[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4825200B2 - Powder metallurgy parts and manufacturing method thereof - Google Patents

Powder metallurgy parts and manufacturing method thereof Download PDF

Info

Publication number
JP4825200B2
JP4825200B2 JP2007516433A JP2007516433A JP4825200B2 JP 4825200 B2 JP4825200 B2 JP 4825200B2 JP 2007516433 A JP2007516433 A JP 2007516433A JP 2007516433 A JP2007516433 A JP 2007516433A JP 4825200 B2 JP4825200 B2 JP 4825200B2
Authority
JP
Japan
Prior art keywords
powder metallurgy
powder
shot peening
fatigue strength
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007516433A
Other languages
Japanese (ja)
Other versions
JP2008502803A (en
Inventor
ベルイマルク、アンデルス
光輝 菅野
Original Assignee
ホガナス アクチボラゲット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホガナス アクチボラゲット filed Critical ホガナス アクチボラゲット
Publication of JP2008502803A publication Critical patent/JP2008502803A/en
Application granted granted Critical
Publication of JP4825200B2 publication Critical patent/JP4825200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F2003/166Surface calibration, blasting, burnishing, sizing, coining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、粉末冶金、特に、改善された疲労特性を有する与合金化されたクロム粉末金属部品に関するものである。   The present invention relates to powder metallurgy, and more particularly to alloyed chromium powder metal parts having improved fatigue properties.

一般に、粉末冶金法によって作られた焼結製品は、鍛造や圧延工程を経て得られたインゴット鋼よりコスト的に見て有利であり、例えば自動車の部品として広範な有用性を持つ。しかし、焼結製品は、その製造過程中に不可避的に形成される気孔を有する。焼結粉末冶金材料のこれら残留気孔は、完全に緻密な材料と比べると、材料の機械的性質を損なう。これは、応力集中として作用する気孔の結果であり、また、気孔が応力下で有効容積を減らすからである。かくして、鉄基粉末冶金材料の強度、延性、疲労強度、マクロ硬度等は、気孔度の増大とともに低下する。   In general, a sintered product made by powder metallurgy is advantageous in terms of cost compared to an ingot steel obtained through a forging or rolling process, and has wide utility as, for example, an automobile part. However, sintered products have pores that are inevitably formed during the manufacturing process. These residual pores of the sintered powder metallurgy material impair the mechanical properties of the material when compared to a fully dense material. This is a result of the pores acting as stress concentrations, and the pores reduce the effective volume under stress. Thus, the strength, ductility, fatigue strength, macro hardness, etc. of the iron-based powder metallurgy material decrease with increasing porosity.

鉄基粉末冶金材料は、その比較的低い疲労強度にもかかわらず、或る程度まで高疲労強度の要求される部品に使用されている。スェーデンのHoganas AB(登録商標)から入手可能なDistaloy(登録商標)HPは、高性能目的のために使用可能な鋼粉末である。このDistaloy(登録商標)粉末では、鉄基粉末がニッケルと合金化されるが、ニッケルは高価な合金元素である。したがって、この高性能材料は、どちらかと言うと、高価であるから、少なくとも同程度に良好な疲労強度を有する廉価な材料が要求されている。   Iron-based powder metallurgy materials are used in parts that require high fatigue strength to some extent despite their relatively low fatigue strength. Distalloy® HP, available from Hoganas AB®, Sweden, is a steel powder that can be used for high performance purposes. In this Distalloy® powder, the iron-based powder is alloyed with nickel, which is an expensive alloying element. Therefore, since this high-performance material is rather expensive, an inexpensive material having at least as good fatigue strength is required.

粉末冶金鋼の疲労性能を改善する1つの方法は、二次的作業である。全体硬化、表面硬化またはショットピーニング(または組合せ)は、部品の可能な最高の疲労抵抗力を得るために可能な工程である。ショットピーニングは、表面残留圧縮応力の有利な影響を利用するために、通常行なわれる。表面に開口を有する気孔は、粉末冶金材料の弱点である。これらの気孔は、表面残留圧縮応力の付加によって、少なくとも部分的に無効化される。   One way to improve the fatigue performance of powder metallurgical steel is a secondary operation. Total cure, surface cure or shot peening (or combination) is a possible process to obtain the highest possible fatigue resistance of the part. Shot peening is usually performed to take advantage of the advantageous effects of surface residual compressive stress. The pores having openings on the surface are weak points of the powder metallurgy material. These pores are at least partially invalidated by the addition of surface residual compressive stress.

圧密化部品のショットピーニングは、例えば米国特許第6171546号に開示されている。この特許によれば、ショットピーニング後に最終焼結工程が実行される。ニッケルを含む鉄基粉末が出発材料として使用される。前記のように、ニッケルは高価であるため、ニッケルを含まない粉末の需要が増している。粉末を含むニッケルの別の欠点は、ダスト問題であり、このダスト問題は、粉末処理の間に生じる可能性があり、かつ、少量でもアレルギー反応を引き起こすだろう。従って、ニッケルの使用は避けるべきである。また、米国特許出願2004/0177719号は、ショットピーニングを含む方法に関するものである。特に、この出願は、圧密化された部品の表面の一部が、焼結後に、ショットピーニングを施される方法に関するものである。この出願によれば、粉末の鍛造またはサイジング(分粒)を含む緻密化工程が、最終圧密化部品の性質を改善するために必要である。   Shot peening of consolidated parts is disclosed, for example, in US Pat. No. 6,171,546. According to this patent, the final sintering step is performed after shot peening. An iron-based powder containing nickel is used as the starting material. As described above, since nickel is expensive, the demand for powder containing no nickel is increasing. Another disadvantage of nickel containing powders is the dust problem, which can occur during powder processing, and even a small amount will cause an allergic reaction. Therefore, the use of nickel should be avoided. US patent application 2004/0177719 also relates to a method involving shot peening. In particular, this application relates to a method in which a part of the surface of a consolidated part is subjected to shot peening after sintering. According to this application, a densification step involving forging or sizing of the powder is necessary to improve the properties of the final consolidated part.

本発明の目的は、芯部の緻密化を行う処理なしで、高疲労強度を有する粉末冶金部品を調製する、費用効果のある方法を提供することである。
別の目的は、ニッケルを含まない粉末材料を用いた方法を提供することである。
The object of the present invention is to provide a cost-effective method for preparing powder metallurgy parts having high fatigue strength without the treatment of densifying the core.
Another object is to provide a method using a powder material that does not contain nickel.

高疲労強度を有する部品が、低水準のクロムとモリブデンによって特徴づけられる鉄基粉末で作成された焼結部品のショットピーニングによって得られることを思いがけなくも見出した。   We have unexpectedly found that parts with high fatigue strength can be obtained by shot peening of sintered parts made with iron-based powders characterized by low levels of chromium and molybdenum.

本発明で使用される粉末は、少量のクロムとモリブデンを含む与合金化された鉄基粉末である。好適量は、クロム:1.3〜3.5重量%、モリブデン:0.15〜0.7重量%である。また、この粉末は、少量のマンガン:0.09〜0.3重量%、および、不可避不純物を含む。かかる粉末は、米国特許第6348080号およびWO 03/106079により既知である。   The powder used in the present invention is an alloyed iron-based powder containing small amounts of chromium and molybdenum. Preferable amounts are chromium: 1.3 to 3.5% by weight and molybdenum: 0.15 to 0.7% by weight. Further, this powder contains a small amount of manganese: 0.09 to 0.3% by weight and inevitable impurities. Such powders are known from US Pat. No. 6,348,080 and WO 03/106079.

さらに、鉄基粉末は、材料に所望の強度を得るために、黒鉛と混合される。鉄基粉末と混合される黒鉛の量は、0.1〜1.0%、好適には0.15〜0.85%である。粉末混合物は、圧粉体を形成するために、ダイ内で圧密化される。圧密化圧力は少なくとも600MPa、好適には、少なくとも700MPaであり、さらに好適には、800MPaである。圧密化は、冷間圧密化、または、温間圧密化によって行なわれる。圧密化後、得られた圧粉品は、1100℃を超える(好適には、1220℃を超える)焼結温度で焼結される。焼結雰囲気は、好適には、窒素と水素の混合物である。焼結過程における通常の冷却速度は、0.8℃/秒であり、0.5℃/秒と1.0℃/秒の間の範囲が好適である。焼結密度は、好適には7.15g/cm、さらに、特に好適には、7.3g/cmを超えるものとする。焼結したままの材料中に得られるマイクロ組織は、低いクロムおよびモリブデン量の主たる微細パーライトと、僅かに高いクロムおよびモリブデン量のマルテンサイトまたは下部ベイナイトである。 Furthermore, the iron-based powder is mixed with graphite in order to obtain the desired strength of the material. The amount of graphite mixed with the iron-based powder is 0.1 to 1.0%, preferably 0.15 to 0.85%. The powder mixture is consolidated in a die to form a green compact. The consolidation pressure is at least 600 MPa, preferably at least 700 MPa, and more preferably 800 MPa. Consolidation is performed by cold consolidation or warm consolidation. After consolidation, the resulting green compact is sintered at a sintering temperature above 1100 ° C. (preferably above 1220 ° C.). The sintering atmosphere is preferably a mixture of nitrogen and hydrogen. A normal cooling rate in the sintering process is 0.8 ° C./second, and a range between 0.5 ° C./second and 1.0 ° C./second is suitable. The sintered density is preferably 7.15 g / cm 3 , more preferably 7.3 g / cm 3 . The microstructure obtained in the as-sintered material is the main fine pearlite with low chromium and molybdenum content and martensite or lower bainite with slightly higher chromium and molybdenum content.

曲げ疲労限界の著しい増大が、焼結された低クロム粉末材料をショットピーニングすることによって得られることを、今や思いがけなくも見出した。特に顕著な増大は、切り欠き部品で得られた。この場合、以下の例から分るように、50%を超え、また、むしろ70%を超える増大を得ることができる。Almen A強度によって定義されるショットピーニングの程度は、好適には、0.20〜0.37mmである。   It has now unexpectedly been found that a significant increase in the bending fatigue limit is obtained by shot peening a sintered low chromium powder material. A particularly significant increase was obtained with the notched parts. In this case, as can be seen from the examples below, an increase of over 50% and rather of over 70% can be obtained. The degree of shot peening defined by the Almen A intensity is preferably 0.20 to 0.37 mm.

二次的作業(例えば、全体硬化および表面硬化)は、特性を、さらに向上させるために、ショットピーニング前に行なうことができる。したがって、全体硬化と、それに続く焼き戻し処理後に、材料は、主にマルテンサイトになり、ショットピーニングによって疲労限界が向上する。表面硬化中に形成される表面のマルテンサイトが圧縮応力を形成すると考えられ、このことは、疲労限界にとって有利である。   Secondary operations (eg, overall cure and surface cure) can be performed prior to shot peening to further improve the properties. Therefore, after total curing and subsequent tempering treatment, the material mainly becomes martensite and the fatigue limit is improved by shot peening. It is believed that the surface martensite formed during surface hardening creates compressive stress, which is advantageous for the fatigue limit.

焼結硬化は、焼結プロセスに適用される代替法である。焼結硬化は、硬化した組織を生じる成分の焼結プロセスの終わりに強制冷却を使用する。   Sinter hardening is an alternative method applied to the sintering process. Sinter hardening uses forced cooling at the end of the sintering process of the components resulting in a hardened structure.

疲労テストは、1.38の応力集中ファクター、Ktを有する切り欠き試料と、非切り欠き試料に対して行なわれた。これらのテストは、ショットピーニングが非切り欠き試料に対して行なわれる時よりも、切り欠き試料をショットピーニングする時に、曲げ疲労限界のより大きな増大を示す。これに関連して、「切り欠き」という表現は、1.3を超える応力集中ファクターを有する試験片または部品を指す。   Fatigue tests were performed on notched and non-notched samples having a stress concentration factor of 1.38, Kt. These tests show a greater increase in the bending fatigue limit when shot peening a notched sample than when shot peening is performed on a notched sample. In this context, the expression “notch” refers to a specimen or part having a stress concentration factor greater than 1.3.

以下、本発明の非限定的実施例について説明する。   Hereinafter, non-limiting examples of the present invention will be described.

[例1]
2つの与合金化された基礎粉末であるAstaloy(登録商標)CrLとAstaloy(登録商標)CrM、および、1つの拡散合金化されたベース粉末であるDistaloy(登録商標)HPが、この研究に含まれる。Distaloy(登録商標)HPは、NiおよびCuと拡散合金化され、Moと与合金化されている。この研究に含まれる3つの材料を表1に示す。
[Example 1]
Two alloyed base powders, Astaroy® CrL and Astaroy® CrM, and one diffusion-alloyed base powder, Distaloy® HP, are included in this study It is. Distalloy® HP is diffusion alloyed with Ni and Cu and alloyed with Mo. The three materials involved in this study are shown in Table 1.

Figure 0004825200
Figure 0004825200

プロセスパラメータ、密度、および炭素量についての詳細を以下に示す。表2では、冷却速度約0.8℃/秒、90/10N/Hで、30分間の焼結を行なった場合各種合金について、非切り欠き試料の平面曲げ疲労性能が示されている。非切り欠き試料についての疲労テストは、面取りした縁を有する5mm ISO3928試料を用いて行なわれている。このテストは、負荷比率(load ratio)R=−1で、4点平面曲げで行なわれている。ステアケース法は、ステアケース法による13〜18の試料と、振れ限界として2百万サイクルが使用される。このステアケース法(50%確率疲労限界および標準偏差)の評価は、MPIF56標準に従ってなされる。テスト周波数は27〜30Hzである。 Details about process parameters, density, and carbon content are given below. Table 2 shows the flat bending fatigue performance of non-notched samples for various alloys when sintered for 30 minutes at a cooling rate of about 0.8 ° C./second and 90/10 N 2 / H 2 . . Fatigue tests on non-notched samples have been performed using 5 mm ISO 3928 samples with chamfered edges. This test was performed with a four-point plane bend with a load ratio R = -1. In the staircase method, 13 to 18 samples by the staircase method and 2 million cycles as the run-out limit are used. Evaluation of this staircase method (50% probability fatigue limit and standard deviation) is made according to the MPIF56 standard. The test frequency is 27-30 Hz.

Figure 0004825200

0.6%未満の焼結炭素および約0.8℃/秒の冷却速度でのAstaloy CrLのマイクロ組織は、上部ベイナイトである。0.74%を超える増大した炭素は、マイクロ組織を微細パーライトに変える。
Figure 0004825200

The microstructure of Astaroy CrL at less than 0.6% sintered carbon and a cooling rate of about 0.8 ° C./sec is upper bainite. Increased carbon above 0.74% turns the microstructure into fine pearlite.

1120℃で焼結したAstaloy CrM材料および冷却速度、0.8℃/秒と、0.32%〜0.4%の焼結炭素水準を有するマイクロ組織の分析は、緻密な上部ベイナイト・マイクロ組織を示す。緻密な上部ベイナイトは、正規の上部ベイナイトと同じ特性を有する、すなわちフェライトとセメンタイドの不規則な混合物を有する。相違点は、炭化物間の距離と炭化物の寸法がより小さいことである。増加した焼結炭素はマイクロ組織をマルテンサイトと下部ベイナイトの混合物に変える。   Analysis of Astroy CrM material sintered at 1120 ° C. and microstructure with cooling rate of 0.8 ° C./sec and sintered carbon level of 0.32% to 0.4% is a dense upper bainite microstructure Indicates. The dense upper bainite has the same properties as regular upper bainite, i.e. has an irregular mixture of ferrite and cementite. The difference is that the distance between carbides and the size of the carbides are smaller. The increased sintered carbon turns the microstructure into a mixture of martensite and lower bainite.

表3は、冷間圧密化したAstaloy CrMについての、圧密化圧力と炭素水準の影響を示す。全ての材料は、30分間1120℃で、90/10N/H内で焼結されたものである。表3内は、2つの圧密化圧力と、追加黒鉛の2つのレベルにおけるAstaloy CrLの平面曲げ疲労性能の概要を示す。Std.dev.<5は散乱が小さく、標準偏差のMPIF標準56評価が適用され得ないことを表している。表3中の試料は切り欠きされていないものである。 Table 3 shows the effect of consolidation pressure and carbon level on cold consolidated Astloy CrM. All materials were sintered for 30 minutes at 1120 ° C. in 90/10 N 2 / H 2 . Table 3 outlines the plane bending fatigue performance of Astaroy CrL at two consolidation pressures and at two levels of additional graphite. Std. dev. <5 indicates that scattering is small and the MPIF standard 56 rating of standard deviation cannot be applied. The samples in Table 3 are not cut out.

Figure 0004825200
Figure 0004825200

非切り欠き試料について、疲労性能に与える焼結温度の影響は、表4に示されている。表4内の材料のマイクロ組織は、主に上部ベイナイト(1120℃、0.58%C)と、微細パーライト(1120℃、0.77%Cおよび1250℃、0.74%C)によって特徴づけられる。   Table 4 shows the effect of sintering temperature on fatigue performance for non-notched samples. The microstructure of the materials in Table 4 is mainly characterized by upper bainite (1120 ° C, 0.58% C) and fine pearlite (1120 ° C, 0.77% C and 1250 ° C, 0.74% C). It is done.

Figure 0004825200
Figure 0004825200

[例2] ショットピーニング、および、熱処理とショットピーニングの組合せの影響は、Astaloy CrL 3mmの縁切り欠きされた試料について調べた。切り欠きはプレス工具内に含まれており、機械加工はされていない。曲げにおける応力集中ファクターはFEM対Kt=1.38によって得られる。テスト振動数は27〜30Hzである。 Example 2 The effect of shot peening and the combination of heat treatment and shot peening was examined on an edge-cut sample of Astaroy CrL 3 mm. Notches are included in the press tool and are not machined. The stress concentration factor in bending is given by FEM vs. Kt = 1.38. The test frequency is 27-30 Hz.

材料は、H内で30分間、1280℃で焼結される。冷却速度は0.8℃/秒である。 The material is sintered at 1280 ° C. in H 2 for 30 minutes. The cooling rate is 0.8 ° C./second.

ショットピーニングは0.32mmのAlmen A強度を得るために行なわれる。   Shot peening is performed to obtain an Almen A intensity of 0.32 mm.

焼結されたまま、および、焼結されたままのものにショットピーニングを施した試料の評価された平面曲げ疲労性能が、表5に示されている。   Table 5 shows the evaluated plane bending fatigue performance of the as-sintered and as-sintered samples that were shot peened.

Figure 0004825200
Figure 0004825200

表6には、全体硬化処理が施され、焼き戻し処理され、かつ、ショットピーニングが施された試料の評価された平面曲げ疲労性能が示されている。全体硬化は、880℃のオーステナイト化温度で行なわれる。オーステナイト化後の冷却速度は、8℃/秒である。最後に、この試料は、250℃で1時間焼き戻し処理される。   Table 6 shows the evaluated plane bending fatigue performance of the samples that have been subjected to the overall curing process, the tempering process, and the shot peening process. Overall curing takes place at an austenitizing temperature of 880 ° C. The cooling rate after austenitization is 8 ° C./second. Finally, the sample is tempered at 250 ° C. for 1 hour.

Figure 0004825200
Figure 0004825200

表5、表6から、クロムおよびモリブデンを含む材料をショットピーニングすることによって、曲げ疲労限界が大きな増大が得られることが判るだろう。   From Tables 5 and 6, it can be seen that by shot peening a material containing chromium and molybdenum, the bending fatigue limit is greatly increased.

Claims (4)

改善された曲げ疲労強度を有する切り欠きのある粉末冶金部品の製造方法であって、
1.3〜3.5重量%のクロム、0.15〜0.7重量%のモリブデン、0.09〜0.3重量%のマンガン、および残部としての鉄及び不可避不純物からなる与合金化された鉄基金属粉末を用意し、
前記鉄基金属粉末を0.1〜1.0重量%の黒鉛と混合し、
得られた混合物を少なくとも600MPaの圧力で圧密化し、
圧密化された部品を1100℃を超える温度で単一工程で焼結し、
前記部品に硬化と焼き戻し処理を施し、
前記部品にショットピーニング処理を施す、
前記各工程を含み、結果として得られる前記切り欠きのある粉末冶金部品が1.3超の応力集中係数を有する、改善された疲労強度を有する粉末冶金部品の製造方法。
A method for producing a notched powder metallurgy part having improved bending fatigue strength, comprising:
Alloyed with 1.3-3.5 wt% chromium, 0.15-0.7 wt% molybdenum, 0.09-0.3 wt% manganese, and the balance iron and inevitable impurities Prepared iron-based metal powder,
Mixing the iron-based metal powder with 0.1 to 1.0% by weight of graphite,
Consolidating the resulting mixture at a pressure of at least 600 MPa,
Sintering the consolidated part in a single step at a temperature above 1100 ° C,
The parts are cured and tempered,
Subject the part to shot peening,
A method for producing a powder metallurgy part having improved fatigue strength, wherein the resulting notched powder metallurgy part comprising the steps described above has a stress concentration factor greater than 1.3.
前記ショットピーニング処理により、曲げ疲労強度が前記ショットピーニング処理前の少なくとも50%増大する請求項1に記載の改善された疲労強度を有する粉末冶金部品の製造方法。  The method of manufacturing a powder metallurgical part having improved fatigue strength according to claim 1, wherein the shot peening treatment increases bending fatigue strength by at least 50% before the shot peening treatment. 主として焼戻し処理されたマルテンサイト・マイクロ組織を有する請求項1または請求項2に記載された製造方法に従って製造された粉末冶金部品。  A powder metallurgy part manufactured according to the manufacturing method according to claim 1 or 2, wherein the powder metallurgy part has a martensite microstructure which is mainly tempered. 7.3g/cmの焼結密度で少なくとも400MPaの曲げ疲労限界を有する請求項3に記載された粉末冶金部品。Powder metallurgy parts according to Motomeko 3 that have a bending fatigue limit of at least 400MPa with sintered density of 7.3 g / cm 3.
JP2007516433A 2004-06-14 2005-06-13 Powder metallurgy parts and manufacturing method thereof Expired - Fee Related JP4825200B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0401535-0 2004-06-14
SE0401535A SE0401535D0 (en) 2004-06-14 2004-06-14 Sintered metal parts and method of manufacturing thereof
PCT/SE2005/000908 WO2005120749A1 (en) 2004-06-14 2005-06-13 Sintered metal parts and method for the manufacturing thereof

Publications (2)

Publication Number Publication Date
JP2008502803A JP2008502803A (en) 2008-01-31
JP4825200B2 true JP4825200B2 (en) 2011-11-30

Family

ID=32710055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007516433A Expired - Fee Related JP4825200B2 (en) 2004-06-14 2005-06-13 Powder metallurgy parts and manufacturing method thereof

Country Status (13)

Country Link
EP (1) EP1771268A1 (en)
JP (1) JP4825200B2 (en)
CN (1) CN100475389C (en)
AU (1) AU2005252150B2 (en)
BR (1) BRPI0512041A (en)
CA (1) CA2570236A1 (en)
MX (1) MXPA06014234A (en)
RU (1) RU2345867C2 (en)
SE (1) SE0401535D0 (en)
TW (1) TWI290073B (en)
UA (1) UA85245C2 (en)
WO (1) WO2005120749A1 (en)
ZA (1) ZA200610348B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789837B2 (en) 2007-03-22 2011-10-12 トヨタ自動車株式会社 Iron-based sintered body and manufacturing method thereof
AT505699B1 (en) 2007-09-03 2010-10-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
RU2454473C1 (en) * 2010-12-03 2012-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Worn-out seal of turbomachine
RU2455116C1 (en) * 2010-12-03 2012-07-10 Общество с Ограниченной Ответственностью "Научно-производственное предприятие "Вакууммаш" Abrasive turbine gland element
CN103282527B (en) * 2010-12-30 2016-03-23 霍加纳斯股份有限公司 For the iron-based powder of powder injection forming
EP2800642B1 (en) * 2012-01-05 2020-07-01 Höganäs AB (publ) New metal powder and use thereof
JP5636605B2 (en) * 2012-10-15 2014-12-10 住友電工焼結合金株式会社 Method for manufacturing sintered parts
CN103008648B (en) * 2012-12-28 2015-04-15 杭州东华链条集团有限公司 Novel manufacturing method of maintenance-free chain
DE102013212528A1 (en) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Process for producing a steel shaped body
RU2588979C1 (en) * 2015-03-16 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Method of producing high-density powder chromium containing material based on iron
KR102376922B1 (en) * 2016-03-23 2022-03-18 회가내스 아베 (피유비엘) iron powder
JP6431012B2 (en) * 2016-09-16 2018-11-28 トヨタ自動車株式会社 Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
RU2703669C1 (en) * 2018-10-16 2019-10-21 Общество с ограниченной ответственностью Научно-технический центр "Уралавиаспецтехнология" Abradable insert of turbine seal
US11668298B2 (en) * 2018-11-07 2023-06-06 Hyundai Motor Company Slide of variable oil pump for vehicle and method of manufacturing the same
JP7548923B2 (en) 2019-10-17 2024-09-10 日本板硝子株式会社 Glass body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177757A (en) * 1995-12-28 1997-07-11 Mitsubishi Materials Corp Iron base sintered alloy connecting rod provided with mechanical fracture surface on separating surface of rod part and cap part
JP2002168267A (en) * 2000-11-30 2002-06-14 Hitachi Powdered Metals Co Ltd Mechanical fuse and manufacturing method for the fuse
JP2004115868A (en) * 2002-09-26 2004-04-15 Toyota Motor Corp Method for manufacturing sintered member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130349A (en) * 1989-06-24 1991-06-04 Sumitomo Electric Ind Ltd Ferrous sintered parts material excellent in fatigue strength and its production
WO1994014557A1 (en) * 1992-12-21 1994-07-07 Stackpole Limited Method of producing bearings
WO1994014991A1 (en) * 1992-12-21 1994-07-07 Stackpole Limited As sintered coining process
SE9602376D0 (en) * 1996-06-14 1996-06-14 Hoeganaes Ab Compact body
SE9800154D0 (en) * 1998-01-21 1998-01-21 Hoeganaes Ab Steel powder for the preparation of sintered products
SE0201824D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder
US7416696B2 (en) * 2003-10-03 2008-08-26 Keystone Investment Corporation Powder metal materials and parts and methods of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177757A (en) * 1995-12-28 1997-07-11 Mitsubishi Materials Corp Iron base sintered alloy connecting rod provided with mechanical fracture surface on separating surface of rod part and cap part
JP2002168267A (en) * 2000-11-30 2002-06-14 Hitachi Powdered Metals Co Ltd Mechanical fuse and manufacturing method for the fuse
JP2004115868A (en) * 2002-09-26 2004-04-15 Toyota Motor Corp Method for manufacturing sintered member

Also Published As

Publication number Publication date
JP2008502803A (en) 2008-01-31
WO2005120749A1 (en) 2005-12-22
AU2005252150B2 (en) 2009-01-08
MXPA06014234A (en) 2007-02-14
CN1968775A (en) 2007-05-23
EP1771268A1 (en) 2007-04-11
ZA200610348B (en) 2008-06-25
RU2007101313A (en) 2008-08-10
SE0401535D0 (en) 2004-06-14
TWI290073B (en) 2007-11-21
AU2005252150A1 (en) 2005-12-22
UA85245C2 (en) 2009-01-12
CA2570236A1 (en) 2005-12-22
RU2345867C2 (en) 2009-02-10
CN100475389C (en) 2009-04-08
TW200610599A (en) 2006-04-01
BRPI0512041A (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP5671526B2 (en) High strength low alloy sintered steel
JP4825200B2 (en) Powder metallurgy parts and manufacturing method thereof
EP2235225B1 (en) Low alloyed steel powder
JP5661096B2 (en) Iron vanadium powder alloy
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP3378012B2 (en) Manufacturing method of sintered product
JP2015108195A (en) Low alloy steel powder
JPH0987794A (en) Production of ferrous sintered alloy showing hardened structure
US20080202651A1 (en) Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body
US7384446B2 (en) Mixed powder for powder metallurgy
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
JP6738038B2 (en) Iron-based sintered alloy and method for producing the same
KR100845386B1 (en) Sintered metal parts and method for the manufacturing thereof
JP4615191B2 (en) Method for producing iron-based sintered body
US20060002812A1 (en) Sintered metal parts and method for the manufacturing thereof
JPH11303847A (en) Connecting rod having high fatigue strength and excellent toughness and manufacture thereof
St-Laurent et al. Dynamic properties of sintered molybdenum steels
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
Berg et al. Processing conditions for high strength PM steels alloyed with chromium
Berg et al. Sintered Steels: Processing Conditions for High Strength PM Steels Alloyed with Chromium
Ruas et al. Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels
JPH1072649A (en) High strength ferrous sintered alloy excellent in wear resistance and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100311

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees