JP4828570B2 - Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component - Google Patents
Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component Download PDFInfo
- Publication number
- JP4828570B2 JP4828570B2 JP2008115974A JP2008115974A JP4828570B2 JP 4828570 B2 JP4828570 B2 JP 4828570B2 JP 2008115974 A JP2008115974 A JP 2008115974A JP 2008115974 A JP2008115974 A JP 2008115974A JP 4828570 B2 JP4828570 B2 JP 4828570B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- piezoelectric ceramic
- piezoelectric
- range
- perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 45
- 239000000203 mixture Substances 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910052797 bismuth Inorganic materials 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 17
- 229910052573 porcelain Inorganic materials 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
この発明は、圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品に関し、特にたとえば、圧電発音体、圧電センサ、圧電アクチュエータ、圧電トランス、圧電超音波モータなどの圧電セラミック部品などの材料として有用な無鉛圧電磁器組成物、無鉛圧電磁器組成物の製造方法およびこの無鉛圧電磁器組成物を用いた圧電セラミック部品に関する。 The present invention relates to a piezoelectric ceramic composition, a method of manufacturing a piezoelectric ceramic composition, and a piezoelectric ceramic component, and in particular, a material such as a piezoelectric ceramic component such as a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, a piezoelectric transformer, and a piezoelectric ultrasonic motor. The present invention relates to a lead-free piezoelectric ceramic composition, a method for producing a lead-free piezoelectric ceramic composition, and a piezoelectric ceramic component using the lead-free piezoelectric ceramic composition.
圧電体磁器組成物としては、二成分系で構成されるPZT(PbTiO3−PbZrO3)系磁器や三成分で構成されるPCM[PbTiO3−PbZrO3−Pb(Mg0.5Nb0.5)TiO3]系磁器が主に用いられてきた。 As a piezoelectric ceramic composition, PCM composed configured PZT (PbTiO 3 -PbZrO 3) based porcelain or ternary with two-component [PbTiO 3 -PbZrO 3 -Pb (Mg 0.5 Nb 0.5 ) TiO 3 ] based porcelain has been mainly used.
しかし、これらの磁器組成物は、いずれも鉛を主成分とするもので、焼成時に揮発する酸化鉛などの鉛成分による環境面への影響が問題となる。 However, these porcelain compositions are all composed mainly of lead, and there is a problem of environmental influences caused by lead components such as lead oxide that volatilizes during firing.
従来、この代替として、ABO3のペロブスカイト構造を有する材料の中で、(Bi0.5Na0.5)TiO3、(Bi0.5K0.5)TiO3や(Bi,Na,K)TiO3、(Bi,Na,Ba)TiO3などのBiを含む複合ペロブスカイト構造をもつ材料(Biペロブスカイト)、これらの固溶体、および(Bi,Na,K)TiO3にFe2O3、Cr2O3、MnO2、NiO、Co2O3、La2O3、In2O3、Al2O3、BaCO3、Sb2O3、Nb2O5などを添加した無鉛圧電磁器組成物が提案されている。
Biペロブスカイトは、発音体、センサ、アクチュエータなど変位を利用する圧電セラミック部品としては圧電定数が低く、トランス、超音波モータなどパワー利用の圧電セラミック部品では、機械的品質係数Qmが低い。また、Biペロブスカイトは、成形後、焼成時に結晶粒が異常粒成長し、100μmを越えるような結晶粒と、数μmの細かい結晶粒が混在した不均一な組織(Duplex Structure)になり易く、組織を制御することが難しい。 Bi perovskite has a low piezoelectric constant as a piezoelectric ceramic component using displacement such as a sounding body, a sensor, and an actuator, and a mechanical quality factor Qm is low in a piezoelectric ceramic component using power such as a transformer and an ultrasonic motor. In addition, Bi perovskite has abnormal grain growth during molding and after firing, and easily forms a non-uniform structure (Duplex Structure) in which crystal grains exceeding 100 μm and fine crystal grains of several μm are mixed. Difficult to control.
圧電磁器組成物を数μm〜数10μmの厚みでシート成形後、電極材料介して積層し同時焼成することで作成する圧電セラミック部品としては、結晶粒のサイズがシート厚みを越えてしまう磁器組成物は使用できない。したがって、PZTの代替で使用するには、材料特性の改善が不可欠である。 Piezoelectric ceramic components made by forming a piezoelectric ceramic composition with a thickness of several μm to several tens of μm, then laminating them through electrode materials and firing them simultaneously, a ceramic composition in which the size of crystal grains exceeds the sheet thickness Cannot be used. Therefore, improvement of material properties is essential for use as an alternative to PZT.
従来技術のうち、特開平11−217262、特開2000−22235、特開2000−272962では、これらのBiペロブスカイトに、Fe2O3、Cr2O3、MnO2、Co2O3、La2O3、BaCO3、Sb2O3、Nb2O3などの酸化物を添加することで圧電特性が改善できることを提示している。 Among the prior arts, JP-A-11-217262, JP-A-2000-22235, and JP-A-2000-272926 include these Bi perovskites with Fe 2 O 3 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , La 2. It is suggested that the piezoelectric characteristics can be improved by adding oxides such as O 3 , BaCO 3 , Sb 2 O 3 , and Nb 2 O 3 .
しかし、実際には、従来技術のように合成する際にBiペロブスカイトにこれらの酸化物を添加した組成系では、反応合成時、焼結工程などの熱処理過程で、BiなどのBiペロブスカイトの構成元素と添加した酸化物が反応し、Biペロブスカイト以外の二次相が生成される。そのため、二次相により圧電特性が下がる効果と、添加した酸化物による特性向上作用が反駁し、示されているような改善は、安定して得られない。さらに、焼結体の微細組織は、二次相の生成が抑制できないことから、効果については触れられていない。 However, in actuality, in the composition system in which these oxides are added to Bi perovskite when synthesized as in the prior art, the constituent elements of Bi perovskite such as Bi during reaction synthesis, heat treatment process such as sintering process, etc. And the added oxide react to form a secondary phase other than Bi perovskite. Therefore, the effect of lowering the piezoelectric characteristics due to the secondary phase and the effect of improving the characteristics due to the added oxide are contradictory, and the improvement as shown cannot be obtained stably. Furthermore, since the microstructure of the sintered body cannot suppress the generation of the secondary phase, the effect is not mentioned.
この発明は、鉛を含まない化合物からなる、圧電特性の良い圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品を提供することを目的とする。 An object of the present invention is to provide a piezoelectric ceramic composition having a good piezoelectric characteristic, a method for producing a piezoelectric ceramic composition, and a piezoelectric ceramic component, which are made of a lead-free compound.
この発明に係る圧電磁器組成物は、一般式ABO3で表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が5価の元素M(V)によって置換されていることを特徴とするものである。 The piezoelectric ceramic composition according to the present invention is mainly composed of a perovskite-type composite oxide represented by the general formula ABO 3 , and A in the general formula is selected from Bi, Na, K and Ba It consists of more than seed elements, B in the general formula consists of Ti, and a part of B (= Ti) in the general formula is substituted by a pentavalent element M (V) Is.
この発明に係る圧電磁器組成物の製造方法は、原料化合物を仮焼する仮焼工程と、該仮焼工程で得られた仮焼粉を成形する成形工程と、該成形工程で得られた成形体を焼成する焼成工程とを備え、前記原料化合物が、一般式ABO3で表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が5価の元素M(V)によって置換されていることを特徴とするものである。 The method for producing a piezoelectric ceramic composition according to the present invention includes a calcining step of calcining a raw material compound, a molding step of molding a calcined powder obtained in the calcining step, and a molding obtained in the molding step. The raw material compound is mainly composed of a perovskite-type composite oxide represented by the general formula ABO 3 , and A in the general formula is selected from Bi, Na, K, and Ba. 1 or 2 or more elements, B in the general formula is made of Ti, and a part of B (= Ti) in the general formula is substituted by a pentavalent element M (V). It is characterized by this.
この発明に係る圧電セラミック部品は、1又は2以上の圧電体と該圧電体を挟持する2以上の電極とを備え、該圧電体が、一般式ABO3で表わされるペロブスカイト型の複合酸化物を主成分とし、該一般式中のAがBi、Na、K及びBaから選択された1種又は2種以上の元素からなり、該一般式中のBがTiからなり、該一般式中のB(=Ti)の一部が5価の元素M(V)によって置換されていることを特徴とするものである。 The piezoelectric ceramic component according to the present invention includes one or more piezoelectric bodies and two or more electrodes sandwiching the piezoelectric bodies, and the piezoelectric bodies are made of a perovskite type complex oxide represented by the general formula ABO 3. And A in the general formula consists of one or more elements selected from Bi, Na, K and Ba, B in the general formula consists of Ti, and B in the general formula A part of (= Ti) is substituted with a pentavalent element M (V).
また、前記一般式ABO3を下式(3)又は(4)で表わされるペロブスカイト型の複合酸化物とすることができる。この場合、Mとしては5価の元素M(V)を使用することができる。 The general formula ABO 3 may be a perovskite complex oxide represented by the following formula (3) or (4). In this case, pentavalent element M (V) can be used as M.
Bi0.5(Na1−αKα)0.5−xTi1−xMxO3………………(3) Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M x O 3 (3)
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xMxO3………(4) (Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M x O 3 (4)
ここで、αの範囲は0≦α≦1が、βの範囲は0<β<1が好ましい。 Here, the range of α is preferably 0 ≦ α ≦ 1, and the range of β is preferably 0 <β <1.
また、前記一般式中のB(=Ti)の一部が5価の元素M(V)によって置換されている置換の割合xは0.005≦x≦0.020が好ましい。置換の割合xの範囲を0.005≦x≦0.020としたのは、xが0.005未満になると粒径分布が不均一で、ポアが残り、xが0.020を越えると二次相が多くなり、分極不可になるが、0.005≦x≦0.020の範囲ではこのような不都合がなく、圧電特性(Qm,kr,d31)の良い、緻密な組成物が得られるからである。 Further, the substitution ratio x in which a part of B (= Ti) in the general formula is substituted by the pentavalent element M (V) is preferably 0.005 ≦ x ≦ 0.020. The range of the substitution ratio x is set to 0.005 ≦ x ≦ 0.020 because the particle size distribution is non-uniform when x is less than 0.005, the pores remain, and when x exceeds 0.020, Although the next phase increases and polarization becomes impossible, there is no such inconvenience in the range of 0.005 ≦ x ≦ 0.020, and a dense composition with good piezoelectric characteristics (Qm, kr, d31) can be obtained. Because.
また、前記5価の元素M(V)としては、例えばNb、Sb、V又はTaとすることができる。 Moreover, as said pentavalent element M (V), it can be set as Nb, Sb, V, or Ta, for example.
また、上記説明においてペロブスカイト型の複合酸化物を主成分とするとは、上記圧電磁器組成物の特性を害しない範囲で他の成分を含んでいても良いという趣旨である。 In the above description, the phrase “perovskite complex oxide as a main component” means that other components may be included as long as the characteristics of the piezoelectric ceramic composition are not impaired.
また、圧電磁器組成物の製造方法において、仮焼粉の成形には、仮焼粉をプレスして成形する場合だけでなく、仮焼粉のスラリーを用いてシートを成形する場合や、仮焼粉のスラリーの塗布と電極の塗布を交互に行って積層体を形成する場合も含む。 In the method for producing a piezoelectric ceramic composition, the calcined powder is formed not only when the calcined powder is pressed and molded, but also when a sheet is formed using a calcined powder slurry, This includes the case where a powdery slurry and electrodes are alternately applied to form a laminate.
また、前記圧電セラミック部品は、例えば圧電発音体、圧電センサ、圧電アクチュエータ、圧電トランス又は圧電超音波モータを挙げることができるが、圧電磁器組成物を使用できる電気部品であればこれら以外のものに適用してもよい。 Examples of the piezoelectric ceramic component include a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, a piezoelectric transformer, and a piezoelectric ultrasonic motor. However, any other electrical component that can use a piezoelectric ceramic composition may be used. You may apply.
この発明にかかる磁器組成物は、Tiを置換した、5価の元素M(V)=Nb、Sb、V、Taから選ばれる少なくとも1種の元素がドナーとして作用する。また、かかる磁器組成物は、一般式で表されるとおり、化学量論組成であるので、従来技術のように二次相を誘発しない。さらに、前述の磁器組成物は、Tiのモル比が減るため、焼成時に、Tiリッチの低融点の液相生成が抑制される作用が生じる。 In the porcelain composition according to the present invention, at least one element selected from the pentavalent element M (V) = Nb, Sb, V, Ta substituted for Ti acts as a donor. Moreover, since such a porcelain composition has a stoichiometric composition as represented by a general formula, it does not induce a secondary phase unlike the prior art. Furthermore, since the above-mentioned porcelain composition has a reduced molar ratio of Ti, an effect of suppressing the formation of a Ti-rich low-melting liquid phase during firing occurs.
この発明にかかる磁器組成物は、上記の作用により、二次相による圧電特性の低下が抑制される。その上で、5価の元素M(V)=Nb、Sb、V、Taから選ばれる少なくとも1種の元素でTiを置換した場合、5価の元素M(V)のドナー作用により、Aサイトのアルカリ金属元素の欠陥が生じ格子が歪みやすくなり、圧電定数が向上する。さらに、Tiリッチの低融点相の生成しなくなる作用で異常粒成長が抑制され、5価の元素M(V)でTiを置換した場合では、結晶粒のサイズが10μm以下というように微細組織が均一化する。 In the porcelain composition according to the present invention, deterioration of the piezoelectric characteristics due to the secondary phase is suppressed by the above action. In addition, when Ti is substituted with at least one element selected from the pentavalent element M (V) = Nb, Sb, V, and Ta, the donor site of the pentavalent element M (V) causes the A site. As a result, the lattice of the alkali metal element is easily distorted and the piezoelectric constant is improved. Furthermore, abnormal grain growth is suppressed by the action of no Ti-rich low melting point phase being generated, and when Ti is replaced with the pentavalent element M (V), the microstructure is such that the crystal grain size is 10 μm or less. Make uniform.
上記の結果として、圧電セラミック部品に有用な無鉛圧電磁器組成物が得られる。 As a result of the above, a lead-free piezoelectric ceramic composition useful for piezoelectric ceramic parts is obtained.
鉛を含まない化合物からなる圧電磁器組成物、この圧電磁器組成物の製造方法およびこの圧電磁器組成物を使用した圧電セラミック部品を提供するという目的を、圧電特性を損なわずに実現した。 The objective of providing a piezoelectric ceramic composition comprising a lead-free compound, a method for producing the piezoelectric ceramic composition, and a piezoelectric ceramic component using the piezoelectric ceramic composition was realized without impairing the piezoelectric characteristics.
まず、原料化合物としてBi2O3、Na2CO3、K2CO3、TiO2を式(2)の複合酸化物が構成される割合で秤量した。 First, Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , and TiO 2 as raw material compounds were weighed at a ratio of the composite oxide of formula ( 2) .
Bi0.5(Na1−αKα)0.5−xTi1−xM(V)xO3……………(2) Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M (V) x O 3 (2)
また、この式(2)中、α=0〜1、M(V)は、Nb2O5、Sb2O3、V2O5、Ta2O5を表1のx欄に示す割合で各々秤量した。 In addition, in this formula ( 2) , α = 0 to 1 and M (V) are Nb 2 O 5 , Sb 2 O 3 , V 2 O 5 , and Ta 2 O 5 in the ratios shown in the x column of Table 1. Each was weighed.
次に、表1の各試料条件で上記各原料化合物及び添加成分をエタノールとともにボールミルに入れ、湿式混合し、得られたスラリーを乾燥させ、これを750℃、3hで仮焼した。この仮焼によって各試料条件でのペロブスカイト型の複合酸化物が合成される。 Next, each raw material compound and additive components were put in a ball mill together with ethanol under the sample conditions shown in Table 1 , and wet-mixed. The resulting slurry was dried and calcined at 750 ° C. for 3 hours. By this calcination, a perovskite complex oxide is synthesized under each sample condition.
次に、この仮焼物をエタノールとともにボールミルに入れ、湿式粉砕し、得られたスラリーを乾燥させ、有機バインダ(PVA)を加えて乾式造粒した。 Next, this calcined product was put into a ball mill together with ethanol, wet pulverized, the resulting slurry was dried, and an organic binder (PVA) was added to dry granulate.
次に、この造粒物を1軸プレスで10mmφ×0.5mmtの円板に成型し、これを1000〜1300℃、1〜4時間で焼成し、試料を作製した。 Next, this granulated material was molded into a 10 mmφ × 0.5 mmt disc with a uniaxial press and fired at 1000 to 1300 ° C. for 1 to 4 hours to prepare a sample.
次に、この試料について、X線回折装置(XRD)により生成相を同定し、走査型電子顕微鏡(SEM)により微細組織を観察・評価した。結果は、表1に示す通りであった。 Next, for this sample, the generated phase was identified by an X-ray diffractometer (XRD), and the microstructure was observed and evaluated by a scanning electron microscope (SEM). The results were as shown in Table 1 .
また、シリコンオイルなどの絶縁油中で50〜150℃で2〜5kV/mmで分極させ、LCRメータにより1kHzでの誘電特性を測定し、インピーダンスで共振反共振法により圧電特性を測定した。結果は、表1に示す通りであった。 Moreover, it polarized at 2-5 kV / mm at 50-150 degreeC in insulating oils, such as a silicone oil, the dielectric property at 1 kHz was measured with the LCR meter, and the piezoelectric property was measured by the resonance antiresonance method with the impedance. The results were as shown in Table 1 .
この実施例では、5価の元素M(V)をx=0.005〜0.02の範囲で置換させた場合、二次相の生成が抑制され、微細構造の均一な焼結体が形成された。圧電特性も良好で、後述する比較例のものと比較して、微細組織、圧電特性の良好な圧電磁器が得られた。典型的な特性として組成変態相境界(morphotoropic phase boundary)付近で圧電特性が高くなるα=0.07の場合の結果を表1に示す。 In this example, when the pentavalent element M (V) is substituted in the range of x = 0.005 to 0.02, the generation of the secondary phase is suppressed, and a uniform sintered body with a fine structure is formed. It was done. Piezoelectric ceramics with good piezoelectric characteristics and good microstructure and piezoelectric characteristics were obtained as compared with the comparative examples described later. Table 1 shows the results when α = 0.07 in which the piezoelectric characteristics increase as a typical characteristic in the vicinity of the morphotropic phase boundary.
比較例: Bi2O3、Na2CO3、K2CO3、TiO2、を式(5)の複合酸化物が構成される割合で秤量した。 Comparative Example: Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , and TiO 2 were weighed in such a ratio that the composite oxide of formula (5) was formed.
(Bi0.5Na1−αKα)TiO3+添加物…………(5) (Bi 0.5 Na 1-α K α ) TiO 3 + additive ………… (5)
また、式(5)中の添加成分として、Sb2O3、Nb2O5を表2のx欄に示す割合で各々秤量した。
Further, as an additive component in the formula (5), were each weighed S b 2 O 3, Nb 2
これらの化合物を用い、実施例1と同様にして試料を作成し、実施例1と同様にしてXRDとSEMにより生成相の同定と微細組織を評価したところ、全ての試料について、添加物が構成元素と反応して形成された二次相が確認されるとともに、添加物の添加量の増加にともない、二次相の存在が顕著になった。微細組織は、二次相が局所的に偏析し、不均一であった。 Samples were prepared using these compounds in the same manner as in Example 1, and the formation phase was identified and the microstructure was evaluated by XRD and SEM in the same manner as in Example 1. The secondary phase formed by reacting with the element was confirmed, and the presence of the secondary phase became significant as the amount of additive added increased. The microstructure was non-uniform because the secondary phase segregated locally.
また、実施例1と同様にして圧電特性を測定した。典型的な結果としてα=0.07の場合の結果を表2に示す。この例(比較例)によると、圧電特性は、添加物とBiペロブスカイトとの反応による二次相の影響で、わずかに向上する程度であった。 Further, the piezoelectric characteristics were measured in the same manner as in Example 1. Table 2 shows typical results when α = 0.07. According to this example (comparative example), the piezoelectric characteristics were only slightly improved due to the influence of the secondary phase caused by the reaction between the additive and Bi perovskite.
まず、原料化合物としてBi2O3、Na2CO3、BaCO3、TiO2を式(4)の複合酸化物が構成される割合で秤量した。 First, Bi 2 O 3 , Na 2 CO 3 , BaCO 3 , and TiO 2 as raw material compounds were weighed at a ratio of the composite oxide of formula ( 4) .
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xM(V)xO3………(4) (Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M (V) x O 3 (4)
また、この式(4)中、0<β<1、M(V)は、Nb2O5、Sb2O3、V2O5、Ta2O5を表3のx欄に示す割合で各々秤量した。 In this formula ( 4) , 0 <β <1 and M (V ) are Nb 2 O 5 , Sb 2 O 3 , V 2 O 5 , and Ta 2 O 5 in the ratios shown in the column x in Table 3. Each was weighed.
これらの化合物を用い、実施例1と同様の方法で試料円板を作製し、特性を評価した。作製した円板は、5価の元素M(V)をx=0.005〜0.02の範囲で置換させた場合、二次相の生成が抑制され、微細構造の均一な焼結体が形成された。圧電特性も良好で、従来技術に比較して、微細組織、圧電特性の良好な圧電磁器が得られた。典型的な特性として組成変態相境界(morphotoropic phase boundary)付近で圧電特性が高くなるβ=0.06の結果を表3示す。 Using these compounds, sample disks were prepared in the same manner as in Example 1, and the characteristics were evaluated. Discs manufactured, when the pentavalent element M a (V) was replaced with a range of x = 0.005 to 0.02, the generation of secondary phases is suppressed, uniform sintered body microstructure Been formed. Piezoelectric ceramics with good piezoelectric properties and fine structure and good piezoelectric properties compared to the prior art were obtained. Table 3 shows a result of β = 0.06 in which the piezoelectric property becomes high in the vicinity of the morphotropic phase boundary as a typical property.
x=0.00では、図1に示す通り、異常粒成長が認められ、結晶粒の大きさが、1μm〜数100μmと極めて不均質であった。Qm=224、d31=34pm/V、kr=28%と圧電特性がハードとソフトの中間で実用化するには不十分であった。 When x = 0.00, abnormal grain growth was observed as shown in FIG. 1, and the size of the crystal grains was extremely inhomogeneous, 1 μm to several 100 μm. Qm = 224 , d31 = 34 pm / V, kr = 28 %, and the piezoelectric characteristics were insufficient for practical use between hardware and software.
5価の元素M(V)、x=0.01は、図2に示す通り、結晶粒が均質であった。圧電特性は、Qm=88、d31=70pm/Vと向上した。発音体、アクチュエータなどへの応用が可能なレベルに圧電特性が向上した。 Pentavalent element M (V), x = 0.01, as shown in FIG. 2, the crystal grains was homogeneous. The piezoelectric characteristics were improved to Qm = 88 and d31 = 70 pm / V. Piezoelectric properties have been improved to a level that can be applied to sounding bodies and actuators.
x=0.01、α=0.06、M(V)=Nbの圧電磁器組成物を、エタノールなどの有機溶剤に分散し、PVBなどの有機バインダーを加えてスラリー化、シート成形後、Ptなどの電極を介して積層し、400〜500℃で脱バインダーの熱処理を施し、前記と同様に焼成して圧電セラミック積層焼結体を形成し、図3のような発音体を作成した。同図において、10は圧電体磁器、12は電極、18は振動板である。 A piezoelectric ceramic composition of x = 0.01, α = 0.06, and M (V) = Nb is dispersed in an organic solvent such as ethanol, and an organic binder such as PVB is added to form a slurry, which is then molded into a sheet. layered with the electrodes, such as, heat-treated binder removal at 400 to 500 ° C., the a and fired in the same manner to form a piezoelectric ceramic sintered laminate to prepare a sound, such as in FIG. In the figure, 10 is a piezoelectric ceramic, 12 is an electrode, and 18 is a diaphragm.
そして、この発音体の音響特性を評価したところ、音圧レベルの周波数依存性は図4に示す通りであった。比較のために、PZT系の代表的な、音響特性の結果も図4中に挿入した。 The Evaluation of the acoustic properties of the sounding body, the frequency dependence of the sound pressure level was as shown in FIG. For comparison, PZT-based representative of the results of the acoustic characteristics and inserted into FIG.
図4に見られる通り、代表的なPZTと同等の音圧特性をもつ発音体が得られた。したがって、この発明にかかる磁器組成物は、圧電セラミック部品として有用であることが検証できた。 As seen in FIG. 4 , a sounding body having a sound pressure characteristic equivalent to that of a typical PZT was obtained. Therefore, it was verified that the porcelain composition according to the present invention is useful as a piezoelectric ceramic part.
圧電発音体、圧電センサ、圧電アクチュエータ、圧電トランス、圧電超音波モータなどの圧電セラミック部品の材料に適用できる。 The present invention can be applied to materials for piezoelectric ceramic parts such as piezoelectric sounding bodies, piezoelectric sensors, piezoelectric actuators, piezoelectric transformers, and piezoelectric ultrasonic motors.
10 圧電体磁器
12 電極
18 振動板
10 piezoelectric ceramic 12 electrodes
1 8 Diaphragm
Claims (3)
Bi0.5(Na1−αKα)0.5−xTi1−xMxO3……………(3)
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xMxO3…(4)
該式(3)(4)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.020、該5価の元素M(V)がSb、V又はTaであることを特徴とする圧電磁器組成物。 A perovskite-type composite oxide represented by the general formula ABO 3 is a main component, and A in the general formula is composed of one or more elements selected from Bi, Na, K and Ba, and the general formula And B in the general formula is partially substituted by the pentavalent element M (V), and the general formula ABO 3 is represented by the following formula (3) or (4): Consisting of a perovskite type complex oxide represented,
Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M x O 3 (3)
(Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M x O 3 (4)
In the formulas (3) and (4), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.020, the pentavalent element M A piezoelectric ceramic composition characterized in that (V) is Sb, V or Ta.
Bi0.5(Na1−αKα)0.5−xTi1−xMxO3……………(3)
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xMxO3…(4)
該式(3)(4)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.020、該5価の元素M(V)がSb、V又はTaであることを特徴とする圧電磁器組成物の製造方法。 A calcining step of calcining the raw material compound; a molding step of molding the calcined powder obtained in the calcining step; and a firing step of firing the molded body obtained in the molding step. Is composed of a perovskite-type composite oxide represented by the general formula ABO 3 as a main component, and A in the general formula is composed of one or more elements selected from Bi, Na, K and Ba, B in the general formula consists of Ti, and a part of B (= Ti) in the general formula is substituted with a pentavalent element M (V), and the general formula ABO 3 is represented by the following formula (3) or (4 ) And a perovskite type complex oxide represented by
Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M x O 3 (3)
(Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M x O 3 (4)
In the formulas (3) and (4), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.020, the pentavalent element M (V) is Sb, V, or Ta, The manufacturing method of the piezoelectric ceramic composition characterized by the above-mentioned.
Bi0.5(Na1−αKα)0.5−xTi1−xMxO3……………(3)
(Bi0.5−0.5βNa0.5−0.5β−x)BaβTi1−xMxO3…(4)
該式(3)(4)中、αの範囲が0≦α≦1、βの範囲が0<β<1、xの範囲が0.005≦x≦0.020、該5価の元素M(V)がSb、V又はTaであることを特徴とする圧電セラミック部品。 One or two or more piezoelectric bodies and two or more electrodes sandwiching the piezoelectric bodies, and the piezoelectric body is mainly composed of a perovskite complex oxide represented by the general formula ABO 3 , A consists of one or more elements selected from Bi, Na, K and Ba, B in the general formula consists of Ti, and a part of B (= Ti) in the general formula is 5 Substituted with a valent element M (V), and the general formula ABO 3 comprises a perovskite type complex oxide represented by the following formula (3) or (4):
Bi 0.5 (Na 1-α K α ) 0.5-x Ti 1-x M x O 3 (3)
(Bi 0.5-0.5β Na 0.5-0.5β-x ) Ba β Ti 1-x M x O 3 (4)
In the formulas (3) and (4), the range of α is 0 ≦ α ≦ 1, the range of β is 0 <β <1, the range of x is 0.005 ≦ x ≦ 0.020, the pentavalent element M A piezoelectric ceramic component, wherein (V) is Sb, V or Ta.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115974A JP4828570B2 (en) | 2008-04-25 | 2008-04-25 | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115974A JP4828570B2 (en) | 2008-04-25 | 2008-04-25 | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002236996A Division JP4177615B2 (en) | 2002-08-15 | 2002-08-15 | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008239482A JP2008239482A (en) | 2008-10-09 |
JP4828570B2 true JP4828570B2 (en) | 2011-11-30 |
Family
ID=39911253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008115974A Expired - Fee Related JP4828570B2 (en) | 2008-04-25 | 2008-04-25 | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4828570B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10008661B2 (en) * | 2011-07-01 | 2018-06-26 | Ceramtec Gmbh | Piezoceramic lead-free material |
JP7406876B2 (en) * | 2018-10-17 | 2023-12-28 | キヤノン株式会社 | Piezoelectric transformers and electronic equipment |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171643A (en) * | 1997-12-09 | 1999-06-29 | Tokin Corp | Piezoelectric ceramic composition |
JP4141052B2 (en) * | 1999-05-28 | 2008-08-27 | Necトーキン株式会社 | Piezoelectric ceramic composition |
JP3598243B2 (en) * | 1999-09-30 | 2004-12-08 | 株式会社東芝 | Piezoelectric single crystal composition and piezoelectric single crystal wafer thereof |
JP4529219B2 (en) * | 2000-03-17 | 2010-08-25 | 株式会社豊田中央研究所 | Piezoelectric ceramics and manufacturing method thereof |
JP3830345B2 (en) * | 2000-03-21 | 2006-10-04 | Tdk株式会社 | Piezoelectric ceramic |
JP2001294482A (en) * | 2000-03-21 | 2001-10-23 | Tdk Corp | Piezoelectric ceramic |
JP2003201171A (en) * | 2001-12-28 | 2003-07-15 | Nec Tokin Corp | Piezoelectric porcelain composition |
JP2004043210A (en) * | 2002-07-09 | 2004-02-12 | Nec Tokin Corp | Piezoelectric porcelain formulation |
-
2008
- 2008-04-25 JP JP2008115974A patent/JP4828570B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008239482A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4177615B2 (en) | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component | |
JP5576365B2 (en) | Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device | |
US7585429B2 (en) | Piezoelectric ceramic composition | |
KR101158444B1 (en) | Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device | |
US10505101B2 (en) | Ceramic material, method for producing the ceramic material, and electroceramic component comprising the ceramic material | |
JP5929640B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP2010053028A (en) | Metal oxide and piezoelectric material | |
JP6531394B2 (en) | Composite piezoelectric ceramic and piezoelectric element | |
JP2009227535A (en) | Piezoelectric ceramic composition | |
JP5259718B2 (en) | Ceramic material, method of manufacturing ceramic material, and electroceramic component comprising ceramic material | |
JP2004075448A (en) | Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part | |
JP2008207999A (en) | Method for manufacturing piezoelectric ceramic composition | |
JP5597368B2 (en) | Multilayer electronic component and manufacturing method thereof | |
JP5967532B2 (en) | Piezoelectric ceramics | |
JP4828570B2 (en) | Piezoelectric ceramic composition, piezoelectric ceramic composition manufacturing method, and piezoelectric ceramic component | |
JP2011088786A (en) | Piezoelectric ceramic | |
JP2010215418A (en) | Method of manufacturing piezoelectric ceramic electronic component | |
JP2010076958A (en) | Piezoelectric ceramic and method for producing the same | |
JP2007055864A (en) | Piezoelectric ceramic composition | |
JP5662731B2 (en) | Piezoelectric ceramic composition | |
JP5894222B2 (en) | Multilayer electronic component and manufacturing method thereof | |
WO2023026614A1 (en) | Lead-free piezoelectric magnetic composition and piezoelectric element | |
TW202423878A (en) | Lead-free piezoelectric composition and piezoelectric element | |
TW202419425A (en) | Lead-free piezoelectric composition and piezoelectric element | |
JP2000335968A (en) | Piezoelectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4828570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |