[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4811771B2 - Biodegradable resin composition or method for biodegradation of molded product thereof - Google Patents

Biodegradable resin composition or method for biodegradation of molded product thereof Download PDF

Info

Publication number
JP4811771B2
JP4811771B2 JP2010109649A JP2010109649A JP4811771B2 JP 4811771 B2 JP4811771 B2 JP 4811771B2 JP 2010109649 A JP2010109649 A JP 2010109649A JP 2010109649 A JP2010109649 A JP 2010109649A JP 4811771 B2 JP4811771 B2 JP 4811771B2
Authority
JP
Japan
Prior art keywords
reference example
copolymer
enzyme
lactide
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010109649A
Other languages
Japanese (ja)
Other versions
JP2010248516A (en
Inventor
豊 常盤
隆生 楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010109649A priority Critical patent/JP4811771B2/en
Publication of JP2010248516A publication Critical patent/JP2010248516A/en
Application granted granted Critical
Publication of JP4811771B2 publication Critical patent/JP4811771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、L−乳酸の重合体又は共重合体といった生分解性樹脂組成物或いはその成形物の生分解方法に関する。   The present invention relates to a biodegradable resin composition such as a polymer or copolymer of L-lactic acid or a biodegradation method for a molded product thereof.

近年、グリーンケミストリー指向が進展するにつれて、澱粉、砂糖、グルコース、植物油などの再生可能資源を原料としたポリ乳酸、ポリヒドロキシ酪酸等が注目を浴びてきている。
しかしながら、ポリ乳酸はポリヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート等の生分解性プラスチックに比べて環境中における生分解性がきわめて低いという難点のあることが知られている(非特許文献1〜3参照)。
In recent years, as the trend toward green chemistry progresses, polylactic acid, polyhydroxybutyric acid, and the like, which are made from renewable resources such as starch, sugar, glucose, and vegetable oil, have attracted attention.
However, it is known that polylactic acid has a problem that its biodegradability in the environment is extremely low compared to biodegradable plastics such as polyhydroxybutyric acid, polycaprolactone, and polybutylene succinate (Non-Patent Documents 1 to 3). 3).

「アプライド・アンド・エンバイロメンタル・ミクロバイオロジー(Appl.Environ.Microbiol.)」,第63巻,第4号,p.1637−1640(1997)"Applied and Environmental Microbiology (Appl. Environ. Microbiol.)", Vol. 63, No. 4, p. 1637-1640 (1997) 「ワールド・ジャーナル・オブ・ミクロバイオロジー・アンド・バイオテクノロジー(WorldJ. Microbiol.Biotechnol.)」,第14巻 p.133−138(1998)"World Journal of Microbiology and Biotechnology (WorldJ. Microbiol. Biotechnol.)," Volume 14, p. 133-138 (1998) 「アプライド・アンド・エンバイロメンタル・ミクロバイオロジー(Appl.Environ.Microbiol.)」,第64巻p.5008−5011(1998)“Applied and Environmental Microbiology (Appl. Environ. Microbiol.)”, Vol. 64, p. 5008-5011 (1998)

本発明の課題は、このような事情の下、生分解性に優れ、取扱いやすいポリ乳酸系又は乳酸共重合体系樹脂組成物或いはその成形物の特定の酵素等による生分解方法を提供することにある。   Under such circumstances, an object of the present invention is to provide a biodegradation method using a specific enzyme or the like of a polylactic acid-based or lactic acid copolymer-based resin composition which is excellent in biodegradability and easy to handle. is there.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、L‐乳酸の重合体又は共重合体を特定の酵素で分解することが課題達成に資すること等を見出し、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that decomposing an L-lactic acid polymer or copolymer with a specific enzyme contributes to the achievement of the problems, etc. It came to an eggplant.

すなわち、本発明によれば、以下の発明が提供される。
(1)L−乳酸の重合体又は共重合体、或いはその成形物をキモパパイン、プラスミン、エラスターゼ、トリプシン、及びぶなしめじ、いちじく又はパッションフルーツの粉末又は抽出物の中から選ばれた少なくとも1種の酵素、粉末あるいは抽出物で分解することを特徴とする、L−乳酸の重合体又は共重合体、或いはその成形物の生分解方法。
That is, according to the present invention, the following inventions are provided.
(1) A polymer or copolymer of L-lactic acid, or a molded product thereof is at least one selected from chymopapain, plasmin, elastase, trypsin, and bean-meji, fig or passion fruit powder or extract. A method for biodegrading a polymer or copolymer of L-lactic acid, or a molded product thereof, which comprises decomposing with an enzyme, powder or extract.

本発明においては、生分解性樹脂組成物の樹脂としてL−乳酸の重合体すなわちポリL−乳酸やL−乳酸の共重合体が用いられる。
L−乳酸の共重合体としては、一方のコモノマーにL−乳酸又はL−ラクチドを用い、他方のコモノマーとして、D−乳酸、DL−ラクチド、D−ラクチド、2−ヒドロキシイソ酪酸、4−ヒドロキシイソ酪酸、10−ヒドロキシデカン酸、12−ヒドロキシドデカン酸、12−ヒドロキシステアリン酸、16−ヒドロキシヘキサデカン酸、10,16−ジヒドロキシヘキサデカン酸、9,16−ジヒドロキシヘキサデカン酸、18−ヒドロキシオクタデカン酸、20−ヒドロキシエイコサン酸、22−ヒドロキシドコサン酸、9,10,18−トリヒドロキシオクタデカン酸、グリコリド、β−プロピオラクトン、γ−ブチロラクトン、β−ブチロラクトン、γ−メチル−γ−ブチロラクトン、γ−エチル−γ−ブチロラクトン、δ−バレロラクトン、γ−バレロラクトン、ε−カプロラクトン、γ−カプロラクトン、15−ペンタデカラクトン、γ−ブチロラクタム、δ−バレロラクタム、ε−カプロラクタム、ω−ラウロラクタム、ヘキサメチレンアジパミド、テトラメチレンセバカミド、ヘキサメチレンセバカミド、グリシン環状二量体、アラニン環状二量体、エチレンオキシド、プロピレンオキシドなどを使用するのが好ましい。これら他方のコモノマーは1種で用いてもよいし、また、2種以上を組み合わせて用いてもよい。
上記共重合体は、一方のコモノマーを他方のコモノマーよりモル比で多くしたものが好ましく、中でも一方のコモノマーと他方のコモノマーとのモル比を60:40、更には80:20より高くしたものが好ましい。
上記樹脂は5000〜2000000、中でも10000〜1000000の分子量を有するのが好ましい。
In the present invention, a polymer of L-lactic acid, that is, a copolymer of poly L-lactic acid or L-lactic acid is used as the resin of the biodegradable resin composition.
As a copolymer of L-lactic acid, L-lactic acid or L-lactide is used as one comonomer, and D-lactic acid, DL-lactide, D-lactide, 2-hydroxyisobutyric acid, 4-hydroxy is used as the other comonomer. Isobutyric acid, 10-hydroxydecanoic acid, 12-hydroxydodecanoic acid, 12-hydroxystearic acid, 16-hydroxyhexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,16-dihydroxyhexadecanoic acid, 18-hydroxyoctadecanoic acid, 20 -Hydroxyeicosanoic acid, 22-hydroxydocosanoic acid, 9,10,18-trihydroxyoctadecanoic acid, glycolide, β-propiolactone, γ-butyrolactone, β-butyrolactone, γ-methyl-γ-butyrolactone, γ- Ethyl-γ-butyrolactone, δ-valerolac T-, γ-valerolactone, ε-caprolactone, γ-caprolactone, 15-pentadecalactone, γ-butyrolactam, δ-valerolactam, ε-caprolactam, ω-laurolactam, hexamethylene adipamide, tetramethylene sebacamide , Hexamethylene sebacamide, glycine cyclic dimer, alanine cyclic dimer, ethylene oxide, propylene oxide and the like are preferably used. These other comonomers may be used alone or in combination of two or more.
The copolymer is preferably one in which one comonomer is increased in molar ratio relative to the other comonomer, and in particular, one in which the molar ratio of one comonomer to the other comonomer is higher than 60:40, more preferably 80:20. preferable.
The resin preferably has a molecular weight of 5,000 to 2,000,000, especially 10,000 to 1,000,000.

本発明においては、上記生分解性樹脂組成物を特定の酵素すなわちプロテネースK、ズブチリシン、α−キモトリプシン、プロナーゼ、キモパパイン、パパイン、プラスミン、エラスターゼ、ドリプシンや、特定の粉末や抽出物すなわち、ぶなしめじ、いちじくおよびパッションフルーツの粉末や抽出物で分解する。より好ましくは、キモパパイン、プラスミン、エラスターゼ、トリプシン、及びぶなしめじ、いちじく又はパッションフルーツの粉末又は抽出物の中から選ばれた少なくとも1種の酵素、粉末あるいは抽出物で分解する。
これらの酵素や粉末や抽出物(以下酵素等ともいう)は1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
酵素等は精製物が好ましいが、植物分泌物や動物臓器、微生物培養液などをホモジナイズした粗製物、安定剤を含む工業用酵素であってもよい。
In the present invention, the biodegradable resin composition is a specific enzyme, ie, proteinase K, subtilisin, α-chymotrypsin, pronase, chymopapain, papain, plasmin, elastase, drypsin, or a specific powder or extract, ie, bean shimeji, Decomposes with fig and passion fruit powder and extract. More preferably, it is degraded with at least one enzyme, powder or extract selected from chymopapain, plasmin, elastase, trypsin, and bean mushroom, fig or passion fruit powder or extract.
One of these enzymes, powders and extracts (hereinafter also referred to as enzymes) may be used, or two or more thereof may be used in combination.
The enzyme or the like is preferably a purified product, but it may be a crude product obtained by homogenizing plant secretions, animal organs, microorganism culture solution, or the like, or an industrial enzyme containing a stabilizer.

生分解性樹脂組成物に酵素等を含有する場合の各成分間の割合については、L−乳酸の重合体又は共重合体である(A)成分に対し、酵素等である(B)成分を0.01〜10質量%、中でも0.01〜5質量%の範囲の割合で配合するのが好ましい。   About the ratio between each component in the case of containing an enzyme etc. in a biodegradable resin composition, (B) component which is an enzyme etc. with respect to (A) component which is a polymer or copolymer of L-lactic acid. It is preferable to mix in a proportion of 0.01 to 10% by mass, especially 0.01 to 5% by mass.

上記生分解性樹脂組成物には、必要に応じ、顔料、酸化防止剤、帯電防止剤、つや消し剤、劣化防止剤、蛍光増白剤、紫外線安定剤、滑り剤、木粉、フィラー、カーボンブラック、増粘剤、鎖延長剤、架橋剤、結晶核剤、可塑剤、安定剤、粘度安定剤等の添加成分を含有させることができ、とりわけ、添加成分として結晶核剤、例えばタルク、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、酸化チタン等を用いるのが、熱成形時の結晶化を促進させ、成型品の耐熱性や機械的強度を向上させうるので好ましい。
また、上記生分解性樹脂組成物には所期の効果を妨げない範囲で、澱粉や加工澱粉、ペクチン、キチン、キトサン、アルギン酸またはその塩、キシロース、セルロース、またはカルボキシメチルセルロース等のセルロースやその誘導体、みつまた、こうぞ、くわくさ、かなむぐら、くわ、いちじく、綿、ケナフ、アバカ、やし殻などの植物繊維、絹、ウールなどの動物繊維、ガラス繊維、カーボン繊維等を含有させてもよい。
The biodegradable resin composition includes, as necessary, pigments, antioxidants, antistatic agents, matting agents, deterioration inhibitors, fluorescent brighteners, UV stabilizers, slip agents, wood powder, fillers, carbon black. , Thickeners, chain extenders, cross-linking agents, crystal nucleating agents, plasticizers, stabilizers, viscosity stabilizers and the like can be added, and in particular, crystal nucleating agents such as talc, boron nitride It is preferable to use calcium carbonate, magnesium carbonate, titanium oxide or the like because crystallization can be promoted during thermoforming and the heat resistance and mechanical strength of the molded product can be improved.
In addition, the above biodegradable resin composition does not interfere with the intended effect, and starch and processed starch, pectin, chitin, chitosan, alginic acid or a salt thereof, xylose, cellulose, cellulose such as carboxymethylcellulose, and derivatives thereof , Mitsuma, Kozo, Kakuza, Kana Mugura, Kuwa, Fig, Plant fibers such as cotton, kenaf, abaca, coconut shell, animal fibers such as silk and wool, glass fibers, carbon fibers, etc. .

生分解性樹脂組成物に酵素等を含有する場合は、(A)成分の所定樹脂に(B)成分の酵素や粉末や抽出物を加熱混合することによって調製することができる。
この酵素や粉末や抽出物の熱による活性減少を防止するためには、酵素等をL−乳酸の重合体又はその共重合体と混合する前に、酵素等の水分を十分に取り除いておくことが重要である。また、酵素等からの水分の除去は、L−乳酸の重合体又はその共重合体の加水分解を防止するのに有効である。
加熱混合方法は、樹脂成分を加熱しながら酵素や粉末や抽出物成分をヘンシェルミキサーや混練機で混合する方法、押出機中で樹脂成分と酵素や粉末や抽出物成分を溶融混練する方法、その他ブロー成形法、発泡成形法等を例示することができる。加熱温度は、通常20〜250℃、好ましくは50〜200℃、中でも120〜180℃の範囲で選ばれる。
ヘンシェルミキサーによりL−乳酸の重合体又は共重合体と酵素等をブレンドする場合、加熱による酵素等の活性減少を防止するため、L−乳酸の重合体又は共重合体と粉体(澱粉、タルク、炭酸カルシウム、ゼオライト、カオリン、木粉、セルロース粉末等)を同時にヘンシェルミキサーに加え、高速で加熱混合し、ヘンシェルミキサーのトルクが大きくなる直前に酵素等を添加して、酵素等入りコンパウンドを製造することも可能である。得られたコンパウンドはそのまま、又はL−乳酸の重合体又は共重合体とさらに混合して樹脂組成物とすることもできる。
さらに、酵素等の熱による活性減少を防止するためには、酵素等をポリカプロラクトンやポリブチレンアジペート、ポリエチレンアジペート等の融点の低い樹脂にブレンドした後、酵素等の入ったブレンド体とL−乳酸の重合体又はその共重合体をブレンドして、生分解性樹脂組成物を製造することもできる。
上記生分解性樹脂組成物は、射出成形、押出し成形、ブロー成形、プレス成形、カレンダー成形などの方法でシート状、フィルム状、繊維状、容器状に成形加工することができ、また、発泡成形に付すこともできる。発泡成形により成型品を得る場合には、発泡剤を含む成形材料の溶融物を、高圧帯域から低圧帯域に押し出すのがよい。発泡剤としては、加熱よりガスを放出する熱分解型の発泡剤や、低沸点の炭化水素や二酸化炭素、ハロゲン炭化水素等を用いることできる。
When the biodegradable resin composition contains an enzyme or the like, the biodegradable resin composition can be prepared by heating and mixing the enzyme, powder or extract of the component (B) with the predetermined resin of the component (A).
In order to prevent a decrease in the activity of the enzyme, powder, or extract due to heat, the enzyme and the like should be sufficiently removed before mixing with the L-lactic acid polymer or copolymer thereof. is important. The removal of water from the enzyme or the like is effective for preventing hydrolysis of the L-lactic acid polymer or the copolymer thereof.
The heating and mixing method is a method of mixing the enzyme, powder or extract component with a Henschel mixer or kneader while heating the resin component, a method of melting and kneading the resin component with the enzyme, powder or extract component in an extruder, etc. Examples thereof include a blow molding method and a foam molding method. The heating temperature is usually 20 to 250 ° C., preferably 50 to 200 ° C., particularly 120 to 180 ° C.
When blending an L-lactic acid polymer or copolymer and an enzyme or the like with a Henschel mixer, the L-lactic acid polymer or copolymer and powder (starch, talc, etc.) are used to prevent a decrease in the activity of the enzyme or the like due to heating. , Calcium carbonate, zeolite, kaolin, wood powder, cellulose powder, etc.) are added to the Henschel mixer at the same time, heated and mixed at high speed, and the enzyme is added just before the torque of the Henschel mixer increases to produce a compound containing the enzyme, etc. It is also possible to do. The obtained compound can be used as it is, or further mixed with a polymer or copolymer of L-lactic acid to obtain a resin composition.
Furthermore, in order to prevent a decrease in activity due to heat of the enzyme, etc., the enzyme is blended with a resin having a low melting point such as polycaprolactone, polybutylene adipate or polyethylene adipate, and then the blend containing the enzyme and L-lactic acid are mixed. A biodegradable resin composition can also be produced by blending these polymers or their copolymers.
The biodegradable resin composition can be molded into a sheet, film, fiber, or container by methods such as injection molding, extrusion molding, blow molding, press molding, calendar molding, and foam molding. Can also be attached. When obtaining a molded product by foam molding, it is preferable to extrude a melt of a molding material containing a foaming agent from a high pressure zone to a low pressure zone. As the foaming agent, a thermal decomposition type foaming agent that releases a gas by heating, a hydrocarbon having low boiling point, carbon dioxide, halogen hydrocarbon, or the like can be used.

本発明におけるポリD−ヒドロキシ酪酸の生分解方法は、ポリD−ヒドロキシ酪酸をリパーゼで分解するものであって、リパーゼとしては、例えばアクロモバクター属由来のアルカリリパーゼ、アルカリゲネス属由来のリポプロテインリパーゼ、シュードモナス属由来のリパーゼ、キャンディダ属由来のリパーゼ、ムコール属由来のリパーゼ、リゾパス属由来のリパーゼ、ペニシリウム属由来のリパーゼ、フィコマイセス属由来のリパーゼ、豚膵臓リパーゼ、ヒト膵臓リパーゼ等の哺乳類のリパーゼなどが挙げられ、中でも哺乳類のリパーゼが好ましい。
これらのリパーゼは1種用いてもよいし、また2種以上を組み合わせて用いてもよい。
この生分解方法において用いられるポリD−ヒドロキシ酪酸は、D−ヒドロキシ酪酸のホモポリマーや、モノマー成分としてD−ヒドロキシ酪酸の割合が50%モル以上である、D−ヒドロキシ酪酸と他のコモノマーとの共重合体を意味する。
The biodegradation method of poly D-hydroxybutyric acid in the present invention is a method for degrading poly D-hydroxybutyric acid with lipase. Examples of lipases include alkaline lipase derived from Achromobacter and lipoprotein lipase derived from Alkaligenes. Lipase from Pseudomonas genus, lipase from Candida genus, lipase from Mucor genus, lipase from genus Rhizopus, lipase from genus Penicillium, lipase from genus Phycomyces, porcine pancreatic lipase, human pancreatic lipase, etc. Among them, mammalian lipase is preferable.
One type of these lipases may be used, or two or more types may be used in combination.
The poly-D-hydroxybutyric acid used in this biodegradation method is a homopolymer of D-hydroxybutyric acid or a D-hydroxybutyric acid and other comonomer in which the proportion of D-hydroxybutyric acid is 50% mol or more as a monomer component. It means a copolymer.

本発明によれば、フィルム、シート、板体、発泡体、ボトル状などの各種形状に成形することが可能な生分解性樹脂組成物の生分解性に極めて優れている。   According to the present invention, the biodegradability of the biodegradable resin composition that can be formed into various shapes such as a film, a sheet, a plate, a foam, and a bottle is extremely excellent.

本発明が適用される樹脂組成物は、トレー、発泡トレー、ストレッチフィルム、シュリンクフィルム、飲料用ボトル、歯ブラシ用ブリスター等の包装資材、ハウス用フィルム、トンネルフィルム、マルチフィルム、植生フィルム、苗木用ポット、種ひも、肥料・農薬の被覆材等の農業・園芸用資材、植生ネット、重袋、工事用型枠、土木用シート、芝止め杭などの土木用資材、漁網、海苔網、養殖用網、釣り糸、釣り餌袋などの漁業用資材、紙おむつや生理用品等の防水シート並びに包装材、ゴミ袋、ポリ袋、水切りネット、皿、スプーン、フォークなどのラミネーション容器、結束テープ、歯ブラシやカミソリの柄、シャンプー・リンス用ボトル、化粧品ボトル、ペン、マーカー等の日用品や雑貨品、注射器等の医療器具、骨接合材、縫合材、創傷被覆材等の医療用資材、空気清浄用フィルターなどの各種フィルター、その他磁気カード、ラベル、剥型紙、ゴルフティ等、各種の用途に好適に使用することができる。   Resin compositions to which the present invention is applied include packaging materials such as trays, foam trays, stretch films, shrink films, beverage bottles, toothbrush blisters, house films, tunnel films, multi-films, vegetation films, seedling pots Agricultural and horticultural materials such as seed strings, fertilizers and pesticide covering materials, vegetation nets, heavy bags, construction formwork, civil engineering sheets, lawn piles, and other civil engineering materials, fishing nets, laver nets, aquaculture nets Fishing line materials such as fishing lines, fishing bait bags, waterproof sheets such as disposable diapers and sanitary products, packaging materials, waste bags, plastic bags, draining nets, laminating containers such as dishes, spoons, forks, binding tape, toothbrushes and razors Patterns, shampoo / rinse bottles, cosmetic bottles, pens, markers and other daily necessities and miscellaneous goods, medical devices such as syringes, bone cement, sutures The medical material of the wound dressing and the like, various filters such as air cleaning filter, other magnetic cards, labels, 剥型 paper, can be suitably used in the golf tee or the like, various applications.

以下、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれらの例により何ら限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described with reference to examples, but the present invention is not limited to these examples.

(参考例1)
ポリL‐乳酸(島津製作所社製、ラクティー♯1012、数平均分子量Mn=1.8×105)50gとコーンスターチ50gをヘンシェルミキサーに同時に加えて、高速回転により混合し、ヘンシェルミキサーのトルクが大きくなる直前にプロテネースK(ICN社製)を1g添加して、酵素入りコンパウンドを製造した。さらに得られたコンパウンドを加温したエクストルーダ中で混練した後、ペレット化した。得られたペレットを190℃で押出し成形して肉厚30μmのフィルムを成膜した。
(Reference Example 1)
50 g of poly L-lactic acid (manufactured by Shimadzu Corp., Lacty # 1012, number average molecular weight Mn = 1.8 × 10 5 ) and 50 g of corn starch are simultaneously added to the Henschel mixer and mixed by high speed rotation to increase the torque of the Henschel mixer. Immediately before, 1 g of Proteinase K (manufactured by ICN) was added to produce an enzyme-containing compound. Further, the obtained compound was kneaded in a heated extruder and then pelletized. The obtained pellets were extruded at 190 ° C. to form a film having a thickness of 30 μm.

(参考例2)
プロテネースKに代えてズブチリシン(シグマ社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 2)
A film was formed in the same manner as in Reference Example 1 except that subtilisin (manufactured by Sigma) was used as the enzyme instead of proteinase K.

(参考例3)
プロテネースKに代えてα−キモトリプシン(シグマ社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 3)
A film was formed in the same manner as in Reference Example 1 except that α-chymotrypsin (manufactured by Sigma) was used as the enzyme instead of proteinase K.

(参考例4)
プロテネースKに代えてプロナーゼ(ベーリンガーマンハイム社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 4)
A film was formed in the same manner as in Reference Example 1 except that pronase (manufactured by Boehringer Mannheim) was used as the enzyme instead of proteinase K.

(参考例5)
プロテネースKに代えてキモパパイン(ワシントンバイオケミカル社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 5)
A film was formed in the same manner as in Reference Example 1 except that chymopapain (manufactured by Washington Biochemical Co., Ltd.) was used as the enzyme instead of proteinase K.

(参考例6)
プロテネースKに代えてパパイン(カルビオケムノババイオケミカル社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 6)
A film was formed in the same manner as in Reference Example 1 except that papain (manufactured by Calbiochemnova Biochemical Co., Ltd.) was used as the enzyme instead of proteinase K.

(参考例7)
プロテネースKに代えてプラスミン(シグマ社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 7)
A film was formed in the same manner as in Reference Example 1 except that plasmin (manufactured by Sigma) was used instead of proteinase K as the enzyme.

(参考例8)
プロテネースKに代えてエラスターゼ(和光純薬社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 8)
A film was formed in the same manner as in Reference Example 1 except that elastase (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the enzyme instead of proteinase K.

(参考例9)
プロテネースKに代えてトリプシン(シグマ社製)を酵素に用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 9)
A film was formed in the same manner as in Reference Example 1 except that trypsin (manufactured by Sigma) was used as the enzyme instead of proteinase K.

(参考例10)
プロテネースKに代えてブナシメジ抽出物の凍結乾燥粉末を用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 10)
A film was formed in the same manner as in Reference Example 1, except that lyophilized powder of Buna shimeji extract was used in place of proteinase K.

(参考例11)
プロテネースKに代えていちじく抽出物の凍結乾燥粉末を用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 11)
A film was formed in the same manner as in Reference Example 1 except that lyophilized powder of the extract was used instead of proteinase K.

(参考例12)
プロテネースKに代えてパッションフルーツ抽出物の凍結乾燥粉末を用いた以外は参考例1と同様にしてフィルムを成膜した。
これら参考例10〜12の各抽出物の凍結乾燥粉末について、これを以下抽出粉末と称する。
(Reference Example 12)
A film was formed in the same manner as in Reference Example 1 except that lyophilized powder of a passion fruit extract was used instead of proteinase K.
These freeze-dried powders of the extracts of Reference Examples 10 to 12 are hereinafter referred to as “extracted powder”.

(参考例13)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例1と同様にしてフィルムを成膜した。
(Reference Example 13)
A film was formed in the same manner as in Reference Example 1 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly L-lactic acid.

(参考例14)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例2と同様にしてフィルムを成膜した。
(Reference Example 14)
A film was formed in the same manner as in Reference Example 2, except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例15)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例3と同様にしてフィルムを成膜した。
(Reference Example 15)
A film was formed in the same manner as in Reference Example 3 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例16)
ポリL‐乳酸に代えてL‐ラクチドとD‐ラクチドのモル比90:10の共重合体を用いた以外は参考例4と同様にしてフィルムを成膜した。
(Reference Example 16)
A film was formed in the same manner as in Reference Example 4 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例17)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例5と同様にしてフィルムを成膜した。
(Reference Example 17)
A film was formed in the same manner as in Reference Example 5 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例18)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例6と同様にしてフィルムを成膜した。
(Reference Example 18)
A film was formed in the same manner as in Reference Example 6 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例19)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例7と同様にしてフィルムを成膜した。
(Reference Example 19)
A film was formed in the same manner as in Reference Example 7 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例20)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例8と同様にしてフィルムを成膜した。
(Reference Example 20)
A film was formed in the same manner as in Reference Example 8 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例21)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例9と同様にしてフィルムを成膜した。
(Reference Example 21)
A film was formed in the same manner as in Reference Example 9 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例22)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例10と同様にしてフィルムを成膜した。
(Reference Example 22)
A film was formed in the same manner as in Reference Example 10 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例23)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例11と同様にしてフィルムを成膜した。
(Reference Example 23)
A film was formed in the same manner as in Reference Example 11 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例24)
ポリL−乳酸に代えてL−ラクチドとD−ラクチドのモル比90:10の共重合体を用いた以外は参考例12と同様にしてフィルムを成膜した。
(Reference Example 24)
A film was formed in the same manner as in Reference Example 12 except that a copolymer having a molar ratio of L-lactide and D-lactide of 90:10 was used instead of poly-L-lactic acid.

(参考例25)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンのモル比90:10の共重合体を用いた以外は参考例9と同様にフィルムを成膜した。
(Reference Example 25)
A film was formed in the same manner as in Reference Example 9 except that a copolymer having a molar ratio of L-lactide and DL-β-butyrolactone of 90:10 was used instead of poly-L-lactic acid.

(参考例26)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとε−カプロラクトンのモル比90:5:5の共重合体を用いた以外は参考例9と同様にフィルムを成膜した。
(Reference Example 26)
A film was formed in the same manner as in Reference Example 9 except that a copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactone in a molar ratio of 90: 5: 5 was used instead of poly L-lactic acid.

(参考例27)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとε−カプロラクタムのモル比90:5:5の共重合体を用いた以外は参考例9と同様にフィルムを成膜した。
(Reference Example 27)
A film was formed in the same manner as in Reference Example 9 except that a copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactam in a molar ratio of 90: 5: 5 was used instead of poly L-lactic acid.

(参考例28)
ポリL−乳酸に代えてL−ラクチドとDL−β−ブチロラクトンとエチレンオキシドのモル比90:5:5の共重合体を用いた以外は参考例9と同様にフィルムを成膜した。
(Reference Example 28)
A film was formed in the same manner as in Reference Example 9 except that a copolymer having a molar ratio of 90: 5: 5 of L-lactide, DL-β-butyrolactone, and ethylene oxide was used instead of poly-L-lactic acid.

(ブナシメジ抽出物凍結乾燥粉末の調製方法)
ブナシメジ50gを0.1Mリン酸緩衝液(pH7)100mlを加え、ホモジナイズを行った。さらにガーゼによるろ過、高速遠沈(10000rpm)を行った。得られた抽出液を凍結乾燥し、ブナシメジ抽出液凍結乾燥粉末を得た。
(Method for preparing lyophilized powder of Bunashimeji extract)
Homogenization was performed by adding 100 ml of 0.1M phosphate buffer (pH 7) to 50 g of bunashimeji. Further, filtration with gauze and high-speed centrifugation (10000 rpm) were performed. The obtained extract was freeze-dried to obtain a lysate powder of bunashimeji extract.

(いちじく抽出物凍結乾燥粉末の調製方法)
ブナシメジに代えていちじくを用いた以外は上記ブナシメジ抽出物凍結乾燥粉末の調製方法と同様にいちじく抽出液凍結乾燥粉末を得た。
(Method for preparing fig extract lyophilized powder)
The extract liquid freeze-dried powder was obtained in the same manner as in the above-described method for preparing the freeze-dried powder of Bunashimeji, except that it was used instead of Bunashimeji.

(パッションフルーツ抽出物凍結乾燥粉末の調製方法)
ブナシメジに代えてパッションフルーツを用いた以外は上記ブナシメジ抽出物凍結乾燥粉末の調製方法と同様にパッションフルーツ抽出物凍結乾燥粉末を得た。
(Preparation method of passion fruit extract freeze-dried powder)
A passion fruit extract lyophilized powder was obtained in the same manner as the above-mentioned method for preparing a lysed bunashimeji extract, except that passion fruit was used in place of bunashhimeji.

(L−ラクチドとD−ラクチドのモル比90:10の共重合体の合成方法)
窒素気流中、三口フラスコにピューラック社製L−ラクチド9g、ピューラック社製D−ラクチド1gおよびナカライテスク社製オクチル酸スズ0.01gを加え、130℃で1時間加熱した。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノール500mlに沈殿させた。(収量9g数平均分子量1.2×104
(Method for synthesizing copolymer having a molar ratio of L-lactide and D-lactide of 90:10)
In a nitrogen stream, 9 g of Pulac L-lactide, 1 g of Pulac D-lactide and 0.01 g of tin octylate Nacalai Tesque were added to a three-necked flask and heated at 130 ° C. for 1 hour. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in 500 ml of methanol. (Yield 9 g number average molecular weight 1.2 × 10 4 )

(L−ラクチドとDL−β−ブチロラクトンのモル比90:10の共重合体の合成方法)
窒素気流中、三口フラスコにピューラック社製L‐ラクチド9.26g、東京化成社製DL−β−ブチロラクトン0.74gおよび和光純薬製トリエチルアルミニウム0.4mlを加え、30℃で24時間撹拌した。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノール500mlに沈殿させた。(収量3.6g数平均分子量5.6×103
(Method for synthesizing copolymer of L-lactide and DL-β-butyrolactone having a molar ratio of 90:10)
In a nitrogen stream, 9.26 g of Pulac L-lactide, 0.74 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd. and 0.4 ml of triethylaluminum manufactured by Wako Pure Chemical Industries, Ltd. were added to a three-necked flask and stirred at 30 ° C. for 24 hours. . The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in 500 ml of methanol. (Yield 3.6 g number average molecular weight 5.6 × 10 3 )

(L−ラクチドとDL−β−ブチロラクトンとε−カプロラクトンのモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製DL−β−ブチロラクトン4.2g、東京化成社製ε−カプロラクトン5.8gおよび和光純薬社製テトラフェニルスズ0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量5g数平均分子量8.3×103)得られた共重合体1gと島津社製ポリL−ラクチド(ラクティー♯1012、数平均分子量Mn=1.8×105)9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量7g数平均分子量5.3×103
(Method for synthesizing a copolymer of L-lactide, DL-β-butyrolactone and ε-caprolactone in a molar ratio of 90: 5: 5)
In a nitrogen stream, 4.2 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g of ε-caprolactone manufactured by Tokyo Chemical Industry Co., Ltd., and 0.01 g of tetraphenyl tin manufactured by Wako Pure Chemical Industries, Ltd. were added to a three-necked flask at 30 ° C. for 24 hours. Reacted. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 5 g number average molecular weight 8.3 × 10 3 ) 1 g of the obtained copolymer and 9 g poly L-lactide (Lacty # 1012, number average molecular weight Mn = 1.8 × 10 5 ) manufactured by Shimadzu Corporation were added, and 200 Heat at 5 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 7 g number average molecular weight 5.3 × 10 3 )

(L−ラクチドとDL−β−ブチロラクトンとε−カプロラクタムのモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製DL−β−ブチロラクトン4.2g、東京化成社製ε−カプロラクタム5.8gおよび和光純薬社製テトラフェニルスズ0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量4g数平均分子量6.3×103)得られた共重合体1gと島津社製ポリL‐ラクチド(ラクティー♯1012、数平均分子量Mn=1.8×105)9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた。(収量5g数平均分子量4.2×103
(Method for synthesizing copolymer of L-lactide, DL-β-butyrolactone, and ε-caprolactam at a molar ratio of 90: 5: 5)
In a nitrogen stream, 4.2 g of DL-β-butyrolactone manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g of ε-caprolactam manufactured by Tokyo Chemical Industry Co., Ltd. and 0.01 g of tetraphenyl tin manufactured by Wako Pure Chemical Industries, Ltd. were added to the three-necked flask at 30 ° C. for 24 hours. Reacted. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 4 g number average molecular weight 6.3 × 10 3 ) 1 g of the obtained copolymer and 9 g of poly L-lactide (Lacty # 1012, number average molecular weight Mn = 1.8 × 10 5 ) manufactured by Shimadzu were added, and 200 Heat at 5 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol. (Yield 5 g number average molecular weight 4.2 × 10 3 )

(L−ラクチドとエチレンオキシドとコハク酸のモル比90:5:5の共重合体の合成方法)
窒素気流中、三口フラスコに東京化成社製エチレンオキシド3.3g、東京化成社製無水コハク酸6.7gおよび和光純薬社製ジエトキシマグネシウム0.01gを加え、30℃で24時間反応させた。得られた粗製の共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた(収量6g、数平均分子量6.8×103)。得られた共重合体1gと島津社製ポリL‐ラクチド9gを加え、200℃で5時間加熱した。得られた粗製の三元共重合体をクロロホルム100mlに溶解し、メタノールに沈殿させた(収量7g数平均分子量5.8×103)。
(Method for synthesizing a copolymer of L-lactide, ethylene oxide, and succinic acid in a molar ratio of 90: 5: 5)
In a nitrogen stream, 3.3 g of ethylene oxide manufactured by Tokyo Chemical Industry Co., Ltd., 6.7 g of succinic anhydride manufactured by Tokyo Chemical Industry Co., Ltd. and 0.01 g of diethoxymagnesium manufactured by Wako Pure Chemical Industries, Ltd. were added and reacted at 30 ° C. for 24 hours. The obtained crude copolymer was dissolved in 100 ml of chloroform and precipitated in methanol (yield 6 g, number average molecular weight 6.8 × 10 3 ). 1 g of the obtained copolymer and 9 g of poly L-lactide manufactured by Shimadzu Corporation were added and heated at 200 ° C. for 5 hours. The obtained crude ternary copolymer was dissolved in 100 ml of chloroform and precipitated in methanol (yield 7 g number average molecular weight 5.8 × 10 3 ).

(試験例1〜28)(生分解性試験)
参考例1〜28で調製した各フィルムを試料に用いて、その各々10mgを0.1Mリン酸緩衝液(pH7.0)4mlとオクチルグルコシド溶液(東京化成社製)1ml中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表1のA欄に示す。
各参考例の試料と、その酵素又は抽出粉末に代えて該酵素又は抽出粉末を280℃で加熱処理したものを用いた以外は各参考例と同様にして調製した各フィルムについて、上記と同様に処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表1のB欄にブランクとして示す。
各参考例の試料の生分解性は、上記A欄とB欄の値の差として表1のC欄に示す。
(Test Examples 1 to 28) (Biodegradability test)
Using each film prepared in Reference Examples 1 to 28 as a sample, 10 mg of each was added to 4 ml of 0.1 M phosphate buffer (pH 7.0) and 1 ml of octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.), 37 The mixture was stirred at 14 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in the A column of 1.
For each film prepared in the same manner as each reference example, except that the sample of each reference example and the enzyme or extraction powder were heat-treated at 280 ° C. instead of the enzyme or extraction powder, the same as above. The water-soluble organic carbon concentration (in ppm) was measured, and the result is shown as a blank in column B of Table 1.
The biodegradability of the samples of each reference example is shown in column C of Table 1 as the difference between the values in column A and column B.

Figure 0004811771
Figure 0004811771

これより、樹脂組成物は酵素あるいは抽出物が含有された状態でも分解されることが分る。   From this, it is understood that the resin composition is decomposed even in the state where the enzyme or the extract is contained.

(比較試験例1)
試験例1の試料に代えて、酵素を含まないポリL−乳酸のみからなる肉厚30μmのフィルムを比較試料として用いた以外は試験例1と同様にして緩衝液中で撹拌処理し、測定したが、処理液に水溶性有機炭素は検出されなかった。
(Comparative Test Example 1)
In place of the sample of Test Example 1, a 30 μm thick film consisting only of poly-L-lactic acid containing no enzyme was used as a comparative sample, and the sample was stirred in a buffer solution and measured in the same manner as in Test Example 1. However, water-soluble organic carbon was not detected in the treatment liquid.

(試験例29〜36)
ポリL−乳酸のみからなる肉厚30μmのフィルム10mgを各種酵素液(キモパパイン、パパイン、プラスミン、エラスターゼ、トリプシン、ぶなしめじ抽出粉末、いちじく抽出粉末およびパッションフルーツ抽出粉末)1ml、0.1Mリン酸緩衝液(pH7.0)3ml、オクチルグルコシド溶液(東京化成社製)1mlの混合溶液中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表2のA欄に示す。
これら試験例と、その酵素又は抽出粉末に代えて該酵素又は抽出粉末を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表2のB欄にブランクとして示す。
各試験例の生分解性は、上記A欄とB欄の値の差として表2のC欄に示す。
(Test Examples 29 to 36)
10 ml of a 30 μm thick film consisting only of poly-L-lactic acid, 1 ml of various enzyme solutions (chymopapain, papain, plasmin, elastase, trypsin, bamboo shoot extract powder, fig extract powder and passion fruit extract powder), 0.1 M phosphate buffer The mixture was added to a mixed solution of 3 ml of a liquid (pH 7.0) and 1 ml of an octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.) and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in A column of 2.
The films were treated in the same manner except that these test examples and the enzyme or extract powder were heat-treated at 280 ° C. instead of the enzyme or extract powder, and the water-soluble organic carbon concentration (ppm unit) was measured. The results are shown as blanks in column B of Table 2.
The biodegradability of each test example is shown in the column C of Table 2 as the difference between the values in the columns A and B.

(比較試験例2〜4)
ポリL−乳酸のみからなる肉厚30μmのフィルム10mgを各種酵素液(プロテネースK、ズブチリシン、α‐キモトリプシン)1ml、0.1Mリン酸緩衝液(pH7.0)3ml、オクチルグルコシド溶液(東京化成社製)1mlの混合溶液中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表2のA欄に示す。
これら比較試験例と、その酵素に代えて該酵素を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表2のB欄にブランクとして示す。
各比較試験例の生分解性は、上記A欄とB欄の値の差として表2のC欄に示す。
(Comparative Test Examples 2 to 4)
10 mg of a 30 μm-thick film consisting of poly-L-lactic acid alone, 1 ml of various enzyme solutions (proteinase K, subtilisin, α-chymotrypsin), 3 ml of 0.1 M phosphate buffer (pH 7.0), octyl glucoside solution (Tokyo Kasei Co., Ltd.) The product was added to 1 ml of the mixed solution and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in A column of 2.
The film was treated in the same manner except that these comparative test examples and the enzyme were heat-treated at 280 ° C. instead of the enzyme, and the water-soluble organic carbon concentration (in ppm) was measured. It is shown as a blank in column B of 2.
The biodegradability of each comparative test example is shown in the C column of Table 2 as the difference between the values in the A column and the B column.

Figure 0004811771
Figure 0004811771

(試験例37〜46)
三菱ガス化学工業社製ポリD‐ヒドロキシ酪酸(数平均分子量2.1×105)のキャストフィルム(30μm)、10mgを各種酵素溶液、生化学工業社製アクロモバクター属由来のアルカリリパーゼ、生化学工業社製アルカリゲネス属由来のリポプロテインリパーゼ、天野社製シュードモナス属由来のリパーゼ(リパーゼAK)、シグマ社製キャンディダ属由来のリパーゼ(タイプVII−S)、バイオキャタリスト社製ムコール属由来のリパーゼ、シグマ社製リゾパス属由来のリパーゼ(タイプVI)、バイオキャタリスト社製ペニシリウム属由来のリパーゼ、和光純薬社製フィコマイセス属由来のリパーゼ(リパーゼPN)、シグマ社製豚膵臓リパーゼ(タイプII)、シグマ社製ヒト膵臓リパーゼ(1mg/ml)1ml、0.1Mリン酸緩衝液(pH7.0)3mlとオクチルグルコシド溶液(東京化成社製)1ml中に添加し、37℃で14時間撹拌処理した。
得られた処理液について、その水溶性有機炭素濃度(ppm単位)を有機炭素測定装置(島津製作所社製、製品名:全有機炭素濃度測定装置TOC−5000A)にて測定し、その結果を表3のA欄に示す。
これら試験例と、その酵素に代えて該酵素を280℃で加熱処理したものを用いた以外は同様にフィルムを処理し、水溶性有機炭素濃度(ppm単位)を測定し、その結果を表3のB欄にブランクとして示す。
各試験例の生分解性は、上記A欄とB欄の値の差として表3のC欄に示す。
(Test Examples 37 to 46)
A cast film (30 μm) of poly-D-hydroxybutyric acid (number average molecular weight 2.1 × 10 5 ) manufactured by Mitsubishi Gas Chemical Industries, Ltd., 10 mg of various enzyme solutions, alkaline lipase derived from Achromobacter genus manufactured by Seikagaku Corporation, Lipoprotein lipase derived from Alkagenes genus manufactured by Kagaku Kogyo, lipase derived from Pseudomonas genus manufactured by Amano (lipase AK), lipase derived from Candida genus manufactured by Sigma (type VII-S), derived from Mucor genus manufactured by Biocatalyst Lipase, lipase derived from Rhizopus genus manufactured by Sigma (type VI), lipase derived from Penicillium genus manufactured by Biocatalyst, lipase derived from Phycomyces genus manufactured by Wako Pure Chemical Industries, Ltd. (lipase PN), porcine pancreatic lipase manufactured by Sigma (type II) ), Sigma human pancreatic lipase (1 mg / ml) 1 ml, 0.1M The solution was added to 3 ml of a phosphate buffer (pH 7.0) and 1 ml of an octyl glucoside solution (manufactured by Tokyo Chemical Industry Co., Ltd.) and stirred at 37 ° C. for 14 hours.
About the obtained process liquid, the water-soluble organic carbon concentration (ppm unit) was measured with the organic carbon measuring device (the Shimadzu Corporation make, product name: total organic carbon concentration measuring device TOC-5000A), and the result was represented. It is shown in the A column of 3.
The film was treated in the same manner except that these test examples were used and the enzyme was heat-treated at 280 ° C. instead of the enzyme, and the water-soluble organic carbon concentration (in ppm) was measured. It is shown as a blank in the B column.
The biodegradability of each test example is shown in the column C of Table 3 as the difference between the values in the columns A and B.

Figure 0004811771
Figure 0004811771

本発明の生分解方法は、フィルム、シート、板体、発泡体、ボトル状などの各種形状に成形しうるので、トレー、シュリンクフィルム、各種ボトル等の包装資材、ハウス用フィルム、トンネルフィルム、マルチフィルム等の農業・園芸用資材、型枠、土木用シート等の土木用資材、漁網等の漁業用資材、紙おむつや生理用品等の防水シート、注射器などの医療器具、ゴミ袋、ポリ袋、水切りネット、皿等の日用品や雑貨品、骨接合材、縫合材、創傷被覆材等の医療用資材、フィルター、磁気カード、ラベル、剥型紙等、各種の用途に好適に使用しうる樹脂組成物の生分解性に極めて優れている。   Since the biodegradation method of the present invention can be formed into various shapes such as films, sheets, plates, foams, bottles, etc., packaging materials such as trays, shrink films, various bottles, films for houses, tunnel films, Agricultural / horticultural materials such as films, civil engineering materials such as formwork and civil engineering sheets, fishing materials such as fishing nets, waterproof sheets such as disposable diapers and sanitary products, medical equipment such as syringes, garbage bags, plastic bags, drainers A resin composition that can be suitably used for various applications such as daily necessities such as nets and dishes, miscellaneous goods, medical materials such as bone cement, suture materials, wound dressings, filters, magnetic cards, labels, release papers, etc. Excellent biodegradability.

Claims (1)

L−乳酸の重合体又は共重合体、或いはその成形物をキモパパイン、プラスミン、エラスターゼ、トリプシン、及びぶなしめじ、いちじく又はパッションフルーツの粉末又は抽出物の中から選ばれた少なくとも1種の酵素、粉末あるいは抽出物で分解することを特徴とする、L−乳酸の重合体又は共重合体、或いはその成形物の生分解方法。   L-lactic acid polymer or copolymer, or a molded product thereof, at least one enzyme selected from chymopapain, plasmin, elastase, trypsin, and bean-meji, fig or passion fruit powder or extract Alternatively, a biodegradation method of a polymer or copolymer of L-lactic acid or a molded product thereof, which is decomposed with an extract.
JP2010109649A 2010-05-11 2010-05-11 Biodegradable resin composition or method for biodegradation of molded product thereof Expired - Fee Related JP4811771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109649A JP4811771B2 (en) 2010-05-11 2010-05-11 Biodegradable resin composition or method for biodegradation of molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109649A JP4811771B2 (en) 2010-05-11 2010-05-11 Biodegradable resin composition or method for biodegradation of molded product thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004217971A Division JP4543211B2 (en) 2004-07-26 2004-07-26 Biodegradable resin composition and molded product thereof

Publications (2)

Publication Number Publication Date
JP2010248516A JP2010248516A (en) 2010-11-04
JP4811771B2 true JP4811771B2 (en) 2011-11-09

Family

ID=43311179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109649A Expired - Fee Related JP4811771B2 (en) 2010-05-11 2010-05-11 Biodegradable resin composition or method for biodegradation of molded product thereof

Country Status (1)

Country Link
JP (1) JP4811771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000099A (en) * 2011-06-21 2013-01-07 National Univ Corp Shizuoka Univ Polylactic acid-degrading enzyme, and microorganism producing the same
AU2014325231B2 (en) * 2013-09-27 2017-09-14 Toyo Seikan Group Holdings, Ltd. Method for degrading biodegradable resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206370A (en) * 1998-01-29 1999-08-03 Showa Denko Kk Sustained release resin composition and its usage
JP4065990B2 (en) * 2002-03-04 2008-03-26 独立行政法人産業技術総合研究所 Copolymerization type easily degradable polylactic acid and method for decomposing polylactic acid
JP4203574B2 (en) * 2002-06-14 2009-01-07 独立行政法人産業技術総合研究所 Method for producing hinokitiol-containing thermoplastic resin molded article
JP2005162832A (en) * 2003-12-01 2005-06-23 Almighty:Kk Method for degrading polylacic acid

Also Published As

Publication number Publication date
JP2010248516A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
de Albuquerque et al. Polylactic acid production from biotechnological routes: A review
JP3742842B2 (en) Biodegradable polylactic acid resin composition
Chiellini et al. Biodegradable polymeric materials
Bugnicourt et al. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging
Luckachan et al. Biodegradable polymers-a review on recent trends and emerging perspectives
EP1725614B1 (en) Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate
US8389614B2 (en) Biodegradable nanopolymer compositions and biodegradable articles made thereof
Jiang et al. Biodegradable polymers and polymer blends
Tian et al. Research progress of biodegradable materials in reducing environmental pollution
CN108102318A (en) biodegradable film material
Bohlmann General characteristics, processability, industrial applications and market evolution of biodegradable polymers
Venkatachalam et al. Bioplastic world: A review
Kushwah et al. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use
Fink The chemistry of bio-based polymers
JP4811772B2 (en) Biodegradation method of poly-D-hydroxybutyric acid
JP4811771B2 (en) Biodegradable resin composition or method for biodegradation of molded product thereof
JP2008024851A (en) Biodegradable composition, and molded article and use of the same
JP4543211B2 (en) Biodegradable resin composition and molded product thereof
CN114836012B (en) Completely biodegradable garbage bag film material and preparation method of garbage bag film
ARYA et al. Material properties of biodegradable polymers
Javaid et al. Biodegradable Plastics as a Solution to the Challenging Situation of Plastic Waste Management
JPH1087976A (en) Resin composition, and molded and processed product thereof
JP4235744B2 (en) Biodegradable resin composition
Cecchi et al. Biobased Polymers from Food Waste Feedstock and Their Synthesis
Jayaseelan Application of Polylactic Acid (PLA) in Food Packaging

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees