1 to 4, wherein the rhenium content in the catalyst is 0.01 wt% to 5 wt%. 触媒中のレニウム含有量が0.01重量%〜2重量%である請求項5記載の二元機能触媒。 The bifunctional catalyst according to claim 5, wherein the rhenium content in the catalyst is 0.01 wt% to 2 wt%. 触媒に含まれるMFI型ゼオライトのシリカ/アルミナモル比が10〜70である請求項1〜6のいずれか記載の二元機能触媒。 The bifunctional catalyst according to any one of claims 1 to 6, wherein the MFI-type zeolite contained in the catalyst has a silica / alumina molar ratio of 10 to 70. 触媒中に含まれるアルカリ土類金属がカルシウムである、請求項1〜7のいずれか記載の二元機能触媒。 The bifunctional catalyst according to any one of claims 1 to 7, wherein the alkaline earth metal contained in the catalyst is calcium. 触媒中に含まれるカルシウムが0.05重量%以上であることを特徴とする、請求項8のいずれか記載の二元機能触媒。 The bifunctional catalyst according to claim 8, wherein calcium contained in the catalyst is 0.05% by weight or more. C8芳香族炭化水素を含む原料を、請求項1〜9のいずれか記載の二元機能触媒に接触させることを特徴とするエチルベンゼンの脱アルキル化及び/又はキシレンの異性化方法。 A method for dealkylating ethylbenzene and / or isomerizing xylene, comprising bringing a raw material containing a C8 aromatic hydrocarbon into contact with the bifunctional catalyst according to any one of claims 1 to 9. 請求項10により得られた反応生成物からパラキシレンを分離し、そのラフィネートを再度、同じ請求項1〜9のいずれか記載の二元機能触媒に再度接触させることを特徴とする、パラキシレンの製造方法。 Paraxylene is separated from the reaction product obtained according to claim 10, and the raffinate is again brought into contact with the same bifunctional catalyst according to any one of claims 1 to 9, wherein Production method.
JP2007086459A 2007-03-29 2007-03-29 Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization Expired - Fee Related JP4830944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086459A JP4830944B2 (en) 2007-03-29 2007-03-29 Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086459A JP4830944B2 (en) 2007-03-29 2007-03-29 Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization

Publications (2)

Publication Number Publication Date
JP2008238136A JP2008238136A (en) 2008-10-09
JP4830944B2 true JP4830944B2 (en) 2011-12-07

Family

ID=39910107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086459A Expired - Fee Related JP4830944B2 (en) 2007-03-29 2007-03-29 Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization

Country Status (1)

Country Link
JP (1) JP4830944B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377050B1 (en) 2011-04-18 2014-03-24 인하대학교 산학협력단 Method for selective dealkylation of alkyl-substituted C9+ aromatic compound
US9309170B2 (en) * 2011-11-14 2016-04-12 Uop Llc Aromatics isomerization using a dual-catalyst system
FR2999955B1 (en) * 2012-12-20 2015-11-13 IFP Energies Nouvelles MODIFIED CATALYST OF STRUCTURAL TYPE MTW, ITS PREPARATION METHOD AND ITS USE IN ISOMERIZATION PROCESS OF C8 AROMATIC CUTTING
US20140296601A1 (en) * 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174647A (en) * 1984-09-19 1986-04-16 Toa Nenryo Kogyo Kk Catalyst for isomerizing aromatic hydrocarbon of carbon number eight and its manufacture
JP2005224793A (en) * 2003-07-08 2005-08-25 Toray Ind Inc Conversion catalyst for ethylbenzene-containing xylenes, and conversion method of ethylbenzene- containing xylenes using the catalyst
US7411103B2 (en) * 2003-11-06 2008-08-12 Haldor Topsoe A/S Process for the catalytic isomerisation of aromatic compounds

Also Published As

Publication number Publication date
JP2008238136A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
KR930003862B1 (en) Process for conversion of ethylbenzene in c8 aromatic hydrocarbon mixture
EP2931686B1 (en) Aromatic transalkylation using uzm-44 aluminosilicate zeolite
TWI537051B (en) Processes for transalkylating aromatic hydrocarbons
CN101208282A (en) Selective aromatics isomerization process
KR101061961B1 (en) Aromatic isomerization catalyst
EP1928808A2 (en) Methods of making xylene isomers
JP2011500486A (en) Aromatization catalyst containing long silica and method for making and using the same
US6593504B1 (en) Selective aromatics transalkylation
EP2773603B1 (en) Catalyst and process for hydrocarbon conversion
RU2448937C2 (en) Method of converting ethylbenzene and method of producing para-xylene
US8748685B1 (en) Aromatic transformation using UZM-44 aluminosilicate zeolite
JP4830944B2 (en) Bifunctional catalysts for ethylbenzene dealkylation and xylene isomerization
JP7571131B2 (en) Process for producing p-xylene and ethylbenzene from C8 aromatic compounds including ethylbenzene
JP4735774B2 (en) Ethylbenzene conversion method and paraxylene production method
JP5292699B2 (en) Method for converting ethylbenzene and method for producing paraxylene
JP2015051383A (en) Catalyst and method for dealkylating ethylbenzene and isomerizing xylene
JP2009084227A (en) Method for producing benzene
JP2007001942A (en) Production method of para-xylene
JP2004244375A (en) Method for producing dimethylnaphthalene
EP3820831A1 (en) Catalysts and methods for dimerizing propylene
JP2012139618A (en) Catalyst for conversion of mixed raw material comprising ethylbenzene and xylene, and conversion method using the same
JP2007001943A (en) Production method of para-xylene
JP2007203148A (en) Catalyst composition for conversion reaction of aromatic hydrocarbon, and conversion process of aromatic hydrocarbon using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees