JP4825434B2 - How to kill aquatic life - Google Patents
How to kill aquatic life Download PDFInfo
- Publication number
- JP4825434B2 JP4825434B2 JP2005089105A JP2005089105A JP4825434B2 JP 4825434 B2 JP4825434 B2 JP 4825434B2 JP 2005089105 A JP2005089105 A JP 2005089105A JP 2005089105 A JP2005089105 A JP 2005089105A JP 4825434 B2 JP4825434 B2 JP 4825434B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- hydrogen peroxide
- aquatic organisms
- killing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 159
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 109
- 230000002147 killing effect Effects 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- 208000031513 cyst Diseases 0.000 claims abstract description 16
- 241000894006 Bacteria Species 0.000 claims description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 244000052616 bacterial pathogen Species 0.000 claims description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 claims description 3
- 239000013535 sea water Substances 0.000 abstract description 35
- 244000005700 microbiome Species 0.000 abstract description 8
- 206010011732 Cyst Diseases 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 5
- 235000015170 shellfish Nutrition 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- 208000019901 Anxiety disease Diseases 0.000 abstract 1
- 230000036506 anxiety Effects 0.000 abstract 1
- 230000001580 bacterial effect Effects 0.000 abstract 1
- 238000007792 addition Methods 0.000 description 15
- 230000014759 maintenance of location Effects 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000013505 freshwater Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 3
- 206010008631 Cholera Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 241000421771 Polykrikos Species 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000199914 Dinophyceae Species 0.000 description 1
- 241000200287 Gymnodinium Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000004680 hydrogen peroxides Chemical class 0.000 description 1
- PEYVWSJAZONVQK-UHFFFAOYSA-N hydroperoxy(oxo)borane Chemical compound OOB=O PEYVWSJAZONVQK-UHFFFAOYSA-N 0.000 description 1
- 150000004966 inorganic peroxy acids Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- -1 valve B was opened Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/008—Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
この発明は、海水、河川水、湖沼水中に生息する水生生物を、簡便かつ確実に殺滅し得る水生生物の殺滅方法に関する。この発明は、船舶バラスト水のような滞留した水中に生息する有害な水生生物の殺滅処理に好適に用いることができる。 The present invention relates to a method for killing aquatic organisms that can easily and reliably kill aquatic organisms that inhabit seawater, river water, and lake water. The present invention can be suitably used for the killing treatment of harmful aquatic organisms that live in stagnant water such as ship ballast water.
海水、河川水、湖沼水中に、プランクトンやそれらのシスト、およびコレラ菌、大腸菌、腸球菌などの病原性細菌類などの有害な水生生物が生息し、環境問題になることがある。特に最近では、船舶バラスト水中に有害な水生生物が生息し問題となっている。 In the seawater, river water, and lake water, harmful aquatic organisms such as plankton, their cysts, and pathogenic bacteria such as cholera, Escherichia coli, and enterococci may inflict environmental problems. Particularly recently, harmful aquatic organisms inhabit the ship's ballast water.
船舶は、荷物を積載していないか、あるいはその積載量が少ない場合、喫水面が下がり、バランスを保ち難くなる。そこで、船舶は、海洋を安全に航行するために、バラスト水として海水もしくは淡水を積載している。このようなバラスト水は、荷揚港を出港する前に船内に汲み入れられ、積載港に入港する前あるいは積荷を積載する際に船外に排出される。 When a ship is not loaded with a load or its load is small, the draft surface is lowered and it is difficult to maintain a balance. Therefore, the ship carries seawater or fresh water as ballast water in order to navigate the ocean safely. Such ballast water is drawn into the ship before leaving the unloading port and discharged outside the ship before entering the loading port or when loading the load.
バラスト水としての海水もしくは淡水は、ポンプなどで吸水されて船舶内部に構成された密閉区画に収容される。このとき、吸水地域に生息するプランクトンや細菌などの各種微生物、微小な貝類などの水生生物が取り込まれる。このようなバラスト水を積載港付近の沿岸や港湾などで排出することによって、周辺海域の生態系が乱されるという問題が起こっている。また同時に、貝毒や赤潮の大量発生による魚介類の死滅、種々の疾病の原因となることも懸念される。 Seawater or fresh water as ballast water is absorbed by a pump or the like and stored in a sealed compartment configured inside the ship. At this time, aquatic organisms such as various microorganisms such as plankton and bacteria and minute shells that inhabit the water absorption area are taken in. Discharge of such ballast water at the coastal area or harbor near the loading port has caused a problem that the ecosystem in the surrounding sea area is disturbed. At the same time, there is a concern that fish and shellfish may die due to the large outbreak of shellfish poisons and red tides, causing various diseases.
上記のように、バラスト水は暗い還元状態に長時間保持されるために、バラスト水には、光や溶存酸素を必要とするプランクトンや好気性菌は生息しにくく、プランクトンが休眠状態にあるシストや嫌気性菌が繁殖する傾向にある。このシストは、その外壁がプランクトンの細胞壁膜とは全く異なって、非常に強固な構造であるため、極めて耐久性が強い。 As mentioned above, since ballast water is kept in a dark reduced state for a long time, plankton and aerobic bacteria that require light and dissolved oxygen are less likely to live in the ballast water, and plankton is in a dormant cyst. And anaerobic bacteria tend to breed. This cyst is extremely durable because its outer wall is completely different from the plankton cell wall membrane and has a very strong structure.
上記の問題点に鑑み、本出願人は、船舶バラスト水に、有害プランクトンのシストを殺滅するのに有効な量の過酸化水素または過酸化水素発生化合物を維持することからなる有害プランクトンのシストの殺滅方法を提案した(特許第2695071号公報:特許文献1)。 In view of the above problems, Applicants have identified a harmful plankton cyst comprising maintaining an effective amount of hydrogen peroxide or a hydrogen peroxide generating compound in a ship's ballast water to kill the harmful plankton cyst. Has been proposed (Japanese Patent No. 2695071: Patent Document 1).
一方、船舶バラスト水などの被処理水に、蒸気の注入と同時または相前後して紫外線を照射する水浄化方法およびそれに用いられる装置が提案されている(特開2004−160437号公報:特許文献2)。
しかしながら、より簡便かつ確実に被処理水中の水生生物を殺滅し得る方法が求められている。
On the other hand, a water purification method and an apparatus used therefor have been proposed in which ultraviolet rays are irradiated on water to be treated such as ship ballast water simultaneously with or before steam injection (Japanese Patent Laid-Open No. 2004-160437: Patent Document). 2).
However, there is a need for a method that can more easily and reliably kill aquatic organisms in the water to be treated.
この発明は、海水、河川水、湖沼水中、特にそれらを用いる船舶バラスト水中に生息する各種生物、すなわち動物プランクトン、植物プランクトン、プランクトンが休眠状態にあるシスト、細菌などの微生物および微小な貝類などの水生生物を簡便かつ確実に殺滅すると共に、処理後の被処理水中に薬剤成分が残存することなく、安心して自然界に排出することができる、安全性の高い水生生物の殺滅方法を提供することを課題とする。 The present invention relates to various organisms inhabiting seawater, river water, lake water, especially ship ballast water using them, such as zooplankton, phytoplankton, cysts in which plankton is dormant, microorganisms such as bacteria, and microshells To provide a highly safe killing method for aquatic organisms that can easily and reliably kill aquatic organisms and can be safely discharged into the natural world without any chemical components remaining in the treated water after treatment. This is the issue.
この発明の発明者らは、上記の課題を解決すべく鋭意研究を行った結果、水生生物が生息する被処理水に過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理し、被処理水を排出する前に、または被処理水中の水生生物を殺滅処理する際に、特定の波長領域の紫外線を特定の照射量で照射することにより、被処理水に生息する各種水生生物を確実に殺滅できると共に、被処理水中に残存する過酸化水素が分解され、被処理水を安心して自然界に排出できることを見出し、この発明を完成するに到った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have added hydrogen peroxide or a compound that generates hydrogen peroxide to the water to be treated inhabited by aquatic organisms. Before killing organisms and discharging treated water, or when killing aquatic organisms in treated water, treat them by irradiating ultraviolet rays in a specific wavelength region at a specific dose. It was found that various aquatic organisms that inhabit water can be killed reliably, hydrogen peroxide remaining in the water to be treated is decomposed, and the water to be treated can be discharged into the natural world with peace of mind. .
かくして、この発明によれば、水生生物が生息する被処理水に過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理し、被処理水を排出する前に、波長領域240〜300nmの紫外線を照射量5mW・sec/cm2以上で照射することを特徴とする水生生物の殺滅方法(発明1)が提供される。 Thus, according to the present invention, hydrogen peroxide or a compound that generates hydrogen peroxide is added to the treated water inhabited by aquatic organisms to kill the aquatic organisms in the treated water and discharge the treated water. Further, there is provided an aquatic organism killing method (Invention 1) characterized by irradiating ultraviolet rays having a wavelength region of 240 to 300 nm with an irradiation amount of 5 mW · sec / cm 2 or more.
また、この発明によれば、水生生物が生息する被処理水に過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理する際に、被処理水に波長領域240〜300nmの紫外線を照射量3mW・sec/cm2以上で照射することを特徴とする水生生物の殺滅方法(発明2)が提供される。 In addition, according to the present invention, when hydrogen peroxide or a hydrogen peroxide generating compound is added to water to be treated inhabited by aquatic organisms to kill the aquatic organisms in the water to be treated, There is provided a method for killing aquatic organisms (Invention 2) characterized by irradiating ultraviolet rays in a region of 240 to 300 nm at an irradiation dose of 3 mW · sec / cm 2 or more.
この発明において、「水生生物」とは、動物プランクトン、植物プランクトン、プランクトンが休眠状態にあるシスト、コレラ菌、大腸菌、腸球菌などの病原性細菌類を含む細菌などの微生物などの水生微生物および海生微生物、ならびに微小な貝類などの生物を意味する。 In the present invention, the term “aquatic organism” refers to aquatic microorganisms such as zooplankton, phytoplankton, cysts in which plankton is dormant, microorganisms including pathogenic bacteria such as cholera bacteria, Escherichia coli, and enterococci, and marine microorganisms. It means living organisms such as live microorganisms and small shellfish.
この発明によれば、海水、河川水、湖沼水中に生息する各種生物、すなわち動物プランクトン、植物プランクトン、プランクトンが休眠状態にあるシスト、細菌などの微生物および微小な貝類などの水生生物を簡便かつ確実に殺滅することができる。
また、この発明、特に発明1によれば、紫外線の照射により被処理水中に残存する過酸化水素が速やかに分解されるため、処理後の被処理水を安心して海、河川、湖などに排出することができ、産業上極めて有用である。
According to the present invention, various organisms that inhabit seawater, river water, and lake water, that is, zooplankton, phytoplankton, cysts in which plankton is dormant, microorganisms such as bacteria, and aquatic organisms such as microshells are easily and reliably obtained. Can be killed.
In addition, according to the present invention, particularly the
さらに、この発明、特に発明2によれば、紫外線の照射により添加された過酸化水素が解離して酸化力の強い活性OHラジカルが生成されるので、低濃度の過酸化水素であっても水生生物に対して速効性の殺滅効果が得られる。
また、この発明によれば、被処理水中の鉄分などと過酸化水素が反応して被処理水中の濁度成分が凝集沈殿するので、被処理水の濁度が低下し、紫外線照射による細菌類の殺滅効果が安定に維持できると共に、過酸化水素により細胞壁膜に損傷を受けたプランクトンやシストを確実に殺滅することができる。
Furthermore, according to the present invention, particularly the
In addition, according to the present invention, the turbidity component in the water to be treated is agglomerated and precipitated by the reaction of iron or the like in the water to be treated with hydrogen peroxide. Can stably maintain the killing effect, and can surely kill plankton and cysts that have damaged cell wall membranes by hydrogen peroxide.
発明1の水生生物の殺滅方法は、水生生物が生息する被処理水に過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理し、被処理水を排出する前に、波長領域240〜300nmの紫外線を照射量5mW・sec/cm2以上で照射することを特徴とする。
In the method for killing aquatic organisms of the
発明2の水生生物の殺滅方法は、水生生物が生息する被処理水に過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理する際に、被処理水に波長領域240〜300nmの紫外線を照射量3mW・sec/cm2以上で照射することを特徴とする。 The aquatic organism killing method according to the second aspect of the invention includes adding hydrogen peroxide or a hydrogen peroxide-generating compound to the water to be treated inhabiting the aquatic organism to kill the aquatic organism in the water to be treated. Water is irradiated with ultraviolet rays having a wavelength region of 240 to 300 nm at an irradiation amount of 3 mW · sec / cm 2 or more.
発明1および発明2のいずれにおいても、まず、被処理水に過酸化水素または過酸化水素発生化合物を添加する。これにより、過酸化水素の解離により生成するOHラジカルによって被処理水中の水生生物が殺滅処理される。したがって、過酸化水素または過酸化水素発生化合物の添加後は、被処理水を一定時間保持するのが好ましい。
In both
この発明で用いる過酸化水素は、水中で容易に水と酸素に分解する安全性の高い成分である。
この発明で使用する過酸化水素としては、通常、工業用として市販されている濃度3〜60%の過酸化水素水溶液が挙げられる。
また、過酸化水素発生化合物(「過酸化水素供給化合物」ともいう)とは、水中で過酸化水素を発生し得る化合物を意味し、過炭酸、過ホウ酸、ペルオキシ硫酸などの無機過酸、過酢酸のような有機過酸およびこれらの塩類が挙げられる。そのような塩類としては、過炭酸ナトリウム、過ホウ酸ナトリウムなどが挙げられる。
これらを被処理水に添加するにあたっては、所望の濃度になるように過酸化水素または過酸化水素発生化合物(以下、「過酸化水素類」ともいう)を海水や淡水で適宜希釈または溶解して用いてもよい。
Hydrogen peroxide used in the present invention is a highly safe component that easily decomposes into water and oxygen in water.
As the hydrogen peroxide used in the present invention, an aqueous hydrogen peroxide solution having a concentration of 3 to 60% which is commercially available for industrial use is usually mentioned.
The hydrogen peroxide generating compound (also referred to as “hydrogen peroxide supply compound”) means a compound capable of generating hydrogen peroxide in water, and includes inorganic peracids such as percarbonate, perboric acid, peroxysulfuric acid, Organic peracids such as peracetic acid and their salts. Examples of such salts include sodium percarbonate and sodium perborate.
When adding these to the water to be treated, hydrogen peroxide or a compound that generates hydrogen peroxide (hereinafter also referred to as “hydrogen peroxides”) is appropriately diluted or dissolved in seawater or fresh water so as to have a desired concentration. It may be used.
また、海水または淡水を含む用水中で発生させた過酸化水素を用いることもできる。過酸化水素を用水中で発生させる方法としては、水またはアルカリ溶液の電気化学的分解、紫外線や放射線などの高エネルギー線を水に照射する方法、あるいは水生生物[例えば、Poecillia vellifere(メダカ目カダヤシ科)]による代謝などの方法が挙げられる。 Further, hydrogen peroxide generated in water containing seawater or fresh water can also be used. Methods for generating hydrogen peroxide in water include electrochemical decomposition of water or alkaline solutions, irradiation of water with high-energy rays such as ultraviolet rays and radiation, or aquatic organisms [for example, Poecillia vellifere Method)] and the like.
被処理水の過酸化水素濃度および添加後の保持時間は、被処理水中に存在する殺滅対象の水生生物の種類や量、水温などによって適宜選択すればよい。一般に、過酸化水素濃度が低い場合には長時間、高い場合には短時間、保持すればよい。また、被処理水の温度が、例えば15℃以下のように低い場合は、過酸化水素濃度を高くして長時間保持すればよい。 What is necessary is just to select suitably the hydrogen peroxide density | concentration of to-be-processed water, and the retention time after addition according to the kind and quantity of the aquatic organism to be killed which exists in to-be-processed water, water temperature, etc. Generally, it may be maintained for a long time when the hydrogen peroxide concentration is low, and for a short time when the hydrogen peroxide concentration is high. Further, when the temperature of the water to be treated is as low as 15 ° C. or lower, for example, the hydrogen peroxide concentration may be increased and held for a long time.
この発明の方法においては、過酸化水素または過酸化水素発生化合物は、被処理水の過酸化水素濃度が5〜500mg/L、好ましくは10〜300mg/Lになるような量で添加され、被処理水中に3時間以上、好ましくは3〜48時間、より好ましくは24〜48時間保持されるのが好ましい。 In the method of the present invention, the hydrogen peroxide or the hydrogen peroxide generating compound is added in such an amount that the hydrogen peroxide concentration of the water to be treated is 5 to 500 mg / L, preferably 10 to 300 mg / L. It is preferable to hold in the treated water for 3 hours or more, preferably 3 to 48 hours, more preferably 24 to 48 hours.
過酸化水素濃度が5mg/L未満の場合には、被処理水中に生息する水生生物を十分に殺滅することができないので好ましくない。また、過酸化水素濃度が500mg/Lを超える場合には、その添加量に見合う殺滅効果が期待できず、また処理後に過酸化水素が残存することもあるので好ましくない。 When the hydrogen peroxide concentration is less than 5 mg / L, it is not preferable because aquatic organisms living in the water to be treated cannot be sufficiently killed. In addition, when the hydrogen peroxide concentration exceeds 500 mg / L, a killing effect corresponding to the amount added cannot be expected, and hydrogen peroxide may remain after the treatment, which is not preferable.
また、保持時間が3時間未満の場合には、被処理水中に生息する水生生物を十分に殺滅することができないので好ましくない。また、保持時間が48時間を超える場合には、その時間に見合う殺滅効果が期待できないので好ましくない。 In addition, when the retention time is less than 3 hours, it is not preferable because aquatic organisms that inhabit the treated water cannot be sufficiently killed. In addition, when the holding time exceeds 48 hours, a killing effect corresponding to the time cannot be expected, which is not preferable.
すなわち、過酸化水素濃度および添加後の保持時間は、被処理水中に生息する殺滅対象の水生生物の中で、最も殺滅するのが困難とされるシストが殺滅できることを基準に、被処理水の温度などを考慮して、上記の範囲から設定すればよい。 That is, the hydrogen peroxide concentration and the retention time after the addition are based on the fact that the most difficult to kill cysts can be killed among the aquatic organisms to be killed in the treated water. What is necessary is just to set from said range in consideration of the temperature of treated water.
例えば、被処理水が船舶バラスト水である場合、一般に船舶の航海は外洋航行の場合には1〜2週間以上、日本近海を航行する場合には数時間〜数十時間であることから、航行時間や温度条件などに応じて、過酸化水素濃度および添加後の保持時間を適宜設定すればよい。 For example, when the water to be treated is ship ballast water, it is generally 1 to 2 weeks or more when navigating the ocean, and several hours to several tens of hours when navigating the sea near Japan. What is necessary is just to set suitably the hydrogen peroxide concentration and the retention time after addition according to time, temperature conditions, etc.
発明1および発明2のいずれにおいても、水生生物の殺滅処理は、被処理水への自然光が遮断された閉塞系で行われるのが好ましい。
この閉塞系としては、被処理水への自然光が遮断され、被処理水を一定時間保持できるものであれば特に限定されない。例えば、船舶のバラストタンクのようなタンク類、海、河川、湖沼などの沿岸に設けた滞留槽や滞留水域などが挙げられる。
In any of the
The blocking system is not particularly limited as long as natural light to the water to be treated is blocked and the water to be treated can be held for a certain period of time. For example, tanks such as ballast tanks for ships, and retention tanks and water areas provided on the coast, such as the sea, rivers, and lakes.
発明1では、過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理し、被処理水を排出する前、すなわち排出の直前に、被処理水に波長領域240〜300nm、好ましくは250〜270nmの紫外線を照射量5mW・sec/cm2以上、好ましくは15mW・sec/cm2以上で照射する。これにより、被処理水中に残留する過酸化水素を分解すると共に紫外線により被処理水中の水生生物を殺滅する。
紫外線が上記の波長領域であれば、前段の過酸化水素または過酸化水素発生化合物の添加との組み合わせにより、効果的に水生生物の殺滅効果を発揮させることができる。
In the first aspect of the present invention, hydrogen peroxide or a compound that generates hydrogen peroxide is added to kill the aquatic organisms in the water to be treated, and the wavelength region is added to the water to be treated before discharging the water to be processed, that is, immediately before discharging. Ultraviolet rays with a wavelength of 240 to 300 nm, preferably 250 to 270 nm are irradiated at an irradiation dose of 5 mW · sec / cm 2 or more, preferably 15 mW · sec / cm 2 or more. Thereby, hydrogen peroxide remaining in the water to be treated is decomposed and aquatic organisms in the water to be treated are killed by ultraviolet rays.
If ultraviolet rays are in the above-mentioned wavelength region, the killing effect of aquatic organisms can be effectively exhibited by a combination with the addition of hydrogen peroxide or a hydrogen peroxide generating compound in the previous stage.
また、紫外線が他に悪影響を与えない限り、紫外線の照射量の上限は特に限定されないが、通常、20mW・sec/cm2程度である。
紫外線の照射量が10mW・sec/cm2未満の場合には、被処理水中に生息する水生生物を十分に殺滅することができないので好ましくない。
なお、自然界において照射されている紫外線は300nm以上の領域に限定されるので、この発明における紫外線エネルギーよりははるかに低い。
Further, the upper limit of the irradiation amount of the ultraviolet rays is not particularly limited as long as the ultraviolet rays do not adversely affect the others, but is usually about 20 mW · sec / cm 2 .
When the irradiation amount of ultraviolet rays is less than 10 mW · sec / cm 2 , it is not preferable because aquatic organisms living in the water to be treated cannot be sufficiently killed.
In addition, since the ultraviolet rays irradiated in nature are limited to a region of 300 nm or more, they are much lower than the ultraviolet energy in the present invention.
紫外線の照射は、波長185nmと254nmの基線スペクトルを放射する低圧水銀蒸気放電灯および/または波長領域180〜400nmの連続スペクトルを放射する中圧・高圧水銀蒸気放電灯の紫外線発生光源を用いて行われるのが好ましい。また、このような紫外線発生光源は、上記の波長領域の紫外線を照射し得るものであれば特に限定されず、例えば、オゾン紫外線式高速水処理装置などが挙げられる。 Irradiation with ultraviolet rays is carried out using a low pressure mercury vapor discharge lamp that emits a baseline spectrum of wavelengths 185 nm and 254 nm and / or an ultraviolet light source of an intermediate pressure / high pressure mercury vapor discharge lamp that emits a continuous spectrum in the wavelength region 180 to 400 nm. Are preferred. Moreover, such an ultraviolet ray generation light source is not particularly limited as long as it can irradiate ultraviolet rays in the above-mentioned wavelength region, and examples thereof include an ozone ultraviolet type high-speed water treatment device.
発明2では、過酸化水素または過酸化水素発生化合物を添加して、被処理水中の水生生物を殺滅処理する際に、すなわち過酸化水素または過酸化水素発生化合物の添加直後から被処理水の排水前までの間に、被処理水に波長領域240〜300nm、好ましくは250〜270nmの紫外線を照射量3mW・sec/cm2以上、好ましくは10mW・sec/cm2以上で照射する。これにより、過酸化水素を解離させ活性OHラジカルを生成させ、OHラジカル、活性OHラジカルおよび紫外線により被処理水中の水生生物を殺滅する。紫外線の照射は、細菌類、特に耐久性の強い腸球菌の殺滅に大きく寄与するものと考えられる。
In
紫外線が上記の波長領域であれば、前段の過酸化水素または過酸化水素発生化合物の添加との組み合わせにより、効果的に水生生物の殺滅効果を発揮させることができる。
また、紫外線が他に悪影響を与えない限り、紫外線の照射量の上限は特に限定されないが、通常、20mW・sec/cm2程度である。
紫外線の照射量が3mW・sec/cm2未満の場合には、過酸化水素の解離による活性OHラジカルを生成量が不足するので、被処理水中に生息する水生生物を十分に殺滅することができないので好ましくない。
If ultraviolet rays are in the above-mentioned wavelength region, the killing effect of aquatic organisms can be effectively exhibited by a combination with the addition of hydrogen peroxide or a hydrogen peroxide generating compound in the previous stage.
Further, the upper limit of the irradiation amount of the ultraviolet rays is not particularly limited as long as the ultraviolet rays do not adversely affect the others, but is usually about 20 mW · sec / cm 2 .
When the irradiation amount of ultraviolet rays is less than 3 mW · sec / cm 2 , the production amount of active OH radicals due to dissociation of hydrogen peroxide is insufficient, so that aquatic organisms living in the treated water can be sufficiently killed. It is not preferable because it cannot be done.
水分子のH−OHの結合エネルギーは499kJ/molであり、240nm以下の紫外線は、直接、この結合を解離して活性OHラジカルを生成し得る。したがって、波長185nmと254nmの基線スペクトルを放射する低圧水銀蒸気放電灯および/または波長領域180〜400nmの連続スペクトルを放射する中圧・高圧水銀蒸気放電灯を用いれば、過酸化水素が水中で解離して生成されるOHラジカルと、紫外線照射によって生成される活性OHラジカルの両方が作用するので、水生生物の殺滅効果が一層増強される。
したがって、紫外線の照射は、過酸化水素または過酸化水素発生化合物の添加直後が好ましい。
The binding energy of H—OH of water molecules is 499 kJ / mol, and ultraviolet rays of 240 nm or less can directly dissociate this bond to generate active OH radicals. Therefore, hydrogen peroxide can be dissociated in water by using a low-pressure mercury vapor discharge lamp that emits baseline spectra at wavelengths of 185 nm and 254 nm and / or a medium- and high-pressure mercury vapor discharge lamp that emits a continuous spectrum in the wavelength range of 180 to 400 nm. Both the OH radicals generated in this way and the active OH radicals generated by ultraviolet irradiation act, so that the killing effect of aquatic organisms is further enhanced.
Therefore, the irradiation with ultraviolet rays is preferably performed immediately after the addition of hydrogen peroxide or a hydrogen peroxide generating compound.
この発明の方法は、図1および図2に示す処理装置で好適に実施することができるが、これらはそれぞれ発明1および発明2の一例であり、この発明を限定するものではない。
図1は船舶のバラストタンクに設置された処理装置の模式図であり、Tはバラストタンク、Fは雑ごみを排除するためのフィルター、P1は取水用ポンプ、Hは過酸化水素タンク、Pは過酸化水素添加用ポンプ、Bはバルブ、P2は排水用ポンプ、UV1は紫外線照射装置、SLは海面を示す。
The method of the present invention can be suitably carried out with the processing apparatus shown in FIGS. 1 and 2, but these are examples of
FIG. 1 is a schematic diagram of a processing apparatus installed in a ship's ballast tank, where T is a ballast tank, F is a filter for removing garbage, P1 is a water intake pump, H is a hydrogen peroxide tank, and P is A hydrogen peroxide addition pump, B is a valve, P2 is a drainage pump, UV1 is an ultraviolet irradiation device, and SL is the sea surface.
図1の処理装置では、まず、フィルターFを通してポンプP1により海水(図示せず)を汲み上げ、船内の暗渠区画であるバラストタンクTに導入する。海水の導入と同時または導入後に、バルブBを開放し、ポンプPによって過酸化水素タンクHから所定量の過酸化水素を注入(添加)する。海水の導入と同時に過酸化水素を注入すると、添加薬剤の撹拌効果が得られるので好ましい。次いで、バラストタンクT内で海水を所定時間保持する。その後、ポンプP2によりバラストタンクT内の海水を汲み上げ、紫外線照射装置UV1に通して、海水に紫外線を照射して排水する(発明1)。
紫外線の照射は必ずしも排水時に行なう必要はなく、バラストタンクT内に設置した紫外線発生光源を点灯させ、海水に紫外線を照射してもよい(発明2)。また、図1において、紫外線照射装置UV1を通過した海水を再びバラストタンクT内に戻し、循環処理を行なってもよい。
In the processing apparatus of FIG. 1, first, seawater (not shown) is pumped by a pump P1 through a filter F and introduced into a ballast tank T which is a culvert section in a ship. Simultaneously with or after the introduction of seawater, the valve B is opened, and a predetermined amount of hydrogen peroxide is injected (added) from the hydrogen peroxide tank H by the pump P. It is preferable to inject hydrogen peroxide simultaneously with the introduction of seawater because the effect of stirring the added drug can be obtained. Next, the seawater is held in the ballast tank T for a predetermined time. Thereafter, the seawater in the ballast tank T is pumped up by the pump P2, passed through the ultraviolet irradiation device UV1, and discharged by irradiating the seawater with ultraviolet rays (Invention 1).
Irradiation of ultraviolet rays is not necessarily performed during drainage, and an ultraviolet ray generating light source installed in the ballast tank T may be turned on to irradiate the seawater with ultraviolet rays (Invention 2). In FIG. 1, the seawater that has passed through the ultraviolet irradiation device UV1 may be returned to the ballast tank T again to perform a circulation process.
図2は船舶のバラストタンクに設置された別の処理装置の模式図である。この処理装置は、図1の処理装置の取水側にさらに紫外線照射装置UV2が設置されている。
すなわち、図2の処理装置では、この発明の方法を実施する前処理として、紫外線照射装置UV2により海水に紫外線を照射するものである。
このような前処理により、予め海水中の病原体細菌類が殺滅されるので、より効率的な処理が実施できる。
FIG. 2 is a schematic diagram of another processing apparatus installed in a ballast tank of a ship. In this processing apparatus, an ultraviolet irradiation device UV2 is further installed on the water intake side of the processing apparatus of FIG.
That is, in the processing apparatus of FIG. 2, seawater is irradiated to the seawater by the ultraviolet irradiation apparatus UV2 as a pretreatment for carrying out the method of the present invention.
By such pretreatment, since pathogen bacteria in seawater are killed in advance, more efficient treatment can be performed.
なお、この発明の方法は、既存の船舶バラスト水などの水の浄化処理方法、例えば、通称スリット方式と呼ばれるキャビテーション付加、せん断応力付加、加熱および蒸気注入などの処理と適宜組み合わせて実施することもできる。 The method of the present invention may be carried out in combination with an existing method for purifying water such as ship ballast water, for example, cavitation addition, so-called slit method, shear stress addition, heating and steam injection, as appropriate. it can.
実施例
この発明を以下の試験例により具体的に説明するが、これらがこの発明の範囲を限定するものではない。
EXAMPLES The present invention will be specifically described by the following test examples, but these do not limit the scope of the present invention.
試験例1(植物プランクトンおよび細菌の殺滅効果確認試験)
図1に示す処理装置を港湾近くの岸壁に設置し試験を行った。
フィルターFを通してポンプP1により容量20トンの海水を汲み上げ、船内の暗渠区画であるバラストタンクTに導入した。海水の導入と同時に、バルブBを開放し、ポンプPによって過酸化水素タンクHから表1に示す濃度になるように過酸化水素を添加した。次いで、バラストタンクT内で海水を表1に示す所定時間保持した。
その後、ポンプP2によりバラストタンクT内の海水を汲み上げ、2.6リットルの容器内に28Wの波長185nmと254nmの基線スペクトルを放射する低圧水銀蒸気放電灯を備えた紫外線照射装置UV1に毎時8トンの流速で通過させ、海水に紫外線を照射して排水した。海水における波長254nmの紫外線の透過率が、過酸化水素の添加により、原水の92%に対して95%以上に改善されたので、照射量は14.96mW・sec/cm2であった。
Test example 1 (phytoplankton and bacteria killing effect confirmation test)
The treatment apparatus shown in FIG. 1 was installed on the quay near the harbor and tested.
Seawater having a capacity of 20 tons was pumped through the filter F by the pump P1 and introduced into the ballast tank T which is a culvert section in the ship. Simultaneously with the introduction of seawater, valve B was opened, and hydrogen peroxide was added from the hydrogen peroxide tank H to the concentration shown in Table 1 by pump P. Next, seawater was held in the ballast tank T for a predetermined time shown in Table 1.
After that, the seawater in the ballast tank T is pumped by the pump P2, and 8 tons per hour is applied to an ultraviolet irradiation device UV1 equipped with a low pressure mercury vapor discharge lamp that emits a baseline spectrum of 185 nm and 254 nm of 28 W in a 2.6 liter container. The water was allowed to pass through at a flow rate, and the seawater was discharged by irradiating it with ultraviolet rays. Since the transmittance of ultraviolet light having a wavelength of 254 nm in seawater was improved to 95% or more with respect to 92% of the raw water by the addition of hydrogen peroxide, the irradiation amount was 14.96 mW · sec / cm 2 .
処理前後の海水、すなわち汲み上げた海水と排出した海水を採取し、植物プランクトン、一般細菌および大腸菌の殺滅率を評価した。
処理前後の海水をそれぞれ1000mL採取し、その中に含まれる全植物プランクトンの正常細胞数を生物顕微鏡で観測、計量して植物プランクトンの殺滅率(%)を求めた。
植物プランクトンの場合と同様にして、処理前後の海水をそれぞれ1000mL採取し、その海水の1mLを適宜希釈して平板寒天培地に接種し、37℃で48時間培養した。培養後の生菌数を測定して一般細菌と大腸菌の殺滅率(%)を求めた。
得られた結果を過酸化水素の濃度と添加後の保持時間と共に表1に示す。
The seawater before and after treatment, that is, the pumped seawater and the discharged seawater were collected, and the killing rate of phytoplankton, general bacteria and E. coli was evaluated.
1000 mL of seawater before and after the treatment was collected, and the number of normal cells of all phytoplankton contained therein was observed with a biological microscope and weighed to determine the phytoplankton kill rate (%).
In the same manner as in the case of phytoplankton, 1000 mL of seawater before and after treatment was collected, 1 mL of the seawater was appropriately diluted, inoculated on a plate agar medium, and cultured at 37 ° C. for 48 hours. The number of viable bacteria after culture was measured to determine the kill rate (%) of general bacteria and E. coli.
The obtained results are shown in Table 1 together with the concentration of hydrogen peroxide and the retention time after the addition.
試験例2(シスト殺滅効果確認試験)
港湾近くの海底堆積物から、渦鞭毛藻網のギムノディニウム目に属するPolykrikos schwatziiのシストを識別採取し、発芽試験を行なった。
まず、過酸化水素を注入していない海水のみを入れたシャーレと、表1に示す過酸化水素濃度になるように過酸化水素を添加した海水の入った3種類×3個のシャーレの計10個を用意し、それぞれにPolykrikos schwatziiのシストを10個体づつ入れた。次いで、各シャーレを暗室内に静置し、過酸化水素を注入した9個のシャーレには、それぞれ3時間後、24時間後、48時間後に上面から波長185nmと254nmの基線スペクトルを放射する低圧水銀蒸気放電灯の紫外線を9秒間照射した。このとき、照射面の紫外線照度は1.8mW/cm2で、照射量は16.2mW・sec/cm2であった。その後、各シャーレを23〜25℃の恒温槽に静置し、紫外線照射から1日後、2日後、3日後および4日後の発芽の有無を観測し、シストの発芽個数(個)を求めた。なお、海水のみのシャーレには紫外線を照射しなかった。
得られた結果を過酸化水素の濃度と添加後の保持時間と共に表2に示す。
Test example 2 (cyst killing effect confirmation test)
We identified and collected polykrikos schwatzii cysts belonging to the dinoflagellate network Gymnodinium from submarine sediments near the harbor and conducted germination tests.
First, a petri dish containing only seawater into which hydrogen peroxide has not been injected and three kinds of three petri dishes containing seawater added with hydrogen peroxide to have the hydrogen peroxide concentration shown in Table 1 total 10 We prepared 10 pieces of Polykrikos schwatzii cysts for each. Next, each petri dish was allowed to stand in a dark room, and the nine petri dishes into which hydrogen peroxide had been injected had low pressures that emitted baseline spectra of wavelengths 185 nm and 254 nm from the top surface after 3 hours, 24 hours, and 48 hours, respectively. The mercury vapor discharge lamp was irradiated for 9 seconds. At this time, the ultraviolet illuminance on the irradiated surface was 1.8 mW / cm 2 , and the irradiation amount was 16.2 mW · sec / cm 2 . Thereafter, each petri dish was allowed to stand in a thermostatic chamber at 23 to 25 ° C., and the presence or absence of germination was observed 1 day, 2 days, 3 days, and 4 days after UV irradiation, and the number of germinated cysts (pieces) was determined. The petri dish made only of seawater was not irradiated with ultraviolet rays.
The results obtained are shown in Table 2 together with the concentration of hydrogen peroxide and the retention time after addition.
B バルブ
F フィルター
H 過酸化水素タンク
P 過酸化水素添加用ポンプ
P1 取水用ポンプ
P2 排水用ポンプ
SL 海面
T バラストタンク
UV1、UV2 紫外線照射装置
B Valve F Filter H Hydrogen peroxide tank P Hydrogen peroxide addition pump P1 Water intake pump P2 Drainage pump SL Sea surface T Ballast tank UV1, UV2 UV irradiation equipment
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089105A JP4825434B2 (en) | 2005-03-25 | 2005-03-25 | How to kill aquatic life |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089105A JP4825434B2 (en) | 2005-03-25 | 2005-03-25 | How to kill aquatic life |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006263664A JP2006263664A (en) | 2006-10-05 |
JP2006263664A5 JP2006263664A5 (en) | 2008-03-27 |
JP4825434B2 true JP4825434B2 (en) | 2011-11-30 |
Family
ID=37200185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005089105A Active JP4825434B2 (en) | 2005-03-25 | 2005-03-25 | How to kill aquatic life |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4825434B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7618536B2 (en) * | 2003-09-03 | 2009-11-17 | Ekomarine Ab | Method of treating a marine object |
DE102009040429A1 (en) * | 2009-09-07 | 2011-03-24 | Tetra Gmbh | Purification of maintenance water by generation of hydroxyl radicals |
JP5798797B2 (en) * | 2011-05-26 | 2015-10-21 | 三菱重工業株式会社 | Liquefied fuel transport ship and ship remodeling method, ship and liquefied fuel transport ship |
JP5692652B2 (en) * | 2011-07-26 | 2015-04-01 | 三浦工業株式会社 | Ballast water treatment equipment |
WO2014073105A1 (en) | 2012-11-12 | 2014-05-15 | 三浦工業株式会社 | Ballast water treatment device |
US10370263B2 (en) | 2012-11-12 | 2019-08-06 | Miura Co., Ltd. | Ballast water treatment device |
CN103723789B (en) * | 2013-12-17 | 2015-07-08 | 河海大学 | Method for removing cyclop type zooplanktons during treatment of drinking water |
JP2015143064A (en) * | 2014-01-31 | 2015-08-06 | 三浦工業株式会社 | Ballast water treatment apparatus |
KR101653666B1 (en) * | 2015-12-10 | 2016-09-02 | (주) 테크로스 | Ballast water treatment system |
JP2019093335A (en) * | 2017-11-22 | 2019-06-20 | 三菱瓦斯化学株式会社 | Aqueous hydrogen peroxide solution for water purification |
CN110563076A (en) * | 2019-09-25 | 2019-12-13 | 上海紫奕光电科技有限公司 | Ultraviolet fluid treatment equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3648905B2 (en) * | 1997-01-24 | 2005-05-18 | 岩崎電気株式会社 | Mercury vapor discharge lamp |
JP2003211173A (en) * | 2002-01-25 | 2003-07-29 | Rinkai:Kk | Water treatment method and apparatus and photochemical reaction liquid treatment apparatus |
IL151146A0 (en) * | 2002-08-08 | 2003-04-10 | Arkal Filtration Systems | Process and device for the treatment of water, particularly for ships |
-
2005
- 2005-03-25 JP JP2005089105A patent/JP4825434B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006263664A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seridou et al. | Disinfection applications of ozone micro-and nanobubbles | |
KR101100662B1 (en) | Method of treating ship ballast water | |
JP5756634B2 (en) | Method and apparatus for treating ballast water | |
WO2008041470A1 (en) | Method for treatment of ballast water for ship | |
JP4825434B2 (en) | How to kill aquatic life | |
WO2010035421A1 (en) | Apparatus for water treatment | |
JP5135600B2 (en) | Ship ballast water treatment method | |
Li et al. | The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors | |
CN104016533A (en) | Ship ballast water treating method | |
CN202936278U (en) | Comprehensive treatment device for ballast water | |
US6875363B2 (en) | Process and device for the treatment of water, particularly for ships | |
CN106946325A (en) | The method and system of hydroxyl radical free radical advanced oxidation prevention and control ocean invasive plants | |
CN111056615B (en) | Method for treating algal bloom or red tide by intermittently combining ultraviolet rays and hydrogen peroxide | |
ITRM20100372A1 (en) | METHOD FOR THE PREPARATION AND USE OF ENRICHED BIOCIDES IN ACTIVE RADICALS BEFORE USE. | |
JP2005342626A (en) | Method and device for treating ballast water and vessel mounted with the device | |
JP4488165B2 (en) | Algae-killing and growth-inhibiting method for blue-green algae that are generated and survive in closed waters such as lakes and marine plants | |
JP2017176149A (en) | Closed circulation type land-based aquaculture system making ozone treatment and biological filtration treatment coexist and its control method | |
US6984330B2 (en) | Use of ozone for controlling growth of organisms | |
RU2500624C2 (en) | Method of sea ballast water deactivation | |
CN113060879A (en) | Method for removing fluoroquinolone antibiotics in water based on ultraviolet/chlorine dioxide | |
JP2007021287A (en) | Ballast water treatment method | |
CN114956254A (en) | Method for sterilizing ship ballast water | |
Saqib et al. | Applications of ozone in marine and freshwater systems | |
JP2024095267A (en) | Method for treating circulating culture solution in plant production system, device for treating circulating culture solution in plant production system, and plant production system | |
Wu et al. | Ballast water treatment by sequential filtration and advanced oxidation process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4825434 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |