JP4811660B2 - High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same - Google Patents
High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same Download PDFInfo
- Publication number
- JP4811660B2 JP4811660B2 JP2006323242A JP2006323242A JP4811660B2 JP 4811660 B2 JP4811660 B2 JP 4811660B2 JP 2006323242 A JP2006323242 A JP 2006323242A JP 2006323242 A JP2006323242 A JP 2006323242A JP 4811660 B2 JP4811660 B2 JP 4811660B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- binary alloy
- powder
- binary
- sputtering target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002056 binary alloy Inorganic materials 0.000 title claims description 59
- 238000005477 sputtering target Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 239000011812 mixed powder Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010408 film Substances 0.000 description 18
- 238000005520 cutting process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910002059 quaternary alloy Inorganic materials 0.000 description 9
- 230000031700 light absorption Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000012733 comparative method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Description
この発明は、太陽電池の光吸収層を形成するためのCu−In−Ga−Se四元系合金膜を形成するときに使用する高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法に関するものである。 The present invention relates to a high Ga-containing Cu—Ga binary alloy sputtering target used for forming a Cu—In—Ga—Se quaternary alloy film for forming a light absorption layer of a solar cell, and a method for producing the same. It is about.
近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu−In−Ga−Se四元系合金膜からなる光吸収層が形成され、このCu−In−Ga−Se四元系合金膜からなるこの光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。
前記Cu−In−Ga−Se四元系合金膜からなる光吸収層の形成方法として、蒸着法により成膜する方法が知られており、この方法により得られたCu−In−Ga−Se四元系合金膜からなる光吸収層は高いエネルギー変換効率が得られるものの、蒸着法による成膜は速度が遅いためにコストがかかる。そのために、スパッタ法によってCu−In−Ga−Se四元系合金膜からなる光吸収層を形成する方法が提案されている(特許文献1参照)。
このCu−In−Ga−Se四元系合金膜をスパッタ法により成膜する方法として、まず、Inターゲットを使用してスパッタによりIn膜を成膜し、このIn膜の上にCu−Ga二元系合金ターゲットを使用してスパッタすることによりCu−Ga二元系合金膜を成膜し、得られたIn膜およびCu−Ga二元系合金膜からなる積層膜をSe雰囲気中で熱処理してCu−In−Ga−Se四元系合金膜を形成する方法が提案されている。そして、前記Cu−Ga二元系合金ターゲットとしてGa:1〜40重量%を含有し、残部がCuからなる組成を有するCu−Ga二元系合金ターゲットが知られており(特許文献2参照)、このCu−Ga二元系合金ターゲットは一般に鋳造で作製されている。
As a method of forming a light absorption layer made of the Cu—In—Ga—Se quaternary alloy film, a method of forming a film by vapor deposition is known, and Cu—In—Ga—Se four obtained by this method is known. Although a light absorption layer made of a ternary alloy film can provide high energy conversion efficiency, film formation by vapor deposition is slow because of its slow speed. Therefore, a method of forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film by a sputtering method has been proposed (see Patent Document 1).
As a method of forming this Cu—In—Ga—Se quaternary alloy film by sputtering, first, an In film is formed by sputtering using an In target, and Cu—Ga 2 is formed on the In film. A Cu—Ga binary alloy film is formed by sputtering using a binary alloy target, and the obtained laminated film composed of the In film and the Cu—Ga binary alloy film is heat-treated in an Se atmosphere. A method of forming a Cu—In—Ga—Se quaternary alloy film has been proposed. And the Cu-Ga binary system alloy target which contains Ga: 1-40weight% as said Cu-Ga binary system alloy target and the remainder consists of Cu is known (refer patent document 2). The Cu—Ga binary alloy target is generally produced by casting.
近年、太陽電池の変換効率を高めるために、前記Cu−In−Ga−Se四元系合金膜を成膜する際に使用するCu−Ga二元系合金ターゲットは、従来から知られているGa:1〜40質量%を含有するCu−Ga二元系合金ターゲットよりもGa含有量の多いCu−Ga二元系合金ターゲットが求められており、Gaを60質量%まで含有する高Ga含有Cu−Ga二元系合金ターゲットが求められている。
しかし、この高Ga含有Cu−Ga二元系合金ターゲットを溶解鋳造して鋳造体を作製し、この鋳造体の表面を切削して製品として出荷しようとすると、この溶解鋳造して作製した高Ga含有Cu−Ga二元系合金ターゲットは、Gaの含有量が増すにつれて、硬くかつ脆くなり、Ga:30質量%以上含む高Ga含有Cu−Ga二元系合金ターゲットは、表面を切削加工して製品に仕上げる時に割れまたは欠損が発生し、不良品が多く発生するので歩留まりが悪くなる。
In recent years, in order to increase the conversion efficiency of solar cells, a Cu—Ga binary alloy target used when forming the Cu—In—Ga—Se quaternary alloy film is a conventionally known Ga— : A Cu-Ga binary alloy target having a Ga content higher than that of a Cu-Ga binary alloy target containing 1 to 40% by mass, and a high Ga-containing Cu containing Ga up to 60% by mass There is a need for -Ga binary alloy targets.
However, when this high Ga-containing Cu—Ga binary alloy target is melt cast to produce a cast body and the surface of this cast body is cut and shipped as a product, the high Ga content produced by this melt casting is produced. The contained Cu—Ga binary alloy target becomes hard and brittle as the Ga content increases, and the high Ga containing Cu—Ga binary alloy target containing Ga: 30% by mass or more is obtained by cutting the surface. Cracking or chipping occurs when the product is finished, and many defective products occur, resulting in poor yield.
そこで、本発明者らは、表面仕上げのための切削時に割れまたは欠損が発生して不良品となることのないGaを30質量%以上含む高Ga含有Cu−Ga二元系合金ターゲットの製造方法を開発するべく研究を行なった。その結果、
原料粉末として、Ga:15質量%以下を含み、残部がCuからなる低Ga含有Cu−Ga二元系合金粉末または純銅粉末を用意し、さらにGa:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末を用意し、これら原料粉末を配合し、混合してGa:30質量%以上を含有し、残部がCuからなる成分組成となる混合粉末を作製し、この混合粉末をホットプレスして得られGa:30質量%以上を含有し、残部がCuからなる成分組成を有するホットプレス体は、高Ga含有Cu−Ga二元系合金粒をGa:15質量%以下の低Ga含有Cu−Ga二元系合金からなる粒界相で包囲した組織を有し、かかる組織を有するホットプレス体は表面を切削しても、切削時に割れまたは欠損が生じることはない、という知見を得たのである。
Accordingly, the inventors of the present invention have a method for manufacturing a high Ga-containing Cu—Ga binary alloy target containing 30% by mass or more of Ga that does not generate a crack or chip during cutting for surface finishing and does not become a defective product. Researched to develop. as a result,
As a raw material powder, Ga: 15% by mass or less, a low Ga-containing Cu—Ga binary alloy powder or pure copper powder containing Cu is prepared, and more than Ga: 30% by mass, with the remainder being A high Ga-containing Cu—Ga binary alloy powder made of Cu is prepared, these raw material powders are blended, mixed to contain Ga: 30% by mass or more, and the remaining mixed powder having a component composition made of Cu. The hot-pressed body produced and hot-pressed from the mixed powder and containing Ga: 30% by mass or more and the balance being composed of Cu is a high-Ga-containing Cu—Ga binary alloy grain. : A structure having a structure surrounded by a grain boundary phase composed of a low Ga-containing Cu—Ga binary alloy of 15% by mass or less, and a hot-pressed body having such a structure has cracks or defects during cutting even when the surface is cut. Never happen, Than is obtained the findings say.
この発明は、かかる知見に基づいてなされたものであって、
(1)Ga:30〜60質量%を含有し、残部がCuからなる成分組成、並びにGa:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粒をGa:15質量%以下の低Ga含有Cu−Ga二元系合金からなる粒界相で包囲した組織を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲット、
(2)Ga:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末に、純銅粉末またはGa:15質量%以下を含み、残部がCuからなる低Ga含有Cu−Ga二元系合金粉末を、Ga:30〜60質量%を含有し、残部がCuからなる成分組成となるように配合し混合して混合粉末を作製し、この混合粉末をホットプレスして得られGa:30〜60質量%を含有し、残部がCuからなる成分組成を有するホットプレス体を表面切削する高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) A component composition containing Ga: 30 to 60% by mass with the balance being Cu, and a high Ga content Cu—Ga binary alloy grain containing Ga: more than 30% by mass and the balance being Cu A high Ga-containing Cu—Ga binary alloy sputtering target having a structure surrounded by a grain boundary phase composed of Ga: 15% by mass or less of a low Ga-containing Cu—Ga binary alloy,
(2) The high Ga-containing Cu—Ga binary alloy powder containing Ga: more than 30% by mass and the balance being made of Cu contains pure copper powder or Ga: 15% by mass or less, and the remainder is made of Cu. The Ga-containing Cu—Ga binary alloy powder is mixed and mixed so that it contains Ga: 30 to 60% by mass and the balance is composed of Cu, and a mixed powder is produced. Characterized by a method for producing a high Ga-containing Cu—Ga binary alloy sputtering target, which is obtained by pressing the surface of a hot-pressed body obtained by pressing and containing Ga: 30 to 60% by mass, and the balance comprising Cu. It is what has.
この発明のGa:30〜60質量%を含有し、残部がCuからなる成分組成を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造で使用する高Ga含有Cu−Ga二元系合金粉末は、Gaを30質量%を越えて含有する高Ga含有Cu−Ga二元系合金粉末を使用するが、Gaを45〜75質量%を含有する超高Ga含有Cu−Ga二元系合金粉末を使用することが成分調整しやすくなるので一層好ましい。そしてこの高Ga含有Cu−Ga二元系合金粉末の粒径は平均粒径が30〜125μmの範囲内にある粗大粒径の粉末を使用することが好ましい。
さらにこの発明のGa:30〜60質量%を含有し、残部がCuからなる成分組成を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲットを製造する際に、前記高Ga含有Cu−Ga二元系合金粉末に添加し混合する原料粉末として、純銅粉末またはGa:15質量%以下の低Ga含有Cu−Ga二元系合金粉末を使用する。この純銅粉末または低Ga含有Cu−Ga二元系合金粉末の粒径は高Ga含有Cu−Ga二元系合金粉末に比べて一層微細な平均粒径:5〜30μmの範囲内にあることが好ましい。
前記低Ga含有Cu−Ga二元系合金粉末に含まれるGaが15質量%以下含有するのは、Gaを15質量%を越えて含有する低Ga含有Cu−Ga二元系合金粉末を使用して作製した高Ga含有Cu−Ga二元系合金スパッタリングターゲットは、切削時に割れまたは欠損が生じるので好ましくないからである。前記高Ga含有Cu−Ga二元系合金粉末に添加し混合する原料粉末は純銅粉末であることが一層好ましい。
High Ga content Cu-Ga binary system alloy used for manufacture of high Ga content Cu-Ga binary system alloy sputtering target which contains Ga: 30-60 mass% of this invention, and the remainder consists of Cu As the powder, a high Ga-containing Cu—Ga binary alloy powder containing Ga exceeding 30% by mass is used, but an ultra-high Ga-containing Cu—Ga binary alloy containing Ga of 45 to 75% by mass is used. It is more preferable to use powder because the components can be easily adjusted. And as for the particle size of this high Ga content Cu-Ga binary system alloy powder, it is preferable to use the powder of the coarse particle size in which the average particle diameter is in the range of 30-125 micrometers.
Furthermore, when manufacturing the high Ga content Cu-Ga binary alloy sputtering target which contains Ga: 30-60 mass% of this invention and the remainder consists of a component composition which consists of Cu, the said high Ga content Cu-Ga2 As raw material powder to be added to and mixed with the ternary alloy powder, pure copper powder or Ga: 15 mass% or less low Ga-containing Cu—Ga binary alloy powder is used. The particle diameter of the pure copper powder or the low Ga-containing Cu—Ga binary alloy powder may be within a range of a finer average particle diameter: 5 to 30 μm than the high Ga-containing Cu—Ga binary alloy powder. preferable.
The low Ga-containing Cu—Ga binary alloy powder contains 15% by mass or less of Ga using a low Ga-containing Cu—Ga binary alloy powder containing more than 15% by mass of Ga. This is because the high Ga-containing Cu—Ga binary alloy sputtering target prepared in this manner is not preferable because cracks or defects occur during cutting. More preferably, the raw material powder added to and mixed with the high Ga content Cu—Ga binary alloy powder is pure copper powder.
この発明によると、Cu−In−Ga−Se四元系合金膜からなる光吸収層の形成する際に使用する高Ga含有Cu−Ga二元系合金スパッタリングターゲットを歩留まり良く製造することができるので、光吸収層の形成効率を高めることができ、したがって、太陽電池のコスト削減に大いに貢献し得るものである。 According to the present invention, a high Ga content Cu—Ga binary alloy sputtering target used when forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film can be manufactured with high yield. Therefore, it is possible to increase the formation efficiency of the light absorption layer, and thus greatly contribute to the cost reduction of the solar cell.
実施例
表1に示される成分組成および粒径を有する高Ga含有Cu−Ga二元系合金粉末A〜Jを用意し、さらに表2に示される成分組成および粒径を有する純銅粉末または低Ga含有Cu−Ga二元系合金粉末a〜jを用意した。
EXAMPLE High Ga-containing Cu—Ga binary alloy powders A to J having the component composition and particle size shown in Table 1 were prepared, and pure copper powder or low Ga having the component composition and particle size shown in Table 2 Contained Cu—Ga binary alloy powders a to j were prepared.
表1に示される高Ga含有Cu−Ga二元系合金粉末A〜Jに、表2に示される純銅粉末または低Ga含有Cu−Ga二元系合金粉末a〜jを表3に示される割合で配合し混合して混合粉末を作製し、この混合粉末をAr雰囲気中、圧力:600MPa、温度:200℃、1.5時間保持の条件でホットプレスすることにより表3に示される成分組成を有するCu−Ga二元系合金ホットプレス体を作製した。得られたホットプレス体の組織を電子プローブマイクロアナライザ(JXA−8500F)(日本電子株式会社製)で観察したところ、いずれも高Ga含有Cu−Ga二元系合金粒の周囲を低Ga含有Cu−Ga二元系合金粒界相で包囲された2相共存組織を有していた。さらに得られたホットプレス体の表面を切削してターゲットに仕上げることにより、本発明法1〜12および比較法1を実施した。この本発明法1〜12および比較法1を実施する際に切削時に割れが発生したか否かを観察し、その結果を表3に示した。
High Ga content Cu—Ga binary alloy powders A to J shown in Table 1 and pure copper powder or low Ga content Cu—Ga binary alloy powders a to j shown in Table 2 are shown in Table 3. The mixed powder was prepared by mixing and mixing, and the mixed powder was hot-pressed in an Ar atmosphere under the conditions of pressure: 600 MPa, temperature: 200 ° C., and holding for 1.5 hours to obtain the component composition shown in Table 3. The Cu-Ga binary alloy hot press body which has was produced. When the structure of the obtained hot-pressed body was observed with an electron probe microanalyzer (JXA-8500F) (manufactured by JEOL Ltd.), the surroundings of the high Ga-containing Cu-Ga binary alloy particles were all low Cu-containing Cu It had a two-phase coexistence structure surrounded by a grain boundary phase of -Ga binary alloy. Furthermore, this invention method 1-12 and the comparative method 1 were implemented by cutting the surface of the obtained hot press body and finishing it as a target. It was observed whether or not cracking occurred during cutting when carrying out the present invention methods 1 to 12 and comparative method 1, and the results are shown in Table 3.
従来例
表3に示される成分組成を有するCu−Ga二元合金溶湯を作製し、得られたCu−Ga二元系合金溶湯を鋳型に鋳造してインゴットを作製し、このインゴットの表面を切削してターゲットに仕上げることにより従来法1を実施した。この従来法1を実施する際に切削時に割れが発生したか否かを観察し、その結果を表3に示した。
Conventional Example A Cu—Ga binary alloy molten metal having the composition shown in Table 3 was prepared, and the obtained Cu—Ga binary alloy molten metal was cast into a mold to produce an ingot, and the surface of the ingot was cut. Then, the conventional method 1 was carried out by finishing the target. When this conventional method 1 was carried out, it was observed whether or not cracking occurred during cutting, and the results are shown in Table 3.
表1〜3に示される結果から、従来法1で作製したターゲットは表面切削時に割れが発生したが、本発明法1〜12で作製したターゲットは表面切削時に割れが発生しないことが分かる。また、Ga含有量が15質量%を越えて含有する表2の低Ga含有Cu−Ga二元系合金粉末jを使用する比較法1で作製したターゲットは表面切削時に割れが発生することが分かる。 From the results shown in Tables 1 to 3, it can be seen that the target produced by the conventional method 1 cracked during surface cutting, but the target produced by the present invention methods 1 to 12 did not crack during surface cutting. Moreover, it turns out that the target produced by the comparative method 1 using the low Ga content Cu-Ga binary alloy powder j of Table 2 containing Ga content exceeding 15 mass% generate | occur | produces a crack at the time of surface cutting. .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323242A JP4811660B2 (en) | 2006-11-30 | 2006-11-30 | High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323242A JP4811660B2 (en) | 2006-11-30 | 2006-11-30 | High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008138232A JP2008138232A (en) | 2008-06-19 |
JP4811660B2 true JP4811660B2 (en) | 2011-11-09 |
Family
ID=39600008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006323242A Active JP4811660B2 (en) | 2006-11-30 | 2006-11-30 | High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4811660B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718308A (en) * | 2012-10-17 | 2015-06-17 | 三菱综合材料株式会社 | Cu-Ga binary sputtering target and method for producing same |
US9934949B2 (en) | 2013-04-15 | 2018-04-03 | Mitsubishi Materials Corporation | Sputtering target and production method of the same |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5192990B2 (en) * | 2008-11-11 | 2013-05-08 | 光洋應用材料科技股▲分▼有限公司 | Copper-gallium alloy sputtering target, method for producing the sputtering target, and related applications |
JP5643524B2 (en) * | 2009-04-14 | 2014-12-17 | 株式会社コベルコ科研 | Cu-Ga alloy sputtering target and method for producing the same |
US20100314244A1 (en) * | 2009-06-12 | 2010-12-16 | Applied Materials, Inc. | Ionized Physical Vapor Deposition for Microstructure Controlled Thin Film Deposition |
JPWO2011001974A1 (en) * | 2009-07-01 | 2012-12-13 | Jx日鉱日石金属株式会社 | Cu-Ga target and manufacturing method thereof |
WO2011010529A1 (en) * | 2009-07-23 | 2011-01-27 | Jx日鉱日石金属株式会社 | Sintered cu-ga alloy sputtering target, method for producing the target, light-absorbing layer formed from sintered cu-ga alloy sputtering target, and cigs solar cell using the light-absorbing layer |
WO2011013471A1 (en) * | 2009-07-27 | 2011-02-03 | Jx日鉱日石金属株式会社 | Sintered cu-ga sputtering target and method for producing the target |
JP2011089198A (en) * | 2009-09-25 | 2011-05-06 | Sumitomo Chemical Co Ltd | METHOD FOR MANUFACTURING SPUTTERING TARGET CONSISTING OF Cu-Ga ALLOY |
JP4793504B2 (en) * | 2009-11-06 | 2011-10-12 | 三菱マテリアル株式会社 | Sputtering target and manufacturing method thereof |
CN102741450B (en) * | 2009-11-13 | 2014-08-27 | 吉坤日矿日石金属株式会社 | Cu-in-ga-se quaternary alloy sputtering target |
JP5501774B2 (en) * | 2010-01-20 | 2014-05-28 | 山陽特殊製鋼株式会社 | Cu-Ga sputtering target material having high strength |
JP4831258B2 (en) * | 2010-03-18 | 2011-12-07 | 三菱マテリアル株式会社 | Sputtering target and manufacturing method thereof |
JP4720949B1 (en) * | 2010-04-09 | 2011-07-13 | 住友金属鉱山株式会社 | Method for producing Cu-Ga alloy powder, Cu-Ga alloy powder, method for producing Cu-Ga alloy sputtering target, and Cu-Ga alloy sputtering target |
JP5818139B2 (en) * | 2010-06-28 | 2015-11-18 | 日立金属株式会社 | Cu-Ga alloy target material and method for producing the same |
JP2012017481A (en) * | 2010-07-06 | 2012-01-26 | Mitsui Mining & Smelting Co Ltd | Cu-Ga ALLOY AND Cu-Ga ALLOY SPUTTERING TARGET |
KR101293330B1 (en) | 2010-09-27 | 2013-08-06 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Cu-in-ga-se quaternary alloy sputtering target |
JP5488377B2 (en) * | 2010-09-29 | 2014-05-14 | 住友金属鉱山株式会社 | Method for producing Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target |
JP5418463B2 (en) * | 2010-10-14 | 2014-02-19 | 住友金属鉱山株式会社 | Method for producing Cu-Ga alloy sputtering target |
JP2012102358A (en) * | 2010-11-09 | 2012-05-31 | Sumitomo Metal Mining Co Ltd | METHOD FOR PRODUCING Cu-Ga ALLOY POWDER, Cu-Ga ALLOY POWDER, METHOD FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY SPUTTERING TARGET |
WO2012098722A1 (en) | 2011-01-17 | 2012-07-26 | Jx日鉱日石金属株式会社 | Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer |
JP5661540B2 (en) | 2011-04-01 | 2015-01-28 | 山陽特殊製鋼株式会社 | Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material |
JP5769004B2 (en) * | 2011-04-22 | 2015-08-26 | 三菱マテリアル株式会社 | Sputtering target and manufacturing method thereof |
JP5672252B2 (en) * | 2012-01-31 | 2015-02-18 | 新日鐵住金株式会社 | Cu-Ga sputtering target and manufacturing method thereof |
JP5907428B2 (en) * | 2012-07-23 | 2016-04-26 | 三菱マテリアル株式会社 | Sputtering target and manufacturing method thereof |
JP2014084515A (en) * | 2012-10-25 | 2014-05-12 | Sumitomo Metal Mining Co Ltd | FABRICATION METHOD FOR Cu-Ga ALLOY SPUTTERING TARGET, AND Cu-Ga ALLOY SPUTTERING TARGET |
CN104704139B (en) * | 2012-11-13 | 2017-07-11 | 吉坤日矿日石金属株式会社 | Cu Ga alloy sputtering targets and its manufacture method |
JP6007840B2 (en) * | 2013-03-25 | 2016-10-12 | 新日鐵住金株式会社 | Cu-Ga sputtering target and manufacturing method thereof |
CN105579599A (en) * | 2013-09-27 | 2016-05-11 | 攀时奥地利公司 | Copper-gallium sputtering target |
CN105473758B (en) * | 2013-10-07 | 2018-02-27 | 三菱综合材料株式会社 | Sputtering target and its manufacture method |
JP6634750B2 (en) * | 2014-09-22 | 2020-01-22 | 三菱マテリアル株式会社 | Sputtering target and method for manufacturing the same |
WO2016047556A1 (en) * | 2014-09-22 | 2016-03-31 | 三菱マテリアル株式会社 | Sputtering target and method for manufacturing same |
JP6147788B2 (en) | 2015-03-26 | 2017-06-14 | Jx金属株式会社 | Cu-Ga alloy sputtering target |
JP6888294B2 (en) * | 2016-02-03 | 2021-06-16 | 三菱マテリアル株式会社 | Manufacturing method of Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target |
WO2017134999A1 (en) * | 2016-02-03 | 2017-08-10 | 三菱マテリアル株式会社 | Cu-Ga ALLOY SPUTTERING TARGET MANUFACTURING METHOD, AND Cu-Ga ALLOY SPUTTERING TARGET |
CN108772567A (en) * | 2018-06-29 | 2018-11-09 | 米亚索乐装备集成(福建)有限公司 | A kind of alloy material for CIG target prime coats, CIG targets and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413856B2 (en) * | 1972-09-29 | 1979-06-02 | ||
JPS6119749A (en) * | 1984-07-06 | 1986-01-28 | Hitachi Ltd | Spectral reflectance variable alloy and recording material |
JPH028301A (en) * | 1988-06-24 | 1990-01-11 | Sanyo Special Steel Co Ltd | Manufacture of metal material by powder canning process |
JP3249408B2 (en) * | 1996-10-25 | 2002-01-21 | 昭和シェル石油株式会社 | Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell |
JP2000073163A (en) * | 1998-08-28 | 2000-03-07 | Vacuum Metallurgical Co Ltd | Copper-gallium alloy sputtering target and its production |
JP4320525B2 (en) * | 2002-03-25 | 2009-08-26 | 本田技研工業株式会社 | Method and apparatus for producing light absorption layer |
JP2006131952A (en) * | 2004-11-05 | 2006-05-25 | Hitachi Powdered Metals Co Ltd | METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY |
JP4476827B2 (en) * | 2005-01-28 | 2010-06-09 | 山陽特殊製鋼株式会社 | Method for producing sputtering target material |
JP4968636B2 (en) * | 2005-03-18 | 2012-07-04 | 山陽特殊製鋼株式会社 | Method for producing high-density solidified article with controlled continuous phase and dispersed phase |
-
2006
- 2006-11-30 JP JP2006323242A patent/JP4811660B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718308A (en) * | 2012-10-17 | 2015-06-17 | 三菱综合材料株式会社 | Cu-Ga binary sputtering target and method for producing same |
CN104718308B (en) * | 2012-10-17 | 2017-03-08 | 三菱综合材料株式会社 | Cu Ga binary base sputtering target and its manufacture method |
US10283332B2 (en) | 2012-10-17 | 2019-05-07 | Mitsubishi Materials Corporation | Cu—Ga binary alloy sputtering target and method of producing the same |
US9934949B2 (en) | 2013-04-15 | 2018-04-03 | Mitsubishi Materials Corporation | Sputtering target and production method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2008138232A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4811660B2 (en) | High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same | |
JP5202643B2 (en) | Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same | |
JP5818139B2 (en) | Cu-Ga alloy target material and method for producing the same | |
TWI458848B (en) | Cu-Ga sintered body sputtering target and manufacturing method of the target | |
JP5182494B2 (en) | Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation | |
JP5165100B1 (en) | Sputtering target and manufacturing method thereof | |
JP5591370B2 (en) | Cu-Ga target and manufacturing method thereof | |
JP5594618B1 (en) | Sputtering target and manufacturing method thereof | |
JP2011241452A (en) | Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, AND METHOD OF MAKING Cu-Ga ALLOY MATERIAL | |
JP4957969B2 (en) | Method for producing Cu-In-Ga ternary sintered alloy sputtering target | |
JP4957968B2 (en) | Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same | |
JP6665428B2 (en) | Cu-Ga alloy sputtering target and manufacturing method thereof | |
TWI438296B (en) | Sputtering target and its manufacturing method | |
KR101419665B1 (en) | Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer | |
TWI526554B (en) | Oxygen-containing Cu-Ga based alloy powder, Cu-Ga alloy target and target manufacturing method | |
JP6176535B2 (en) | Sputtering target and manufacturing method thereof | |
JP6311912B2 (en) | Cu-Ga binary sputtering target and method for producing the same | |
JP6769332B2 (en) | Sputtering target and its manufacturing method | |
WO2017138565A1 (en) | Sputtering target and method for producing sputtering target | |
JP2017095781A (en) | Cu-Ga ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME | |
JP5795420B2 (en) | Cu-Ga based alloy sputtering target material with low oxygen content | |
JP2015059246A (en) | Cu-Ga ALLOY TARGET MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4811660 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |