[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4821939B2 - Seamless steel pipe for steam injection and method for producing the same - Google Patents

Seamless steel pipe for steam injection and method for producing the same Download PDF

Info

Publication number
JP4821939B2
JP4821939B2 JP2011514932A JP2011514932A JP4821939B2 JP 4821939 B2 JP4821939 B2 JP 4821939B2 JP 2011514932 A JP2011514932 A JP 2011514932A JP 2011514932 A JP2011514932 A JP 2011514932A JP 4821939 B2 JP4821939 B2 JP 4821939B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
seamless steel
temperature
steam injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011514932A
Other languages
Japanese (ja)
Other versions
JPWO2011114896A1 (en
Inventor
知由 石山
勇次 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011514932A priority Critical patent/JP4821939B2/en
Application granted granted Critical
Publication of JP4821939B2 publication Critical patent/JP4821939B2/en
Publication of JPWO2011114896A1 publication Critical patent/JPWO2011114896A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B2045/0227Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

There is provided a steel pipe for steam injection having high yield stress even at 350°C. The seamless steel pipe for steam injection according to the present invention has a chemical composition comprising, by mass percent, C: 0.03 to 0.08%, Si: 0.05 to 0.5%, Mn: 1.5 to 3.0%, Mo: more than 0.4 to 1.2%, Al: 0.005 to 0.100%, Ca: 0.001 to 0.005%, N: 0.002 to 0.015%, P: at most 0.03%, S: at most 0.01%, and Cu: at most 1.5%, the balance being Fe and impurities. The seamless steel pipe is manufactured by being water cooled after hot working and by being quenched and tempered.

Description

本発明は、継目無鋼管及びその製造方法に関し、さらに詳しくは、スチームインジェクション用継目無鋼管及びその製造方法に関する。   The present invention relates to a seamless steel pipe and a manufacturing method thereof, and more particularly to a seamless steel pipe for steam injection and a manufacturing method thereof.

オイルサンドからアスファルトを得るために、スチームインジェクション法が利用される。スチームインジェクション法では、高温及び高圧の蒸気を地下のオイルサンド層に注入し、アスファルトを得る。   Steam injection is used to obtain asphalt from oil sands. In the steam injection method, high-temperature and high-pressure steam is injected into an underground oil sand layer to obtain asphalt.

スチームインジェクション法に利用される鋼管は、蒸気をオイルサンド層に導く。蒸気の温度は300〜350℃である。また、蒸気は高圧である。そのため、高温及び高圧に耐えることができるスチームインジェクション用鋼管が要求される。より具体的には、300〜350℃の温度域において、高い強度を有するスチームインジェクション用鋼管が要求される。   The steel pipe used for the steam injection method guides steam to the oil sand layer. The temperature of the steam is 300 to 350 ° C. Steam is at high pressure. Therefore, a steel pipe for steam injection that can withstand high temperature and high pressure is required. More specifically, a steel pipe for steam injection having high strength is required in the temperature range of 300 to 350 ° C.

特開昭56−2967号公報(特許文献1)、特開平2−50917号公報(特許文献2)及び特開2000−290728号公報(特許文献3)は、スチームインジェクション用鋼管を開示する。
JP 56-296 2 7 (Patent Document 1), JP-A-2-50917 (Patent Document 2) and JP 2000-290728 (Patent Document 3) discloses a steam injection steel pipe .

これらの特許文献1〜3に開示されるスチームインジェクション用鋼の350℃における降伏強度はいずれも、API5L規格のX80グレードよりも低い。より具体的には、これらの特許文献の鋼の350℃における降伏応力は555MPa未満である。   The yield strengths at 350 ° C. of the steam injection steels disclosed in these Patent Documents 1 to 3 are all lower than the API80L standard X80 grade. More specifically, the yield stress at 350 ° C. of these patent steels is less than 555 MPa.

より多くのアスファルトをオイルサンドから得るために、従来よりも高い温度及び圧力の蒸気の利用が望まれる。高温及び高圧の蒸気を利用できるように、スチームインジェクション用鋼管は、従来よりも高い高温強度を求められる。   In order to obtain more asphalt from oil sand, it is desired to use steam at higher temperature and pressure than before. Steam injection steel pipes are required to have higher high-temperature strength than before so that high-temperature and high-pressure steam can be used.

本発明の目的は、350℃においても高い降伏応力を有する、スチームインジェクション用鋼管を提供することである。   An object of the present invention is to provide a steel pipe for steam injection having a high yield stress even at 350 ° C.

本発明の実施の形態によるスチームインジェクション用継目無鋼管は、質量%で、C:0.03〜0.08%、Si:0.05〜0.5%、Mn:1.5〜3.0%、Mo:0.4超〜1.2%、Al:0.005〜0.100%、Ca:0.001〜0.005%、N:0.002〜0.015%、P:0.03%以下、S:0.01%以下、Cu:1.5%以下を含有し、残部はFe及び不純物からなる化学組成を有する。スチームインジェクション用継目無鋼管は、熱間加工された後、水冷され、焼入れ及び焼戻しされて製造される。   The seamless steel pipe for steam injection according to the embodiment of the present invention is mass%, C: 0.03 to 0.08%, Si: 0.05 to 0.5%, Mn: 1.5 to 3.0. %, Mo: more than 0.4 to 1.2%, Al: 0.005 to 0.100%, Ca: 0.001 to 0.005%, N: 0.002 to 0.015%, P: 0 0.03% or less, S: 0.01% or less, and Cu: 1.5% or less, with the balance having a chemical composition comprising Fe and impurities. The seamless steel pipe for steam injection is manufactured by hot working, water cooling, quenching and tempering.

好ましくは、上述の継目無鋼管の化学組成は、Feの一部に換えて、Cr:1.0%以下、Nb:0.1%以下、Ti:0.1%以下、Ni:1.0%以下、V:0.2%以下からなる群から選択された1種又は2種以上を含有する。   Preferably, the chemical composition of the above-mentioned seamless steel pipe is changed to a part of Fe, Cr: 1.0% or less, Nb: 0.1% or less, Ti: 0.1% or less, Ni: 1.0 % Or less, V: contains one or more selected from the group consisting of 0.2% or less.

好ましくは、上述の継目無鋼管は、350℃において、600MPa以上の降伏応力を有する。   Preferably, the above-mentioned seamless steel pipe has a yield stress of 600 MPa or more at 350 ° C.

本発明の実施の形態によるスチームインジェクション用継目無鋼管の製造方法は、質量%で、C:0.03〜0.08%、Si:0.05〜0.5%、Mn:1.5〜3.0%、Mo:0.4超〜1.2%、Al:0.005〜0.100%、Ca:0.001〜0.005%、N:0.002〜0.015%、P:0.03%以下、S:0.01%以下、Cu:1.5%以下を含有し、残部はFe及び不純物からなる化学組成を有する丸ビレットを加熱する工程と、加熱された丸ビレットを穿孔して素管を製造する工程と、素管を圧延して継目無鋼管を製造する工程と、圧延後の継目無鋼管を水冷する工程と、水冷された継目無鋼管を焼入れする工程と、焼入れされた継目無鋼管を焼戻しする工程とを備える。   The manufacturing method of the seamless steel pipe for steam injection by embodiment of this invention is the mass%, C: 0.03-0.08%, Si: 0.05-0.5%, Mn: 1.5- 3.0%, Mo: more than 0.4 to 1.2%, Al: 0.005 to 0.100%, Ca: 0.001 to 0.005%, N: 0.002 to 0.015%, P: 0.03% or less, S: 0.01% or less, Cu: 1.5% or less, the step of heating a round billet having a chemical composition consisting of Fe and impurities, and the heated round A step of manufacturing a raw pipe by drilling a billet, a step of rolling a raw pipe to manufacture a seamless steel pipe, a step of water-cooling the seamless steel pipe after rolling, and a step of quenching the water-cooled seamless steel pipe And a step of tempering the quenched seamless steel pipe.

図1は、本実施の形態によるスチームインジェクション用継目無鋼管の製造設備の構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing a configuration of a production facility for a seamless steel pipe for steam injection according to the present embodiment. 図2は、本実施の形態によるスチームインジェクション用継目無鋼管の製造工程を示すフロー図である。FIG. 2 is a flowchart showing the manufacturing process of the seamless steel pipe for steam injection according to the present embodiment. 図3は、図2中の各工程におけるビレット、素管及び継目無鋼管の温度を示す模式図である。FIG. 3 is a schematic diagram showing the temperature of the billet, the raw pipe, and the seamless steel pipe in each step in FIG. 図4は、実施例における鋼番号1の継目無鋼管の引張試験温度と降伏応力との関係を示す図である。FIG. 4 is a graph showing the relationship between the tensile test temperature and the yield stress of a seamless steel pipe with steel number 1 in the example. 図5は、実施例における鋼番号2の継目無鋼管の引張試験温度と降伏応力との関係を示す図である。FIG. 5 is a graph showing the relationship between the tensile test temperature and the yield stress of a seamless steel pipe with steel number 2 in the examples. 図6は、実施例における鋼番号3の継目無鋼管の引張試験温度と降伏応力との関係を示す図である。FIG. 6 is a graph showing the relationship between the tensile test temperature and the yield stress of a seamless steel pipe with steel number 3 in the example.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

本発明者らは、以下の知見に基づいて、本発明の実施の形態によるスチームインジェクション用継目無鋼管を完成した。   Based on the following findings, the present inventors have completed a seamless steel pipe for steam injection according to an embodiment of the present invention.

(1)モリブデン(Mo)が多く含有されれば、高温での降伏強度が向上する。Moは鋼に固溶し、高温での鋼の降伏応力を向上する。Moはまた、Cと結合して微細な炭化物を形成し、高温での鋼の降伏応力を強化する。   (1) If a large amount of molybdenum (Mo) is contained, the yield strength at high temperature is improved. Mo dissolves in the steel and improves the yield stress of the steel at high temperatures. Mo also combines with C to form fine carbides and strengthens the yield stress of steel at high temperatures.

(2)Moが多く含有されると、溶接性が低下する。しかしながら、熱間加工により製造される継目無鋼管を加速冷却し、さらに焼入れ焼戻しを行うことにより、溶接性が向上する。加速冷却、焼入れ及び焼戻しが行われた鋼管の結晶粒は微細化される。そのため、溶接熱影響部及び母材の靭性が向上し、溶接性の低下が抑制される。   (2) When a large amount of Mo is contained, the weldability decreases. However, weldability is improved by accelerated cooling of a seamless steel pipe manufactured by hot working and further quenching and tempering. The crystal grains of the steel pipe subjected to accelerated cooling, quenching and tempering are refined. Therefore, the toughness of the weld heat affected zone and the base material is improved, and a decrease in weldability is suppressed.

以下、本実施の形態によるスチームインジェクション用継目無鋼管の詳細を説明する。   Hereinafter, the detail of the seamless steel pipe for steam injection by this Embodiment is demonstrated.

[化学組成]
本発明の実施の形態によるスチームインジェクション用継目無鋼管は、以下の化学組成を有する。以降、元素に関する%は質量%を意味する。
[Chemical composition]
The seamless steel pipe for steam injection according to the embodiment of the present invention has the following chemical composition. Hereinafter, “%” related to elements means “% by mass”.

C:0.03〜0.08%
炭素(C)は、鋼の強度を向上する。しかしながら、Cが過剰に含有されると、靭性が低下し、溶接性が低下する。そのため、C含有量は0.03〜0.08%である。好ましいC含有量の下限は0.04%である。好ましいC含有量の上限は0.06%である。
C: 0.03-0.08%
Carbon (C) improves the strength of the steel. However, when C is contained excessively, toughness is lowered and weldability is lowered. Therefore, the C content is 0.03 to 0.08%. The lower limit of the preferable C content is 0.04%. The upper limit of the preferable C content is 0.06%.

Si:0.05〜0.5%
珪素(Si)は、鋼を脱酸する。しかしながら、Siが過剰に含有されると、鋼の靭性が低下する。特に、溶接熱影響部の靭性が低下し、溶接性が低下する。したがって、Si含有量は0.05〜0.5%である。好ましいSi含有量の上限は0.3%であり、さらに好ましくは0.15%である。
Si: 0.05-0.5%
Silicon (Si) deoxidizes steel. However, when Si is contained excessively, the toughness of steel decreases. In particular, the toughness of the weld heat affected zone is lowered, and the weldability is lowered. Therefore, the Si content is 0.05 to 0.5%. The upper limit of the preferable Si content is 0.3%, more preferably 0.15%.

Mn:1.5〜3.0%
マンガン(Mn)は鋼の焼入れ性を高め、鋼の強度を向上する。Mnはさらに、鋼の靭性を向上する。しかしながら、Mnが過剰に含有されると、耐HIC(Hydrogen Induced Cracking:水素誘起割れ)性が低下する。したがって、Mn含有量は1.5〜3.0%である。好ましいMn含有量の下限は1.8%であり、より好ましくは2.0%であり、さらに好ましくは2.1%である。
Mn: 1.5 to 3.0%
Manganese (Mn) increases the hardenability of the steel and improves the strength of the steel. Mn further improves the toughness of the steel. However, when Mn is contained excessively, the resistance to HIC (Hydrogen Induced Cracking) decreases. Therefore, the Mn content is 1.5 to 3.0%. The minimum of preferable Mn content is 1.8%, More preferably, it is 2.0%, More preferably, it is 2.1%.

Mo:0.4%超〜1.2%
モリブデン(Mo)は鋼の高温強度を向上する。具体的には、Moは鋼に固溶し、鋼の焼入れ性を向上する。焼入れ性の向上により、鋼の高温強度が向上する。Moはさらに、微細な炭化物を形成し、鋼の高温強度を向上する。Moはさらに、鋼に固溶して焼戻し軟化抵抗を高める。しかしながら、Moが過剰に含有されれば、溶接性が低下する。より具体的には、溶接熱影響部の靭性が低下する。したがって、Mo含有量は、0.4%よりも大きく、1.2%以下である。Mo含有量の好ましい下限は0.5%であり、さらに好ましくは0.6%である。
Mo: more than 0.4% to 1.2%
Molybdenum (Mo) improves the high temperature strength of the steel. Specifically, Mo dissolves in steel and improves the hardenability of the steel. The improvement in hardenability improves the high temperature strength of steel. Mo further forms fine carbides and improves the high temperature strength of the steel. Mo further dissolves in steel to increase the temper softening resistance. However, if Mo is contained excessively, weldability is lowered. More specifically, the toughness of the weld heat affected zone decreases. Therefore, the Mo content is greater than 0.4% and 1.2% or less. The minimum with preferable Mo content is 0.5%, More preferably, it is 0.6%.

Al:0.005〜0.100%
アルミニウム(Al)は鋼を脱酸する。しかしながら、Alが過剰に含有されると、Alはクラスター状の介在物を生成し、鋼の靭性を低下する。Alが過剰に含有されるとさらに、管端にベベル面を加工するとき、表面欠陥が発生しやすい。したがって、Al含有量は0.005〜0.100%である。Al含有量の好ましい上限は0.050%であり、さらに好ましくは、0.030%である。Al含有量の好ましい下限は0.010%である。本発明におけるAl含有量は、酸可溶Al(いわゆるSol.Al)の含有量を意味する。
Al: 0.005 to 0.100%
Aluminum (Al) deoxidizes steel. However, when Al is contained excessively, Al generates cluster-like inclusions and lowers the toughness of steel. If the Al content is excessive, surface defects are likely to occur when the bevel surface is processed at the tube end. Therefore, the Al content is 0.005 to 0.100%. The upper limit with preferable Al content is 0.050%, More preferably, it is 0.030%. A preferable lower limit of the Al content is 0.010%. The Al content in the present invention means the content of acid-soluble Al (so-called Sol. Al).

Ca:0.001〜0.005%
カルシウム(Ca)は、Sと結合してCaSを形成する。CaSの生成によりSは固定される。そのため、鋼の靭性及び耐食性が向上する。カルシウムはさらに、鋳込み時に連続鋳造装置のノズルが詰まるのを抑制する。一方、Caが過剰に含有されれば、Caはクラスター状の介在物を生成しやすく、耐HIC性が低下する。したがって、Ca含有量は0.001〜0.005%である。
Ca: 0.001 to 0.005%
Calcium (Ca) combines with S to form CaS. S is fixed by the generation of CaS. Therefore, the toughness and corrosion resistance of steel are improved. Calcium further suppresses clogging of the nozzle of the continuous casting apparatus during casting. On the other hand, if Ca is contained excessively, Ca tends to generate cluster-like inclusions and the HIC resistance is lowered. Therefore, the Ca content is 0.001 to 0.005%.

N:0.002〜0.015%
窒素(N)は鋼の焼入れ性を高め、鋼の強度を向上する。一方、Nが過剰に含有されれば、鋼の靭性が低下する。したがって、N含有量は0.002〜0.015%である。
N: 0.002 to 0.015%
Nitrogen (N) increases the hardenability of the steel and improves the strength of the steel. On the other hand, if N is contained excessively, the toughness of the steel decreases. Therefore, the N content is 0.002 to 0.015%.

P:0.03%以下
燐(P)は、不純物である。Pは、鋼の靭性を低下する。したがって、P含有量は少ない方が好ましい。P含有量は0.03%以下である。
P: 0.03% or less Phosphorus (P) is an impurity. P decreases the toughness of the steel. Therefore, it is preferable that the P content is small. The P content is 0.03% or less.

S:0.01%以下
硫黄(S)は、不純物である。Sは、鋼の靭性を低下する。したがって、S含有量は少ない方が好ましい。S含有量は0.01%以下である。
S: 0.01% or less Sulfur (S) is an impurity. S decreases the toughness of the steel. Therefore, it is preferable that the S content is small. The S content is 0.01% or less.

Cu:1.5%以下
銅(Cu)は耐HIC性を向上する。具体的には、Cuは、鋼中に水素が侵入するのを抑制し、HICの発生及び伝搬を抑制する。Cuが少しでも含有されれば、上記効果が得られる。好ましいCu含有量は、0.02%以上である。一方、Cuが過剰に含有されれば、上記効果が飽和する。したがって、Cu含有量は1.5%以下である。
Cu: 1.5% or less Copper (Cu) improves HIC resistance. Specifically, Cu suppresses the penetration of hydrogen into steel and suppresses the generation and propagation of HIC. If Cu is contained even a little, the above effect can be obtained. A preferable Cu content is 0.02% or more. On the other hand, if Cu is contained excessively, the above effect is saturated. Therefore, the Cu content is 1.5% or less.

本実施の形態による継目無鋼管の化学組成の残部はFe及び不純物である。   The balance of the chemical composition of the seamless steel pipe according to the present embodiment is Fe and impurities.

本実施の形態による継目無鋼管はまた、上記Feの一部に換えて、Cr、Nb、Ti、Ni及びVからなる群から選択された1種又は2種以上を含有してもよい。これらの元素は、鋼の強度を向上する。   The seamless steel pipe according to the present embodiment may also contain one or more selected from the group consisting of Cr, Nb, Ti, Ni and V in place of part of the Fe. These elements improve the strength of the steel.

Cr:1.0%以下
クロム(Cr)は選択元素である。Crは鋼の焼入れ性を高め、鋼の強度を向上する。Crが少しでも含有されれば、上記効果が得られる。好ましいCr含有量は、0.02%以上であり、より好ましくは0.1%以上であり、さらに好ましくは、0.2%以上である。一方、Crが過剰に含有されると、鋼の靭性が低下する。したがって、Cr含有量は1.0%以下である。
Cr: 1.0% or less Chromium (Cr) is a selective element. Cr increases the hardenability of the steel and improves the strength of the steel. If Cr is contained even a little, the above effect can be obtained. The preferable Cr content is 0.02% or more, more preferably 0.1% or more, and further preferably 0.2% or more. On the other hand, when Cr is excessively contained, the toughness of steel is lowered. Therefore, the Cr content is 1.0% or less.

Nb:0.1%以下
ニオブ(Nb)は選択元素である。Nbは、炭窒化物を形成して、鋼の結晶粒を微細化する。そのため、Nbは、鋼の強度及び靭性を向上する。Nbが少しでも含有されれば、上記効果が得られる。好ましいNb含有量は、0.003%以上である。一方、Nbが過剰に含有されれば、上記効果は飽和する。したがって、Nb含有量は0.1%以下である。
Nb: 0.1% or less Niobium (Nb) is a selective element. Nb forms carbonitrides and refines the crystal grains of the steel. Therefore, Nb improves the strength and toughness of steel. If Nb is contained even a little, the above effect can be obtained. A preferable Nb content is 0.003% or more. On the other hand, if Nb is contained excessively, the above effect is saturated. Therefore, the Nb content is 0.1% or less.

Ti:0.1%以下
チタン(Ti)は選択元素である。Tiは、連続鋳造時において、鋳片の表面欠陥の発生を抑制する。Tiはさらに、炭窒化物を生成して、鋼の結晶粒を微細化する。そのため、Tiは鋼の強度及び靭性を向上する。Tiが少しでも含有されれば、上記効果が得られる。好ましいTi含有量は、0.003%以上である。一方、Tiが過剰に含有されれば、上記効果は飽和する。したがって、Ti含有量は0.1%以下である。
Ti: 0.1% or less Titanium (Ti) is a selective element. Ti suppresses the occurrence of surface defects in the slab during continuous casting. Ti further produces carbonitrides and refines the steel crystal grains. Therefore, Ti improves the strength and toughness of steel. If Ti is contained even a little, the above effect can be obtained. A preferable Ti content is 0.003% or more. On the other hand, if Ti is contained excessively, the above effect is saturated. Therefore, the Ti content is 0.1% or less.

Ni:1.0%以下
ニッケル(Ni)は選択元素である。Niは鋼の焼入れ性を高め、鋼の強度及び靭性を向上する。Niが少しでも含有されれば、上記効果が得られる。好ましいNi含有量は0.02%以上である。一方、Niが過剰に含有されれば、上記効果は飽和する。したがって、Ni含有量は1.0%以下である。
Ni: 1.0% or less Nickel (Ni) is a selective element. Ni enhances the hardenability of the steel and improves the strength and toughness of the steel. If Ni is contained even a little, the above effect can be obtained. A preferable Ni content is 0.02% or more. On the other hand, if Ni is contained excessively, the above effect is saturated. Therefore, the Ni content is 1.0% or less.

V:0.2%以下
バナジウム(V)は選択元素である。Vは、炭窒化物を生成して、鋼の結晶粒を微細化する。そのため、Vは、鋼の強度及び靭性を向上する。Vが少しでも含有されれば、上記効果が得られる。好ましいV含有量は、0.003%以上である。一方、Vが過剰に含有されれば、鋼の靭性が低下する。したがって、V含有量は0.2%以下である。
V: 0.2% or less Vanadium (V) is a selective element. V produces | generates a carbonitride and refines | miniaturizes the crystal grain of steel. Therefore, V improves the strength and toughness of steel. If V is contained even a little, the above effect can be obtained. A preferable V content is 0.003% or more. On the other hand, if V is contained excessively, the toughness of the steel decreases. Therefore, the V content is 0.2% or less.

[製造方法]
本実施の形態による継目無鋼管は、熱間加工後に加速冷却される。継目無鋼管はさらに、加速冷却後に焼入れ及び焼戻しされる。上述の工程により製造された継目無鋼管の350℃における降伏応力は600MPa以上である。継目無鋼管はさらに、結晶粒が微細化された組織を有するため、高い靭性を有する。したがって、Mo含有量が高いにもかかわらず、鋼の溶接性の低下が抑制される。以下、本実施の形態による継目無鋼管の製造方法を詳述する。
[Production method]
The seamless steel pipe according to the present embodiment is accelerated and cooled after hot working. The seamless steel pipe is further quenched and tempered after accelerated cooling. The yield stress at 350 ° C. of the seamless steel pipe produced by the above process is 600 MPa or more. The seamless steel pipe further has a high toughness because it has a structure in which crystal grains are refined. Therefore, although the Mo content is high, a decrease in the weldability of the steel is suppressed. Hereinafter, the manufacturing method of the seamless steel pipe by this Embodiment is explained in full detail.

[製造設備]
図1は、本実施の形態によるスチームインジェクション用継目無鋼管の製造ラインの一例を示すブロック図である。図1を参照して、製造ラインは、加熱炉1と、穿孔機2と、延伸圧延機3と、定径圧延機4と、補熱炉5と、水冷装置6と、焼入れ装置7と、焼戻し装置8とを備える。各装置間には、複数の搬送ローラ10が配置される。図1では、焼入れ装置7及び焼戻し装置8が製造ラインに含まれている。しかしながら、焼入れ装置7及び焼戻し装置8は、製造ラインから離れて配置されていてもよい。要するに、焼入れ装置7及び焼戻し装置8はオフラインに配置されていてもよい。
[production equipment]
FIG. 1 is a block diagram showing an example of a production line of a seamless steel pipe for steam injection according to the present embodiment. Referring to FIG. 1, the production line includes a heating furnace 1, a piercing machine 2, a drawing mill 3, a constant diameter rolling mill 4, a reheating furnace 5, a water cooling device 6, a quenching device 7, A tempering device 8 is provided. A plurality of transport rollers 10 are arranged between the devices. In FIG. 1, a quenching device 7 and a tempering device 8 are included in the production line. However, the hardening device 7 and the tempering device 8 may be arranged away from the production line. In short, the hardening device 7 and the tempering device 8 may be arranged off-line.

[製造フロー]
図2は、本実施の形態による継目無鋼管の製造工程を示すフロー図であり、図3は、製造中の圧延素材(丸ビレット、素管及び継目無鋼管)の時間に対する表面温度の変化を示す図である。
[Production flow]
FIG. 2 is a flow chart showing a manufacturing process of a seamless steel pipe according to the present embodiment, and FIG. 3 shows a change in surface temperature with respect to time of a rolled material (round billet, blank pipe and seamless steel pipe) being manufactured. FIG.

図2及び図3を参照して、本実施の形態によるスチームインジェクション用継目無鋼管の製造方法では、初めに、丸ビレットを加熱炉1で加熱する(S1)。続いて、加熱された丸ビレットを熱間加工して継目無鋼管にする(S2及びS3)。具体的には、丸ビレットを穿孔機2により穿孔圧延して素管にする(S2)。さらに、素管を延伸圧延機3や定径圧延機4で圧延し、継目無鋼管とする(S3)。熱間加工により製造された継目無鋼管を、必要に応じて、補熱炉5により所定の温度に加熱する(S4)。続いて、継目無鋼管を水冷装置6により水冷する(加速冷却:S5)。水冷された継目無鋼管を焼入れ装置7により焼入れし(S6)、焼戻し装置8により焼戻しする(S7)。以下、それぞれの工程について詳しく説明する。   With reference to FIG.2 and FIG.3, in the manufacturing method of the seamless steel pipe for steam injection by this Embodiment, a round billet is first heated with the heating furnace 1 (S1). Subsequently, the heated round billet is hot-worked into a seamless steel pipe (S2 and S3). Specifically, a round billet is pierced and rolled by a piercing machine 2 to form a raw pipe (S2). Further, the raw pipe is rolled by a drawing mill 3 or a constant diameter rolling mill 4 to obtain a seamless steel pipe (S3). The seamless steel pipe manufactured by hot working is heated to a predetermined temperature by the auxiliary heating furnace 5 as necessary (S4). Subsequently, the seamless steel pipe is water cooled by the water cooling device 6 (accelerated cooling: S5). The water-cooled seamless steel pipe is quenched by the quenching device 7 (S6) and tempered by the tempering device 8 (S7). Hereinafter, each process will be described in detail.

[加熱工程(S1)]
初めに、丸ビレットを加熱炉1で加熱する。好ましい加熱温度は1050℃〜1300℃である。この温度範囲で丸ビレットを加熱すれば、穿孔圧延時の丸ビレットの熱間加工性は良好であり、表面疵の発生が抑制される。また、この加熱温度範囲で丸ビレットを加熱すれば、結晶粒の粗大化が抑制される。加熱炉1はたとえば、周知のウォーキングビーム炉やロータリー炉である。
[Heating step (S1)]
First, the round billet is heated in the heating furnace 1. A preferable heating temperature is 1050 ° C to 1300 ° C. If the round billet is heated within this temperature range, the hot workability of the round billet during piercing and rolling is good, and the occurrence of surface flaws is suppressed. Further, if the round billet is heated within this heating temperature range, the coarsening of the crystal grains is suppressed. The heating furnace 1 is, for example, a known walking beam furnace or a rotary furnace.

[穿孔工程(S2)]
丸ビレットを加熱炉1から出す。そして、加熱された丸ビレットを穿孔機2により穿孔圧延する。穿孔機2は周知の構成を有する。具体的には、穿孔機2は、一対の傾斜ロールと、プラグとを備える。プラグは、傾斜ロール間に配置される。好ましい穿孔機2は交叉型の穿孔機である。高い拡管率での穿孔が可能だからである。
[Punching step (S2)]
The round billet is taken out from the heating furnace 1. Then, the heated round billet is pierced and rolled by the piercing machine 2. The drilling machine 2 has a known configuration. Specifically, the punching machine 2 includes a pair of inclined rolls and a plug. The plug is disposed between the inclined rolls. A preferred drilling machine 2 is a cross-type drilling machine. This is because drilling at a high expansion rate is possible.

[圧延工程(S3)]
次に、素管を圧延する。具体的には、素管を延伸圧延機3により延伸圧延する。延伸圧延機3は直列に配列された複数のロールスタンドを含む。延伸圧延機3はたとえば、マンドレルミルである。続いて、延伸圧延された素管を、定径圧延機4により定径圧延して、継目無鋼管を製造する。定径圧延機4は、直列に配列された複数のロールスタンドを含む。定径圧延機4はたとえば、サイザやストレッチレデューサである。
[Rolling step (S3)]
Next, the raw tube is rolled. Specifically, the raw tube is stretch-rolled by the stretching mill 3. The drawing mill 3 includes a plurality of roll stands arranged in series. The drawing mill 3 is, for example, a mandrel mill. Subsequently, the drawn and rolled raw pipe is subjected to constant diameter rolling by a constant diameter rolling mill 4 to produce a seamless steel pipe. The constant diameter rolling mill 4 includes a plurality of roll stands arranged in series. The constant diameter rolling mill 4 is, for example, a sizer or a stretch reducer.

定径圧延機4の複数のロールスタンドのうち、最後尾のロールスタンドで圧延された素管の表面温度を「仕上げ温度」と定義する。仕上げ温度はたとえば、定径圧延機4の最後尾のロールスタンドの出側に配置された温度センサにより計測される。好ましい仕上げ温度は、図3に示すとおりA点(より具体的にはAc3点)以上である。より好ましい仕上げ温度は、900℃以上であり、さらに好ましくは、950℃以上である。本発明の化学組成を有する継目無鋼管のAc3点は750〜950℃である。仕上げ温度が900℃以上であれば、定径圧延中の素管において、ロール抜熱による熱損失が小さい。そのため、製造された継目無鋼管の温度むらを低減できる。Of the plurality of roll stands of the constant diameter rolling mill 4, the surface temperature of the raw tube rolled by the last roll stand is defined as “finishing temperature”. The finishing temperature is measured by, for example, a temperature sensor arranged on the exit side of the last roll stand of the constant diameter rolling mill 4. Preferred finishing temperature is as A 3 point (more specifically, the A c3 point) than that shown in FIG. A more preferable finishing temperature is 900 ° C. or higher, and more preferably 950 ° C. or higher. A c3 point of a seamless steel pipe having the chemical composition of the present invention is 750 to 950 ° C.. When the finishing temperature is 900 ° C. or higher, heat loss due to heat removal from the roll is small in the raw tube during constant diameter rolling. Therefore, the temperature unevenness of the manufactured seamless steel pipe can be reduced.

[再加熱工程(S4)]
再加熱工程(S4)は、必要に応じて実施される。要するに、再加熱工程を実施しなくてもよい。再加熱工程を実施しない場合、図2において、ステップS3からステップS5に進む。また、再加熱工程を実施しない場合、図1において、補熱炉5は配置されなくてもよい。
[Reheating step (S4)]
A reheating process (S4) is implemented as needed. In short, the reheating step may not be performed. When not performing a reheating process, it progresses to step S5 from step S3 in FIG. Moreover, when not implementing a reheating process, the supplementary heating furnace 5 does not need to be arrange | positioned in FIG.

再加熱工程を実施する場合、製造された継目無鋼管を補熱炉5に装入し、加熱する。これにより、製造された継目無鋼管の温度むらが低減される。補熱炉5における加熱温度はAr3点〜1100℃である。加熱温度がAr3点未満であれば、α相が析出して組織が不均一になり、強度のばらつきが大きくなる。一方、加熱温度が1100℃を超えると、結晶粒が粗大化する。好ましい加熱時間は1〜30分である。When implementing a reheating process, the manufactured seamless steel pipe is inserted into the auxiliary heating furnace 5, and is heated. Thereby, the temperature nonuniformity of the manufactured seamless steel pipe is reduced. The heating temperature in Honetsuro 5 is A r3 point C. to 1100 ° C.. When the heating temperature is less than the Ar3 point, the α phase is precipitated, the structure becomes non-uniform, and the variation in strength becomes large. On the other hand, when heating temperature exceeds 1100 degreeC, a crystal grain will coarsen. A preferred heating time is 1 to 30 minutes.

[水冷工程(S5)]
ステップS3で製造された継目無鋼管、又は、ステップS4で再加熱された継目無鋼管を水冷装置6により水冷(加速冷却)する。水冷直前の継目無鋼管の表面温度は仕上げ温度又は補熱炉での加熱温度と実質的に同じである。つまり、水冷直前の継目無鋼管の表面温度は、A点以上であり、好ましくは900℃以上、さらに好ましくは950℃以上である。
[Water cooling step (S5)]
The seamless steel pipe manufactured in step S3 or the seamless steel pipe reheated in step S4 is water cooled (accelerated cooling) by the water cooling device 6. The surface temperature of the seamless steel pipe immediately before water cooling is substantially the same as the finishing temperature or the heating temperature in the auxiliary heating furnace. In other words, the surface temperature of the water cooling immediately before the seamless steel pipe is at A 3 points or more, preferably 900 ° C. or higher, more preferably 950 ° C. or higher.

水冷装置6は、複数の回転ローラと、ラミナー水流装置と、ジェット水流装置とを備える。複数の回転ローラは2列に配置される、継目無鋼管は2列に配列された複数の回転ローラの間に配置される。このとき、2列の回転ローラはそれぞれ、継目無鋼管の外面下部と接触する。回転ローラが回転すると、継目無鋼管が軸周りに回転する。ラミナー水流装置は、回転ローラの上方に配置され、継目無鋼管に対して上方から水を注ぐ。このとき、継目無鋼管に注がれる水は、ラミナー状の水流を形成する。ジェット水流装置は、回転ローラに配置された継目無鋼管の端近傍に配置される。ジェット水流装置は、継目無鋼管の端から鋼管内部に向かってジェット水流を噴射する。ラミナー水流装置及びジェット水流装置により、継目無鋼管の外面及び内面は同時に冷却される。   The water cooling device 6 includes a plurality of rotating rollers, a laminar water flow device, and a jet water flow device. The plurality of rotating rollers are arranged in two rows, and the seamless steel pipe is arranged between the plurality of rotating rollers arranged in two rows. At this time, each of the two rows of rotating rollers comes into contact with the lower part of the outer surface of the seamless steel pipe. When the rotating roller rotates, the seamless steel pipe rotates around the axis. The laminar water flow device is disposed above the rotating roller and pours water from above into the seamless steel pipe. At this time, the water poured into the seamless steel pipe forms a laminar water flow. The jet water flow device is arranged in the vicinity of the end of the seamless steel pipe arranged on the rotating roller. A jet water flow apparatus injects a jet water flow toward the inside of a steel pipe from the end of a seamless steel pipe. The outer surface and the inner surface of the seamless steel pipe are simultaneously cooled by the laminar water flow device and the jet water flow device.

好ましくは、水冷装置6は、継目無鋼管の表面温度が450℃以下になるまで、継目無鋼管を冷却する。換言すれば、水冷停止温度は450℃以下である。水冷停止温度を450℃以下にすれば、後工程で焼入れを行うことにより、継目無鋼管の結晶粒がより微細化される。その結果、継目無鋼管の靭性がより向上する。   Preferably, the water cooling device 6 cools the seamless steel pipe until the surface temperature of the seamless steel pipe becomes 450 ° C. or lower. In other words, the water cooling stop temperature is 450 ° C. or lower. If the water cooling stop temperature is set to 450 ° C. or lower, the crystal grains of the seamless steel pipe are further refined by performing quenching in a subsequent process. As a result, the toughness of the seamless steel pipe is further improved.

水冷装置6の好ましい冷却速度は、10℃/sec以上である。水冷装置6は、上述の回転ローラ、ラミナー水流装置及びジェット水流装置以外の他の装置であってもよい。水冷装置6はたとえば、水槽であってもよい。この場合、ステップS3で製造された継目無鋼管は水槽内に浸漬され、冷却される。このような冷却方法は、「どぶ漬け」と呼ばれる。水冷装置6はまた、ラミナー水流装置のみであってもよい。要するに、冷却装置6の種類は限定されない。   A preferable cooling rate of the water cooling device 6 is 10 ° C./sec or more. The water cooling device 6 may be a device other than the above-described rotating roller, laminar water flow device, and jet water flow device. The water cooling device 6 may be a water tank, for example. In this case, the seamless steel pipe manufactured in step S3 is immersed in the water tank and cooled. Such a cooling method is called “dobu-zuke”. The water cooling device 6 may also be only a laminar water flow device. In short, the type of the cooling device 6 is not limited.

[焼入れ工程(S6)]
水冷装置6により水冷された継目無鋼管を焼入れする。好ましい焼入れ温度はAc3点よりも高く1000℃以下である。継目無鋼管を上記焼入れ温度に加熱すると、継目無鋼管の組織は、ベイナイトから微細なオーステナイト組織に変態する。つまり、逆変態が起こる。このとき、結晶粒が微細化される。つまり、ステップS5で加速冷却が実施されることにより、焼入れ工程において結晶粒の微細化を促進できる。
[Quenching step (S6)]
The seamless steel pipe cooled by the water cooling device 6 is quenched. A preferable quenching temperature is higher than the Ac3 point and 1000 ° C. or lower. When the seamless steel pipe is heated to the quenching temperature, the structure of the seamless steel pipe transforms from bainite to a fine austenite structure. That is, reverse transformation occurs. At this time, the crystal grains are refined. That is, by performing the accelerated cooling in step S5, the refinement of crystal grains can be promoted in the quenching process.

焼入れ温度がAc3変態点未満であれば、逆変態が十分に起こらない。一方、焼入れ温度が1000℃を超えると、結晶粒が粗大化する。焼き入れ処理の好ましい均熱時間は、10秒〜30分である。焼入れ温度で均熱した後、継目無鋼管を水冷する。If the quenching temperature is less than the Ac3 transformation point, the reverse transformation does not occur sufficiently. On the other hand, when the quenching temperature exceeds 1000 ° C., the crystal grains become coarse. A preferable soaking time for the quenching treatment is 10 seconds to 30 minutes. After soaking at the quenching temperature, the seamless steel pipe is cooled with water.

[焼戻し工程(S7)]
焼入れされた鋼管を、焼戻しする。焼戻し温度は、Ac1点以下であり、所望の力学特性に基づいて調整される。焼戻し処理により、本発明の継目無鋼管の350℃における降伏応力を600MPa以上にすることができる。焼戻し温度のばらつきは、好ましくは±10℃であり、さらに好ましくは±5℃である。焼戻し温度のばらつきが小さければ、所望の力学特性が得られやすい。
[Tempering step (S7)]
Tempered steel pipes are tempered. The tempering temperature is not more than A c1 point, and is adjusted based on desired mechanical properties. By tempering, the yield stress at 350 ° C. of the seamless steel pipe of the present invention can be increased to 600 MPa or more. The variation in the tempering temperature is preferably ± 10 ° C., more preferably ± 5 ° C. If the variation in the tempering temperature is small, the desired mechanical properties are easily obtained.

以上の製造方法では、加速冷却が実施され(S5)、その後焼入れ処理が実施される(S6)。これらの工程により、結晶粒の微細化が促進される。そのため、製造された継目無鋼管は優れた靭性を有する。したがって、本実施の形態による継目無鋼管は、Moを多く含有するものの、靭性の低下が抑制され、溶接性の低下も抑制される。   In the above manufacturing method, accelerated cooling is performed (S5), and then quenching is performed (S6). These steps promote the refinement of crystal grains. Therefore, the manufactured seamless steel pipe has excellent toughness. Therefore, although the seamless steel pipe by this Embodiment contains many Mo, the fall of toughness is suppressed and the fall of weldability is also suppressed.

さらに、上述の化学組成を有する継目無鋼管を焼入れ及び焼戻しすることにより、継目無鋼管の350℃における降伏応力を600MPa以上にすることができる。   Furthermore, the yield stress at 350 ° C. of the seamless steel pipe can be 600 MPa or more by quenching and tempering the seamless steel pipe having the above chemical composition.

種々の化学組成を有する複数のスチームインジェクション用継目無鋼管を製造し、常温(23℃)〜360℃における降伏応力を調査した。   A plurality of seamless steel pipes for steam injection having various chemical compositions were manufactured, and the yield stress at normal temperature (23 ° C.) to 360 ° C. was investigated.

[調査方法]
表1に示す化学組成を有する複数のビレットを製造した。

Figure 0004821939
[Investigation method]
A plurality of billets having the chemical composition shown in Table 1 were produced.
Figure 0004821939

表1を参照して、鋼番号1(本発明例)及び鋼番号2(本発明例)のビレットの化学組成は、本発明の化学組成の範囲内であった。一方、鋼番号3(比較例)の化学組成は、本発明の化学組成の範囲外であった。具体的には、鋼番号3のMn含有量は、本発明のMn含有量の下限未満であった。さらに、鋼番号3のMo含有量は、本発明のMo含有量の下限未満であった。鋼番号3のMn及びMo以外の他の元素の含有量は、本発明の範囲内であった。鋼番号1〜3のN含有量は、いずれも0.002〜0.015%の範囲内であった。なお、鋼番号2のTi含有量、及び、鋼番号1及び2のNb含有量は、不純物レベルであった。   With reference to Table 1, the chemical composition of billet of steel number 1 (example of the present invention) and steel number 2 (example of the present invention) was within the range of the chemical composition of the present invention. On the other hand, the chemical composition of Steel No. 3 (Comparative Example) was outside the range of the chemical composition of the present invention. Specifically, the Mn content of Steel No. 3 was less than the lower limit of the Mn content of the present invention. Furthermore, the Mo content of Steel No. 3 was less than the lower limit of the Mo content of the present invention. The contents of elements other than Mn and Mo of steel number 3 were within the scope of the present invention. The N contents of steel numbers 1 to 3 were all in the range of 0.002 to 0.015%. In addition, Ti content of steel number 2 and Nb content of steel numbers 1 and 2 were impurity levels.

製造された各ビレットを加熱炉により加熱した。続いて、各ビレットを穿孔機により穿孔圧延して素管にした。続いて、マンドレルミルにより各素管を延伸圧延した。続いて、サイザにより各素管を定径圧延し、複数の継目無鋼管を製造した。続いて、鋼番号1及び2の継目無鋼管を水冷(加速冷却)した。継目無鋼管の仕上げ温度はいずれも1100℃であり、水冷停止温度は450℃であった。一方、鋼番号3の継目無鋼管については、圧延後に空冷した。   Each billet produced was heated in a heating furnace. Subsequently, each billet was pierced and rolled with a piercing machine to form a raw pipe. Subsequently, each raw tube was drawn and rolled by a mandrel mill. Subsequently, each raw pipe was rolled with a sizer using a sizer to produce a plurality of seamless steel pipes. Subsequently, the seamless steel pipes having the steel numbers 1 and 2 were water-cooled (accelerated cooling). The finishing temperatures of the seamless steel pipes were all 1100 ° C., and the water cooling stop temperature was 450 ° C. On the other hand, the seamless steel pipe of steel number 3 was air-cooled after rolling.

冷却後の各継目無鋼管を焼入れした。焼入れ温度はいずれも950℃であり、40分均熱した。焼入れ後、各継目無鋼管を焼戻しした。焼戻し温度は650℃であり、30分均熱した。以上の工程によりスチームインジェクション用継目無鋼管を製造した。   Each seamless steel pipe after cooling was quenched. All quenching temperatures were 950 ° C. and soaking was performed for 40 minutes. After quenching, each seamless steel pipe was tempered. The tempering temperature was 650 ° C., and soaking was performed for 30 minutes. The seamless steel pipe for steam injection was manufactured by the above process.

[降伏応力]
製造された各継目無鋼管の肉厚中央部からASTM A370に準拠した複数の引張り試験片を採取した。そして、引張り試験片を用いて、ASTM E21に準拠した引張り試験を常温(23℃)〜360℃の温度範囲で実施した。より具体的には、各試験番号において、23℃、100℃、200℃、300℃、350℃(鋼番号3のみ)、360℃(鋼番号1及び2のみ)の各温度で2つの引張試験片を使用して引張試験を実施した。試験結果に基づいて、降伏応力及び引張強さを求めた。本実施例では、降伏応力を0.5%全伸び法により求めた。
[Yield stress]
A plurality of tensile test pieces in accordance with ASTM A370 were collected from the thickness center of each manufactured seamless steel pipe. And the tension test based on ASTM E21 was implemented in the temperature range of normal temperature (23 degreeC)-360 degreeC using the tensile test piece. More specifically, in each test number, two tensile tests at each temperature of 23 ° C., 100 ° C., 200 ° C., 300 ° C., 350 ° C. (only steel number 3) and 360 ° C. (only steel numbers 1 and 2). Tensile tests were performed using the pieces. Based on the test results, yield stress and tensile strength were determined. In this example, the yield stress was determined by the 0.5% total elongation method.

[調査結果]
表2は、各鋼番号の継目無鋼管の降伏応力及び引張強さを示す。図4は、鋼番号1の継目無鋼管の引張試験温度と降伏応力及び引張強さとの関係を示す。図5は、鋼番号2の継目無鋼管の引張試験温度と降伏応力及び引張強さとの関係を示す。図6は、鋼番号3の継目無鋼管の引張試験温度と降伏応力及び引張強さとの関係を示す。図4〜図6中の記号「◆」は降伏応力を示す。記号「■」は引張強さを示す。

Figure 0004821939
[Investigation result]
Table 2 shows the yield stress and tensile strength of the seamless steel pipe of each steel number. FIG. 4 shows the relationship between the tensile test temperature, the yield stress, and the tensile strength of the seamless steel pipe of steel number 1. FIG. 5 shows the relationship between the tensile test temperature, the yield stress, and the tensile strength of the seamless steel pipe of Steel No. 2. FIG. 6 shows the relationship between the tensile test temperature, the yield stress, and the tensile strength of the seamless steel pipe of steel number 3. The symbol “♦” in FIGS. 4 to 6 represents the yield stress. The symbol “■” indicates tensile strength.
Figure 0004821939

表2中の「降伏応力」欄には、対応する鋼番号の各温度における降伏応力(MPa)が示される。各温度における降伏応力は、2つの値が示されている。たとえば、鋼番号1の23℃における降伏応力欄には「720/721」と記載されている。この場合、2つの引張試験片により得られた降伏応力が、720MPa、721MPaであったことを示す。同様に、表2中の「引張強さ」欄には、対応する鋼番号の各温度における引張強さ(MPa)が示される。   In the “yield stress” column in Table 2, the yield stress (MPa) at each temperature of the corresponding steel number is shown. Two values are shown for the yield stress at each temperature. For example, “720/721” is described in the yield stress column of Steel No. 1 at 23 ° C. In this case, it is shown that the yield stress obtained by the two tensile test pieces was 720 MPa and 721 MPa. Similarly, the “tensile strength” column in Table 2 shows the tensile strength (MPa) at each temperature of the corresponding steel number.

表2及び図4〜図6を参照して、鋼番号1及び鋼番号2の継目無鋼管の降伏応力は、全ての温度域において、鋼番号3の継目無鋼管の降伏応力よりも大きかった。さらに、鋼番号1及び2の350℃における降伏応力は600MPa以上であった。一方、鋼番号3の350℃における降伏応力は600MPa未満であった。   With reference to Table 2 and FIGS. 4-6, the yield stress of the seamless steel pipe of the steel number 1 and the steel number 2 was larger than the yield stress of the seamless steel pipe of the steel number 3 in all the temperature ranges. Furthermore, the yield stress at 350 ° C. of steel numbers 1 and 2 was 600 MPa or more. On the other hand, the yield stress of Steel No. 3 at 350 ° C. was less than 600 MPa.

以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (2)

質量%で、
C:0.03〜0.08%、
Si:0.05〜0.5%、
Mn:1.5〜3.0%、
Mo:0.4超〜1.2%、
Al:0.005〜0.100%、
Ca:0.001〜0.005%、
N:0.002〜0.015%、
P:0.03%以下、
S:0.01%以下及び、
Cu:1.5%以下を含有し、
さらに、
Cr:1.0%以下、
Nb:0.1%以下、
Ti:0.1%以下、
Ni:1.0%以下及び、
V:0.2%以下からなる群から選択された1種又は2種以上を含有し、残部はFe及び不純物からなる化学組成を有し、
熱間加工された後、水冷され、さらに、焼入れ及び焼戻しされて製造され
350℃において、600MPa以上の降伏応力を有する、スチームインジェクション用継目無鋼管。
% By mass
C: 0.03-0.08%,
Si: 0.05 to 0.5%,
Mn: 1.5-3.0%
Mo: more than 0.4 to 1.2%,
Al: 0.005 to 0.100%,
Ca: 0.001 to 0.005%,
N: 0.002 to 0.015%,
P: 0.03% or less,
S: 0.01% or less and
Cu: containing 1.5% or less,
further,
Cr: 1.0% or less,
Nb: 0.1% or less,
Ti: 0.1% or less,
Ni: 1.0% or less and
V: contains one or more selected from the group consisting of 0.2% or less, the balance has a chemical composition consisting of Fe and impurities,
After being hot-worked, water-cooled, and further quenched and tempered ,
A seamless steel pipe for steam injection having a yield stress of 600 MPa or more at 350 ° C.
質量%で、
C:0.03〜0.08%、
Si:0.05〜0.5%、
Mn:1.5〜3.0%、
Mo:0.4超〜1.2%、
Al:0.005〜0.100%、
Ca:0.001〜0.005%、
N:0.002〜0.015%、
P:0.03%以下、
S:0.01%以下及び、
Cu:1.5%以下を含有し、
さらに、
Cr:1.0%以下、
Nb:0.1%以下、
Ti:0.1%以下、
Ni:1.0%以下及び、
V:0.2%以下からなる群から選択された1種又は2種以上を含有し、残部はFe及び不純物からなる化学組成を有する丸ビレットを加熱する工程と、
加熱された前記丸ビレットを穿孔して素管を製造する工程と、
前記素管をA c3 点以上の仕上げ温度で圧延して継目無鋼管を製造する工程と、
圧延後の前記継目無鋼管を表面温度が450℃以下になるまで水冷する工程と、
水冷された前記継目無鋼管をA c3 点よりも高く1000℃以下の焼入れ温度で焼入れする工程と、
焼入れされた前記継目無鋼管をA c1 点以下の焼戻し温度で焼戻しする工程とを備える、スチームインジェクション用継目無鋼管の製造方法。
% By mass
C: 0.03-0.08%,
Si: 0.05 to 0.5%,
Mn: 1.5-3.0%
Mo: more than 0.4 to 1.2%,
Al: 0.005 to 0.100%,
Ca: 0.001 to 0.005%,
N: 0.002 to 0.015%,
P: 0.03% or less,
S: 0.01% or less and
Cu: containing 1.5% or less ,
further,
Cr: 1.0% or less,
Nb: 0.1% or less,
Ti: 0.1% or less,
Ni: 1.0% or less and
V: containing one or more selected from 0.2% or less under either Ranaru group, the balance and heating the round billet having a chemical composition consisting of Fe and impurities,
Perforating the heated round billet to produce a blank,
Rolling the raw pipe at a finishing temperature of Ac 3 or higher to produce a seamless steel pipe;
Water-cooling the seamless steel pipe after rolling until the surface temperature is 450 ° C. or lower;
Quenching the water-cooled seamless steel pipe at a quenching temperature higher than the Ac3 point and not higher than 1000 ° C;
A method of producing a seamless steel pipe for steam injection, comprising : tempering the quenched seamless steel pipe at a tempering temperature of A c1 or less .
JP2011514932A 2010-03-18 2011-03-03 Seamless steel pipe for steam injection and method for producing the same Active JP4821939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514932A JP4821939B2 (en) 2010-03-18 2011-03-03 Seamless steel pipe for steam injection and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010063240 2010-03-18
JP2010063240 2010-03-18
JP2011514932A JP4821939B2 (en) 2010-03-18 2011-03-03 Seamless steel pipe for steam injection and method for producing the same
PCT/JP2011/054882 WO2011114896A1 (en) 2010-03-18 2011-03-03 Seamless steel pipe for steam injection, and method of manufacturing same

Publications (2)

Publication Number Publication Date
JP4821939B2 true JP4821939B2 (en) 2011-11-24
JPWO2011114896A1 JPWO2011114896A1 (en) 2013-06-27

Family

ID=44648997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514932A Active JP4821939B2 (en) 2010-03-18 2011-03-03 Seamless steel pipe for steam injection and method for producing the same

Country Status (10)

Country Link
US (1) US20130004787A1 (en)
EP (1) EP2548987B1 (en)
JP (1) JP4821939B2 (en)
CN (1) CN102812146B (en)
AR (1) AR080500A1 (en)
AU (1) AU2011228345B2 (en)
BR (1) BR112012021980B8 (en)
CA (1) CA2790278C (en)
MX (1) MX360028B (en)
WO (1) WO2011114896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181882A1 (en) * 2010-12-22 2017-02-23 新日鐵住金株式会社 Surface grain refinement hot shearing method and surface grain refinement hot shearing component
US10570477B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
CN102560283A (en) * 2012-02-21 2012-07-11 张芝莲 Big-caliber seamless alloy steel pipe
CN102553926A (en) * 2012-02-21 2012-07-11 张芝莲 Method for manufacturing large-caliber seamless alloy steel pipes
CN104755645B (en) 2012-08-29 2017-05-24 新日铁住金株式会社 Seamless steel pipe and method for producing same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102368928B1 (en) 2013-06-25 2022-03-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
EP3031943B1 (en) * 2013-08-06 2020-09-09 Nippon Steel Corporation Seamless steel pipe for line pipe, and method for producing same
CN103866203B (en) * 2014-01-15 2016-08-17 扬州龙川钢管有限公司 A kind of heavy caliber high-strength bridge seamless steel pipe and TMCP production method thereof
JP6008062B1 (en) * 2014-11-27 2016-10-19 Jfeスチール株式会社 Method for producing duplex stainless steel seamless pipe
CN107429339B (en) 2015-03-27 2020-03-17 杰富意钢铁株式会社 High-strength steel and method for producing same, and steel pipe and method for producing same
US20160305192A1 (en) 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
JP2017007269A (en) * 2015-06-25 2017-01-12 キヤノン株式会社 Image formation device
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CZ307345B6 (en) * 2016-12-29 2018-06-20 Západočeská Univerzita V Plzni A method of manufacturing parts by means of interrupted hardening
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
KR102236850B1 (en) * 2019-11-04 2021-04-06 주식회사 포스코 Hot rolled steel plate having exellent hydrogen induced crack resistance and tensile property at high temperature and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213557A (en) * 1985-07-12 1987-01-22 Kawasaki Steel Corp Steel for steam injection pipe
JPS6244560A (en) * 1985-08-19 1987-02-26 Kawasaki Steel Corp Steel for heat-insulated double pipe excellent in hydrogen permeation resistance
JP2008195991A (en) * 2007-02-09 2008-08-28 Nippon Steel Corp Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP2008255468A (en) * 2007-03-09 2008-10-23 Jfe Steel Kk Fatigue crack propagation delayed steel and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1125227A (en) 1979-08-14 1982-06-08 Victor A. Ettel Process for recovering cobalt electrolytically
JPH0663041B2 (en) 1988-08-10 1994-08-17 住友金属工業株式会社 Method for manufacturing steel pipe for steam injection
JP3318467B2 (en) * 1995-05-29 2002-08-26 住友金属工業株式会社 Manufacturing method of high strength and high toughness steel pipe with excellent workability
JPH10140250A (en) * 1996-11-12 1998-05-26 Sumitomo Metal Ind Ltd Production of steel tube for air bag, having high strength and high toughness
BR9804879A (en) * 1997-04-30 1999-08-24 Kawasaki Steel Co High ductility steel product, high strength and process for its production
JP2000290728A (en) 1999-04-05 2000-10-17 Sumitomo Metal Ind Ltd Manufacture of seamless steel pipe for steam injection
JP3975852B2 (en) * 2001-10-25 2007-09-12 Jfeスチール株式会社 Steel pipe excellent in workability and manufacturing method thereof
US8815024B2 (en) * 2004-02-19 2014-08-26 Nippon Steel & Sumitomo Metal Corporation Steel plate or steel pipe with small occurrence of Bauschinger effect and methods of production of same
CN101528964B (en) * 2006-10-27 2011-06-08 住友金属工业株式会社 Seamless steel tube for airbag accumulators and process for production thereof
CN101417296B (en) * 2008-12-04 2010-09-08 天津钢管集团股份有限公司 Manufacture method of large caliber high steel grade corrosion proof seamless steel tube in diameter phi 219.0-460.0mm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213557A (en) * 1985-07-12 1987-01-22 Kawasaki Steel Corp Steel for steam injection pipe
JPS6244560A (en) * 1985-08-19 1987-02-26 Kawasaki Steel Corp Steel for heat-insulated double pipe excellent in hydrogen permeation resistance
JP2008195991A (en) * 2007-02-09 2008-08-28 Nippon Steel Corp Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP2008255468A (en) * 2007-03-09 2008-10-23 Jfe Steel Kk Fatigue crack propagation delayed steel and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181882A1 (en) * 2010-12-22 2017-02-23 新日鐵住金株式会社 Surface grain refinement hot shearing method and surface grain refinement hot shearing component
US10570477B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe

Also Published As

Publication number Publication date
EP2548987A4 (en) 2017-07-19
AR080500A1 (en) 2012-04-11
MX2012010710A (en) 2012-12-17
AU2011228345A1 (en) 2012-09-20
CA2790278C (en) 2016-05-17
WO2011114896A1 (en) 2011-09-22
EP2548987B1 (en) 2018-08-15
US20130004787A1 (en) 2013-01-03
BR112012021980A2 (en) 2018-05-08
BR112012021980B8 (en) 2019-02-19
MX360028B (en) 2018-10-17
CA2790278A1 (en) 2011-09-22
CN102812146A (en) 2012-12-05
JPWO2011114896A1 (en) 2013-06-27
CN102812146B (en) 2015-09-16
AU2011228345B2 (en) 2013-06-06
EP2548987A1 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4821939B2 (en) Seamless steel pipe for steam injection and method for producing the same
JP4930652B2 (en) Manufacturing method of seamless steel pipe for line pipe and seamless steel pipe for line pipe
JP4911265B2 (en) Seamless steel pipe for line pipe and manufacturing method thereof
US11313005B2 (en) Seamless steel pipe and method for producing the seamless steel pipe
JP5408389B1 (en) Seamless steel pipe and manufacturing method thereof
US20190040480A1 (en) Seamless steel pipe and method for producing same
JP2017031493A (en) Manufacturing method of stainless steel pipe
JP2018035381A (en) Production method of stainless steel tube
JP5794138B2 (en) Manufacturing method of seamless steel pipe for high-strength line pipe
JP5794139B2 (en) Manufacturing method of seamless steel pipe for high-strength line pipe

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350