[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4811660B2 - High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same - Google Patents

High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same Download PDF

Info

Publication number
JP4811660B2
JP4811660B2 JP2006323242A JP2006323242A JP4811660B2 JP 4811660 B2 JP4811660 B2 JP 4811660B2 JP 2006323242 A JP2006323242 A JP 2006323242A JP 2006323242 A JP2006323242 A JP 2006323242A JP 4811660 B2 JP4811660 B2 JP 4811660B2
Authority
JP
Japan
Prior art keywords
mass
binary alloy
powder
binary
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006323242A
Other languages
Japanese (ja)
Other versions
JP2008138232A (en
Inventor
健志 大友
淳一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006323242A priority Critical patent/JP4811660B2/en
Publication of JP2008138232A publication Critical patent/JP2008138232A/en
Application granted granted Critical
Publication of JP4811660B2 publication Critical patent/JP4811660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、太陽電池の光吸収層を形成するためのCu−In−Ga−Se四元系合金膜を形成するときに使用する高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法に関するものである。   The present invention relates to a high Ga-containing Cu—Ga binary alloy sputtering target used for forming a Cu—In—Ga—Se quaternary alloy film for forming a light absorption layer of a solar cell, and a method for producing the same. It is about.

近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu−In−Ga−Se四元系合金膜からなる光吸収層が形成され、このCu−In−Ga−Se四元系合金膜からなるこの光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。
前記Cu−In−Ga−Se四元系合金膜からなる光吸収層の形成方法として、蒸着法により成膜する方法が知られており、この方法により得られたCu−In−Ga−Se四元系合金膜からなる光吸収層は高いエネルギー変換効率が得られるものの、蒸着法による成膜は速度が遅いためにコストがかかる。そのために、スパッタ法によってCu−In−Ga−Se四元系合金膜からなる光吸収層を形成する方法が提案されている(特許文献1参照)。
このCu−In−Ga−Se四元系合金膜をスパッタ法により成膜する方法として、まず、Inターゲットを使用してスパッタによりIn膜を成膜し、このIn膜の上にCu−Ga二元系合金ターゲットを使用してスパッタすることによりCu−Ga二元系合金膜を成膜し、得られたIn膜およびCu−Ga二元系合金膜からなる積層膜をSe雰囲気中で熱処理してCu−In−Ga−Se四元系合金膜を形成する方法が提案されている。そして、前記Cu−Ga二元系合金ターゲットとしてGa:1〜40重量%を含有し、残部がCuからなる組成を有するCu−Ga二元系合金ターゲットが知られており(特許文献2参照)、このCu−Ga二元系合金ターゲットは一般に鋳造で作製されている。
特開2003−282908号公報 特許第3249408号明細書
In recent years, thin film solar cells using compound semiconductors have been put to practical use. In this thin film solar cell using compound semiconductors, a Mo electrode layer serving as a positive electrode is formed on a soda lime glass substrate. A light absorption layer made of a Cu—In—Ga—Se quaternary alloy film is formed on the light absorption layer made of this Cu—In—Ga—Se quaternary alloy film. A buffer layer is formed, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer.
As a method of forming a light absorption layer made of the Cu—In—Ga—Se quaternary alloy film, a method of forming a film by vapor deposition is known, and Cu—In—Ga—Se four obtained by this method is known. Although a light absorption layer made of a ternary alloy film can provide high energy conversion efficiency, film formation by vapor deposition is slow because of its slow speed. Therefore, a method of forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film by a sputtering method has been proposed (see Patent Document 1).
As a method of forming this Cu—In—Ga—Se quaternary alloy film by sputtering, first, an In film is formed by sputtering using an In target, and Cu—Ga 2 is formed on the In film. A Cu—Ga binary alloy film is formed by sputtering using a binary alloy target, and the obtained laminated film composed of the In film and the Cu—Ga binary alloy film is heat-treated in an Se atmosphere. A method of forming a Cu—In—Ga—Se quaternary alloy film has been proposed. And the Cu-Ga binary system alloy target which contains Ga: 1-40weight% as said Cu-Ga binary system alloy target and the remainder consists of Cu is known (refer patent document 2). The Cu—Ga binary alloy target is generally produced by casting.
JP 2003-282908 A Japanese Patent No. 3249408

近年、太陽電池の変換効率を高めるために、前記Cu−In−Ga−Se四元系合金膜を成膜する際に使用するCu−Ga二元系合金ターゲットは、従来から知られているGa:1〜40質量%を含有するCu−Ga二元系合金ターゲットよりもGa含有量の多いCu−Ga二元系合金ターゲットが求められており、Gaを60質量%まで含有する高Ga含有Cu−Ga二元系合金ターゲットが求められている。
しかし、この高Ga含有Cu−Ga二元系合金ターゲットを溶解鋳造して鋳造体を作製し、この鋳造体の表面を切削して製品として出荷しようとすると、この溶解鋳造して作製した高Ga含有Cu−Ga二元系合金ターゲットは、Gaの含有量が増すにつれて、硬くかつ脆くなり、Ga:30質量%以上含む高Ga含有Cu−Ga二元系合金ターゲットは、表面を切削加工して製品に仕上げる時に割れまたは欠損が発生し、不良品が多く発生するので歩留まりが悪くなる。
In recent years, in order to increase the conversion efficiency of solar cells, a Cu—Ga binary alloy target used when forming the Cu—In—Ga—Se quaternary alloy film is a conventionally known Ga— : A Cu-Ga binary alloy target having a Ga content higher than that of a Cu-Ga binary alloy target containing 1 to 40% by mass, and a high Ga-containing Cu containing Ga up to 60% by mass There is a need for -Ga binary alloy targets.
However, when this high Ga-containing Cu—Ga binary alloy target is melt cast to produce a cast body and the surface of this cast body is cut and shipped as a product, the high Ga content produced by this melt casting is produced. The contained Cu—Ga binary alloy target becomes hard and brittle as the Ga content increases, and the high Ga containing Cu—Ga binary alloy target containing Ga: 30% by mass or more is obtained by cutting the surface. Cracking or chipping occurs when the product is finished, and many defective products occur, resulting in poor yield.

そこで、本発明者らは、表面仕上げのための切削時に割れまたは欠損が発生して不良品となることのないGaを30質量%以上含む高Ga含有Cu−Ga二元系合金ターゲットの製造方法を開発するべく研究を行なった。その結果、
原料粉末として、Ga:15質量%以下を含み、残部がCuからなる低Ga含有Cu−Ga二元系合金粉末または純銅粉末を用意し、さらにGa:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末を用意し、これら原料粉末を配合し、混合してGa:30質量%以上を含有し、残部がCuからなる成分組成となる混合粉末を作製し、この混合粉末をホットプレスして得られGa:30質量%以上を含有し、残部がCuからなる成分組成を有するホットプレス体は、高Ga含有Cu−Ga二元系合金粒をGa:15質量%以下の低Ga含有Cu−Ga二元系合金からなる粒界相で包囲した組織を有し、かかる組織を有するホットプレス体は表面を切削しても、切削時に割れまたは欠損が生じることはない、という知見を得たのである。
Accordingly, the inventors of the present invention have a method for manufacturing a high Ga-containing Cu—Ga binary alloy target containing 30% by mass or more of Ga that does not generate a crack or chip during cutting for surface finishing and does not become a defective product. Researched to develop. as a result,
As a raw material powder, Ga: 15% by mass or less, a low Ga-containing Cu—Ga binary alloy powder or pure copper powder containing Cu is prepared, and more than Ga: 30% by mass, with the remainder being A high Ga-containing Cu—Ga binary alloy powder made of Cu is prepared, these raw material powders are blended, mixed to contain Ga: 30% by mass or more, and the remaining mixed powder having a component composition made of Cu. The hot-pressed body produced and hot-pressed from the mixed powder and containing Ga: 30% by mass or more and the balance being composed of Cu is a high-Ga-containing Cu—Ga binary alloy grain. : A structure having a structure surrounded by a grain boundary phase composed of a low Ga-containing Cu—Ga binary alloy of 15% by mass or less, and a hot-pressed body having such a structure has cracks or defects during cutting even when the surface is cut. Never happen, Than is obtained the findings say.

この発明は、かかる知見に基づいてなされたものであって、
(1)Ga:30〜60質量%を含有し、残部がCuからなる成分組成、並びにGa:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粒をGa:15質量%以下の低Ga含有Cu−Ga二元系合金からなる粒界相で包囲した組織を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲット、
(2)Ga:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末に、純銅粉末またはGa:15質量%以下を含み、残部がCuからなる低Ga含有Cu−Ga二元系合金粉末を、Ga:30〜60質量%を含有し、残部がCuからなる成分組成となるように配合し混合して混合粉末を作製し、この混合粉末をホットプレスして得られGa:30〜60質量%を含有し、残部がCuからなる成分組成を有するホットプレス体を表面切削する高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) A component composition containing Ga: 30 to 60% by mass with the balance being Cu, and a high Ga content Cu—Ga binary alloy grain containing Ga: more than 30% by mass and the balance being Cu A high Ga-containing Cu—Ga binary alloy sputtering target having a structure surrounded by a grain boundary phase composed of Ga: 15% by mass or less of a low Ga-containing Cu—Ga binary alloy,
(2) The high Ga-containing Cu—Ga binary alloy powder containing Ga: more than 30% by mass and the balance being made of Cu contains pure copper powder or Ga: 15% by mass or less, and the remainder is made of Cu. The Ga-containing Cu—Ga binary alloy powder is mixed and mixed so that it contains Ga: 30 to 60% by mass and the balance is composed of Cu, and a mixed powder is produced. Characterized by a method for producing a high Ga-containing Cu—Ga binary alloy sputtering target, which is obtained by pressing the surface of a hot-pressed body obtained by pressing and containing Ga: 30 to 60% by mass, and the balance comprising Cu. It is what has.

この発明のGa:30〜60質量%を含有し、残部がCuからなる成分組成を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造で使用する高Ga含有Cu−Ga二元系合金粉末は、Gaを30質量%を越えて含有する高Ga含有Cu−Ga二元系合金粉末を使用するが、Gaを45〜75質量%を含有する超高Ga含有Cu−Ga二元系合金粉末を使用することが成分調整しやすくなるので一層好ましい。そしてこの高Ga含有Cu−Ga二元系合金粉末の粒径は平均粒径が30〜125μmの範囲内にある粗大粒径の粉末を使用することが好ましい。
さらにこの発明のGa:30〜60質量%を含有し、残部がCuからなる成分組成を有する高Ga含有Cu−Ga二元系合金スパッタリングターゲットを製造する際に、前記高Ga含有Cu−Ga二元系合金粉末に添加し混合する原料粉末として、純銅粉末またはGa:15質量%以下の低Ga含有Cu−Ga二元系合金粉末を使用する。この純銅粉末または低Ga含有Cu−Ga二元系合金粉末の粒径は高Ga含有Cu−Ga二元系合金粉末に比べて一層微細な平均粒径:5〜30μmの範囲内にあることが好ましい。
前記低Ga含有Cu−Ga二元系合金粉末に含まれるGaが15質量%以下含有するのは、Gaを15質量%を越えて含有する低Ga含有Cu−Ga二元系合金粉末を使用して作製した高Ga含有Cu−Ga二元系合金スパッタリングターゲットは、切削時に割れまたは欠損が生じるので好ましくないからである。前記高Ga含有Cu−Ga二元系合金粉末に添加し混合する原料粉末は純銅粉末であることが一層好ましい。
High Ga content Cu-Ga binary system alloy used for manufacture of high Ga content Cu-Ga binary system alloy sputtering target which contains Ga: 30-60 mass% of this invention, and the remainder consists of Cu As the powder, a high Ga-containing Cu—Ga binary alloy powder containing Ga exceeding 30% by mass is used, but an ultra-high Ga-containing Cu—Ga binary alloy containing Ga of 45 to 75% by mass is used. It is more preferable to use powder because the components can be easily adjusted. And as for the particle size of this high Ga content Cu-Ga binary system alloy powder, it is preferable to use the powder of the coarse particle size in which the average particle diameter is in the range of 30-125 micrometers.
Furthermore, when manufacturing the high Ga content Cu-Ga binary alloy sputtering target which contains Ga: 30-60 mass% of this invention and the remainder consists of a component composition which consists of Cu, the said high Ga content Cu-Ga2 As raw material powder to be added to and mixed with the ternary alloy powder, pure copper powder or Ga: 15 mass% or less low Ga-containing Cu—Ga binary alloy powder is used. The particle diameter of the pure copper powder or the low Ga-containing Cu—Ga binary alloy powder may be within a range of a finer average particle diameter: 5 to 30 μm than the high Ga-containing Cu—Ga binary alloy powder. preferable.
The low Ga-containing Cu—Ga binary alloy powder contains 15% by mass or less of Ga using a low Ga-containing Cu—Ga binary alloy powder containing more than 15% by mass of Ga. This is because the high Ga-containing Cu—Ga binary alloy sputtering target prepared in this manner is not preferable because cracks or defects occur during cutting. More preferably, the raw material powder added to and mixed with the high Ga content Cu—Ga binary alloy powder is pure copper powder.

この発明によると、Cu−In−Ga−Se四元系合金膜からなる光吸収層の形成する際に使用する高Ga含有Cu−Ga二元系合金スパッタリングターゲットを歩留まり良く製造することができるので、光吸収層の形成効率を高めることができ、したがって、太陽電池のコスト削減に大いに貢献し得るものである。   According to the present invention, a high Ga content Cu—Ga binary alloy sputtering target used when forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film can be manufactured with high yield. Therefore, it is possible to increase the formation efficiency of the light absorption layer, and thus greatly contribute to the cost reduction of the solar cell.

実施例
表1に示される成分組成および粒径を有する高Ga含有Cu−Ga二元系合金粉末A〜Jを用意し、さらに表2に示される成分組成および粒径を有する純銅粉末または低Ga含有Cu−Ga二元系合金粉末a〜jを用意した。
EXAMPLE High Ga-containing Cu—Ga binary alloy powders A to J having the component composition and particle size shown in Table 1 were prepared, and pure copper powder or low Ga having the component composition and particle size shown in Table 2 Contained Cu—Ga binary alloy powders a to j were prepared.


Figure 0004811660
Figure 0004811660

Figure 0004811660
Figure 0004811660


表1に示される高Ga含有Cu−Ga二元系合金粉末A〜Jに、表2に示される純銅粉末または低Ga含有Cu−Ga二元系合金粉末a〜jを表3に示される割合で配合し混合して混合粉末を作製し、この混合粉末をAr雰囲気中、圧力:600MPa、温度:200℃、1.5時間保持の条件でホットプレスすることにより表3に示される成分組成を有するCu−Ga二元系合金ホットプレス体を作製した。得られたホットプレス体の組織を電子プローブマイクロアナライザ(JXA−8500F)(日本電子株式会社製)で観察したところ、いずれも高Ga含有Cu−Ga二元系合金粒の周囲を低Ga含有Cu−Ga二元系合金粒界相で包囲された2相共存組織を有していた。さらに得られたホットプレス体の表面を切削してターゲットに仕上げることにより、本発明法1〜12および比較法1を実施した。この本発明法1〜12および比較法1を実施する際に切削時に割れが発生したか否かを観察し、その結果を表3に示した。

High Ga content Cu—Ga binary alloy powders A to J shown in Table 1 and pure copper powder or low Ga content Cu—Ga binary alloy powders a to j shown in Table 2 are shown in Table 3. The mixed powder was prepared by mixing and mixing, and the mixed powder was hot-pressed in an Ar atmosphere under the conditions of pressure: 600 MPa, temperature: 200 ° C., and holding for 1.5 hours to obtain the component composition shown in Table 3. The Cu-Ga binary alloy hot press body which has was produced. When the structure of the obtained hot-pressed body was observed with an electron probe microanalyzer (JXA-8500F) (manufactured by JEOL Ltd.), the surroundings of the high Ga-containing Cu-Ga binary alloy particles were all low Cu-containing Cu It had a two-phase coexistence structure surrounded by a grain boundary phase of -Ga binary alloy. Furthermore, this invention method 1-12 and the comparative method 1 were implemented by cutting the surface of the obtained hot press body and finishing it as a target. It was observed whether or not cracking occurred during cutting when carrying out the present invention methods 1 to 12 and comparative method 1, and the results are shown in Table 3.

従来例
表3に示される成分組成を有するCu−Ga二元合金溶湯を作製し、得られたCu−Ga二元系合金溶湯を鋳型に鋳造してインゴットを作製し、このインゴットの表面を切削してターゲットに仕上げることにより従来法1を実施した。この従来法1を実施する際に切削時に割れが発生したか否かを観察し、その結果を表3に示した。
Conventional Example A Cu—Ga binary alloy molten metal having the composition shown in Table 3 was prepared, and the obtained Cu—Ga binary alloy molten metal was cast into a mold to produce an ingot, and the surface of the ingot was cut. Then, the conventional method 1 was carried out by finishing the target. When this conventional method 1 was carried out, it was observed whether or not cracking occurred during cutting, and the results are shown in Table 3.

Figure 0004811660
Figure 0004811660

表1〜3に示される結果から、従来法1で作製したターゲットは表面切削時に割れが発生したが、本発明法1〜12で作製したターゲットは表面切削時に割れが発生しないことが分かる。また、Ga含有量が15質量%を越えて含有する表2の低Ga含有Cu−Ga二元系合金粉末jを使用する比較法1で作製したターゲットは表面切削時に割れが発生することが分かる。 From the results shown in Tables 1 to 3, it can be seen that the target produced by the conventional method 1 cracked during surface cutting, but the target produced by the present invention methods 1 to 12 did not crack during surface cutting. Moreover, it turns out that the target produced by the comparative method 1 using the low Ga content Cu-Ga binary alloy powder j of Table 2 containing Ga content exceeding 15 mass% generate | occur | produces a crack at the time of surface cutting. .

Claims (3)

Ga:30〜60質量%を含有し、残部がCuからなる成分組成、並びにGa:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粒をGa:15質量%以下の低Ga含有Cu−Ga二元系合金からなる粒界相で包囲した二相共存組織を有することを特徴とする高Ga含有Cu−Ga二元系合金スパッタリングターゲット。 The component composition which contains Ga: 30-60 mass%, the remainder consists of Cu, and the high Ga content Cu-Ga binary system alloy grain which contains more than Ga: 30 mass% and the remainder consists of Cu: Ga: A high Ga-containing Cu—Ga binary alloy sputtering target characterized by having a two-phase coexistence structure surrounded by a grain boundary phase composed of a low Ga-containing Cu—Ga binary alloy of 15 mass% or less. Ga:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末に、純銅粉末またはGa:15質量%以下を含み、残部がCuからなる低Ga含有Cu−Ga二元系合金粉末を、Ga:30〜60質量%を含有し、残部がCuからなる成分組成となるように配合し混合して混合粉末を作製し、この混合粉末をホットプレスして得られGa:30〜60質量%を含有し、残部がCuからなる成分組成を有するホットプレス体の表面を切削することを特徴とする高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造方法。 Low Ga-containing Cu containing pure copper powder or Ga: 15% by mass or less, and the balance being Cu, the high Ga-containing Cu-Ga binary alloy powder containing Ga: more than 30% by mass and the balance being Cu -Ga binary system alloy powder is mixed and mixed so that it may contain the component composition which contains Ga: 30-60 mass%, and remainder consists of Cu, and mixed powder is produced, This mixed powder is hot-pressed. The method for producing a high Ga-containing Cu—Ga binary alloy sputtering target, characterized in that the surface of a hot press body containing Ga: 30 to 60% by mass and having the remainder composed of Cu is cut. . 前記Ga:30質量%を越えて含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末は、Ga:45〜75質量%を含有し、残部がCuからなる高Ga含有Cu−Ga二元系合金粉末であることを特徴とする請求項2記載の高Ga含有Cu−Ga二元系合金スパッタリングターゲットの製造方法。 The Ga: Cu-Ga binary alloy powder containing Ga: more than 30% by mass and the balance being Cu, Ga: 45 to 75% by mass, and the balance being a high Ga-containing Cu consisting of Cu The method for producing a high Ga-containing Cu—Ga binary alloy sputtering target according to claim 2, which is a —Ga binary alloy powder.
JP2006323242A 2006-11-30 2006-11-30 High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same Active JP4811660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323242A JP4811660B2 (en) 2006-11-30 2006-11-30 High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323242A JP4811660B2 (en) 2006-11-30 2006-11-30 High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008138232A JP2008138232A (en) 2008-06-19
JP4811660B2 true JP4811660B2 (en) 2011-11-09

Family

ID=39600008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323242A Active JP4811660B2 (en) 2006-11-30 2006-11-30 High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same

Country Status (1)

Country Link
JP (1) JP4811660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718308A (en) * 2012-10-17 2015-06-17 三菱综合材料株式会社 Cu-Ga binary sputtering target and method for producing same
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192990B2 (en) * 2008-11-11 2013-05-08 光洋應用材料科技股▲分▼有限公司 Copper-gallium alloy sputtering target, method for producing the sputtering target, and related applications
JP5643524B2 (en) * 2009-04-14 2014-12-17 株式会社コベルコ科研 Cu-Ga alloy sputtering target and method for producing the same
US20100314244A1 (en) * 2009-06-12 2010-12-16 Applied Materials, Inc. Ionized Physical Vapor Deposition for Microstructure Controlled Thin Film Deposition
JPWO2011001974A1 (en) * 2009-07-01 2012-12-13 Jx日鉱日石金属株式会社 Cu-Ga target and manufacturing method thereof
WO2011010529A1 (en) * 2009-07-23 2011-01-27 Jx日鉱日石金属株式会社 Sintered cu-ga alloy sputtering target, method for producing the target, light-absorbing layer formed from sintered cu-ga alloy sputtering target, and cigs solar cell using the light-absorbing layer
WO2011013471A1 (en) * 2009-07-27 2011-02-03 Jx日鉱日石金属株式会社 Sintered cu-ga sputtering target and method for producing the target
JP2011089198A (en) * 2009-09-25 2011-05-06 Sumitomo Chemical Co Ltd METHOD FOR MANUFACTURING SPUTTERING TARGET CONSISTING OF Cu-Ga ALLOY
JP4793504B2 (en) * 2009-11-06 2011-10-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
CN102741450B (en) * 2009-11-13 2014-08-27 吉坤日矿日石金属株式会社 Cu-in-ga-se quaternary alloy sputtering target
JP5501774B2 (en) * 2010-01-20 2014-05-28 山陽特殊製鋼株式会社 Cu-Ga sputtering target material having high strength
JP4831258B2 (en) * 2010-03-18 2011-12-07 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP4720949B1 (en) * 2010-04-09 2011-07-13 住友金属鉱山株式会社 Method for producing Cu-Ga alloy powder, Cu-Ga alloy powder, method for producing Cu-Ga alloy sputtering target, and Cu-Ga alloy sputtering target
JP5818139B2 (en) * 2010-06-28 2015-11-18 日立金属株式会社 Cu-Ga alloy target material and method for producing the same
JP2012017481A (en) * 2010-07-06 2012-01-26 Mitsui Mining & Smelting Co Ltd Cu-Ga ALLOY AND Cu-Ga ALLOY SPUTTERING TARGET
KR101293330B1 (en) 2010-09-27 2013-08-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-in-ga-se quaternary alloy sputtering target
JP5488377B2 (en) * 2010-09-29 2014-05-14 住友金属鉱山株式会社 Method for producing Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
JP5418463B2 (en) * 2010-10-14 2014-02-19 住友金属鉱山株式会社 Method for producing Cu-Ga alloy sputtering target
JP2012102358A (en) * 2010-11-09 2012-05-31 Sumitomo Metal Mining Co Ltd METHOD FOR PRODUCING Cu-Ga ALLOY POWDER, Cu-Ga ALLOY POWDER, METHOD FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY SPUTTERING TARGET
WO2012098722A1 (en) 2011-01-17 2012-07-26 Jx日鉱日石金属株式会社 Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer
JP5661540B2 (en) 2011-04-01 2015-01-28 山陽特殊製鋼株式会社 Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP5769004B2 (en) * 2011-04-22 2015-08-26 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP5672252B2 (en) * 2012-01-31 2015-02-18 新日鐵住金株式会社 Cu-Ga sputtering target and manufacturing method thereof
JP5907428B2 (en) * 2012-07-23 2016-04-26 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP2014084515A (en) * 2012-10-25 2014-05-12 Sumitomo Metal Mining Co Ltd FABRICATION METHOD FOR Cu-Ga ALLOY SPUTTERING TARGET, AND Cu-Ga ALLOY SPUTTERING TARGET
CN104704139B (en) * 2012-11-13 2017-07-11 吉坤日矿日石金属株式会社 Cu Ga alloy sputtering targets and its manufacture method
JP6007840B2 (en) * 2013-03-25 2016-10-12 新日鐵住金株式会社 Cu-Ga sputtering target and manufacturing method thereof
CN105579599A (en) * 2013-09-27 2016-05-11 攀时奥地利公司 Copper-gallium sputtering target
CN105473758B (en) * 2013-10-07 2018-02-27 三菱综合材料株式会社 Sputtering target and its manufacture method
JP6634750B2 (en) * 2014-09-22 2020-01-22 三菱マテリアル株式会社 Sputtering target and method for manufacturing the same
WO2016047556A1 (en) * 2014-09-22 2016-03-31 三菱マテリアル株式会社 Sputtering target and method for manufacturing same
JP6147788B2 (en) 2015-03-26 2017-06-14 Jx金属株式会社 Cu-Ga alloy sputtering target
JP6888294B2 (en) * 2016-02-03 2021-06-16 三菱マテリアル株式会社 Manufacturing method of Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
WO2017134999A1 (en) * 2016-02-03 2017-08-10 三菱マテリアル株式会社 Cu-Ga ALLOY SPUTTERING TARGET MANUFACTURING METHOD, AND Cu-Ga ALLOY SPUTTERING TARGET
CN108772567A (en) * 2018-06-29 2018-11-09 米亚索乐装备集成(福建)有限公司 A kind of alloy material for CIG target prime coats, CIG targets and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413856B2 (en) * 1972-09-29 1979-06-02
JPS6119749A (en) * 1984-07-06 1986-01-28 Hitachi Ltd Spectral reflectance variable alloy and recording material
JPH028301A (en) * 1988-06-24 1990-01-11 Sanyo Special Steel Co Ltd Manufacture of metal material by powder canning process
JP3249408B2 (en) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production
JP4320525B2 (en) * 2002-03-25 2009-08-26 本田技研工業株式会社 Method and apparatus for producing light absorption layer
JP2006131952A (en) * 2004-11-05 2006-05-25 Hitachi Powdered Metals Co Ltd METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY
JP4476827B2 (en) * 2005-01-28 2010-06-09 山陽特殊製鋼株式会社 Method for producing sputtering target material
JP4968636B2 (en) * 2005-03-18 2012-07-04 山陽特殊製鋼株式会社 Method for producing high-density solidified article with controlled continuous phase and dispersed phase

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718308A (en) * 2012-10-17 2015-06-17 三菱综合材料株式会社 Cu-Ga binary sputtering target and method for producing same
CN104718308B (en) * 2012-10-17 2017-03-08 三菱综合材料株式会社 Cu Ga binary base sputtering target and its manufacture method
US10283332B2 (en) 2012-10-17 2019-05-07 Mitsubishi Materials Corporation Cu—Ga binary alloy sputtering target and method of producing the same
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same

Also Published As

Publication number Publication date
JP2008138232A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4811660B2 (en) High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same
JP5202643B2 (en) Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same
JP5818139B2 (en) Cu-Ga alloy target material and method for producing the same
TWI458848B (en) Cu-Ga sintered body sputtering target and manufacturing method of the target
JP5182494B2 (en) Manufacturing method of sputtering target for chalcopyrite type semiconductor film formation
JP5165100B1 (en) Sputtering target and manufacturing method thereof
JP5591370B2 (en) Cu-Ga target and manufacturing method thereof
JP5594618B1 (en) Sputtering target and manufacturing method thereof
JP2011241452A (en) Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, AND METHOD OF MAKING Cu-Ga ALLOY MATERIAL
JP4957969B2 (en) Method for producing Cu-In-Ga ternary sintered alloy sputtering target
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
JP6665428B2 (en) Cu-Ga alloy sputtering target and manufacturing method thereof
TWI438296B (en) Sputtering target and its manufacturing method
KR101419665B1 (en) Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer
TWI526554B (en) Oxygen-containing Cu-Ga based alloy powder, Cu-Ga alloy target and target manufacturing method
JP6176535B2 (en) Sputtering target and manufacturing method thereof
JP6311912B2 (en) Cu-Ga binary sputtering target and method for producing the same
JP6769332B2 (en) Sputtering target and its manufacturing method
WO2017138565A1 (en) Sputtering target and method for producing sputtering target
JP2017095781A (en) Cu-Ga ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
JP5795420B2 (en) Cu-Ga based alloy sputtering target material with low oxygen content
JP2015059246A (en) Cu-Ga ALLOY TARGET MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4811660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250