[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4822978B2 - Matrix converter controller - Google Patents

Matrix converter controller Download PDF

Info

Publication number
JP4822978B2
JP4822978B2 JP2006216316A JP2006216316A JP4822978B2 JP 4822978 B2 JP4822978 B2 JP 4822978B2 JP 2006216316 A JP2006216316 A JP 2006216316A JP 2006216316 A JP2006216316 A JP 2006216316A JP 4822978 B2 JP4822978 B2 JP 4822978B2
Authority
JP
Japan
Prior art keywords
output
phase
power supply
matrix converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006216316A
Other languages
Japanese (ja)
Other versions
JP2008043110A (en
JP2008043110A5 (en
Inventor
基 佐藤
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2006216316A priority Critical patent/JP4822978B2/en
Publication of JP2008043110A publication Critical patent/JP2008043110A/en
Publication of JP2008043110A5 publication Critical patent/JP2008043110A5/ja
Application granted granted Critical
Publication of JP4822978B2 publication Critical patent/JP4822978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Description

本発明は、マトリックスコンバータの制御技術に関するもので、特に出力電圧の歪抑制に関する。 The present invention relates to a matrix converter control technique, and more particularly to distortion suppression of an output voltage.

従来のマトリックスコンバータとその制御器構成図を図2に示す。マトリックスコンバータ2は三相電源1を入力とし、9つのスイッチにより負荷3に任意の振幅および周波数の三相電源を供給するものである。マトリックスコンバータ制御装置4は、電源電圧検出器34出力の電源電圧と電流検出器33出力の負荷3に流入する電流とを入力して、マトリックスコンバータ2の9つのスイッチを制御する信号を出力する。 A conventional matrix converter and its controller configuration diagram are shown in FIG. The matrix converter 2 receives a three-phase power source 1 and supplies a three-phase power source having an arbitrary amplitude and frequency to a load 3 by nine switches. The matrix converter control device 4 inputs the power supply voltage output from the power supply voltage detector 34 and the current flowing into the load 3 output from the current detector 33 and outputs a signal for controlling the nine switches of the matrix converter 2.

電源電圧位相検出器42は、電源電圧検出器34出力の電源電圧を入力して、電源電圧の位相θdと相電圧振幅Vdを求めて出力する。基準キャリア比較信号発生器45は、任意の電圧指令Vus,Vvs,Vwsと電源電圧位相検出器42出力の電源電圧の位相θdと振幅Vdを入力して、基準キャリア比較信号Vuc,Vvc,Vwcを
Vuc=Vus・A/emax (1)
Vvc=Vvs・A/emax (2)
Vwc=Vws・A/emax (3)
の演算で求めて出力する。ここでAは、キャリア発生器41出力の三角波キャリアの振れ幅であり、emaxは、三相電源1の三相電源電圧の内で最大のもの(以下最大相)と最小のもの(以下最小相)との電位差であり、電源電圧位相検出器42出力の電源電圧の位相θdと振幅Vdから求められ、例えば図3に示されるようになる。
The power supply voltage phase detector 42 receives the power supply voltage output from the power supply voltage detector 34 and obtains and outputs the phase θd of the power supply voltage and the phase voltage amplitude Vd. The reference carrier comparison signal generator 45 inputs an arbitrary voltage command Vus, Vvs, Vws and the phase θd of the power supply voltage and the amplitude Vd of the output of the power supply voltage phase detector 42 to obtain the reference carrier comparison signals Vuc, Vvc, Vwc. Vuc = Vus · A / emax (1)
Vvc = Vvs · A / emax (2)
Vwc = Vws · A / emax (3)
It is obtained by the operation of and output. Here, A is the amplitude of the triangular wave carrier output from the carrier generator 41, and emax is the maximum (hereinafter referred to as the maximum phase) and the minimum (hereinafter referred to as the minimum phase) of the three-phase power supply voltages of the three-phase power supply 1. ) And is obtained from the phase θd and the amplitude Vd of the power supply voltage output from the power supply voltage phase detector 42, for example, as shown in FIG.

中間相電流指令演算器43は、任意の電圧指令Vus,Vvs,Vwsと電流検出器33出力の負荷3に流入する電流Iu,Iv,Iwを入力して、まず
Po=Vus・Iu+Vvs・Iv+Vws・Iw (4)
の演算で負荷3への出力電力Poを求める。ここで、マトリックスコンバータ2は負荷3へ任意の電圧指令Vus,Vvs,Vws通りの電圧が印加できているとしている。そして、前記出力電力Poを三相電源1が供給する際に、三相電源1の三相電源電圧の内で中間の電圧である相(以下中間相)に流すべき電流Icを求めて出力する。例えば図4のようになる。
The intermediate phase current command calculator 43 inputs arbitrary voltage commands Vus, Vvs, Vws and currents Iu, Iv, Iw flowing into the load 3 output from the current detector 33. First, Po = Vus · Iu + Vvs · Iv + Vws · Iw (4)
The output power Po to the load 3 is obtained by the following calculation. Here, it is assumed that the matrix converter 2 can apply arbitrary voltage commands Vus, Vvs, and Vws to the load 3. Then, when the three-phase power supply 1 supplies the output power Po, a current Ic to be passed through a phase that is an intermediate voltage (hereinafter referred to as an intermediate phase) among the three-phase power supply voltages of the three-phase power supply 1 is obtained and output. . For example, as shown in FIG.

中間相接続率演算器48は、中間相電流指令演算器43出力IcとIu,Iv,Iwを入力して、各出力相を電源の中間相に接続する時間比率Ku’,Kv’,Kw’を求めて出力する。IxがIcと同符号の場合はKx’=Ic/Isumであり、異符号の場合はKx’=0とする。ここでxはu,v,wで表される出力相を意味し、IsumはIu,Iv,Iwの内でIcと同符号のものの総和である。例えばIc>0,Iu>0,Iv<0,Iw<0ならば、Ku’=Ic/Iu,Kv’=Kw’=0となる。またIc<0,Iu>0,Iv<0,Iw<0ならば、Ku’=0,Kv’=Kw’=Ic/(Iv+Iw)となる。このように、Icと同符号の出力相が2つある場合は、それらの相の中間相接続率は等しい値となる。 The intermediate phase connection rate calculator 48 receives the intermediate phase current command calculator 43 output Ic and Iu, Iv, Iw, and connects the output phases to the intermediate phase of the power supply Ku ′, Kv ′, Kw ′. Is output. When Ix has the same sign as Ic, Kx ′ = Ic / Isum, and when it has a different sign, Kx ′ = 0. Here, x means an output phase represented by u, v, and w, and Isum is the sum of Iu, Iv, and Iw having the same sign as Ic. For example, if Ic> 0, Iu> 0, Iv <0, Iw <0, Ku ′ = Ic / Iu, Kv ′ = Kw ′ = 0. If Ic <0, Iu> 0, Iv <0, Iw <0, Ku ′ = 0, Kv ′ = Kw ′ = Ic / (Iv + Iw). Thus, when there are two output phases having the same sign as Ic, the intermediate phase connection ratios of these phases are equal.

キャリア比較信号生成器46は、基準キャリア比較信号発生器45出力と中間相接続率演算器48出力を入力して
VxH=Vxc+A・Kx’・G (5)
VxL=VxH−A・Kx’ (6)
でキャリアと比較する信号を求めて出力する。ここでxはu,v,wで表される出力相を意味し、Gは
G=1−emid/emax (7)
であり、emidは三相電源電圧の内で中間のもの(中間相)と最小のもの(最小相)との電位差であり、電源電圧の位相θdより得ることができ、例えば図5のようになる。
The carrier comparison signal generator 46 inputs the output of the reference carrier comparison signal generator 45 and the output of the intermediate phase connection ratio calculator 48, and VxH = Vxc + A · Kx ′ · G (5)
VxL = VxH−A · Kx ′ (6)
To obtain and output a signal to be compared with the carrier. Here, x means an output phase represented by u, v, w, and G is G = 1−emid / emax (7)
Emid is a potential difference between an intermediate (intermediate phase) and a minimum (minimum phase) of the three-phase power supply voltages, and can be obtained from the phase θd of the power supply voltage. For example, as shown in FIG. Become.

キャリア発生器41は、振れ幅Aの三角波キャリアCを出力し、比較器47はその三角波キャリアCとキャリア比較信号生成器46の出力とを比較した結果としてFxを出力する。ここでxはu,v,wで表される出力相を意味する。C<VxLならばFx=0、VxL<C<VxHならばFx=1、VxH<CならばFx=2となり、Fx=0は、出力のx相を三相電源1の最大相に接続することを意味し、Fx=1は、出力のx相を三相電源1の中間相に接続することを意味し、Fx=2は、出力のx相を三相電源1の最小相に接続することを意味する。 The carrier generator 41 outputs a triangular wave carrier C having an amplitude A, and the comparator 47 outputs Fx as a result of comparing the triangular wave carrier C with the output of the carrier comparison signal generator 46. Here, x means an output phase represented by u, v, and w. Fx = 0 if C <VxL, Fx = 1 if VxL <C <VxH, Fx = 2 if VxH <C, and Fx = 0 connects the output x-phase to the maximum phase of the three-phase power supply 1 Fx = 1 means that the x phase of the output is connected to the intermediate phase of the three-phase power supply 1, and Fx = 2 connects the x phase of the output to the minimum phase of the three-phase power supply 1. Means that.

スイッチ制御器50は、比較器47の出力と位相θdに応じたスイッチング信号をマトリックスコンバータに出力する。例えばFu=0,0<θd<60ならば、u相は電源の最大相であるR相に接続することになるので、SuR=ON,SuS=SuT=OFFとなる。 The switch controller 50 outputs a switching signal corresponding to the output of the comparator 47 and the phase θd to the matrix converter. For example, if Fu = 0, 0 <θd <60, the u phase is connected to the R phase, which is the maximum phase of the power supply, so SuR = ON and SuS = SuT = OFF.

この様な構成とすることで、負荷3に印加される電圧は、電圧指令Vus,Vvs,Vws通りとなり、電源電流波形も例えば正弦波とすることができ、電源力率も例えば1とすることができるようになる。(たとえば、非特許文献1参照。)
中小路元、小林広介、佐藤之彦 他著:「マトリックスコンバータの入出力電流を正弦波化するPWM制御方式の提案」、電気学会半導体電力変換研究会論文No.SPC−03−36、61〜66頁
With such a configuration, the voltage applied to the load 3 becomes the voltage commands Vus, Vvs, and Vws, the power supply current waveform can be a sine wave, for example, and the power supply power factor is also, for example, 1. Will be able to. (For example, refer nonpatent literature 1.)
Nakakojimoto, Kobayashi Hirosuke, Sato Norihiko et al .: “Proposal of PWM control method to make sine wave input / output current of matrix converter”, IEEJ Semiconductor Power Conversion Research Paper No. SPC-03-36, pages 61-66

従来の技術では、Icと同符号の出力相が2つある場合は、それらの相の中間相接続率は等しいとしているが、等しくしなければならない根拠はない。一方、キャリアと比較される6つの信号VuH,VuL,VvH,VvL,VwH,VwLがキャリアの振れ幅の外に出る(以下過変調状態と表現する)と指令通りの電圧をマトリックスコンバータが出力できなくなるので、なるべく上記6つの信号の最大のものと最小のものとの差は小さい方が望ましい。例えばIc=10A,Iu=80A,Iv=20Aの場合、Kw=0,Ku=Kv=10/(80+20)=0.1となり、v相の電流はIcを流すためにあまり役に立っていないにも関わらずu相と同じ時間率だけ中間相に接続することとなりVvHを大きくしてしまう。もしVvc>Vuc>Vwcならば、上記6つの信号の最大のものがVvHとなるので上記6つの信号の最小のものとの差が大きくなり過変調状態となる恐れがある。Ic=Ku・Iu+Kv・Ivが満たされていればKu=Kvである必要はないので例えばKu=0.12,Kv=0.02でも問題なく、そうするとVvHがあまり大きくならず上記6つの信号の最大のものと最小のものとの差が大きくならずに過変調状態となる恐れも小さくなる。 In the conventional technique, when there are two output phases having the same sign as Ic, the intermediate phase connection ratios of these phases are equal, but there is no reason to make them equal. On the other hand, when the six signals VuH, VuL, VvH, VvL, VwH, and VwL to be compared with the carrier go out of the fluctuation width of the carrier (hereinafter referred to as overmodulation state), the matrix converter can output the voltage as commanded. Therefore, it is desirable that the difference between the maximum and minimum of the six signals is as small as possible. For example, when Ic = 10A, Iu = 80A, and Iv = 20A, Kw = 0, Ku = Kv = 10 / (80 + 20) = 0.1, and the v-phase current is not very useful for flowing Ic. Regardless, it is connected to the intermediate phase at the same time rate as the u phase, and VvH is increased. If Vvc> Vuc> Vwc, the maximum of the six signals is VvH, so that the difference from the minimum of the six signals becomes large, and an overmodulation state may occur. If Ic = Ku · Iu + Kv · Iv is satisfied, Ku = Kv is not necessary. For example, even if Ku = 0.12 and Kv = 0.02, there is no problem. The difference between the largest and smallest is not increased and the risk of overmodulation is reduced.

つまり本発明が解決しようとする課題は、Icと同符号の出力相が2つある場合にそれらの相の中間相接続率を等しいとしていることで、過変調状態となる可能性が高められて、マトリックスコンバータが出力できる電圧が低くなっていることである。 In other words, the problem to be solved by the present invention is that when there are two output phases having the same sign as Ic, the possibility of an overmodulation state is increased by assuming that the intermediate phase connection ratio of these phases is equal. The voltage that the matrix converter can output is low.

上記問題点を解決するために、三相電源1と負荷3とを、9つのスイッチからなるマトリックスコンバータ2で接続した主回路構成で、前記マトリックスコンバータ2が前記負荷3に出力する電流を検出する電流検出器33と、前記三相電源1の電圧を検出する電源電圧検出器34と、前記電圧検出器34の出力を入力して電源電圧の位相と大きさを求めて出力する電源電圧位相検出器42と、前記電源電圧位相検出器42の出力と各相の出力電圧指令と前記電流検出器33の出力とを用いて前記三相電源1の3つの電源電圧の中で中間の電圧状態である相である中間相に流すべき電流である中間相電流指令を演算して出力する中間相電流指令演算器43と、前記中間相電流指令演算器43の出力と前記電流検出器33の出力とを入力して、前記マトリックスコンバータ2の各出力相を前記中間相に接続する時間比率を求める中間相接続率演算器44と、前記電源電圧位相検出器42の出力と前記マトリックスコンバータ2が出力すべき各相の出力電圧指令を入力して前記マトリックスコンバータ2の各相の出力電圧が前記各相の出力電圧指令に一致するようなキャリア比較信号を出力する基準キャリア比較信号発生器45と、前記基準キャリア比較信号発生器45の出力と前記中間相接続率演算器44の出力を入力して6つのキャリア比較信号を出力するキャリア比較信号生成器46と、キャリアを生成するキャリア発生器41と、前記キャリア比較信号生成器46の出力と前記キャリア発生器41との出力を比較して出力する比較器47と、前記比較器47の出力と前記電源電圧位相検出器42の出力の電源電圧の位相とを入力して前記マトリックスコンバータ2のスイッチを制御する信号を出力するスイッチ制御器50とからなるマトリックスコンバータ制御装置において、前記キャリア比較信号生成器46出力の6つの信号の中で最大のものと最小のものとの差を最小とするように前記中間相接続率演算器44の出力を求めるマトリックスコンバータ制御装置を実装する。 In order to solve the above problem, a current output from the matrix converter 2 to the load 3 is detected by a main circuit configuration in which a three-phase power source 1 and a load 3 are connected by a matrix converter 2 including nine switches. A current detector 33, a power supply voltage detector 34 for detecting the voltage of the three-phase power supply 1, and a power supply voltage phase detection for inputting the output of the voltage detector 34 and obtaining and outputting the phase and magnitude of the power supply voltage In the intermediate voltage state among the three power supply voltages of the three-phase power supply 1 using the output of the power supply voltage phase detector 42, the output voltage command of each phase, and the output of the current detector 33. An intermediate phase current command calculator 43 that calculates and outputs an intermediate phase current command that is a current to be passed through an intermediate phase that is a certain phase, an output of the intermediate phase current command calculator 43, and an output of the current detector 33 Enter An intermediate phase connection ratio calculator 44 for obtaining a time ratio for connecting each output phase of the matrix converter 2 to the intermediate phase, an output of the power supply voltage phase detector 42, and an output of each phase to be output by the matrix converter 2 A reference carrier comparison signal generator 45 for inputting a voltage command and outputting a carrier comparison signal such that the output voltage of each phase of the matrix converter 2 matches the output voltage command of each phase; and generating the reference carrier comparison signal The carrier comparison signal generator 46 that outputs the output of the comparator 45 and the output of the intermediate phase connection ratio calculator 44 and outputs six carrier comparison signals, the carrier generator 41 that generates carriers, and the carrier comparison signal generation A comparator 47 for comparing the output of the comparator 46 with the output of the carrier generator 41, the output of the comparator 47 and the power supply In the matrix converter control device comprising a switch controller 50 for inputting a phase of the power supply voltage of the output of the phase detector 42 and outputting a signal for controlling the switch of the matrix converter 2, the output of the carrier comparison signal generator 46 A matrix converter control device for obtaining the output of the intermediate phase connection ratio computing unit 44 is implemented so that the difference between the maximum and minimum among the six signals is minimized.

電源電流の波形を正弦波で電源力率1を保った状態で、マトリックスコンバータの出力可能電圧を上げることができる。 The output voltage of the matrix converter can be increased with the power source current waveform maintained in a sine wave with a power source power factor of 1.

マトリックスコンバータの出力可能電圧を上げる目的を、電源特性の性能低下を招くことなく、部品を追加することなく、中間相に接続する時間率の計算方法を変えるだけで実現した。 The purpose of increasing the output voltage of the matrix converter was achieved by changing the calculation method of the time ratio to be connected to the intermediate phase without reducing the performance of the power supply characteristics and without adding components.

図1によって、実施例を示す。本発明の主体は発明の中間相接続率演算器44なので、従来と同じ技術については説明を省略する。発明の中間相接続率演算器44には出力電流Iu、Iv、Iwと基準キャリア比較信号発生器45の出力であるVuc、Vvc、Vwcと中間相電流指令演算器43の出力であるIcを入力する。電源中間相電流指令値Icと同符号の出力電流の相がuとvである場合を例に説明する。キャリア信号Cの振幅を0から1(つまりA=1)として、U=(Vuc/Emax)、V=(Vvc/Emax)、W=(Vwc/Emax)、G=(1−emid/emax)、とすると、キャリア比較信号生成器46内で演算されるキャリア比較信号は、(9)式から(14)式のように演算される。
VuH=U+Ku・G (8)
VuL=U−Ku・(1−G) (9)
VvH=V+Kv・G (10)
VvL=V−Kv・(1−G) (11)
VwH=W+Kw・G (12)
VwL=W−Kw・(1−G) (13)
FIG. 1 shows an embodiment. Since the main component of the present invention is the intermediate phase connection ratio calculator 44 of the present invention, the description of the same technology as in the prior art will be omitted. The intermediate phase connection ratio calculator 44 of the invention receives the output currents Iu, Iv, Iw, the outputs of the reference carrier comparison signal generator 45, Vuc, Vvc, Vwc, and the output of the intermediate phase current command calculator 43, Ic. To do. An example in which the phases of the output current having the same sign as the power intermediate phase current command value Ic are u and v will be described. Assuming that the amplitude of the carrier signal C is 0 to 1 (that is, A = 1), U = (Vuc / Emax), V = (Vvc / Emax), W = (Vwc / Emax), G = (1-emid / emax) Then, the carrier comparison signal calculated in the carrier comparison signal generator 46 is calculated as shown in Equation (9) to Equation (14).
VuH = U + Ku · G (8)
VuL = U−Ku · (1-G) (9)
VvH = V + Kv · G (10)
VvL = V−Kv · (1−G) (11)
VwH = W + Kw · G (12)
VwL = W−Kw · (1-G) (13)

ここで、中間相接続率演算器44において電源中間相電流指令値Icと異符号の出力電流の相の中間相接続率Kwは0とするので、VwH=VwL=Wである。またKuとKvと電源中間相電流指令値Icは(14)式を満たす必要がある。
Ic=Ku・Iu+Kv・Iv (14)
まず、VuH、VuL、VvH、VvLの4つの信号の最大信号と最小信号の差が最小となるKuおよびKvを算出する。たとえばU>Vであるとするなら、
VuH≧VvH (15)
VuL≧VvL (16)
なので、(14)式を代入すると
Kv≦Iu・(U−V)/(G・(Iu+Iv))+Ic/(Iu+Iv) (17)
Ku≦Iv・(U−V)/((1−G)・(Iu+Iv))+Ic/(Iu+Iv)(18)
を満たす必要があり、また(14)式より
Kv≦Ic/Iv (19)
Ku≦Ic/Iu (20)
であり、VuH、VuL、VvH、VvLの4つの信号の最大信号と最小信号の差
VuH−VvL=U+Ku・G−V+Kv・(1−G) (21)
を最小とするには
G≧(1−G)・Iu/IvならばKu≧0,(19)かつ(17)式を満たせばよい。また、G≦(1−G)・Iu/IvならばKv≧0,(20)かつ(18)式を満たせばよい。
ここまでで得られたKuとKvで仮のVuH、VuL、VvH、VvLを求めて、それらをVuH’、VuL’、VvH’、VvL’とする。
Here, in the intermediate phase connection rate calculator 44, the intermediate phase connection rate Kw between the power intermediate phase current command value Ic and the phase of the output current having a different sign is set to 0, so VwH = VwL = W. Further, Ku, Kv and the power supply intermediate phase current command value Ic need to satisfy the equation (14).
Ic = Ku · Iu + Kv · Iv (14)
First, Ku and Kv that minimize the difference between the maximum signal and the minimum signal of the four signals VuH, VuL, VvH, and VvL are calculated. For example, if U> V,
VuH ≧ VvH (15)
VuL ≧ VvL (16)
Therefore, if the equation (14) is substituted, Kv ≦ Iu · (U−V) / (G · (Iu + Iv)) + Ic / (Iu + Iv) (17)
Ku ≦ Iv · (U−V) / ((1−G) · (Iu + Iv)) + Ic / (Iu + Iv) (18)
And Kv ≦ Ic / Iv (19) from the equation (14).
Ku ≦ Ic / Iu (20)
The difference between the maximum signal and the minimum signal of the four signals VuH, VuL, VvH, VvL VuH−VvL = U + Ku · G−V + Kv · (1−G) (21)
In order to minimize the above, if G ≧ (1-G) · Iu / Iv, Ku ≧ 0, (19) and (17) may be satisfied. If G ≦ (1-G) · Iu / Iv, Kv ≧ 0, (20) and (18) may be satisfied.
Temporary VuH, VuL, VvH, and VvL are obtained from Ku and Kv obtained so far, and these are set as VuH ′, VuL ′, VvH ′, and VvL ′.

次にVuH’、VvL’、Wの3つの信号の最大信号と最小信号の差が最小となるKuおよびKvを算出する。
W>VuH’の場合は、VuHがWを超えない範囲でKuを大きくできるので、その条件である
Ku≦(W−VuH’)/G (22)
と(18)式と(20)式を満たす最大の値とすればよい。その時のKvは、(14)式より求める。
W<VvL’の場合は、VvLがWを下回らない範囲でKvを大きくできるので、その条件である
Kv≦(VvL’−W)/(1−G) (23)
と(17)式と(19)式を満たす最大の値とすればよい。その時のKuは、(14)式より求める。
Next, Ku and Kv that minimize the difference between the maximum signal and the minimum signal of the three signals VuH ′, VvL ′, and W are calculated.
In the case of W> VuH ′, Ku can be increased within a range where VuH does not exceed W. Therefore, the condition is Ku ≦ (W−VuH ′) / G (22)
And the maximum value satisfying equations (18) and (20). The Kv at that time is obtained from the equation (14).
In the case of W <VvL ′, Kv can be increased within a range where VvL does not fall below W. Therefore, the condition is Kv ≦ (VvL′−W) / (1-G) (23)
And the maximum value satisfying equations (17) and (19). Ku at that time is obtained from equation (14).

以上で電源中間相電流指令値Icと同符号の出力電流の相がuとvであり、U>Vの場合において、6つのキャリア比較信号の最大のものと最小のものとの差が最小となるKuとKvを得ることができる。なお、U<Vの場合や、中間相電流指令値Icと同符号の出力電流の相がvとwだった場合やuとwだった場合についても同様の演算をする。以上の演算を発明の中間相接続率演算器44にて行うことで、キャリア比較信号生成器46の出力である6つのキャリア比較信号の最大信号と最小信号の差が最小になる2つの中間相接続率の組み合わせが演算できる。本発明により、(8)式から(13)式のキャリア比較信号はキャリア振幅Aに収まりやすくなり、過変調になりにくくなるので本発明はマトリックスコンバータの出力可能電圧の向上に有効であるといえる。 As described above, when the phase of the output current having the same sign as the power intermediate phase current command value Ic is u and v, and U> V, the difference between the maximum and minimum of the six carrier comparison signals is the minimum. Ku and Kv can be obtained. The same calculation is performed when U <V, when the phase of the output current having the same sign as the intermediate phase current command value Ic is v and w, and when u and w. By performing the above calculation in the intermediate phase connection ratio calculator 44 of the invention, two intermediate phases in which the difference between the maximum signal and the minimum signal of the six carrier comparison signals that are the outputs of the carrier comparison signal generator 46 is minimized. A combination of connection rates can be calculated. According to the present invention, the carrier comparison signals in the formulas (8) to (13) are easily contained in the carrier amplitude A and are less likely to be overmodulated. Therefore, the present invention is effective in improving the output possible voltage of the matrix converter. .

本発明は従来のマトリックスコンバータと比較して、歪みの少ない出力を得られるものであり、昇降機、エレベータ、エスカレータ、遠心分離機、ビルおよび研究所の電源設備に応用が可能である。 The present invention can obtain an output with less distortion as compared with a conventional matrix converter, and can be applied to power equipment of elevators, elevators, escalators, centrifuges, buildings, and laboratories.

図1は本発明のマトリックスコンバータ制御装置を示す図である。FIG. 1 is a diagram showing a matrix converter control device of the present invention. 図2は従来のマトリックスコンバータ制御装置を示す図である。FIG. 2 is a diagram showing a conventional matrix converter control device. 図3は入力電源電圧と位相の関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the input power supply voltage and the phase. 図4は力率1での中間相電流指令値と位相の関係を説明するための図である。FIG. 4 is a diagram for explaining the relationship between the intermediate phase current command value and the phase at a power factor of 1. 図5は変数Gと位相の関係を説明するための図である。FIG. 5 is a diagram for explaining the relationship between the variable G and the phase.

符号の説明Explanation of symbols

1:三相電源
2:マトリックスコンバータ
3:負荷
33:電流検出器
34:電源電圧検出器
4:マトリックスコンバータ制御装置
41:キャリア発生器
42:電源電圧位相検出器
43:中間相電流指令演算器
44:発明の中間相接続率演算器
45:基準キャリア比較信号発生器
46:キャリア比較信号生成器
47:比較器
48:従来技術の中間相接続率演算器
50:スイッチ制御器
1: Three-phase power supply 2: Matrix converter 3: Load 33: Current detector 34: Power supply voltage detector 4: Matrix converter control device 41: Carrier generator 42: Power supply voltage phase detector 43: Intermediate phase current command calculator 44 : Inventive intermediate phase connection rate calculator 45: Reference carrier comparison signal generator 46: Carrier comparison signal generator 47: Comparator 48: Conventional intermediate phase connection rate calculator 50: Switch controller

Claims (1)

三相電源(1)と負荷(3)とを、9つのスイッチからなるマトリックスコンバータ(2)で接続した主回路構成で、該マトリックスコンバータ(2)が前記負荷(3)に出力する電流を検出する電流検出器(33)と、該三相電源(1)の電圧を検出する電源電圧検出器(34)と、該電圧検出器(34)の出力を入力して電源電圧の位相と大きさを求めて出力する電源電圧位相検出器(42)と、該電源電圧位相検出器(42)の出力と各相の出力電圧指令と該電流検出器(33)の出力とを用いて前記三相電源(1)の3つの電源電圧の中で中間の電圧状態である相である中間相に流すべき電流である中間相電流指令を演算して出力する中間相電流指令演算器(43)と、該中間相電流指令演算器(43)の出力と前記電流検出器(33)の出力とを入力して、前記マトリックスコンバータ(2)の各出力相を前記中間相に接続する時間比率を求める中間相接続率演算器(44)と、該電源電圧位相検出器(42)の出力と前記マトリックスコンバータ(2)が出力すべき各相の出力電圧指令とを入力して前記マトリックスコンバータ(2)の各相の出力電圧が前記各相の出力電圧指令に一致するようなキャリア比較信号を出力する基準キャリア比較信号発生器(45)と、該基準キャリア比較信号発生器(45)の出力と該中間相接続率演算器(44)の出力を入力して6つのキャリア比較信号を出力するキャリア比較信号生成器(46)と、キャリアを生成するキャリア発生器(41)と、該キャリア比較信号生成器(46)の出力と該キャリア発生器(41)との出力を比較して出力する比較器(47)と、該比較器(47)の出力と前記電源電圧位相検出器(42)の出力の電源電圧の位相とを入力して前記マトリックスコンバータ(2)のスイッチを制御する信号を出力するスイッチ制御器(50)とからなるマトリックスコンバータ制御装置において、
前記キャリア比較信号生成器(46)出力の6つの信号の中で最大のものと最小のものとの差を最小とするように前記中間相接続率演算器(44)の出力を求めることを特徴とするマトリックスコンバータ制御装置。
A main circuit configuration in which a three-phase power source (1) and a load (3) are connected by a matrix converter (2) consisting of nine switches, and detects the current output from the matrix converter (2) to the load (3). Current detector (33), a power supply voltage detector (34) for detecting the voltage of the three-phase power supply (1), and an output of the voltage detector (34) to input the phase and magnitude of the power supply voltage A power supply voltage phase detector (42) for obtaining and outputting the three-phase output signal using the output of the power supply voltage phase detector (42), the output voltage command for each phase, and the output of the current detector (33). An intermediate phase current command calculator (43) that calculates and outputs an intermediate phase current command that is a current to be passed through the intermediate phase, which is a phase in an intermediate voltage state among the three power supply voltages of the power source (1); The output of the intermediate phase current command calculator (43) and the current detector (3 ) And an intermediate phase connection ratio calculator (44) for determining a time ratio for connecting each output phase of the matrix converter (2) to the intermediate phase, and the power supply voltage phase detector (42) And an output voltage command for each phase to be output by the matrix converter (2), and the output voltage for each phase of the matrix converter (2) matches the output voltage command for each phase. A reference carrier comparison signal generator (45) for outputting a comparison signal, an output of the reference carrier comparison signal generator (45), and an output of the intermediate phase connection ratio calculator (44) are input to obtain six carrier comparison signals Carrier comparison signal generator (46) that outputs a carrier, a carrier generator (41) that generates a carrier, an output of the carrier comparison signal generator (46), and an output of the carrier generator (41) A comparator (47) for comparison and output, and a switch of the matrix converter (2) by inputting the output of the comparator (47) and the phase of the power supply voltage of the output of the power supply voltage phase detector (42) In a matrix converter control device comprising a switch controller (50) for outputting a signal for controlling
The output of the intermediate phase connection ratio calculator (44) is obtained so as to minimize the difference between the maximum signal and the minimum signal among the six signals output from the carrier comparison signal generator (46). Matrix converter control device.
JP2006216316A 2006-08-09 2006-08-09 Matrix converter controller Expired - Fee Related JP4822978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216316A JP4822978B2 (en) 2006-08-09 2006-08-09 Matrix converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216316A JP4822978B2 (en) 2006-08-09 2006-08-09 Matrix converter controller

Publications (3)

Publication Number Publication Date
JP2008043110A JP2008043110A (en) 2008-02-21
JP2008043110A5 JP2008043110A5 (en) 2008-09-18
JP4822978B2 true JP4822978B2 (en) 2011-11-24

Family

ID=39177507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216316A Expired - Fee Related JP4822978B2 (en) 2006-08-09 2006-08-09 Matrix converter controller

Country Status (1)

Country Link
JP (1) JP4822978B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253041B2 (en) * 2008-08-22 2013-07-31 東洋電機製造株式会社 Matrix converter controller
JP5312088B2 (en) * 2009-02-20 2013-10-09 東洋電機製造株式会社 Matrix converter controller
JP7099486B2 (en) * 2020-03-11 2022-07-12 株式会社豊田中央研究所 Control device and power converter

Also Published As

Publication number Publication date
JP2008043110A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP6038289B2 (en) Power converter
WO2015178376A1 (en) Direct-current power transmission power conversion device and direct-current power transmission power conversion method
JP5223711B2 (en) Uninterruptible power system
WO2011129222A1 (en) Power converter
JPWO2019138550A1 (en) Power converter
JP6178433B2 (en) Power converter
JP6494378B2 (en) Power conversion system and method for controlling power conversion system
JP2015201996A (en) Power conversion device, control device for power conversion device, and control method for power conversion device
WO2015083244A1 (en) Power conversion device, motor drive device equipped with said power conversion device, fan and compressor equipped with said motor drive device, air conditioner, refrigerator, and freezer equipped with said fan and said compressor
US10224716B2 (en) Apparatus for generating AC superimposed DC signal
JP2003169480A (en) Control apparatus for neutral point clamp system power converter
JP4822978B2 (en) Matrix converter controller
JP5147624B2 (en) Inverter device
Baier et al. Performance evaluation of a multicell topology implemented with single-phase nonregenerative cells under unbalanced supply voltages
JP5253041B2 (en) Matrix converter controller
WO2016114330A1 (en) Five-level power conversion device and control method
JP2005160257A (en) Single phase/three-phase converter, and its control method
JP4844180B2 (en) Power converter and control method thereof
JP4870019B2 (en) Matrix converter controller
JP4870025B2 (en) Matrix converter controller
JPH11122944A (en) Controller of npc converter
JP5171286B2 (en) Matrix converter controller
JP4844264B2 (en) Power conversion system
JP2003230284A (en) Inverter apparatus
WO2017034028A1 (en) Control method and control device for inverter, and inverter device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4822978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees