[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4812255B2 - Cutting tool manufacturing method - Google Patents

Cutting tool manufacturing method Download PDF

Info

Publication number
JP4812255B2
JP4812255B2 JP2004013062A JP2004013062A JP4812255B2 JP 4812255 B2 JP4812255 B2 JP 4812255B2 JP 2004013062 A JP2004013062 A JP 2004013062A JP 2004013062 A JP2004013062 A JP 2004013062A JP 4812255 B2 JP4812255 B2 JP 4812255B2
Authority
JP
Japan
Prior art keywords
cutting tool
cutting
thickness
hard coating
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004013062A
Other languages
Japanese (ja)
Other versions
JP2005205516A (en
Inventor
倬司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitac Inc
Original Assignee
Unitac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitac Inc filed Critical Unitac Inc
Priority to JP2004013062A priority Critical patent/JP4812255B2/en
Publication of JP2005205516A publication Critical patent/JP2005205516A/en
Application granted granted Critical
Publication of JP4812255B2 publication Critical patent/JP4812255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は寿命の長い切削工具を製造する方法と、寿命の長い切削工具に関する。本発明における切削工具には、所謂使い捨てタイプのスローアウエィチップや、被削材を切削する切刃チップと工具本体をガイドするガイドチップを銀ロー付け材などによって工具本体にロー付けした切削工具が含まれる。被削材に接触し擦れ合う部分であるチップやガイドは超硬合金で作られる。チップやガイドを支える工具本体は特殊鋼などで作られる。このような切刃等をロー付けした工具の場合も被処理物の加工を行う内に摩耗して切刃の刃先が鈍磨してくるともはや使いものにならず、そこで寿命は終わる。スローアウエィチップは、そのものだけを使い捨てすればよいが、切刃等をロー付けした切削工具にあっては工具本体ごと新しいものに交換しなければならない。   The present invention relates to a method for manufacturing a cutting tool having a long life and a cutting tool having a long life. The cutting tool in the present invention includes a so-called disposable throw-away tip, a cutting tool in which a cutting tip for cutting a work material and a guide tip for guiding the tool main body are brazed to the tool main body with a silver brazing material or the like. included. Chips and guides, which are parts that come into contact with and rub against the work material, are made of cemented carbide. The tool body that supports the insert and guide is made of special steel. Even in the case of a tool with such a cutting blade brazed, it is no longer usable when it is worn and the cutting edge of the cutting edge becomes dulled while the workpiece is processed, and the life ends there. The throw-away tip is only disposable, but the cutting tool with a brazing blade or the like must be replaced with a new tool body.

切削工具の寿命の定義は様々であるが、ある特定の同一形状、同一物質の対象物を幾つ加工できるかということで寿命を定義することができる。対象物である被削材を40個加工できる切削工具は、同じ対象物を20個加工できる切削工具に比べ寿命が2倍だということができる。   There are various definitions of the life of a cutting tool, but the life can be defined by how many objects of the same specific shape and the same material can be processed. It can be said that a cutting tool capable of machining 40 workpieces, which are objects, has a lifespan twice that of a cutting tool capable of machining 20 identical objects.

特公昭61−40485号「ソリッドタイプの切削刃」Japanese Patent Publication No.61-40485 "Solid cutting blade" 特公昭61−40486号「スローアウエイチップ」Japanese Patent Publication No.61-40486 "Slowaway Chip" 特開2003−236713「深孔切削用スローアウエイチップと深孔切削用スローアウエイドリル」JP 2003-236713 “Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting” 特許第2702061号「ドリルヘッド」Japanese Patent No. 2702661 “Drill Head” 特許第2655995号「二枚刃切削工具」Japanese Patent No. 2559599 “Two-Flute Cutting Tool” 実公平7−39523号「深孔切削用ドリルヘッド」No. 7-39523 “Drill Head for Deep Hole Cutting” 実公平7−1220号「深孔加工用超硬ドリル」No.7-12 “Carbide drill for deep hole machining”

特許文献1〜3は本出願人になるスローアウエイチップの文献である。これは単独の切刃をもつチップでありボルトによって回転治具に固定される。図1にその一例を示す。平行四辺形で長辺の両側が切断刃になり真ん中にボルト止め孔がある。   Patent documents 1 to 3 are documents of the throw-away tip that becomes the present applicant. This is a chip having a single cutting edge and is fixed to a rotating jig by a bolt. An example is shown in FIG. A parallelogram that has cutting edges on both sides and a bolt hole in the middle.

特許文献4〜7は本出願人になる切刃やガイドを工具本体にロー付けした切削工具である。例えば、中空の回転軸からなる工具本体の先端に切刃とガイドの小片が埋め込まれている。図2にその一例を示す。本発明はそれらの切削工具のどれにも適用できるし、それ以外の一般の切削工具にも適用することができる。適用範囲の広い発明である。   Patent Documents 4 to 7 are cutting tools obtained by brazing a cutting blade or a guide to be the present applicant to a tool body. For example, a small piece of a cutting blade and a guide is embedded at the tip of a tool body composed of a hollow rotating shaft. An example is shown in FIG. The present invention can be applied to any of these cutting tools, and can also be applied to other general cutting tools. It is an invention with a wide range of applications.

切削工具の切刃の部分やガイドの部分はWC、SiC、TiCなどの超硬合金で作られる。超硬合金の切刃はだいたい黒鼠色である。極めて硬い材料であるがそれでも超硬合金単独では欠けたり摩耗したりしやすいので、切刃部分の表面に硬質の薄膜を被覆する事が多い。それはTiとアルミナ(Al2 3 )、TiN、TiAlNなどである。CVD(化学的気相合成法)で付けることもあるし、PVD(物理的気相合成法)で付ける場合もある。 The cutting blade part and the guide part of the cutting tool are made of cemented carbide such as WC, SiC, TiC. Cemented carbide cutting blades are mostly black amber. Although it is an extremely hard material, it is still easy to chip or wear with a cemented carbide alone, so a hard thin film is often coated on the surface of the cutting edge portion. These are Ti and alumina (Al 2 O 3 ), TiN, TiAlN, and the like. It may be applied by CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition).

CVDは被膜の成分となる化学物質を原料として、これを加熱蒸発して気相で化学反応をおこさせ基材の上に堆積させるものである。原料ガスを励起する手段によって、幾つかのCVD法がある。ヒータによる抵抗加熱、フィラメント加熱あるいはランプ加熱によって基材と原料を加熱するのが熱CVD法である。原料の組成によるが、これは1000℃以上の高温を必要とすることが多い。それでは温度が高すぎて困るという場合は原料に高周波、マイクロ波をかけてプラズマ状態にして化学反応をおこさせるというのもある。それはマイクロ波CVDと呼ぶ。   In CVD, a chemical substance that is a component of a coating is used as a raw material, and this is heated and evaporated to cause a chemical reaction in the gas phase and be deposited on a substrate. There are several CVD methods depending on the means for exciting the source gas. The thermal CVD method heats the substrate and the raw material by resistance heating with a heater, filament heating, or lamp heating. Depending on the composition of the raw material, this often requires a high temperature of 1000 ° C. or higher. If the temperature is too high, then the raw material is exposed to a high frequency and microwave to bring it into a plasma state and cause a chemical reaction. It is called microwave CVD.

PVD法は化学反応を用いないで原料を蒸発させ基材へ直接に堆積させるものである。これは化学反応を介さないから500℃〜700℃程度の低い温度で被膜を形成できる。   The PVD method evaporates the raw material without using a chemical reaction and deposits it directly on the substrate. Since this does not involve a chemical reaction, a film can be formed at a low temperature of about 500 ° C. to 700 ° C.

硬質被膜をCVD、PVD法で超硬合金の切刃やガイドの上に被覆したものは、超硬合金の地肌のままのものよりも耐摩耗性や硬度が上昇しており、長寿命である。しかしさらに長寿命の切削工具が望まれる。本発明は、超硬合金生地のままの工具や、超硬合金下地を硬質被膜で被覆した工具よりもさらに耐摩耗性、硬度に優れ、より数多くの被処理物を加工できるようにした切削工具を提供することを目的とする。   Cemented carbide coating blades and guides coated with hard coatings by CVD and PVD methods have higher wear resistance and hardness than those of cemented carbide, and have a longer life. . However, a longer life cutting tool is desired. The present invention is a cutting tool that is more excellent in wear resistance and hardness than a tool in which a cemented carbide alloy is used as it is or a tool in which a cemented carbide base is coated with a hard coating, and can process a larger number of workpieces. The purpose is to provide.

本発明の切削工具は、超硬合金の切刃やガイドや切削チップを、Ti化合物からなる硬質被膜で一旦覆い、それを更にダイヤモンド砥粒を用いたラッピング(lapping)加工によって被膜の一部を削り取って超精密平坦仕上げするものである。砥粒加工の一例であるラッピングというのはダイヤモンド砥粒等の砥粒材を使って厚みを減らすための一種の研磨であるが、工具の形状が許せばダイヤモンド砥粒含んだバフラッピング(研磨布、定盤、砥粒、研磨液)をする。それによって一旦形成した硬質被膜の一部を削り取る。それによって表面より平滑平坦にして加工による減耗を防ぎ長寿命にすることができる。 Cutting tool of the present invention, the cemented carbide of the cutting edge and guide or cutting chips, once covered with hard coatings consisting of Ti compound, a portion of the coating thereby further lapping using diamond abrasive grains (lapping) machining This is an ultra-precision flat finish. Lapping, which is an example of abrasive processing, is a kind of polishing to reduce the thickness using an abrasive material such as diamond abrasive , but buffing (polishing) that includes diamond abrasive if the shape of the tool permits. Cloth, surface plate, abrasive grains, polishing liquid). Thereby, a part of the hard coating once formed is scraped off. As a result, the surface can be made smoother and flat, and wear due to processing can be prevented and the life can be extended.

工具の形状に凹凸が多くてバフラッピングができない場合は、砥粒を吹き付けて被膜の一部を削り取る。被膜の全部を削り取るのではなくて、一部を除去するのである。   If the tool has many irregularities and cannot be flapped, abrasive particles are sprayed to scrape off part of the coating. Rather than scraping off the entire coating, a portion is removed.

より詳しく順をおって説明する。初めの硬質被膜形成はCVDでもPVDでも可能であるが、本発明ではPVDを用いる。PVD法によると1μm〜5μm程度の薄いTiN、TiAlNなどの被膜を形成できる。工具本体に切刃やガイドをロー付けした複合的な切削工具の場合は、CVD法のように1000℃もの高温にするとロー付けがはずれてしまうので500℃〜600℃ですむPVD法を使う。被膜材料によるが硬質被膜を付けたものは金色等の着色を帯びた外観を呈する。硬質被膜の一例としては次のチタン化合物を挙げることができる。 It explains in order in more detail. The initial hard coating can be formed by CVD or PVD, but PVD is used in the present invention. According to the PVD method, a thin film of TiN, TiAlN or the like having a thickness of about 1 μm to 5 μm can be formed. For complex cutting tools brazing the cutting blade and guide in the tool body, since brazing is deviated when the 1000 ° C. as high as the CVD method, using the PVD method requires only 500 ° C. to 600 ° C. . Depending on the coating material, those with a hard coating exhibit a gold-colored appearance. The following titanium compound can be mentioned as an example of a hard film.

(硬質被膜の種類)
iCNO
TiAlN
TiN
(Type of hard coating)
T iCNO
TiAlN
TiN

従来はそのような形態で切削工具として使っていたのであるが、本発明はさらに被膜をダイヤモンド砥粒を用いたラッピング加工によって一部除去する。被膜の30%〜70%程度をラッピングで除去してしまう。そうしたものはやはり金色等の着色で外観はあまり変わらないが先ほどの(ラッピングしない)ものよりもやや光沢が増えているようである。 Conventionally, it was used as a cutting tool in such a form, but in the present invention, the coating is further partially removed by lapping using diamond abrasive grains . About 30% to 70% of the coating is removed by lapping. Such things are still colored with gold, etc., and the appearance does not change much, but the gloss seems to be slightly higher than the previous one (which does not wrap).

たとえば2μmの被膜を付けたものは1μm削って1μmの厚みに減らす。たとえば5μmの被膜を付けたものは2μm〜3μmラッピングして2μm〜3μmの厚みに減らす For example, a film with a 2 μm film is cut by 1 μm to a thickness of 1 μm. For example, a film with a film thickness of 5 μm is lapped to a thickness of 2 μm to 3 μm by lapping 2 μm to 3 μm .

本発明は、被膜形成+ラッピング加工による被膜除去によって長寿命の切削工具を提供するものである。初めの被膜形成は通常の切削工具でも普通に行われているから、後段のラッピング加工による被膜除去が新規な工夫である。 The present invention is to provide a cutting tool life by coating removal by film formation + rapping grayed machining. Since initially the film formation is normally carried out in the usual cutting tools, the coating removal by subsequent rappin grayed machining is a novel twist.

折角付けた硬質被膜の一部を取ってしまうのはいかにももったいないような気がする。しかしダイヤモンド砥粒を使ったラッピング加工によって、被膜の一部を除去した本発明の切削工具はラップ(超精密研削)しないものより優れた切削性能を有することが分かった。 I feel like it's a shame to remove a part of the hard coating. But the rapping grayed machining using diamond abrasive grains, cutting tool of the present invention by removing a part of the coating was found to have a cutting performance better than those that do not wrap (super-precision grinding).

本発明は、一旦形成された硬質被膜を一部削り取って、より薄い被膜をもつ超硬合金の切削工具を与える。それによって被膜の表面がより平滑になり被処理物をより数多く加工することができるようになる。これが本発明の利点である。   The present invention provides a cemented carbide cutting tool having a thinner coating by removing a portion of the hard coating once formed. As a result, the surface of the coating becomes smoother and a larger number of workpieces can be processed. This is an advantage of the present invention.

即ち、本発明によれば、従来の切削工具に比べて格段に長寿命の切削工具を製造することが可能である。   That is, according to the present invention, it is possible to manufacture a cutting tool that has a much longer life than conventional cutting tools.

たとえば、PVD法でTiAlNの2μmの被膜を形成した工具を用いて、ある大きさ、ある組成の硬い鋼材試料に穿孔加工を行った場合、10個〜20個加工すると刃先が鈍摩して使えなくなった。つまり被処理物で数えた寿命が10〜20個だということである。同じ切削工具で同じようにPVDでTiAlNの2μmの被膜を形成した工具を使って、同じ鋼材試料に穿孔加工を行った場合、85〜150個の鋼材試料に穿孔加工をすることができた。本発明の切削工具は、従来のものに比べて5倍〜10倍程度に寿命が延びたということである。   For example, when drilling a hard steel sample of a certain size and composition using a tool with a TiAlN film of 2 μm formed by the PVD method, the blade edge becomes dull when 10 to 20 pieces are machined. lost. In other words, the life counted by the object to be processed is 10-20. When the same steel material sample was similarly drilled using the same cutting tool and a PVD-formed tool with a TiAlN film of 2 μm, 85 to 150 steel samples could be drilled. That is, the cutting tool of the present invention has a lifespan that is about 5 to 10 times longer than the conventional one.

図1は所謂使い捨てタイプのスローアウエィチップからなる切削工具1aを示し、図2は筒状の工具本体2に切刃3やガイドチップ4を銀ロー付けした切削工具1bを示し、これらの切削工具1a,1b全体にTiAlNを厚み2μmになるようPVDコートした切削工具を試料1とする。試料1にダイヤモンド砥粒を吹き付けて先端部の被膜を一部除去(ラッピング)して平均厚みを1μmとしたものを試料2とする。試料1(ラッピングなし)によって鋼材の被処理物に長孔を穿孔したところ10〜20個程度で刃先が鈍摩して使用不能になった。試料2(ラッピングしたもの)によって同じ鋼材の被処理物に同じ寸法の長孔を穿孔したところ、85〜150個の加工が可能であった。   FIG. 1 shows a cutting tool 1a made of a so-called disposable throwaway tip, and FIG. 2 shows a cutting tool 1b in which a cutting tool 3 and a guide tip 4 are silver brazed on a cylindrical tool body 2, and these cutting tools are shown. A cutting tool obtained by PVD-coating TiAlN to a thickness of 2 μm over the entire la and la is designated as sample 1. Sample 2 was sprayed with diamond abrasive grains to remove a part of the coating at the tip (wrapping) to obtain an average thickness of 1 μm. When a long hole was drilled in the steel material to be processed using Sample 1 (without lapping), the blade edge was dulled and became unusable in about 10 to 20 pieces. When a long hole of the same size was drilled in the workpiece of the same steel material with Sample 2 (wrapped), 85 to 150 pieces could be processed.

どうしてそのような著しい寿命の違いがあるのかを推測するために、表面の粗さを調べた。
試料1、2の切刃の部分の3mmの長さを評価長さにとって、表面粗さ計(三豊製SurlicetSTー400型)によって表面の凹凸をスキャンした。その結果を示すのが図3、4である。縦軸が長さ方向の座標である。1cmが200μmにあたり全長が15cmである。横軸が凹凸の高さであり1cmは1μmである。
In order to infer why there is such a significant lifetime difference, the surface roughness was examined.
The surface roughness was scanned with a surface roughness meter (Surlicet ST-400, manufactured by Mitoyo) using the length of 3 mm at the cutting edge of Samples 1 and 2 as the evaluation length. The results are shown in FIGS. The vertical axis is the coordinate in the length direction. One cm is 200 μm, and the total length is 15 cm. The horizontal axis is the height of the unevenness, and 1 cm is 1 μm.

試料1(ラッピングしない)は平均2μmの厚みがあるのであるが、それはあくまで平均である。図3のチャートをよく見ればわかるように厚みに大きなバラツキがある。だからどこでも厚みが2μmであるのではなくてある部位では1μmであり、ある部位では3μm厚みということもある。図3において中心縦軸が平均2μm厚みを示し、それより左は2μmより薄いものを示し、中心縦線から左2cmのところが基材(超高合金地肌)である。   Sample 1 (not wrapped) has an average thickness of 2 μm, but it is only an average. As shown in the chart of FIG. 3, the thickness varies greatly. Therefore, the thickness is not 2 μm everywhere, but it may be 1 μm at a certain part and 3 μm at a certain part. In FIG. 3, the center vertical axis shows an average thickness of 2 μm, the left side shows a thickness thinner than 2 μm, and the left side 2 cm from the central vertical line is the base material (super high alloy background).

平均よりも1μm厚い3μm厚みの部位が上から4.8cm(測定起点から960μm)のところにある。その部分は凹凸が激しくてすぐ直近の部位に平均よりも1μm薄い1μm厚みの部分もある。その付近での厚みのゆらぎは大きくて1μm〜3μm厚み変動を示す。山の高さは+1μmの部分もあり+0.7μm、+0.6μmの部分も3箇所ある。その他+0.5μmの部分もある。谷(中心線より左)は−1μmの部分が最深部である。−0.7μmの部分はその近傍に4箇所ある。−0.5μmを越える部分はさらに多い。それらの部分が険しい山谷をなす。そのような局所的な厚み揺らぎの大きい部分は上から4.1cm(測定起点から820μm)の部分にもある。   A 3 μm thick part 1 μm thicker than the average is 4.8 cm from the top (960 μm from the measurement starting point). The portion has severe irregularities, and there is also a portion of 1 μm thickness 1 μm thinner than the average in the immediate vicinity. The fluctuation of the thickness in the vicinity thereof is large and shows a thickness variation of 1 μm to 3 μm. The height of the mountain is +1 μm and there are also +0.7 μm and +0.6 μm. There is also a portion of +0.5 μm. The valley (left from the center line) is the deepest part at -1 μm. There are four portions in the vicinity of −0.7 μm. There are more parts that exceed -0.5 μm. These parts form a steep mountain valley. Such a portion having a large local thickness fluctuation is also present at a portion of 4.1 cm from the top (820 μm from the measurement starting point).

そのような局所ゆらぎはTiAlN被膜はかなり大きい多結晶粒子が組み合わさってできているということを示唆する。
それだけでなくて、凹凸の少ない上から7〜8cm(起点から1400〜1600μm)の部分では厚みが広い範囲でゆっくりと変化している。厚みの変化は約1μmである。
Such local fluctuations suggest that the TiAlN coating is composed of a combination of fairly large polycrystalline particles.
In addition, the thickness of the upper portion of 7 to 8 cm (1400 to 1600 μm from the starting point) with little unevenness slowly changes in a wide range. The change in thickness is about 1 μm.

一方図4はラッピング後の被膜凹凸の同じ検査の結果を示す。厚み平均は1μmであるから、中心縦線は1μmの高さを示す。右へ1cmよったものが厚み2μm、左へ1cmよったものが厚み0μmに対応する。しかし0μm厚みの部分は存在しない。最も深い谷で−0.6μmの程度である。多くは−0.5μmより厚くなっている。それに先ほどの局所的に凹凸の激しい部分が消失している。山の高さ(中心線から右への偏奇)も最大で0.5μm程度である。谷の深さも−0.5μm以内である。だから凹凸が中心線の左右±0.5μmの範囲に大体含まれている。比較的変動の強い4.8cm〜6cm(測定起点から960〜1200μm)でも山は+0.5μmより低く、谷は−0.5μmを越えない。そのようにラッピングは厚みを減らすだけでなくて表面の凹凸をも減らすという作用がある。   On the other hand, FIG. 4 shows the result of the same inspection of film irregularities after lapping. Since the average thickness is 1 μm, the center vertical line indicates a height of 1 μm. 1 cm to the right corresponds to a thickness of 2 μm, and 1 cm to the left corresponds to a thickness of 0 μm. However, there is no portion having a thickness of 0 μm. The deepest valley is about -0.6 μm. Many are thicker than −0.5 μm. In addition to that, the locally uneven portion disappeared. The height of the mountain (the deviation from the center line to the right) is also about 0.5 μm at the maximum. The depth of the valley is also within −0.5 μm. Therefore, the unevenness is roughly included in the range of ± 0.5 μm on the left and right of the center line. Even in the case of 4.8 cm to 6 cm (960 to 1200 μm from the measurement starting point) having a relatively strong fluctuation, the peak is lower than +0.5 μm, and the valley does not exceed −0.5 μm. In this way, lapping has the effect of reducing not only the thickness but also the surface roughness.

巨視的にはなかなか分かりにくいが細かく見れば違いがわかる。凹凸を減らすといっても一様なのではなくて特に隆起陥没の著しいところが矯正されるのであり、初めから穏やかな凹凸がある部分はあまり変化がないのである。だから全体として表面凹凸の数が減り山谷の深さもより小さくなっている。   Although it is difficult to understand macroscopically, if you look closely, you can see the difference. Even if the unevenness is reduced, the unevenness is not uniform, and particularly the areas where the ridges and depressions are remarkable are corrected, and the portions with gentle unevenness from the beginning do not change much. Therefore, the number of surface irregularities is reduced as a whole, and the depth of the mountain valley is also reduced.

そのような表面の凹凸の軽減が、ラッピング後の切削工具が被処理物金属面との摩擦を減らし粒界剥離の頻度を減少させているのであろう。初めに4μmの厚さの被膜を被覆したとしても被処理物の加工をすることによって連続的に4μm→3μm→2μm→1μmというように厚みが減少していくのではない。直径が4μm〜3μmの結晶粒界があって表面から突出していると、それがポロっと取れるということもある。その場合はその部分は下地(生地)が露出する。下地は超硬合金であるから摩耗の進行が速い。つまり大きい結晶粒界が表面に突出して存在していれば、それは被処理物との接触で剥離しやすく、それが剥離すれば刃物としての寿命も終るということになる。   Such reduction in surface irregularities may have caused the cutting tool after lapping to reduce friction with the metal surface of the workpiece and reduce the frequency of grain boundary separation. Even if a film having a thickness of 4 μm is first coated, the thickness does not continuously decrease from 4 μm → 3 μm → 2 μm → 1 μm by processing the workpiece. If there is a crystal grain boundary with a diameter of 4 μm to 3 μm and protrudes from the surface, it may be removed. In that case, the ground (fabric) is exposed at that portion. Since the base is a cemented carbide, the wear progresses quickly. In other words, if there is a large grain boundary projecting on the surface, it is easy to peel off when in contact with the object to be processed, and if it peels off, the life as a blade will end.

本発明はラッピングして表面を削り落とすから大きい結晶粒界がなくなり表面の凹凸が減り被処理物との接触によって多結晶の粒界がはげ落ちる可能性が減る。だから、被膜は薄いにも拘らずラッピングしないものよりも多数の被処理物を加工することができるようになるのであろう。   In the present invention, since the surface is scraped off by lapping, the large grain boundaries are eliminated, the surface irregularities are reduced, and the possibility that the polycrystalline grain boundaries are peeled off due to contact with the workpiece is reduced. Therefore, it will be possible to process a larger number of workpieces than those that do not wrap even though the coating is thin.

図3、図4を比較して考察すると、上記の推測が正しいことが分かる。それを数字で表現することは難しいので工具切刃の面粗度を測定して比較した。面粗度というのは幾つもの定義があり平均値を使うので必ずしもミクロの表面のランダム構造を表現しない。しかし直接に計算でき定義できるものは面粗度しかないので、それを測定したところ次のとおりであった。   3 and 4 are compared, it can be seen that the above assumption is correct. Since it is difficult to express it numerically, the surface roughness of the tool cutting edge was measured and compared. The surface roughness has several definitions and uses an average value, so it does not necessarily represent the random structure of the micro surface. However, the only thing that can be calculated and defined directly is the surface roughness.

ラッピング前 ラッピング後(本発明)
算術平均粗さ・・・・Ra 0.14μm 0.13μm
最大高さ・・・・・・Ry 1.6μm 1.3μm
十点平均粗さ・・・・Rz 1.2μm 1.0μm
二乗平均平方根高さ・Rq 0.18μm 0.16μm
Before wrapping After wrapping (invention)
Arithmetic average roughness: Ra 0.14 μm 0.13 μm
Maximum height Ry 1.6μm 1.3μm
Ten-point average roughness: Rz 1.2 μm 1.0 μm
Root mean square height / Rq 0.18 μm 0.16 μm

この他にRmaxというものもあるが、これは最高突出部高さと最低谷深さの差であるからミクロの面の凹凸を表現しない。それでRmaxは使わない。Raは平均高さを基準として高さの絶対値を積算して点の数で割ったものであり平均値からのズレの絶対値の平均である。これは平均してしまうので凹凸の局所的な乱れがあってもなくても同じようになるから必ずしも切刃の平滑性を表現するのに適切でないが、これを計算した。ラッピング前はRa0.14μmであり、ラッピング後はRa0.13μmであるから、Raが0.01μm減少して、より平滑になったということが分かる。   In addition to this, there is also Rmax, which is the difference between the maximum protrusion height and the minimum valley depth, and therefore does not express micro surface irregularities. So Rmax is not used. Ra is obtained by integrating the absolute value of the height with the average height as a reference and dividing the result by the number of points, and is an average of absolute values of deviation from the average value. Since this is averaged, it becomes the same regardless of whether there is local disturbance of the unevenness, so it is not necessarily suitable for expressing the smoothness of the cutting edge, but this was calculated. Since Ra is 0.14 μm before lapping and Ra is 0.13 μm after lapping, it can be seen that Ra is decreased by 0.01 μm and becomes smoother.

Ryというのはより局所的な特徴を反映できる面粗度である。これは評価長さ(0.4mm、1.25mm、4mm、12.5mm、40mm)を決めて、それぞれの評価長さに対して基準長さ(0.08mm、0.25mm、0.8mm、2.5mm、8mm)というように大体評価長さの1/5の長さに決め、基準長さの中で最大山高さと最低谷深さを求める。それらの高さと深さを足したものの平均がRyである。   Ry is the surface roughness that can reflect more local features. This determines the evaluation length (0.4 mm, 1.25 mm, 4 mm, 12.5 mm, 40 mm), and the reference length (0.08 mm, 0.25 mm, 0.8 mm, 2.5 mm, 8 mm), and the like, and the maximum peak height and the minimum valley depth are obtained among the reference lengths. The average of the sum of their height and depth is Ry.

つまり基準長さでの最高峰と最低谷の高さの差の平均値である。全体での最高値と最低値の差を表すRmaxと違うのは、Ryは基準長さ内の最高値と最低値の差を求めるということである。この面粗度Ryは定義から当然にRaよりも局所的な不規則、凹凸をより直接に反映する。基準長さ、評価長さによってRyの値が異なってくるからRyの値によって評価長さと基準長さが決められる。ここでは評価長さが3mmなので基準長さは0.6mmである。従来例(ラッピングなし)はRyが1.6μmであるが、本発明(ラッピング後)ではRyが1.3μmとなっている。   In other words, it is the average value of the height difference between the highest peak and the lowest valley at the reference length. The difference from Rmax that represents the difference between the maximum value and the minimum value as a whole is that Ry calculates the difference between the maximum value and the minimum value within the reference length. This surface roughness Ry naturally reflects local irregularities and irregularities more directly than Ra, by definition. Since the Ry value varies depending on the reference length and the evaluation length, the evaluation length and the reference length are determined by the Ry value. Here, since the evaluation length is 3 mm, the reference length is 0.6 mm. In the conventional example (without wrapping), Ry is 1.6 μm, but in the present invention (after wrapping), Ry is 1.3 μm.

つまりラッピングによって山の高さ溝の深さの合計が減ったということである。それは狭い範囲での凹凸の違いが少なくなったということを意味する。硬質被膜(TiAlN)の表面に砥粒を吹き付けるか、または砥粒を用いたバフ研磨によって削るのだから、山も谷も同様に削られるようなものであるがそうでなく、凹凸変化の周期が狭いので山の方がより顕著に削られるのである。それによって山谷の高低差が減ったということである。0.3μmの減少であるが平均値がそれだけ減ったのだからかなり大きい減少だということがわかるのである。RyはRaよりも局所不規則をより強く表現できるパラメータであるが、それによってもラッピングによる凹凸の減少平滑度の高揚ということがわかる。   In other words, the sum of the depths of the ridges and grooves was reduced by lapping. That means that the difference in unevenness in a narrow area is reduced. Since abrasive grains are sprayed on the surface of the hard coating (TiAlN) or are buffed with abrasive grains, the peaks and valleys are similarly cut. Because it is narrow, the mountain is sharpened more significantly. It means that the height difference of Yamatani has decreased. Although it is a decrease of 0.3 μm, it can be seen that the average value has decreased so much that it is a considerably large decrease. Ry is a parameter that can express the local irregularity more strongly than Ra, but it can be seen that the reduction smoothness of unevenness due to wrapping is also enhanced.

もう一つの面粗度Rzというのは、やはり評価長さ(0.4mm、1.25mm、4mm、12.5mm、40mm)を決めておき、それに対応して基準長さを(0.08mm、0.25mm、0.8mm、2.5mm、8mm)というように大体1/5に決めておき基準長さ内で最も高い山に着目し、最高山から数えて5番目までの山の高さ(平均値からのズレ)の合計と、最も深い谷と最深谷から数えて5番目までの深さ(平均値からのズレの絶対値)の合計とを足し合わせて5で割ったものの平均値である。これは基準長さでの最高峰と最低谷の高低差(Ry)でなくて、それに隣接する4つの山や谷の高低差も加味したものである。Ryと同様に局所的な変動を反映しやすいパラメータである。   Another surface roughness Rz is that the evaluation length (0.4 mm, 1.25 mm, 4 mm, 12.5 mm, 40 mm) is determined and the reference length is (0.08 mm, 0.25mm, 0.8mm, 2.5mm, 8mm), and so on, focus on the highest mountain within the standard length and focus on the highest mountain from the highest mountain to the fifth. The sum of (the deviation from the average value) and the sum of the deepest valley and the sum of the depths up to the fifth (the absolute value of the deviation from the average value) counted from the deepest valley divided by 5 It is. This is not the difference in height (Ry) between the highest peak and the lowest valley in the reference length, but also the height difference between the four peaks and valleys adjacent to it. Similar to Ry, it is a parameter that easily reflects local fluctuations.

面粗度Rzで比較すると、従来例(ラッピングなし)でRz1.2μmで、本発明(ラッピング済み)ではRz1.0μmであり、0.2μmの差異がある。たった0.2μmの違いだから微差のようにみえるが、それは平均値の違いなのだから有意の差がある。この結果もラッピングによって山がより強く削られて谷がさほど削られないから近接する凹凸の差異が減少したということを意味しているのである。   When compared with the surface roughness Rz, Rz is 1.2 μm in the conventional example (without lapping), Rz is 1.0 μm in the present invention (after lapping), and there is a difference of 0.2 μm. It looks like a slight difference because it is only 0.2 μm, but there is a significant difference because it is a difference in average value. This result also means that the difference in the adjacent concavities and convexities is reduced because the mountain is sharpened by lapping and the valley is not cut so much.

スローアウエイチップからなる切削工具を示す斜視図。The perspective view which shows the cutting tool which consists of a throwaway tip. 切刃とガイドチップを工具本体にロー付けした切削工具を示す斜視図。The perspective view which shows the cutting tool which brazed the cutting blade and the guide tip to the tool main body. 超硬合金の切削工具の上にTiAlNの硬質被膜をPVD法によって平均2μmの厚みに形成したもの(従来例)の被膜上に取った基準長さ3mmの直線領域における表面高さ分布を示すグラフ。縦軸は基準長さ上の位置(50倍:200μm/cm)、横軸は右方向に表面高さの平均値からのずれ(10000倍:1μm/cm)を示す。Ra0.14μm、Ry1.6μm、Rz1.2μmであった。A graph showing the surface height distribution in a linear region with a reference length of 3 mm taken on a coating of a hard coating of TiAlN formed on a cutting tool made of cemented carbide with an average thickness of 2 μm by the PVD method (conventional example) . The vertical axis indicates the position on the reference length (50 times: 200 μm / cm), and the horizontal axis indicates the deviation from the average surface height (10000 times: 1 μm / cm) in the right direction. Ra was 0.14 μm, Ry 1.6 μm, and Rz 1.2 μm. 超硬合金の切削工具の上にTiAlNの硬質被膜をPVD法によって平均2μmの厚みに形成しダイヤモンド砥粒を吹き付けるラッピング処理をして平均厚みを1μmに減少させたもの(実施例)の被膜上に取った基準長さ3mmの直線領域における表面高さ分布を示すグラフ。縦軸は基準長さ上の位置(50倍:200μm/cm)、横軸は右方向に表面高さの平均値からのずれ(10000倍:1μm/cm)を示す。Ra0.13μm、Ry1.3μm、Rz1.0μmであった。On a coating of a hard coating of TiAlN formed on a cemented carbide cutting tool to a thickness of 2 μm on average by the PVD method and with a lapping treatment by spraying diamond abrasive grains to reduce the average thickness to 1 μm (Example) The graph which shows the surface height distribution in the linear area | region of 3 mm of reference length taken in. The vertical axis indicates the position on the reference length (50 times: 200 μm / cm), and the horizontal axis indicates the deviation from the average surface height (10000 times: 1 μm / cm) in the right direction. Ra was 0.13 μm, Ry 1.3 μm, and Rz 1.0 μm.

Claims (2)

超硬合金で作製した切削工具の表面を、物理的気相合成法により、TiAlN、TiCNO、TiNのいずれかのTi化合物からなる厚みが1μm〜5μmの硬質被膜によって被覆し、しかる後に該切削工具の硬質被膜をダイヤモンド砥粒を用いたラッピング加工にて削り取ることにより、該硬質皮膜の厚みを30〜70%減少させると共に、該硬質被膜表面の算術平均粗さRa,最大高さRy,十点平均粗さRz,二乗平均平方根粗さRqの各面粗度指標の値をいずれもラッピング加工前よりも減少させることを特徴とする切削工具の製造方法。 The surface of the cutting tool prepared in cemented carbide, by physical vapor-phase synthesis method, coated TiAlN, TiCNO, thickness consisting of either Ti compound of TiN is a hard coating of 1 m to 5 m, the cutting thereafter By scraping the hard coating of the tool by lapping using diamond abrasive grains, the thickness of the hard coating is reduced by 30 to 70% , and the arithmetic average roughness Ra, maximum height Ry, and 10 % of the surface of the hard coating are reduced. A method for manufacturing a cutting tool, characterized in that the value of each surface roughness index of the point average roughness Rz and the root mean square roughness Rq is reduced as compared with that before lapping . 前記硬質被膜がTiAlNからなる請求項1記載の切削工具の製造方法。   The method for manufacturing a cutting tool according to claim 1, wherein the hard coating is made of TiAlN.
JP2004013062A 2004-01-21 2004-01-21 Cutting tool manufacturing method Expired - Fee Related JP4812255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013062A JP4812255B2 (en) 2004-01-21 2004-01-21 Cutting tool manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013062A JP4812255B2 (en) 2004-01-21 2004-01-21 Cutting tool manufacturing method

Publications (2)

Publication Number Publication Date
JP2005205516A JP2005205516A (en) 2005-08-04
JP4812255B2 true JP4812255B2 (en) 2011-11-09

Family

ID=34899261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013062A Expired - Fee Related JP4812255B2 (en) 2004-01-21 2004-01-21 Cutting tool manufacturing method

Country Status (1)

Country Link
JP (1) JP4812255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953260A1 (en) * 2005-10-28 2008-08-06 Kyocera Corporation Surface-coated member, method for manufacture thereof, and cutting tool
JP5804589B2 (en) * 2010-02-10 2015-11-04 日立金属株式会社 Coated mold or casting member having excellent sliding characteristics and method for producing the same
WO2014153469A1 (en) 2013-03-21 2014-09-25 Kennametal Inc. Coatings for cutting tools
DE112014001562B4 (en) 2013-03-21 2019-08-08 Kennametal Inc. Coatings for cutting tools
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196108A (en) * 1983-04-21 1984-11-07 Nippon Yakin:Kk Cutting edge of solid type
JPS59196107A (en) * 1983-04-21 1984-11-07 Nippon Yakin:Kk Throw-away tip
JPH0773802B2 (en) * 1987-07-10 1995-08-09 住友電気工業株式会社 Coated cemented carbide tool
JPH0739523Y2 (en) * 1990-04-16 1995-09-13 ユニタック株式会社 Drill head for deep hole cutting
JPH071220Y2 (en) * 1991-07-25 1995-01-18 ユニタック株式会社 Carbide drill for deep hole machining
JPH0740105A (en) * 1993-07-27 1995-02-10 Sumitomo Electric Ind Ltd Tool of silicon nitride-based sintered compact and manufacture thereof
JP2901043B2 (en) * 1993-12-03 1999-06-02 神鋼コベルコツール株式会社 Abrasion and welding resistant hard film coated tool and its manufacturing method
JPH1158104A (en) * 1997-08-26 1999-03-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide excellent in chip resistance
JP3671623B2 (en) * 1997-10-20 2005-07-13 住友電気工業株式会社 Coated cemented carbide
US6756111B1 (en) * 1999-06-21 2004-06-29 Sumitomo Electric Industries, Ltd. Coated hard alloy
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP4090248B2 (en) * 2002-02-19 2008-05-28 ユニタック株式会社 Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9903018B2 (en) 2013-03-21 2018-02-27 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same

Also Published As

Publication number Publication date
JP2005205516A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
RU2131329C1 (en) Cutting tool insert and method of its manufacture
JP4783153B2 (en) Replaceable cutting edge
JP4739321B2 (en) Replaceable cutting edge
JP4891515B2 (en) Coated cutting tool
JP6637424B2 (en) Tools and methods for machining fiber reinforced materials
JP6297047B2 (en) Coated cutting tool with patterned surface area
JP5117715B2 (en) Cutting tool insert
JP6659676B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
JP2007136631A (en) Cutting tip with replaceable edge
EP1806192A1 (en) Edge replacement type cutting tip and method of manufacturing the same
KR102053677B1 (en) Cladding
JPWO2006103899A1 (en) Replaceable cutting edge
KR101346440B1 (en) Cutting tool insert for metal machining and method of making the same
KR101165123B1 (en) Indexable insert
CN102883840B (en) Surface-coated cutting tool
Puneet et al. Influence of surface preparation on the tool life of cathodic arc PVD coated twist drills
Bhat et al. A preliminary investigation of the effect of post-deposition polishing of diamond films on the machining behavior of diamond-coated cutting tools
Dogra et al. Tool life and surface integrity issues in continuous and interrupted finish hard turning with coated carbide and CBN tools
JP4812255B2 (en) Cutting tool manufacturing method
JP2008006546A (en) Cutting edge changing type cutting tip
Baron et al. Diamond coatings for advanced cutting tools in honing and grinding
Sheikh-Ahmad et al. Tool coatings for wood machining: Problems and prospects
JP2007319964A (en) Cutting tip with replaceable cutting edge
JP4456729B2 (en) Coated cutting tool
JP2007253316A (en) Cutter tip of edge replaceable type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4812255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees