[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4813814B2 - Cu-Ni-Si based copper alloy and method for producing the same - Google Patents

Cu-Ni-Si based copper alloy and method for producing the same Download PDF

Info

Publication number
JP4813814B2
JP4813814B2 JP2005104135A JP2005104135A JP4813814B2 JP 4813814 B2 JP4813814 B2 JP 4813814B2 JP 2005104135 A JP2005104135 A JP 2005104135A JP 2005104135 A JP2005104135 A JP 2005104135A JP 4813814 B2 JP4813814 B2 JP 4813814B2
Authority
JP
Japan
Prior art keywords
inclusions
mass
copper alloy
size
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005104135A
Other languages
Japanese (ja)
Other versions
JP2006283107A (en
Inventor
尚彦 江良
一彦 深町
寛 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2005104135A priority Critical patent/JP4813814B2/en
Publication of JP2006283107A publication Critical patent/JP2006283107A/en
Application granted granted Critical
Publication of JP4813814B2 publication Critical patent/JP4813814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は析出型銅合金に関し、とりわけ各種電子部品に用いるのに好適なCu−Ni−Si系銅合金及びその製造方法に関する。   The present invention relates to a precipitation-type copper alloy, and more particularly to a Cu—Ni—Si based copper alloy suitable for use in various electronic components and a method for producing the same.

リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の電子部品等に使用される電子材料用銅合金には、基本特性として高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子部品に使用される銅合金に対する要求レベルはますます高度化している。   Copper alloys for electronic materials used for electronic parts such as lead frames, connectors, pins, terminals, relays, switches, etc. have both high strength and high electrical conductivity (or thermal conductivity) as basic characteristics. Required. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic components has been increased accordingly.

しかしながら、銅合金に限らず合金は一般にそれを構成する成分元素や組織の他、熱処理の方法等によっても影響を受け、合金の成分元素やその添加量、熱処理の方法等を微妙に変えた場合に合金の性質にどのような影響を与えるかについては、一般的に予測可能性が極めて低く、高まり続ける要求レベルに満足するような新規銅合金開発は困難を極めている。   However, not only copper alloys but also alloys are generally affected by the heat treatment method, etc. in addition to the constituent elements and structures that make up the alloy, and when the alloy component elements, the amount added, the heat treatment method, etc. are subtly changed The impact on the properties of the alloy is generally very unpredictable, and it is difficult to develop a new copper alloy that satisfies the ever-increasing demand level.

高強度及び高導電性の観点から、近年、電子材料用銅合金としては従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、時効硬化型の銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, in recent years, the amount of age-hardening type copper alloys has increased as a copper alloy for electronic materials, replacing conventional solid solution-strengthened copper alloys such as phosphor bronze and brass. is doing. In the age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of solid solution elements in copper is reduced. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

時効硬化型銅合金のうち、Cu−Ni−Si系銅合金は比較的高い導電性と強度、応力緩和特性及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。   Of the age-hardening copper alloys, Cu-Ni-Si-based copper alloys are representative copper alloys that have relatively high electrical conductivity, strength, stress relaxation characteristics, and bending workability, and are currently being actively developed in the industry. One of the alloys being used. In this copper alloy, strength and electrical conductivity are increased by precipitation of fine Ni—Si intermetallic particles in the copper matrix.

強化に寄与するNi−Si系金属間化合物の析出物は量論組成で一般に構成されており、例えば、特開2001−207229号公報では合金中のNiとSiの重量比を金属間化合物であるNiSiの濃度に近づけることにより、すなわちNiとSiの重量比をNi/Si=3〜7とすることにより良好な電気伝導性が得られることが記載されている。 Ni-Si-based intermetallic compound precipitates that contribute to strengthening are generally composed of stoichiometric composition. For example, in JP-A-2001-207229, the weight ratio of Ni to Si in an alloy is an intermetallic compound. It is described that good electrical conductivity can be obtained by bringing the concentration closer to Ni 2 Si, that is, by setting the weight ratio of Ni and Si to Ni / Si = 3-7.

しかしながら、析出硬化型銅合金が所望の高強度および高導電率を確保するためには、その製造工程において添加量に対して析出に寄与する割合を高める工程を設計することがさらに重要である。一般的な析出硬化型銅合金の製造工程としては、溶解鋳造、均質化焼鈍、圧延など所定の工程を経て製造された素条を用いて第二相粒子を構成する元素を銅マトリックス中に固溶させるための溶体化処理を行う。溶体化処理後の素条は焼鈍後に圧延と時効を1回以上繰り返すことで所望の特性を発揮するが、その順序および回数に制限はなく、必要に応じて歪取を伴う焼鈍工程で代替することも可能である。この溶体化処理は該合金系の固溶限以上の温度で所定の時間保持後急冷することが析出分率の増加には望ましく、材料中に分散するNiおよびSiで構成される介在物はこの熱処理以降の工程設計により、強度、導電率などの製品機能に寄与することになる。 However, in order to ensure the desired high strength and high electrical conductivity of the precipitation hardening type copper alloy, it is more important to design a process for increasing the ratio of contributing to precipitation with respect to the amount added in the manufacturing process. As a general process for producing a precipitation hardening type copper alloy, elements constituting the second phase particles are solidified in a copper matrix by using strips manufactured through predetermined processes such as melt casting, homogenization annealing, and rolling. Solution treatment for melting is performed. The strip after solution treatment exhibits desired characteristics by repeating rolling and aging one or more times after annealing, but there is no limitation on the order and number of times, and it is replaced by an annealing process with strain relief as necessary. It is also possible. In order to increase the precipitation rate, it is desirable that the solution treatment is rapidly cooled after holding for a predetermined time at a temperature equal to or higher than the solid solution limit of the alloy system. The inclusion composed of Ni and Si dispersed in the material is this The process design after the heat treatment will contribute to product functions such as strength and conductivity.

特開2001−207229号公報JP 2001-207229 A

本発明は、強度及び電気伝導性(又は熱伝導性)を両立させ、強度と導電率を飛躍的に向上させた、電子材料用Cu−Ni−Si系合金を提供することを課題とする。   An object of the present invention is to provide a Cu—Ni—Si-based alloy for electronic materials that has both strength and electrical conductivity (or thermal conductivity) and has dramatically improved strength and electrical conductivity.

本発明者らは、高度化する電子材料用部品に使用される銅合金に対する要求レベルに対応すべく鋭意研究を行い、Cu−Ni−Si系合金に着眼するに至った。その後、Cu−Ni−Si系合金について検討を重ねた結果、その特性が、ある組成条件および製造条件の下で介在物の大きさ、組成、分布を制御した場合に、従来説明されていたものより飛躍的に向上することを見出した。
大きさ0.1μm以上の介在物の総数に占める大きさ1μm以上の介在物個数の割合は、製造条件によりその構成割合が変化する。溶体化処理条件と時効処理条件を最適な条件に設定した場合であっても溶解鋳造および均質化焼鈍条件の変動により介在物は存在する。1μm以上の粗大な介在物は、溶解鋳造および均質化焼鈍条件の不適合により生成しやすく、溶体化処理温度等が不足するとさらに粗大な介在物が残留する。よって大きさ0.1μm以上の介在物個数が通常レベルであっても粗大粒子数が多くなる現象はこのような条件の不適合による。また、溶解鋳造、均質化焼鈍および溶体化処理を十分慎重に行って大きさ1μm以上の介在物個数が標準より少なく制御した場合であっても、時効処理条件を過時効条件となるように設定してしまうと0.1μm以上の粒子が粗大化して、大きさ1μm以上の粒子数が多くなり、大きさ0.1μm以上の介在物の総数に占める大きさ1μm以上の介在物個数の割合が増加する。
The present inventors have intensively studied to meet the required level for copper alloys used in electronic parts that are becoming more sophisticated, and have come to focus on Cu-Ni-Si alloys. After that, as a result of repeated studies on Cu-Ni-Si-based alloys, the characteristics have been described in the past when the size, composition, and distribution of inclusions are controlled under certain composition conditions and production conditions. I found out that it could improve dramatically.
The ratio of the number of inclusions having a size of 1 μm or more to the total number of inclusions having a size of 0.1 μm or more varies depending on the manufacturing conditions. Even when the solution treatment conditions and the aging treatment conditions are set to optimum conditions, inclusions exist due to fluctuations in the melt casting and homogenization annealing conditions. Coarse inclusions of 1 μm or more are likely to be generated due to incompatibility between the melt casting and the homogenization annealing conditions, and if the solution treatment temperature is insufficient, coarser inclusions remain. Therefore, the phenomenon that the number of coarse particles increases even when the number of inclusions having a size of 0.1 μm or more is at a normal level is due to such incompatibility. In addition, even when melt casting, homogenization annealing, and solution treatment are performed carefully and the number of inclusions with a size of 1 μm or more is controlled below the standard, the aging treatment conditions are set to be overaging conditions. As a result, particles with a size of 0.1 μm or more are coarsened, and the number of particles with a size of 1 μm or more increases. The ratio of the number of inclusions with a size of 1 μm or more to the total number of inclusions with a size of 0.1 μm or more is To increase.

本発明は、上記知見に基づきなされたものである。
(1)Ni:1.5〜4質量%,Si:0.30〜1.2質量%及びMg:0.03〜0.5質量%を含有し,残部Cu及び不可避的不純物から構成され,合金組成中のNiとSiの質量濃度比(Ni/Si比)が,4≦[Ni/Si]≦5の範囲にあることを特徴とする銅合金において、材料中に分散する介在物のうち、介在物中に含有するNi、Si、及び酸素濃度の合計が10質量%以上である特定の介在物は大きさが5μm以下であり、前記特定の介在物のうち、大きさが1μm以上である介在物の個数(Po)と材料中に分散する介在物のうち大きさが0.1μm以上の介在物総個数(P)との比(Po/P)が0.1以下であることを特徴とする電子材料用Cu−Ni−Si系銅合金。
更に、MnをMgの含有量との合計で、0.03〜0.5質量%含有する電子材料用Cu−Ni−Si系銅合金。
The present invention has been made based on the above findings.
(1) Ni: 1.5 to 4% by mass, Si: 0.30 to 1.2% by mass, and Mg: 0.03 to 0.5% by mass , the balance being Cu and inevitable impurities, Among the inclusions dispersed in the material in the copper alloy, wherein the mass concentration ratio of Ni to Si (Ni / Si ratio) in the alloy composition is in the range of 4 ≦ [Ni / Si] ≦ 5 In addition, the specific inclusion in which the total concentration of Ni, Si, and oxygen contained in the inclusion is 10% by mass or more is 5 μm or less, and among the specific inclusions, the size is 1 μm or more. The ratio (Po / P) of the number of inclusions (Po) to the total number of inclusions (P) having a size of 0.1 μm or more among the inclusions dispersed in the material is 0.1 or less. A Cu-Ni-Si-based copper alloy for electronic materials.
Furthermore, Cu-Ni-Si type copper alloy for electronic materials containing 0.03-0.5 mass% of Mn in total with the content of Mg.

(2)更にAs、Sb、Be、T、Al、Fe及びAgよりなる群から選択される1種又は2種以上を合計で0.001〜2.0質量%含有する電子材料用Cu−Ni−Si系銅合金。 (2) further to A s, Sb, Be, T i, A l, to contain 0.001 to 2.0 wt% of one or two or more in total selected from the group consisting of F e及 beauty Ag that electronic materials for the Cu-Ni-Si-based copper alloy.

(3)鋳塊を900℃以上1000℃未満の温度で加熱した後、その後熱処理と圧延を行った素材に対し、材料温度が750〜1000℃での溶体化処理と材料温度が350〜550℃の温度での時効処理を行うことを特徴とする上記(1)又は(2)のうちいずれかに記載した電子材料用銅合金の製造方法。 (3) After the ingot is heated at a temperature of 900 ° C. or higher and lower than 1000 ° C., a solution treatment at a material temperature of 750 to 1000 ° C. and a material temperature of 350 to 550 ° C. are performed on the material subjected to heat treatment and rolling thereafter. A method for producing a copper alloy for electronic materials according to any one of the above (1) and (2), wherein an aging treatment is performed at a temperature of 5 ° C.

(4)上記(1)又は(2)の何れか一項に記載の電子材料用銅合金を用いた電子部品。 (4) An electronic component using the copper alloy for electronic materials according to any one of (1) and (2) above.

本発明によれば、導電性の低下をできるだけ抑えつつも強度が飛躍的に向上した電子材料用Cu−Ni−Si系合金を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the Cu-Ni-Si type alloy for electronic materials which improved the intensity | strength drastically, suppressing the electroconductive fall as much as possible can be provided.

Ni及びSiの添加量
NiおよびSiは,適当な熱処理を施すことにより金属間化合物を形成し,導電率を劣化させずに高強度化が図れる.NiおよびSiの添加量がNi:1.5質量%未満,Si:0.3質量%未満では所望の強度が得られず,Ni:4.0質量%以上,Si:1.2質量%以上では高強度化は図れるが導電率が著しく低下し,さらに熱間質量加工性が劣化する.よってNiおよびSiの添加量はNi:1.5〜4質量%,Si:0.30〜1.2質量%とした.
Addition amounts of Ni and Si Ni and Si form an intermetallic compound by appropriate heat treatment, and can increase the strength without deteriorating the conductivity. If the addition amount of Ni and Si is less than 1.5% by mass of Ni and less than 0.3% by mass of Si, the desired strength cannot be obtained, Ni: 4.0% by mass or more, Si: 1.2% by mass or more In this case, the strength can be increased, but the electrical conductivity is remarkably lowered and the hot mass workability is further deteriorated. Therefore, the addition amounts of Ni and Si were set to Ni: 1.5 to 4% by mass and Si: 0.30 to 1.2% by mass.

Ni/Si比
本発明では、更に合金組成のうち、Niの総量のSiに対する質量濃度比(Ni/Si)を規定した。
本発明ではNi/Si比を従来報告されている規定範囲3≦Ni/Si≦7よりも低い数値範囲とすることにより、すなわち高Si濃度に制御することにより、共に添加するNiのシリサイド形成にSiが寄与し、また析出に寄与しない過剰Niの固溶による導電率の低下を軽減できる。しかし、重量濃度比がNi/Si<4の場合では、今度はSiの比率が高過ぎるため固溶Siにより導電率が低下するだけでなく,焼鈍工程において材料表層にSiOの酸化皮膜を形成するため半田付け性が劣化する。また、強化に寄与しないNi−Si系析出粒子が粗大化しやすく、曲げ加工時の割れ発生の起点やめっき不良部となりやすい。一方Siに対するNiの割合を高くしていき、Ni/Si>5となると導電率が著しく低下し、電子材料用として好ましくない。
よって本発明では、合金組成中のNi/Si比を4≦[Ni+Co]/Si≦5の範囲に制御する。
Ni/Si比は好ましくは4.2≦Ni/Si≦4.7である。
Ni / Si ratio In the present invention, the mass concentration ratio (Ni / Si) of the total amount of Ni to Si in the alloy composition is further defined.
In the present invention, by setting the Ni / Si ratio to a numerical range lower than the conventionally reported prescribed range 3 ≦ Ni / Si ≦ 7, that is, by controlling to a high Si concentration, it is possible to form Ni silicide added together. The decrease in conductivity due to the solid solution of excess Ni that contributes to Si and does not contribute to precipitation can be reduced. However, when the weight concentration ratio is Ni / Si <4, this time, the Si ratio is too high, so that not only the electric conductivity is lowered by solute Si, but also an oxide film of SiO 2 is formed on the material surface layer in the annealing process. As a result, solderability deteriorates. Further, Ni—Si-based precipitated particles that do not contribute to strengthening are likely to be coarsened, and are liable to become a starting point of crack generation during bending and a plating defect portion. On the other hand, when the ratio of Ni to Si is increased and Ni / Si> 5, the conductivity is remarkably lowered, which is not preferable for an electronic material.
Therefore, in the present invention, the Ni / Si ratio in the alloy composition is controlled in the range of 4 ≦ [Ni + Co] / Si ≦ 5.
The Ni / Si ratio is preferably 4.2 ≦ Ni / Si ≦ 4.7.

その他の添加材
P、As、Sb、Be、B、Sn、Ti、Zr、Al、Fe、Zn及びAgは所定量を添加することで様々な効果を示すが、相互に補完し、強度,導電率だけでなく曲げ加工性,めっき性や鋳塊組織の微細化による熱間加工性の改善のような製造性をも改善する効果もあるのでCu−Ni−Si系合金にこれらの1種又は2種以上を求められる特性に応じて適宜添加することができる。そのような場合、その総量は0.001〜2.0質量%、好ましくは0.01〜1.0質量%である。逆にこれらの元素の総量が0.001質量%未満だと所望の効果が得られず、2.0質量%を超えると導電率の低下や製造性の劣化が顕著になり好ましくない。
Other additives P, As, Sb, Be, B, Sn, Ti, Zr, Al, Fe, Zn, and Ag show various effects by adding predetermined amounts, but complement each other, strength, conductivity In addition to the rate, there is also an effect of improving manufacturability such as improvement of hot workability by refining the bendability, plating property and ingot structure, so one of these is added to the Cu-Ni-Si alloy. Two or more kinds can be appropriately added according to the required properties. In such a case, the total amount is 0.001 to 2.0 mass%, preferably 0.01 to 1.0 mass%. On the other hand, if the total amount of these elements is less than 0.001% by mass, the desired effect cannot be obtained, and if it exceeds 2.0% by mass, the decrease in conductivity and the deterioration of manufacturability become remarkable.

介在物
本発明では、NiとSiの組成を両論組成近傍に制御することにより特性改善を図ることを目的とする。
Cu−Ni−Si系銅合金における介在物について、Ni、Siおよび酸素を含有し、その合計量が10質量%を超えるような介在物が観察される。このような介在物が多いと、特性に寄与するNi、Siが介在物中に取り込まれるため、合金中に必要なNi、Siの量が確保できず、本来の所望する強度を得ることができない。Ni、Siおよび酸素を含有し、その合計量が10質量%以上である介在物は、溶解・鋳造工程で形成されるが、このような介在物を、圧延や溶体化処理等の熱処理で母相中に固溶させ、消滅させることは困難である。従って、溶解・鋳造工程からこれらの介在物の個数が少ないことが望ましい。
Inclusions In the present invention, it is an object to improve the characteristics by controlling the composition of Ni and Si in the vicinity of the relativistic composition.
Regarding the inclusions in the Cu—Ni—Si-based copper alloy, inclusions containing Ni, Si and oxygen and having a total amount exceeding 10 mass% are observed. When there are many such inclusions, Ni and Si contributing to the characteristics are taken into the inclusions, so the amount of Ni and Si necessary in the alloy cannot be secured, and the original desired strength cannot be obtained. . Inclusions containing Ni, Si and oxygen, the total amount of which is 10% by mass or more, are formed in the melting / casting process. Such inclusions can be formed by heat treatment such as rolling or solution treatment. It is difficult to dissolve and dissolve in the phase. Therefore, it is desirable that the number of these inclusions is small from the melting / casting process.

しかしながら、これらの介在物の個数少なくても、時効処理等において添加元素であるNiおよびSiを消費して介在物が粗大化した状態で存在する場合には、Ni、Siが介在物中に多く含まれることとなり、添加量に見合った所望の特性を損なうことになる。介在物の大きさが1μm以上になると、介在物中に含まれるNi,Siの量が無視できず、さらには、5μmを超えるとさらに顕著となり、特性への悪影響は大きい。またMgも同様の機構で介在物中に多く含有されるため応力緩和特性を損なう。さらに、このような粗大な介在物は、曲げ加工性、めっき性等の特性を損なう。したがって、介在物が粗大化した場合には、介在物の個数は粗大化していない場合よりさらに少なくなくてはならなく、単に一定の個数を規定し、個数が規定内であるとしても所望の強度は得られない。   However, even if the number of these inclusions is small, when Ni and Si as additive elements are consumed in the aging treatment or the like and the inclusions are present in a coarse state, Ni and Si are much contained in the inclusions. It will be included, and the desired characteristics commensurate with the amount added will be impaired. When the size of inclusions is 1 μm or more, the amount of Ni and Si contained in the inclusions cannot be ignored, and when the size exceeds 5 μm, it becomes more prominent and the adverse effect on the characteristics is great. Further, since Mg is contained in a large amount by inclusions in the same mechanism, the stress relaxation property is impaired. Further, such coarse inclusions impair properties such as bending workability and plating properties. Therefore, when inclusions are coarsened, the number of inclusions must be even smaller than when the inclusions are not coarsened, and simply specify a certain number and the desired strength even if the number is within the specified range. Cannot be obtained.

そこで、Ni、Siおよび酸素の合計量が10質量%以上の介在物において、大きさが1μm以上の介在物の個数が少なく、かつ粗大化していない状態を表す指標としてNi、Siおよび酸素の合計量が10質量%以上の介在物において、大きさが1μm以上5μm以下の介在物の個数と0.1μm以上の介在物総個数(P)と比較することであるを見出した。
なお、本発明では、Ni、Siおよび酸素の合計量が10質量%以上の介在物において大きさが5μmをこえる介在物が存在すると、曲げ加工性が特に顕著に悪くなるため、Ni、Siおよび酸素の合計量が10質量%以上の介在物は5μm以下と規定した。
Therefore, in the inclusions having a total amount of Ni, Si and oxygen of 10% by mass or more, the number of inclusions having a size of 1 μm or more is small and the sum of Ni, Si and oxygen is used as an index indicating a state of not being coarsened. It was found that the amount of inclusions having a size of 10% by mass or more is compared with the number of inclusions having a size of 1 μm or more and 5 μm or less and the total number of inclusions (P) of 0.1 μm or more.
In the present invention, if there are inclusions having a size exceeding 5 μm in inclusions with a total amount of Ni, Si and oxygen of 10% by mass or more, the bending workability is particularly remarkably deteriorated. Inclusions with a total oxygen content of 10% by mass or more were defined as 5 μm or less.

本発明は、以下の知見に基づいてなされたものである。
本発明では、大きさ0.1μm以上の介在物個数を測定することにしている。大きさ0.1μm以上の介在物の個数は、Ni、Siおよび酸素の合計が10質量%以上の介在物を粗大化させない条件に制御されている場合には、大きさ0.1μm以上の介在物個数(P)は比較的安定している。一方、Ni、Siおよび酸素の合計が10質量%以上の介在物が粗大化している状態のときは、その他の介在物も粗大化し、大きさ0.1μm以上の介在物個数(P)は、少なくなっている。したがって、Ni、Siおよび酸素の合計が10質量%以上の介在物において、大きさが1μm以上5μm以下の介在物の個数(Po)が同じ個数でも大きさ0.1μm以上の介在物個数(P)については、粗大化している場合のほうが小さいため、比(Po/P)は大きくなる。Poが同じであれば、上述したように粗大化している場合のほうが、介在物にNi、Siを多く含まれるため、所望の強度はえられない。比(Po/P)は大きいと好ましくないといえる。もちろん、Pが同じでPoが大きい場合には、比(Po/P)は大きくなり、大きい場合が好ましくないのはあきらかである。このことに本発明は着目し、Po/Pが0.1以下であれば、よい結果がえられることを見出したのである。
即ち、含有するNi、Si、および酸素濃度の合計が10質量%以上である介在物において1μm以上5μm以下の介在物の個数(Po)と大きさ0.1μm以上の介在物総個数(P)との比(Po/P)が0.1以下であれば所望の特性が得られる。
The present invention has been made based on the following findings.
In the present invention, the number of inclusions having a size of 0.1 μm or more is measured. When the number of inclusions having a size of 0.1 μm or more is controlled so as not to coarsen inclusions having a total of Ni, Si and oxygen of 10% by mass or more, inclusions having a size of 0.1 μm or more are included. The number of objects (P) is relatively stable. On the other hand, when the inclusions with a total of 10% by mass or more of Ni, Si and oxygen are coarsened, the other inclusions are also coarsened, and the number of inclusions (P) having a size of 0.1 μm or more is It is running low. Therefore, in the inclusions in which the total of Ni, Si and oxygen is 10% by mass or more, even if the number of inclusions (Po) having a size of 1 μm to 5 μm is the same, the number of inclusions having a size of 0.1 μm or more (P ), The ratio (Po / P) is large because the coarser case is smaller. If the Po is the same, the desired strength cannot be obtained in the case of coarsening as described above because inclusions contain more Ni and Si. It can be said that a large ratio (Po / P) is not preferable. Of course, when P is the same and Po is large, the ratio (Po / P) is large, and it is obvious that the ratio is not preferable. The present invention pays attention to this, and has found that good results can be obtained if Po / P is 0.1 or less.
That is, the number of inclusions (Po) of 1 μm or more and 5 μm or less and the total number of inclusions (P) of size of 0.1 μm or more in inclusions in which the total of Ni, Si and oxygen contained is 10% by mass or more. If the ratio (Po / P) is 0.1 or less, desired characteristics can be obtained.

本発明における「介在物」とは,時効焼鈍Cu−Ni−Si系合金における鋳造時の凝固過程以降,即ち凝固後の冷却過程,熱間圧延後の冷却過程および時に固相のマトリックス中に析出反応で生じる析出物,鋳造時の凝固過程の偏析により生じ一般に粗大である晶出物ならびに溶解時の溶湯内での反応により生じる不純物である酸化物,硫化物など,本合金のSEM観察によりマトリックス中に観察される粒子を包括するものとして使用する。「介在物の大きさ」は介在物をFE-AES観察下でのその介在物を含む最小円の直径をいう。「介在物の個数」とは,材料の板面を電解研磨後FE-AES観察により,多数箇所において実際に数えた1000μmあたりに分散する大きさ0.1μm以上の介在物個数である。介在物中に含有するNi、Si、および酸素濃度の合計が10質量%以上である介在物とは、上記FE-AES観察で観察された大きさ1μm以上の介在物について、表層の吸着元素(C,O)を除くためAr+でスパッタリングを行い、各介在物ごとのオージェスペクトルを測定し、検出された元素を感度係数法により半定量値として重量濃度換算した際に、そのNi、Si、酸素の分析値が合計で10質量%以上であった介在物の個数である。 In the present invention, “inclusions” means precipitation after solidification during casting in an age-annealed Cu—Ni—Si alloy, ie, cooling after solidification, cooling after hot rolling, and sometimes in a solid matrix. SEM observation of this alloy, such as precipitates generated by reaction, crystallized crystals that are generally coarse due to segregation during solidification during casting, and oxides and sulfides that are impurities generated by reaction in the molten metal during melting Used to encompass particles observed inside. “Inclusion size” refers to the diameter of the smallest circle containing the inclusion under FE-AES observation. The “number of inclusions” is the number of inclusions having a size of 0.1 μm or more that is dispersed per 1000 μm 2 actually counted at a large number of locations by FE-AES observation after electrolytic polishing of the plate surface of the material. The inclusion in which the total concentration of Ni, Si, and oxygen contained in the inclusion is 10% by mass or more refers to the adsorbed element on the surface layer of the inclusion having a size of 1 μm or more observed in the FE-AES observation ( Sputtering with Ar + to remove (C, O), measuring the Auger spectrum for each inclusion, and when the detected element was converted into a weight concentration as a semi-quantitative value by the sensitivity coefficient method, the Ni, Si, It is the number of inclusions whose analysis value of oxygen was 10% by mass or more in total.

製造方法
Cu−Ni−Si系合金の慣例の製造方法により製造可能であるが、Ni、Si、および酸素濃度の合計が10質量%以上である介在物において5μm以下であり、1μm以上の介在物個数(Po)と大きさ0.1μm以上の介在物総個数(P)との比(Po/P)との0.1以下とするためには、Ni、Si、および酸素濃度の合計が10質量%以上である介在物を少なくすることとNi、Si、および酸素濃度の合計が10質量%以上である介在物を含めた介在物を粗大化させないことである。Ni、Si、および酸素濃度の合計が10質量%以上である介在物を少なくするためには、溶解・鋳造における酸化物の生成を制御することであり、溶解鋳造において、原料の選定、るつぼの選定、木炭被覆、雰囲気制御などにより厳密に抑制しておくことである。
溶解・鋳造工程以外においても極力酸化物の生成をさえる必要があり、熱処理の雰囲気は、還元性であればよく、CO/CO比を調整した燃焼ガス雰囲気であってもよい。
Manufacturing method Cu—Ni—Si based alloy can be manufactured by a conventional manufacturing method, but the inclusion of Ni, Si and oxygen concentration of 10% by mass or more is 5 μm or less, and the inclusion is 1 μm or more. In order to make the ratio (Po / P) of the number (Po) and the total number of inclusions (P) having a size of 0.1 μm or more (Po / P) to be 0.1 or less, the total of Ni, Si, and oxygen concentration is 10 It is to reduce inclusions that are greater than or equal to mass% and not to increase inclusions including inclusions that have a total of Ni, Si, and oxygen concentrations of greater than or equal to 10 mass%. In order to reduce the inclusions with a total of Ni, Si, and oxygen concentration of 10% by mass or more, it is necessary to control the generation of oxides during melting and casting. It is strictly controlled by selection, charcoal coating, atmosphere control, etc.
It is necessary to suppress the generation of oxides as much as possible other than the melting / casting process, and the atmosphere of the heat treatment may be a reducing gas, and may be a combustion gas atmosphere in which the CO / CO 2 ratio is adjusted.

Ni、Si、および酸素濃度の合計が10質量%以上である介在物を含めた介在物を粗大化させない,即ち5μm以下とし、かつ1μm以上のものをための製造条件を述べる。
前記介在物のうち、Cu−Ni−Siで構成される粗大な晶出物、析出物は、熱間圧延を行う前の均質化焼鈍で、900℃以上の温度で1時間以上の加熱を行うと固溶できる。この温度が900℃未満の場合では、凝固時の粗大な偏析を十分拡散させることは困難であり、この均質化焼鈍以降の工程で溶体化を伴う焼鈍を高温長時間で行う場合には、別の機構でほぼ同時に進行する再結晶粒の大きさが粗大になり、曲げ加工性が劣化する。一方この温度が1000℃以上の場合では、凝固時の局所的な濃度揺らぎにより、晶出物が液相を生成し、熱間圧延中に重大な割れを引き起こす。よって熱間圧延前の加熱は900℃以上1000℃未満の温度で1時間以上加熱し、熱間圧延の終了温度は650℃以上とするとよい。
Production conditions for inclusions including inclusions including Ni, Si, and inclusions with a total oxygen concentration of 10% by mass or more are not coarsened, that is, 5 μm or less and 1 μm or more.
Among the inclusions, coarse crystals and precipitates composed of Cu—Ni—Si are homogenized annealing before hot rolling, and are heated at a temperature of 900 ° C. or more for 1 hour or more. And can be dissolved. When this temperature is less than 900 ° C., it is difficult to sufficiently diffuse coarse segregation during solidification, and when annealing with solution treatment is performed in a high temperature and a long time after this homogenization annealing, With this mechanism, the size of recrystallized grains that progress almost simultaneously becomes coarse, and the bending workability deteriorates. On the other hand, when this temperature is 1000 ° C. or higher, the crystallized product forms a liquid phase due to local concentration fluctuations during solidification, and causes serious cracking during hot rolling. Therefore, the heating before hot rolling is preferably performed at a temperature of 900 ° C. or higher and lower than 1000 ° C. for 1 hour or longer, and the end temperature of hot rolling is preferably 650 ° C. or higher.

熱間圧延以降の工程はCu−Ni−Si系銅合金の一般的な製造プロセスと同様で、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、1000℃未満の高温に加熱して、析出物を形成する、Ni、Si等の化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、350〜550℃の温度範囲で1h以上加熱し、溶体化処理で固溶させたNi、Si等の化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効処理の温度が低い場合は長時間の熱処理を施すことで微細な析出物が分散し、高い温度で時効処理を行う場合には、析出物の粗大化を回避するため、短時間の熱処理を行えばよい。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行うことがある。また、時効後に冷間圧延を行う場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行うことがある。 The steps after the hot rolling are the same as the general manufacturing process of the Cu—Ni—Si based copper alloy, and the cold rolling and the heat treatment are repeated to finish the strip or foil having the desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, a compound such as Ni or Si that forms a precipitate is heated to a high temperature of less than 1000 ° C. to form a solid solution in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, heating is performed for 1 hour or more in a temperature range of 350 to 550 ° C., and a compound such as Ni or Si that is solid-solutioned by the solution treatment is precipitated as fine particles. This aging treatment increases strength and conductivity. When the aging treatment temperature is low, fine precipitates are dispersed by heat treatment for a long time, and when aging treatment is performed at a high temperature, a short heat treatment is performed to avoid coarsening of the precipitates. Just do it. In order to obtain higher strength, cold rolling may be performed before aging and / or after aging. In addition, when cold rolling is performed after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.

本発明によるCu−Ni−Si系銅合金は、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるリードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。   The Cu—Ni—Si based copper alloy according to the present invention is a lead frame, connector, pin, terminal, relay, switch, secondary battery that is required to achieve both high strength and high electrical conductivity (or thermal conductivity). It can be used for electronic parts such as foil materials.

以下に本発明の具体例を示すが、これら実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Specific examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.

本発明の実施例に用いる銅合金は、表1に示すようにNi、Si及びMg、Mnの含有量をいくつか変化させた銅合金に適宜Sn,Zn,Ag及びBを添加した組成を有する。また、比較例に用いる銅合金は、それぞれ本発明の範囲外のパラメータをもつCu−Ni−Si系合金である。   As shown in Table 1, the copper alloy used in the examples of the present invention has a composition in which Sn, Zn, Ag, and B are appropriately added to a copper alloy in which some contents of Ni, Si, Mg, and Mn are changed. . Moreover, the copper alloy used for a comparative example is a Cu-Ni-Si type | system | group alloy with a parameter outside the range of this invention, respectively.

表1に記載の各種成分組成の銅合金を、高周波溶解炉を用い、1100℃以上で溶製し、厚さ25mmのインゴットに鋳造した。次いで、このインゴットを900℃以上で加熱後、板厚10mmまで熱間圧延し、速やかに冷却を行った。表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.3mmの板とした。次にNiの添加量に応じて750〜1000℃の温度範囲で溶体化処理を5〜3600秒行い、水冷により焼き入れを行った。その後0.15mmまで冷間圧延して、最後に添加量に応じて350℃〜550℃で各1〜24時間かけて不活性雰囲気中で時効処理を施して,試料を製造した。   Copper alloys having various component compositions shown in Table 1 were melted at 100 ° C. or higher using a high-frequency melting furnace and cast into an ingot having a thickness of 25 mm. Subsequently, this ingot was heated at 900 ° C. or higher, then hot-rolled to a plate thickness of 10 mm, and quickly cooled. After removing the surface from the surface by chamfering to a thickness of 9 mm, the plate was 0.3 mm thick by cold rolling. Next, solution treatment was performed for 5 to 3600 seconds in a temperature range of 750 to 1000 ° C. according to the amount of Ni added, and quenching was performed by water cooling. Thereafter, it was cold-rolled to 0.15 mm, and finally subjected to an aging treatment in an inert atmosphere at 350 ° C. to 550 ° C. for 1 to 24 hours according to the amount added, thereby producing a sample.

このようにして得られた各合金につき強度及び導電率の特性評価を行った。強度については圧延平行方向での引っ張り試験を行って0.2%耐力(YS)を測定し、導電率(EC;%IACS)についてはWブリッジによる体積抵抗率測定により求めた。
曲げ加工性の評価は,W字型の金型を用いて試料板厚と曲げ半径の比が1となる条件で曲げ加工を行った.評価は曲げ加工部表面を光学顕微鏡で観察し,クラックが観察されない場合を実用上問題ないと判断して○とし,クラックが認められた場合を×とした。
The characteristics of strength and conductivity were evaluated for each alloy thus obtained. For strength, a tensile test in the rolling parallel direction was performed to measure 0.2% proof stress (YS), and conductivity (EC;% IACS) was determined by volume resistivity measurement using a W bridge.
Evaluation of bending workability was performed using a W-shaped mold under the condition that the ratio of the sample plate thickness to the bending radius was 1. In the evaluation, the surface of the bent portion was observed with an optical microscope, and when no crack was observed, it was judged that there was no problem in practical use.

応力緩和特性は,EMAS−3003に準拠して行った.150℃の大気中で,0.2%耐力の80%に相当する曲げ応力を負荷し,1000時間後の応力緩和率を評価した.応力緩和特性の良比は,緩和率20%を目安とした。
表面特性は半田付け性により評価を行った。半田付け性の評価はメニスコグラフ法で行い,235±3℃の60%Sn−Pb浴に深さ2mmで十秒間浸漬し,半田が完全に濡れるまでの時間,半田濡れ時間を測定した。なお半田付け性評価前の前処理は,アセトン脱脂後,酸洗として10vol%硫酸水溶液に10秒間浸漬・攪拌し,水洗・乾燥後,25%ロジン−エタノール溶液中に試験片を5秒間浸漬させフラックスを塗布した。半田濡れ時間の良否の目安は2秒以下を良好とした.
The stress relaxation characteristics were performed in accordance with EMAS-3003. Bending stress equivalent to 80% of 0.2% proof stress was applied in an atmosphere at 150 ° C, and the stress relaxation rate after 1000 hours was evaluated. The good ratio of stress relaxation characteristics was set at a relaxation rate of 20%.
The surface characteristics were evaluated by solderability. Solderability was evaluated by a meniscograph method, immersed in a 60% Sn—Pb bath at 235 ± 3 ° C. for 10 seconds at a depth of 2 mm, and the time until the solder was completely wetted and the solder wetting time were measured. The pre-treatment before solderability evaluation was performed by degreasing acetone, dipping and stirring in 10 vol% sulfuric acid aqueous solution for 10 seconds as acid pickling, washing and drying, and then dipping the test piece in 25% rosin-ethanol solution for 5 seconds. Flux was applied. The standard for the quality of solder wetting time is 2 seconds or less.

「介在物の個数」の測定は,材料の板面を電解研磨後FE-AESにより観察し,1000μmあたりに分散する大きさ0.1μm以上の介在物を数え、そのうち大きさ1μm以上の介在物について、表層の吸着元素(C,O)を除くためAr+でスパッタリングを行い、各介在物ごとのオージェスペクトルを測定し、検出された元素を感度係数法により半定量値として重量濃度換算した際に、そのNi、Siおよび酸素分析値の合計が10質量%以上であった介在物の個数を数え、100μmを1視野として10視野観察した。 The number of inclusions is measured by observing the plate surface of the material with FE-AES after electropolishing and counting inclusions with a size of 0.1 μm or more dispersed per 1000 μm 2 , of which the inclusions with a size of 1 μm or more are counted. In order to remove the adsorbed elements (C, O) on the surface layer, sputtering was performed with Ar + , the Auger spectrum for each inclusion was measured, and the detected element was converted into a weight concentration as a semi-quantitative value by the sensitivity coefficient method. At that time, the number of inclusions whose total of Ni, Si and oxygen analysis values was 10% by mass or more was counted, and 10 visual fields were observed with 100 μm 2 as one visual field.

Figure 0004813814
Figure 0004813814

表1に結果をします。
本発明例No.1〜21までは、介在物中に含有するNi、Si、および酸素濃度の合計が10質量%以上の介在物において5μmを超えるものは見当たらず、1μm以上の個数(Po)と0.1μm以上の介在物総個数(P)との比(Po/P)が0.1となり、請求強度、導電率、応力緩和性、曲げ加工性、半田濡れ性とも良好な結果がえられている。
一方、比較例No.22はNi、Siが所定の量より少ないため、強度が得られていない。比較例No.23はNi、Siが過剰なため、導電率、曲げ加工性が悪い。比較例No.24、25はNi/Siが4未満、即ちSiが過剰な状態であるため、導電率、曲げ加工性、応力緩和性、半田濡れ性も悪い。
比較例No.26、27はNi/Siが5を超える場合、即ちSiが不足な状態であるため、強度が得られず、また、導電率、半田濡れ性も悪い。
The results are shown in Table 1.
Invention Example No. From 1 to 21, no inclusion exceeding 5 μm was found in inclusions with a total of 10 mass% or more of Ni, Si, and oxygen contained in inclusions, and the number (Po) of 1 μm or more and 0.1 μm or more The ratio (Po / P) to the total number of inclusions (P) is 0.1, and good results are obtained in terms of the required strength, electrical conductivity, stress relaxation, bending workability, and solder wettability.
On the other hand, Comparative Example No. In No. 22, Ni and Si are less than a predetermined amount, so that strength is not obtained. Comparative Example No. Since Ni and Si are excessive, No. 23 has poor conductivity and bending workability. Comparative Example No. Nos. 24 and 25 have Ni / Si of less than 4, that is, Si is in an excessive state, and therefore conductivity, bending workability, stress relaxation property, and solder wettability are also poor.
Comparative Example No. In Nos. 26 and 27, when Ni / Si exceeds 5, that is, Si is insufficient, strength cannot be obtained, and conductivity and solder wettability are also poor.

比較例No.28、29は、均質化焼鈍温度が800℃と低いため、溶解鋳造工程で発生した粗大化した介在物を小さくでききれず、一部粗大なものが残っている。それゆえ、5μm以上の介在物が存在し、また、比(Po/P)いずれも0.1を超え、強度、応力緩和性、曲げ加工性、半田濡れ性が悪い。
比較例No.30は溶体化温度が700℃であったため十分に固溶できなかったため5μm以上の介在物が存在し、また、比(Po/P)が0.1を超え、強度、応力緩和性、曲げ加工性、半田濡れ性が悪い。
比較例No.31は、溶体化は十分実施できたが時効条件を600℃−15Hとした為か時効となって5μmを超えるものは存在しないが、1μm以上の粒子数の割合が増加した。従って、比(Po/P)が0.1を超え、強度、曲げ加工性、半田濡れ性が悪い。
Comparative Example No. Nos. 28 and 29 have a homogenization annealing temperature as low as 800 ° C., so that the coarsened inclusions generated in the melting and casting process cannot be reduced, and some of them remain coarse. Therefore, inclusions of 5 μm or more exist, and the ratio (Po / P) exceeds 0.1, and the strength, stress relaxation property, bending workability, and solder wettability are poor.
Comparative Example No. 30 had a solution temperature of 700 ° C. and was not sufficiently solid-solved, so there were inclusions of 5 μm or more, and the ratio (Po / P) exceeded 0.1, and the strength, stress relaxation property, bending work And solder wettability are poor.
Comparative Example No. No. 31 was sufficiently solution-treated, but it was aged because the aging conditions were 600 ° C. to 15H, but there were no particles exceeding 5 μm, but the ratio of the number of particles of 1 μm or more increased. Therefore, the ratio (Po / P) exceeds 0.1, and the strength, bending workability, and solder wettability are poor.

なお、均質化焼鈍温度が1020℃で熱延割れを起こし、以下の加工ができず、評価できなかった。

The homogenization annealing temperature was 1020 ° C., causing hot rolling cracks, and the following processing could not be performed and evaluation was not possible.

Claims (5)

Ni:1.5〜4質量%,Si:0.30〜1.2質量%及びMg:0.03〜0.5質量%を含有し,残部Cu及び不可避的不純物から構成され,合金組成中のNiとSiの質量濃度比(Ni/Si比)が,4≦[Ni/Si]≦5の範囲にあることを特徴とする銅合金において、材料中に分散する介在物のうち、介在物中に含有するNi、Si、及び酸素濃度の合計が10質量%以上である特定の介在物は大きさが5μm以下であり、前記特定の介在物のうち、大きさが1μm以上である介在物の個数(Po)と材料中に分散する介在物のうち大きさが0.1μm以上の介在物総個数(P)との比(Po/P)が0.1以下であることを特徴とする電子材料用Cu−Ni−Si系銅合金。 Ni: 1.5-4% by mass, Si: 0.30-1.2% by mass and Mg: 0.03-0.5% by mass, composed of the balance Cu and unavoidable impurities, In the copper alloy, the mass concentration ratio of Ni to Si (Ni / Si ratio) is in the range of 4 ≦ [Ni / Si] ≦ 5. Among the inclusions dispersed in the material, the inclusions The specific inclusion in which the total of Ni, Si, and oxygen concentration contained therein is 10% by mass or more has a size of 5 μm or less, and among the specific inclusions, the inclusion has a size of 1 μm or more The ratio (Po / P) between the number of inclusions (Po) and the total number of inclusions (P) having a size of 0.1 μm or more among the inclusions dispersed in the material is 0.1 or less. Cu-Ni-Si based copper alloy for electronic materials. 更に、MnをMgの含有量との合計で、0.03〜0.5質量%含有することを特徴とする請求項1に記載の電子材料用Cu−Ni−Si系銅合金。Furthermore, Cu-Ni-Si type | system | group copper alloy for electronic materials of Claim 1 which contains 0.03-0.5 mass% of Mn in total with content of Mg. にAs、Sb、Be、T、Al、Fe及びAgよりなる群から選択される1種又は2種以上を合計で0.001〜2.0質量%含有する請求項1又は2に記載の電子材料用Cu−Ni−Si系銅合金。 Claim further to A s, Sb, Be, T i, A l, containing 0.001 to 2.0 wt% of one or two or more in total selected from the group consisting of F e及 beauty Ag 1 Or a Cu—Ni—Si based copper alloy for electronic materials according to 2 ; 原料の選定、るつぼの選定、木炭被覆、雰囲気制御等により、溶解・鋳造における酸化物の生成を抑制し、熱間圧延前に鋳塊を900℃以上1000℃未満の温度で加熱した後、熱間圧延して熱間圧延終了温度を650℃以上とし、その後熱処理と冷間圧延を行い、この素材に対し、材料温度が750〜1000℃での溶体化処理と材料温度が350〜550℃の温度での時効処理を行うことを特徴とする請求項1〜のうちいずれかに記載した電子材料用Cu−Ni−Si系銅合金の製造方法。 By selecting raw materials, crucible selection, charcoal coating, atmosphere control, etc., the formation of oxides in melting and casting is suppressed, and the ingot is heated at a temperature of 900 ° C. or higher and lower than 1000 ° C. before hot rolling, The hot rolling finish temperature is set to 650 ° C. or higher by performing hot rolling, and then heat treatment and cold rolling are performed. For this material, a solution treatment at a material temperature of 750 to 1000 ° C. and a material temperature of 350 to 550 ° C. The method for producing a Cu-Ni-Si-based copper alloy for electronic materials according to any one of claims 1 to 3 , wherein an aging treatment is performed at a temperature. 請求項1〜3の何れか一項に記載の電子材料用Cu−Ni−Si系銅合金を用いた電子部品。 The electronic component using the Cu-Ni-Si type | system | group copper alloy for electronic materials as described in any one of Claims 1-3.
JP2005104135A 2005-03-31 2005-03-31 Cu-Ni-Si based copper alloy and method for producing the same Active JP4813814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104135A JP4813814B2 (en) 2005-03-31 2005-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104135A JP4813814B2 (en) 2005-03-31 2005-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006283107A JP2006283107A (en) 2006-10-19
JP4813814B2 true JP4813814B2 (en) 2011-11-09

Family

ID=37405317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104135A Active JP4813814B2 (en) 2005-03-31 2005-03-31 Cu-Ni-Si based copper alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4813814B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
US20100269963A1 (en) 2007-11-01 2010-10-28 Kiyoshige Hirose Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
JP2010106332A (en) * 2008-10-31 2010-05-13 Furukawa Electric Co Ltd:The Copper alloy material for structural member of resistance welding machine
JP5452060B2 (en) * 2009-04-03 2014-03-26 三菱電機株式会社 Copper alloy and manufacturing method thereof
TWI515313B (en) * 2010-12-13 2016-01-01 日本精線股份有限公司 A copper alloy fine wire and copper alloy spring and a method of making the same
JP5417366B2 (en) * 2011-03-16 2014-02-12 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP6452472B2 (en) * 2014-01-27 2019-01-16 古河電気工業株式会社 Copper alloy material and method for producing the same
WO2022139466A1 (en) * 2020-12-23 2022-06-30 한국재료연구원 Copper-nickel-silicon-manganese alloy comprising g-phase and manufacturing method therefor
KR102701164B1 (en) * 2020-12-23 2024-09-02 한국재료연구원 Cu-Ni-Si-Mn alloy with reduced inclusions and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006283107A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5475230B2 (en) Copper alloy for electronic materials
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
CN102112639A (en) Copper alloy material for electrical and electronic components, and manufacturing method therefof
JP5619389B2 (en) Copper alloy material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5261161B2 (en) Ni-Si-Co-based copper alloy and method for producing the same
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP4574583B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP2007126739A (en) Copper alloy for electronic material
JP4175920B2 (en) High strength copper alloy
JP2010209379A (en) Copper alloy material for terminal-connector, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4813814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250