JP4808551B2 - Method for producing persulfuric acid - Google Patents
Method for producing persulfuric acid Download PDFInfo
- Publication number
- JP4808551B2 JP4808551B2 JP2006167616A JP2006167616A JP4808551B2 JP 4808551 B2 JP4808551 B2 JP 4808551B2 JP 2006167616 A JP2006167616 A JP 2006167616A JP 2006167616 A JP2006167616 A JP 2006167616A JP 4808551 B2 JP4808551 B2 JP 4808551B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- sulfuric acid
- exchange membrane
- anode
- persulfuric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 title description 40
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 63
- 229910003460 diamond Inorganic materials 0.000 claims description 41
- 239000010432 diamond Substances 0.000 claims description 41
- 239000012528 membrane Substances 0.000 claims description 41
- 238000005868 electrolysis reaction Methods 0.000 claims description 36
- 238000005341 cation exchange Methods 0.000 claims description 26
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 24
- 229910052760 oxygen Inorganic materials 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 12
- 239000003014 ion exchange membrane Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000004140 cleaning Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- -1 persulfate ions Chemical class 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920000544 Gore-Tex Polymers 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920003934 Aciplex® Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- DAFQZPUISLXFBF-UHFFFAOYSA-N tetraoxathiolane 5,5-dioxide Chemical compound O=S1(=O)OOOO1 DAFQZPUISLXFBF-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
本発明は、工業的用途に酸化剤として使用できる過硫酸を濃厚な状態で製造するための方法及び電解槽に関する。 The present invention relates to a method and an electrolytic cell for producing persulfuric acid that can be used as an oxidant for industrial applications in a concentrated state.
水電解により生成する酸化性あるいは還元性を有するいわゆる電解水が、医療、食品などの様々な分野で利用できることが報告されている。又電子部品の洗浄工程においても、オンサイト型で保存や輸送に伴う危険が少なく、又排水処理コストの低減が可能であるため、電解水による洗浄が注目を集めている。
ここで使用される薬剤として過硫酸や過硫酸塩があり、これらは電気化学的に生成することが知られており、既に十数年に渡って工業規模で電解製造され、酸性硫酸塩、例えば硫酸アンモニウム(NH4 )2 SO4 の陽極酸化で得られる。このときの過硫酸の生成効率は硫酸イオン濃度に依存し、硫酸が高濃度であるほど高効率で過硫酸が得られる。
It has been reported that so-called electrolyzed water having oxidizing properties or reducing properties produced by water electrolysis can be used in various fields such as medicine and food. Also, in the electronic component cleaning process, washing with electrolytic water is attracting attention because it is an on-site type, and there is little risk associated with storage and transportation, and the wastewater treatment cost can be reduced.
The drugs used here are persulfuric acid and persulfates, which are known to be produced electrochemically, and have already been produced electrolytically on an industrial scale for over a decade, such as acidic sulfates such as Obtained by anodic oxidation of ammonium sulfate (NH 4 ) 2 SO 4 . The production efficiency of persulfuric acid at this time depends on the sulfate ion concentration, and the higher the concentration of sulfuric acid, the higher the efficiency of persulfuric acid.
過硫酸製造用電極としては通常白金リボンが使用されていたが、上述の電解条件では消耗量が非常に大きいため、不純物の混入が無視できなくなり、用途が限定され、又電極の交換を頻繁に行わなければならないという問題点が生じていた。
この白金電極使用による過硫酸の電解合成時の欠点を解消するために導電性ダイヤモンド陽極の使用が提案されている(特許文献1)。陽極物質としての導電性ダイヤモンドは、酸素発生反応に対する過電圧が高く、この導電性ダイヤモンドを陽極として硫酸イオンを含む水溶液の電解を行うと、水電解による酸素発生反応と硫酸イオンの酸化による過硫酸イオン生成反応が競争反応となるが、導電性ダイヤモンド電極の酸素発生反応に対する過電圧が高いため、酸素発生反応の進行が抑制されて、硫酸イオンの酸化による過硫酸イオン生成が優先的に進行するという長所がある。
Platinum electrodes are usually used as electrodes for persulfuric acid production. However, the consumption amount is extremely large under the above-mentioned electrolysis conditions, so impurities cannot be ignored, the application is limited, and the electrodes are frequently replaced. There was a problem that had to be done.
In order to eliminate the drawbacks of electrolytic synthesis of persulfuric acid due to the use of a platinum electrode, the use of a conductive diamond anode has been proposed (Patent Document 1). Conductive diamond as an anode material has a high overvoltage for oxygen generation reaction. When electrolysis of aqueous solution containing sulfate ion using this conductive diamond as anode, oxygen generation reaction by water electrolysis and persulfate ion by oxidation of sulfate ion Although the formation reaction is a competitive reaction, the overvoltage for the oxygen generation reaction of the conductive diamond electrode is high, so the progress of the oxygen generation reaction is suppressed and the production of persulfate ions by oxidation of sulfate ions preferentially proceeds. There is.
特許文献1に記載の発明は、不純物生成が少なく陽極寿命が長いという利点がある一方、過硫酸生成が酸素生成との競争反応であるため、電流効率が高くならずしかも高濃度の過硫酸が得られないという欠点がある。
特許文献2及び3記載の発明は、洗浄槽と電解反応層間で洗浄液を循環させる態様が記載され、洗浄槽では過硫酸で被洗浄物を洗浄し、当該洗浄槽での洗浄により一部が消耗して硫酸に変換された洗浄液を前記電解反応槽に循環させて電解し、過硫酸を再生させた後に、前記洗浄槽へ戻すようにしている。運転当初の洗浄槽には、98%硫酸を純水で希釈した洗浄液が供給され、この洗浄液を電解しても当初の硫酸濃度を超える濃度には上昇しない。
The inventions described in Patent Documents 2 and 3 describe a mode in which a cleaning liquid is circulated between a cleaning tank and an electrolytic reaction layer. In the cleaning tank, an object to be cleaned is washed with persulfuric acid, and a part is consumed by cleaning in the cleaning tank. Then, the cleaning liquid converted into sulfuric acid is circulated in the electrolytic reaction tank and electrolyzed to regenerate persulfuric acid, and then returned to the cleaning tank. A cleaning solution obtained by diluting 98% sulfuric acid with pure water is supplied to the cleaning tank at the beginning of operation, and even if this cleaning solution is electrolyzed, the concentration does not increase to a concentration exceeding the initial sulfuric acid concentration.
本発明は、酸素発生反応を抑制して高濃度の過硫酸を効率良く生成できる方法及び装置を提供することを目的とする。 An object of this invention is to provide the method and apparatus which can produce | generate a high concentration persulfuric acid efficiently, suppressing oxygen generating reaction.
本発明は、導電性ダイヤモンド電極を陽極室に収容し、当該陽極室を補強が施されたフッ素樹脂系陽イオン交換膜又は親水化処理を行った多孔質フッ素系樹脂膜により陰極室から区画した電解槽の前記陽極室に96%以上の濃硫酸を陽極液として供給して電解を行い、過硫酸を電解合成することを特徴とする過硫酸の製造方法であり、この方法では陰極室には70%以下の硫酸を陰極液として供給して電解を行っても良い。本発明で高濃度過硫酸とは、30%以上の過硫酸をいう。
In the present invention , a conductive diamond electrode is accommodated in an anode chamber, and the anode chamber is partitioned from the cathode chamber by a reinforced fluororesin cation exchange membrane or a porous fluororesin membrane subjected to hydrophilization treatment. A method for producing persulfuric acid is characterized in that electrolysis is performed by supplying 96% or more of concentrated sulfuric acid as an anolyte to the anode chamber of the electrolytic cell. even if the supply to the electrolytic sulfuric acid 70% or less as a catholyte have good. In the present invention, the high concentration persulfuric acid means 30% or more of persulfuric acid.
以下本発明を詳細に説明する。
本発明では、陽極として導電性ダイヤモンド電極を使用し、この導電性ダイヤモンド電極で96%以上の濃硫酸を電解する。導電性ダイヤモンド電極は、白金電極や二酸化鉛電極と比較して高い酸素過電圧を有し(白金は数百mV、二酸化鉛は約0.5V、導電性ダイヤモンドは約1.4V)、水と反応して反応式(1)及び(2)に示すように、酸素やオゾンを発生させる。更に陽極液中に硫酸イオンや硫酸水素イオンが存在すると、これらと反応して反応式(3)及び(4)に示すように、酸素やオゾンを発生させる。
The present invention will be described in detail below.
In the present invention, a conductive diamond electrode is used as the anode, and 96% or more of concentrated sulfuric acid is electrolyzed with this conductive diamond electrode. Conductive diamond electrode has higher oxygen overvoltage than platinum electrode and lead dioxide electrode (platinum is several hundred mV, lead dioxide is about 0.5V, conductive diamond is about 1.4V) and reacts with water As shown in reaction formulas (1) and (2), oxygen and ozone are generated. Further, when sulfate ions or hydrogen sulfate ions are present in the anolyte, they react with them to generate oxygen and ozone as shown in the reaction formulas (3) and (4).
2H2 O → O2 + 4H+ + 4e- (1.23V) (1)
3H2 O → O3 + 6H+ + 6e- (1.51V) (2)
2SO4 2- → S2 O8 2- + 2e- (2.01V) (3)
2HSO4 - → S2 O8 2-+ 2H+ + 2e- (2.12V) (4)
2H 2 O → O 2 + 4H + + 4e − (1.23V) (1)
3H 2 O → O 3 + 6H + + 6e - (1.51V) (2)
2SO 4 2- → S 2 O 8 2- + 2e - (2.01V) (3)
2HSO 4 − → S 2 O 8 2− + 2H + + 2e − (2.12 V) (4)
前述の通り、これらの反応は、水電解による酸素発生反応と硫酸イオンの酸化による過硫酸イオン生成反応が競争反応となるが、導電性ダイヤモンド電極を使用すると、過硫酸イオン生成が優先する。
これは、ダイヤモンド電極は極端に電位窓が広く、かつ酸素発生反応に対する過電圧が高くかつ目的の酸化反応が電位的に進行し得る範囲にあるため、硫酸イオンを含有する水溶液電解を行うと、高い電流効率で過硫酸生成が起こり、酸素発生は僅かに起こるに過ぎない。
導電性ダイヤモンドの酸素発生過電圧の高さは次のようにして説明できる。通常の電極表面ではまず水が酸化されて酸素化学種が形成された後、この酸素化学種から酸素やオゾンが生成すると考えられるが、ダイヤモンドは通常の電極物質より化学的安定性が高く帯電していない水がその表面に吸着しにくく従って水の酸化が起きにくいと考えられる。これに対し硫酸イオンはアニオンであり、陽極として機能するダイヤモンド表面に低い電位でも吸着しやすく、酸素発生反応より起こりやすくなると推測できる。
As described above, in these reactions, oxygen generation reaction by water electrolysis and persulfate ion generation reaction by oxidation of sulfate ions are competitive reactions. However, when a conductive diamond electrode is used, generation of persulfate ions has priority.
This is because the diamond electrode has an extremely wide potential window, an overvoltage with respect to the oxygen generation reaction is high, and the target oxidation reaction can proceed in potential. Persulfate production occurs with current efficiency, and oxygen evolution occurs only slightly.
The height of the oxygen generation overvoltage of the conductive diamond can be explained as follows. On the normal electrode surface, water is first oxidized to form oxygen species, and oxygen and ozone are thought to be generated from this oxygen species, but diamond is charged with higher chemical stability than ordinary electrode materials. It is considered that the water that is not adsorbed on the surface is difficult to be adsorbed, and therefore, the oxidation of the water is unlikely to occur. On the other hand, sulfate ion is an anion, and it can be presumed that it is more likely to be adsorbed on the diamond surface functioning as the anode even at a low potential and more likely to occur than the oxygen generation reaction.
このように導電性ダイヤモンド電極を使用して硫酸電解を行うと、白金電極を使用するよりも高い効率で過硫酸が製造できる。しかし従来の硫酸電解では希硫酸を使用するため、大量の水が存在し、無視できない量の酸素やオゾンが発生し、これが電流効率を減少させ、生成する過硫酸濃度の上昇を阻害していた。 Thus, when sulfuric acid electrolysis is performed using a conductive diamond electrode, persulfuric acid can be produced with higher efficiency than using a platinum electrode. However, since conventional sulfuric acid electrolysis uses dilute sulfuric acid, a large amount of water is present, generating a negligible amount of oxygen and ozone, which reduces current efficiency and hinders the increase in the concentration of persulfuric acid produced. .
本発明では、電解原料として96%以上の濃硫酸を使用するため、水の量が4%以下であり、硫酸イオンの酸化による過硫酸イオン生成反応が、水電解より大幅に有利になり、ほぼ選択的に過硫酸イオンが生成する。しかも原料自体が96%以上の濃硫酸であるため、硫酸イオンの反応が促進されて過硫酸イオンが効率良く生成する。得られる過硫酸濃度は反応時間や温度などにも影響されるが、30〜60%程度である。 In the present invention, since 96% or more of concentrated sulfuric acid is used as an electrolytic raw material, the amount of water is 4% or less, and the persulfate ion generation reaction by oxidation of sulfate ions is significantly more advantageous than water electrolysis. Persulfate ions are selectively generated. Moreover, since the raw material itself is 96% or more concentrated sulfuric acid, the reaction of sulfate ions is promoted and persulfate ions are efficiently generated. The concentration of persulfuric acid obtained is influenced by the reaction time and temperature, but is about 30 to 60%.
なお過硫酸生成の選択率をより上昇させるために、従来のようにフッ化ナトリウムやチオシアン酸アンモニウムを電解液中に添加しても良い。更に電極上への硫酸イオンの吸着率を高めるために、ナトリウム、アンモニウム、カリウム、セシウム及びルビジウム等のアニオンを添加しても良い。なお過硫酸には一般にペルオキソ一硫酸(H2 SO5 )とペルオキソ二硫酸(H2 S2 O8 )があり、本発明における過硫酸は主として後者を指称するが、前者が含まれることもある。 In order to further increase the selectivity for the production of persulfuric acid, sodium fluoride or ammonium thiocyanate may be added to the electrolytic solution as in the past. Furthermore, an anion such as sodium, ammonium, potassium, cesium and rubidium may be added to increase the adsorption rate of sulfate ions on the electrode. The persulfuric acid generally includes peroxomonosulfuric acid (H 2 SO 5 ) and peroxodisulfuric acid (H 2 S 2 O 8 ), and persulfate in the present invention mainly refers to the latter, but the former may be included. .
本発明は、過硫酸製造の選択性の高い導電性ダイヤモンド電極を使用して96%以上の濃硫酸を電解する。原料が高濃度であるため、生成する過硫酸も高濃度になる。更に電解液中に4%以下の水しか存在しないため、水電解による酸素やオゾン生成の副反応が減少して高電流密度で過硫酸を製造できる。 The present invention electrolyzes more than 96% concentrated sulfuric acid using a highly selective conductive diamond electrode for the production of persulfuric acid. Since the raw material has a high concentration, the generated persulfuric acid also has a high concentration. Furthermore, since only 4% or less of water is present in the electrolytic solution, side reactions of oxygen and ozone generation due to water electrolysis are reduced, and persulfuric acid can be produced at a high current density.
次に、本発明の過硫酸製造方法及び装置の各部材について説明する。
本発明で使用する導電性ダイヤモンド陽極は、電極基体上に炭素源となる有機化合物の還元析出物であるダイヤモンドを担持して製造される。
前記基体の材質及び形状は材質が導電性であれば特に限定されず、導電性シリコン、炭化珪素、チタン、ニオブ、モリブデン等から成る板状、メッシュ状あるいは例えばビビリ繊維焼結体である多孔性板等が使用でき、材質は熱膨張率が近い導電性シリコン、炭化珪素の使用が特に好ましい。又導電性ダイヤモンドと基体の密着性向上のため及び導電性ダイヤモンド膜の表面積を増加させ単位面積当たりの電流密度を下げるために、基体表面はある程度の粗さを有することが望ましい。
導電性ダイヤモンドを膜状にして使用する場合は、耐久性及びピンホール発生を少なくするために、膜厚を10μmから50μmとすることが望ましい。耐久性の面から100μm以上の自立膜も使用可能であるが、槽電圧が高くなり電解液温の制御が煩雑になるため好ましくない。
Next, each member of the persulfuric acid production method and apparatus of the present invention will be described.
The conductive diamond anode used in the present invention is manufactured by supporting diamond, which is a reduced precipitate of an organic compound serving as a carbon source, on an electrode substrate.
The material and shape of the substrate are not particularly limited as long as the material is conductive, and is a plate, mesh, or porous material such as a vibrant fiber sintered body made of conductive silicon, silicon carbide, titanium, niobium, molybdenum, or the like. It is particularly preferable to use conductive silicon or silicon carbide having a thermal expansion coefficient that can be used. In order to improve the adhesion between the conductive diamond and the substrate, and to increase the surface area of the conductive diamond film and reduce the current density per unit area, it is desirable that the substrate surface has a certain degree of roughness.
When conductive diamond is used in the form of a film, it is desirable that the film thickness be 10 μm to 50 μm in order to reduce durability and occurrence of pinholes. Although a self-supporting film having a thickness of 100 μm or more can be used from the viewpoint of durability, it is not preferable because the cell voltage becomes high and the control of the electrolyte temperature becomes complicated.
基体への導電性ダイヤモンドの担持法も特に限定されず従来法のうちの任意のものを使用できる。代表的な導電性ダイヤモンド製造方法としては熱フィラメントCVD(化学蒸着)法、マイクロ波プラズマCVD法、プラズマアークジェット法及び物理蒸着(PVD)法等があり、これらの中でも成膜速度が速いこと及び均一な膜を得やすいことからマイクロ波プラズマCVD法の使用が望ましい。
この他に超高圧で製造される合成ダイヤモンド粉末を樹脂等の結着剤を用いて基体に担持したダイヤモンド電極も使用可能であり、特に電極表面にフッ素樹脂等の疎水性成分が存在すると処理対象の硫酸イオンを捕捉しやすくなり反応効率が向上する。
The method for supporting the conductive diamond on the substrate is not particularly limited, and any conventional method can be used. Typical conductive diamond production methods include a hot filament CVD (chemical vapor deposition) method, a microwave plasma CVD method, a plasma arc jet method, and a physical vapor deposition (PVD) method. The use of a microwave plasma CVD method is desirable because it is easy to obtain a uniform film.
In addition to this, a diamond electrode in which a synthetic diamond powder produced at an ultra-high pressure is supported on a substrate by using a binder such as a resin can also be used, and in particular when a hydrophobic component such as a fluororesin is present on the electrode surface This makes it easier to capture sulfate ions and improves the reaction efficiency.
マイクロ波プラズマCVD法は、メタン等の炭素源とボラン等のドーパント源を水素で希釈した混合ガスを、導波管でマイクロ波発信機と接続された導電性シリコンやアルミナ、炭化珪素等の導電性ダイヤモンドの成膜基板が設置された反応チャンバに導入し、反応チャンバ内にプラズマを発生させ、基板上に導電性ダイヤモンドを成長させる方法である。マイクロ波によるプラズマではイオンは殆ど振動せず、電子のみを振動させた状態で擬似高温を達成し、化学反応を促進させる効果を奏する。プラズマの出力は1〜5kWで、出力が大きいほど活性種を多く発生させることができ、ダイヤモンドの成長速度が増加する。プラズマを用いる利点は、大表面積の基体を用いて高速度でダイヤモンドを成膜できることである。 The microwave plasma CVD method uses a mixed gas obtained by diluting a carbon source such as methane and a dopant source such as borane with hydrogen as a conductive material such as conductive silicon, alumina, or silicon carbide connected to a microwave transmitter through a waveguide. This is a method in which a conductive diamond film is introduced into a reaction chamber where a substrate is installed, plasma is generated in the reaction chamber, and conductive diamond is grown on the substrate. In the plasma by microwaves, ions hardly vibrate, and a pseudo high temperature is achieved in a state where only electrons are vibrated, and the chemical reaction is promoted. The plasma output is 1 to 5 kW, and the larger the output, the more active species can be generated, and the growth rate of diamond increases. The advantage of using plasma is that diamond can be deposited at high speed using a substrate with a large surface area.
前記ダイヤモンドに導電性を付与するために、原子価の異なる元素を微量添加する。硼素やリンの含有率は好ましくは1〜100000ppm 、更に好ましくは100 〜10000ppm である。この添加元素の原料は毒性の少ない酸化硼素や五酸化二リンなどが使用できる。このように製造された基体上に担持された導電性ダイヤモンドは、チタン、ニオブ、タンタル、シリコン、カーボン、ニッケル、タングステンカーバイドなどの導電性材料から成る、平板、打抜き板、金網、粉末焼結体、金属繊維体、金属繊維焼結体等の形態を有する給電体に接続できる。 In order to impart conductivity to the diamond, trace amounts of elements having different valences are added. The content of boron or phosphorus is preferably 1 to 100,000 ppm, more preferably 100 to 10,000 ppm. As a raw material for this additive element, boron oxide, diphosphorus pentoxide, or the like having a low toxicity can be used. The conductive diamond supported on the substrate thus manufactured is a flat plate, stamped plate, wire mesh, powder sintered body made of a conductive material such as titanium, niobium, tantalum, silicon, carbon, nickel, tungsten carbide. In addition, it can be connected to a power feeding body having a form such as a metal fiber body or a metal fiber sintered body.
使用する電解槽は補強の施されたフッ素樹脂系陽イオン交換膜や親水化処理された多孔質フッ素系樹脂膜などの隔膜で陽極室及び陰極室に区画された2室型電解槽とし、陽極で一旦生成した過硫酸イオンが陰極に接触して硫酸イオンに還元されることを防止する。
電解室の材質は耐久性の面から、高温耐性及び化学的耐性の高いPTFEやNewPFEが望ましい。シール材としてはゴアテックスやポアフロンのような多孔質PTFEや、PTFEやNewPFEで包んだゴムシートやOリングが望ましい。
本発明で使用する陰極は、水素発生電極又は酸素ガス電極で濃硫酸に耐久性があれば良く、導電性シリコン、ガラス状カーボン、及び貴金属メッキしたこれらの材料を使用できる。酸素ガス電極の場合の酸素供給量は理論量の1.2 〜10倍程度にする。
The electrolytic cell to be used is a two-chamber electrolytic cell that is divided into an anode chamber and a cathode chamber by a diaphragm such as a reinforced fluororesin cation exchange membrane or a hydrophilized porous fluororesin membrane. The persulfate ions once generated in step 1 are prevented from coming into contact with the cathode and being reduced to sulfate ions.
The material of the electrolysis chamber is preferably PTFE or NewPFE having high temperature resistance and high chemical resistance in terms of durability. As the sealing material, porous PTFE such as GORE-TEX or POREFLON, rubber sheet or O-ring wrapped with PTFE or NewPFE are desirable.
The cathode used in the present invention may be a hydrogen generating electrode or an oxygen gas electrode as long as the concentrated sulfuric acid has durability, and these materials plated with conductive silicon, glassy carbon, and noble metal can be used. In the case of an oxygen gas electrode, the amount of oxygen supplied is about 1.2 to 10 times the theoretical amount.
フッ素樹脂系陽イオン交換膜としては商品名Poreflon等の中性膜や商品名Nafion, Aciplex, Flemion等の陽イオン交換膜が使用できるが、両極室での生成物を分離して製造できる面から後者の陽イオン交換膜の使用が望ましく、更にフッ素樹脂系陽イオン交換膜は電解液の伝導度が低い場合でも電解を速やかに進行させることができる。水の濃度勾配の影響を受け難くすること及び槽電圧を低くする目的から、低含水率でも寸法が安定しているパッキング(補強布)の入ったフッ素樹脂系陽イオン交換膜、厚さが50μm以下のフッ素樹脂系陽イオン交換膜、積層していないフッ素樹脂系陽イオン交換膜が望ましい。96%硫酸等の平衡水蒸気圧が低い物質との共存下では環境ではイオン交換膜は低含水率となり比抵抗値が増大し電解槽電圧が増大する問題がある。陽極室に過硫酸を高効率で得るため96%硫酸等の高濃度硫酸を供給する場合は、陰極室にはイオン交換膜に水を供給するために70%以下の硫酸を供給することが好ましい。
本発明では隔膜としてフッ素樹脂系陽イオン交換膜以外に、IPA(イソプロピルアルコール)処理などの親水化を行った多孔質フッ素系樹脂膜も使用できる。イオン交換膜以外の、ゴアテックスやポアフロン等の商品名の多孔質フッ素樹脂膜はIPA処理などの親水化処理を行わないと電解が進行しない。前記多孔質フッ素樹脂膜は、疎水性であり硫酸の通液ができず、電解も進行しない。この多孔質フッ素樹脂膜の親水化処理を行うと、該樹脂膜が水や濃硫酸を含むことができるようになり、硫酸による電気伝導も可能になるため、電解槽隔膜として機能するようになる。この処理を行わない多孔質フッ素樹脂膜は孔の中に空気を含んだままの状態となり電気伝導ができないため、電解が進行しない。親水化多孔質フッ素系樹脂膜を隔膜に使用した際は、フッ素樹脂系陽イオン交換膜を隔膜に使用した際と比較して、両極室生成物が隔膜を介してわずかに混合する問題があるが、隔膜自体には抵抗の発生はなく、低電解槽電圧にて稼働できる。
Neutral membranes such as the product name Poreflon and cation exchange membranes such as the product names Nafion, Aciplex, and Flemion can be used as fluororesin-based cation exchange membranes, but from the standpoint that the products in the bipolar chamber can be separated and manufactured. The use of the latter cation exchange membrane is desirable. Furthermore, the fluororesin cation exchange membrane can rapidly proceed with electrolysis even when the conductivity of the electrolytic solution is low. Fluororesin-based cation exchange membrane with packing (reinforcing cloth) that has a stable dimension even at low moisture content, with a thickness of 50 μm, to make it less susceptible to the effects of water concentration gradients and to lower the cell voltage The following fluororesin cation exchange membranes and non-laminated fluororesin cation exchange membranes are desirable. Under the coexistence with a substance having a low equilibrium water vapor pressure, such as 96% sulfuric acid, there is a problem that the ion exchange membrane has a low water content in the environment and the specific resistance value increases and the electrolytic cell voltage increases. When supplying high concentration sulfuric acid such as 96% sulfuric acid in order to obtain persulfuric acid with high efficiency in the anode chamber, it is preferable to supply 70% or less sulfuric acid to the cathode chamber in order to supply water to the ion exchange membrane. .
In the present invention, in addition to the fluororesin cation exchange membrane, a porous fluororesin membrane subjected to hydrophilic treatment such as IPA (isopropyl alcohol) treatment can also be used as the diaphragm. Other than the ion exchange membrane, a porous fluororesin membrane having a trade name such as Gore-Tex or Poaflon does not undergo electrolysis unless a hydrophilic treatment such as IPA treatment is performed. The porous fluororesin membrane is hydrophobic, cannot pass sulfuric acid, and does not proceed with electrolysis. When the porous fluororesin membrane is hydrophilized, the resin membrane can contain water and concentrated sulfuric acid, and can also conduct electricity by sulfuric acid, thus functioning as an electrolytic cell diaphragm. . Since the porous fluororesin film not subjected to this treatment remains air-containing in the pores and cannot conduct electricity, electrolysis does not proceed. When a hydrophilic porous fluororesin membrane is used for the diaphragm, there is a problem that the product of the bipolar chamber is slightly mixed through the diaphragm, compared to the case where the fluororesin cation exchange membrane is used for the diaphragm. However, the diaphragm itself does not generate resistance and can be operated at a low electrolytic cell voltage.
IPA処理は例えば、前記多孔質フッ素樹脂膜のうち電解時に接液する部分のみ、98%IPAを滴下塗布して浸透させた後、前記多孔質フッ素樹脂膜全体を純水に浸漬して浸透させたIPAと純水を置換し、電解槽に設置するまで純水に浸漬したままで保管する。電解槽に設置する際には、接液部分が乾燥しないように手早く組み立て、硫酸通液を行う。また、IPAと純水の置換の後、電解時に接液する部分のみ更に98%硫酸に置換しておくと乾燥せずまた組み立て時に電解槽内に余分な水を持ち込まないため、より好ましい。
IPAは−OH基の親水性部分と、―CH3基の疎水性部分を有しており、前記処理により多孔質フッ素樹脂膜表面に疎水性部分が吸着し、親水性部分が孔の方を向いてこの親水性部分に水等を吸着することで濡れるようになり、電解に使用することが可能になる。
多孔質フッ素樹脂膜はIPA処理により親水化することにより、導電性を獲得し、IPA処理を行っていない多孔質フッ素樹脂膜では進行しない過硫酸の電解合成反応が進行するようになるだけでなく、イオン交換膜を使用する場合よりも低電圧で過硫酸を合成できる。
親水化処理はIPA処理が好ましいが、他のIPA処理以外の親水化処理で親水化しても良い。これ以外に、市販の既に親水化されている多孔質フッ素樹脂膜を使用しても良い。
In the IPA treatment, for example, only the portion of the porous fluororesin film that comes into contact with the liquid during electrolysis is dropped and applied with 98% IPA, and then the entire porous fluororesin film is immersed in pure water and allowed to permeate. The IPA and pure water are replaced and stored while immersed in pure water until installed in the electrolytic cell. When installing in the electrolytic cell, assemble quickly and let the sulfuric acid flow through so that the wetted part does not dry. Further, after replacing IPA and pure water, it is more preferable to substitute only 98% sulfuric acid for the portion in contact with the electrolyte during electrolysis because it does not dry and does not bring extra water into the electrolytic cell during assembly.
IPA has a hydrophilic part of —OH group and a hydrophobic part of —CH 3 group, and the hydrophobic part is adsorbed on the surface of the porous fluororesin film by the above treatment, and the hydrophilic part is more porous. It becomes wet by adsorbing water or the like to this hydrophilic portion and can be used for electrolysis.
The porous fluororesin membrane is made hydrophilic by the IPA treatment, thereby obtaining conductivity and not only the electrosynthesis reaction of persulfuric acid that does not progress in the porous fluororesin membrane not subjected to the IPA treatment. Persulfuric acid can be synthesized at a lower voltage than when an ion exchange membrane is used.
The hydrophilic treatment is preferably IPA treatment, but may be hydrophilized by other hydrophilic treatment than IPA treatment. In addition to this, a commercially available porous fluororesin membrane that has already been made hydrophilic may be used.
この隔膜は、2枚の保護板間に挟みこんでも良く、この保護板は、パンチング等により孔を形成した、又はエキスパンドメッシュとしたPTFEやNewPFE製の板とする。
導電性ダイヤモンド電極は酸化力が大きく、陽分極している導電性ダイヤモンド表面に接触する有機物は分解され、多くは二酸化炭素に変換される。電解槽中の隔膜は、電解槽への液供給に用いられる液供給ポンプの吐出圧の影響を受けて、陽極及び陰極間で振動し、前記保護板がないと、導電性ダイヤモンド陽極に接触して消耗する可能性がある。又保護板がない状態で振動すると、電極−隔膜間の距離が変動し、槽電圧も変動することもある。
This diaphragm may be sandwiched between two protective plates, and this protective plate is a plate made of PTFE or NewPFE with holes formed by punching or the like, or an expanded mesh.
The conductive diamond electrode has a high oxidizing power, and organic substances that come into contact with the positively polarized conductive diamond surface are decomposed and most of them are converted to carbon dioxide. The diaphragm in the electrolytic cell vibrates between the anode and the cathode under the influence of the discharge pressure of the liquid supply pump used to supply the liquid to the electrolytic cell, and without the protective plate, it contacts the conductive diamond anode. May wear out. Further, when the vibration is caused without the protective plate, the distance between the electrode and the diaphragm changes, and the cell voltage may also change.
電解槽の各部材間をシールするためのプレス圧から導電性ダイヤモンド電極やその基体を保護するために、ゴム等のクッション性のある材料を挟むことが望ましい。又金属繊維焼結体や金属ウェブ等の導電性のある材料を使うことで給電体も兼用できる。 In order to protect the conductive diamond electrode and its substrate from the press pressure for sealing between the members of the electrolytic cell, it is desirable to sandwich a cushioning material such as rubber. Moreover, a power feeding body can also be used by using a conductive material such as a metal fiber sintered body or a metal web.
次に本発明に過硫酸製造の実施例を説明するが、該実施例は本発明を限定するものではない。 Next, examples of persulfuric acid production will be described in the present invention, but the examples do not limit the present invention.
[実施例1]
厚さ3mmの6インチ径シリコン基板(基体)に、メタンとジボラン(メタンに対して10000ppm)を原料とするマイクロ波プラズマCVD法により20μmのダイヤモンド層を形成し、導電性ダイヤモンド電極とした。この電極の外周部の幅1.8cmをフランジ部とし、電解面積約1dm2の陽極とした。又陽極と同寸法のグラッシーカーボンに白金触媒を担持して陰極とした。隔膜として補強布を織り込んだフッ素樹脂系陽イオン交換膜であるゴアセレクト(ジャパンゴアテックス社製)を使用し、このフッ素樹脂系陽イオン交換膜の両面に前記陽極及び陰極を配置し、フッ素樹脂系陽イオン交換膜と各電極とは3mmの間隔を空けて電解液が通液する陽極室とし、図1に示す液循環型イオン交換膜型電解槽を構成した。
[Example 1]
A 20 μm diamond layer was formed by microwave plasma CVD using methane and diborane (10000 ppm with respect to methane) on a 6-inch diameter silicon substrate (base) having a thickness of 3 mm, to obtain a conductive diamond electrode. A width of 1.8 cm of the outer peripheral portion of this electrode was used as a flange portion, and an anode having an electrolytic area of about 1 dm 2 was obtained. A cathode was supported on glassy carbon having the same dimensions as the anode to form a cathode. Gore Select (manufactured by Japan Gore-Tex Co., Ltd.), a fluororesin cation exchange membrane woven with a reinforcing cloth as a diaphragm, is used, and the anode and cathode are arranged on both sides of the fluororesin cation exchange membrane. The system cation exchange membrane and each electrode were made into an anode chamber through which an electrolyte solution passed with a space of 3 mm, and the liquid circulation type ion exchange membrane type electrolytic cell shown in FIG. 1 was constructed.
この電解槽1は、フッ素樹脂系陽イオン交換膜2により前記導電性ダイヤモンド陽極3が収容されかつ濃硫酸が満たされた陽極室4と前記白金陰極5が収容されかつ希硫酸が満たされた陰極室6に区画されている。陽極室4には陽極液循環パイプ7が接続され、この循環パイプ7を通して陽極液である濃硫酸が陽極室4と陽極液タンク8間を陽極液循環ポンプ9により循環するように構成されている。又陰極室6には陰極液循環パイプ10が接続され、この循環パイプ10を通して陰極液が陰極室6と陰極液タンク11間を陰極液循環ポンプ12により循環するように構成されている。前記陽極液タンク8及び陰極液タンク11はそれぞれの下部が恒温槽13に浸漬されて液温をほぼ一定に維持している。
The electrolytic cell 1 has an anode chamber 4 in which the conductive diamond anode 3 is accommodated by a fluororesin cation exchange membrane 2 and filled with concentrated sulfuric acid, and a cathode in which the
この電解槽を使用して次の条件で過硫酸製造を行った。電解液の循環はエアードポンプにより行った。
電流値:20A/dm2
陽極循環液:96%EL硫酸(関東化学株式会社製)
陰極循環液:70%硫酸(陽極循環液を純水希釈して調製)
陽極液流量:1L/分
陰極液流量:1L/分
初期陽極液温度:25℃
初期陰極液温度:25℃
電解時間:60分
Using this electrolytic cell, persulfuric acid was produced under the following conditions. The electrolytic solution was circulated by an aired pump.
Current value: 20 A / dm 2
Anode circulating fluid: 96% EL sulfuric acid (manufactured by Kanto Chemical Co., Inc.)
Cathode circulating fluid: 70% sulfuric acid (prepared by diluting anode circulating fluid with pure water)
Anolyte flow rate: 1 L / min Catholyte flow rate: 1 L / min Initial anolyte temperature: 25 ° C.
Initial catholyte temperature: 25 ° C
Electrolysis time: 60 minutes
60分の電解により、約40%の過硫酸が95%の電流効率で得られ、槽電圧は14Vであった。
電解後、電解槽を解体し、フッ素樹脂系陽イオン交換膜の目視観察を行ったところ、フッ素樹脂系陽イオン交換膜の陽極側表面に電解面積とほぼ同形状の白色部分が形成されていた。この白色部分をSEM観察したところ、鱗状の痕が生成していた。これは電解中に、フッ素樹脂系陽イオン交換膜が循環ポンプから発生する電解液圧の振動を受けて間欠的にイオン交換膜と陽極が接触したため、フッ素樹脂系陽イオン交換膜が酸化・変質し、痕が発生したと推測された。陰極側には鱗状の痕は生成しなかった。
By electrolysis for 60 minutes, about 40% persulfuric acid was obtained with a current efficiency of 95%, and the cell voltage was 14V.
After electrolysis, the electrolytic cell was disassembled and the fluororesin-based cation exchange membrane was visually observed. A white portion having the same shape as the electrolysis area was formed on the anode side surface of the fluororesin-based cation exchange membrane. . When this white portion was observed by SEM, scaly marks were generated. This is because, during electrolysis, the fluororesin cation exchange membrane is intermittently contacted by the ion exchange membrane and the anode due to the vibration of the electrolyte pressure generated from the circulation pump, so that the fluororesin cation exchange membrane is oxidized and altered. It was speculated that there was a mark. No scaly mark was formed on the cathode side.
[実施例2]
フッ素樹脂系陽イオン交換膜を2枚の保護板で挟みこんだこと以外は実施例1と同じ条件で過硫酸製造を行った。保護板は厚さ2mmのPTFE製とし、直径0.6cmの円孔を複数個穿孔して、全体の約29%に孔が形成されるようにした。
60分の電解により、約40%の過硫酸が95%の電流効率で得られた。セル電圧は14Vであった。
電解後、電解槽を解体し、フッ素樹脂系陽イオン交換膜の目視観察を行ったところ、フッ素樹脂系陽イオン交換膜のいずれの面にも白色部分は形成されていなかった。
[Example 2]
Persulfuric acid was produced under the same conditions as in Example 1 except that a fluororesin cation exchange membrane was sandwiched between two protective plates. The protective plate was made of PTFE having a thickness of 2 mm, and a plurality of circular holes having a diameter of 0.6 cm were formed so that holes were formed in about 29% of the whole.
By electrolysis for 60 minutes, about 40% persulfuric acid was obtained with a current efficiency of 95%. The cell voltage was 14V.
After electrolysis, the electrolytic cell was disassembled and the fluororesin cation exchange membrane was visually observed. No white portion was formed on any surface of the fluororesin cation exchange membrane.
[実施例3]
隔膜として、ゴアセレクトに替えて、フッ素系スルホン酸イオン交換膜であるナフィオン117(デュポン社の商品名)を使用したこと以外は実施例2と同じ条件で過硫酸製造を行ったところ、約20%の過硫酸が48%の電流効率で得られた。セル電圧は40Vであった。
電解後、電解槽を解体し、フッ素樹脂系陽イオン交換膜の目視観察を行ったところ、フランジに接触するイオン交換膜部分に複数の孔が形成されていた。これは発熱と脱水によるイオン交換膜の収縮によるものと推定できる。実施例2と比較して電流効率が低いのはイオン交換膜に孔が発生したために生成した過硫酸が陰極室へリークしたためと考えられる。
[Example 3]
When persulfuric acid was produced under the same conditions as in Example 2 except that Nafion 117 (trade name of DuPont), which is a fluorinated sulfonate ion exchange membrane, was used instead of Gore Select as a diaphragm, about 20 % Persulfuric acid was obtained with a current efficiency of 48%. The cell voltage was 40V.
After the electrolysis, the electrolytic cell was disassembled and the fluororesin cation exchange membrane was visually observed. As a result, a plurality of holes were formed in the ion exchange membrane portion in contact with the flange. This can be presumed to be due to contraction of the ion exchange membrane due to heat generation and dehydration. The reason why the current efficiency is lower than that in Example 2 is considered to be that persulfuric acid generated due to the generation of pores in the ion exchange membrane leaked to the cathode chamber.
[実施例4]
ポアフロンWP−045−40(住友電工ファインポリマー社製)を電極と同寸法に切り取り、接液部分にのみ98%IPAを滴下塗布して浸透させた。これを純水に1時間浸漬し置換した後取り出し、親水化処理を行った。電解槽組立て直前に、親水化処理したポアフロンの接液部分のみに96%硫酸を滴下塗布し、浸透させた。
隔膜として、ゴアセレクトに替えて、前記IPA処理を行ったポアフロンを使用したこと以外は実施例2と同じ条件で過硫酸製造を行ったところ、約45%の過硫酸が95%の電流効率で得られた。セル電圧は10Vであった。
電解後、電解槽を解体し、イオン交換膜の目視観察を行ったところ、変化は観察できなかった。
[Example 4]
Poreflon WP-045-40 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) was cut to the same dimensions as the electrode, and 98% IPA was dropped and applied only to the wetted part. This was immersed in pure water for 1 hour to replace it, and then taken out and subjected to a hydrophilic treatment. Immediately before the assembly of the electrolytic cell, 96% sulfuric acid was dropped and applied only to the wetted part of the hydrofluorinated poreflon.
When persulfuric acid production was performed under the same conditions as in Example 2 except that the pore filter used in the above IPA treatment was used in place of Gore Select as the diaphragm, about 45% persulfuric acid had a current efficiency of 95%. Obtained. The cell voltage was 10V.
After electrolysis, the electrolytic cell was disassembled and the ion exchange membrane was visually observed. As a result, no change was observed.
[比較例1]
隔膜として、ゴアセレクトに替えて、未処理のポアフロン(住友電工ファインポリマー社製)を使用したこと以外は実施例2と同じ条件で過硫酸製造を試みたが、電解は進行しなかった。
[Comparative Example 1]
The persulfuric acid production was tried under the same conditions as in Example 2 except that untreated pore flon (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) was used instead of Gore Select as the diaphragm, but electrolysis did not proceed.
[実施例5]
親水性ポアフロンWPW−045−40(住友電工ファインポリマー社製)を隔膜として使用したこと以外は実施例2と同じ条件で過硫酸製造を試みたところ実施例2と同じ電解結果を得た。親水性ポアフロンはIPA処理を行わなくとも親水性を有しており電解可能である。但し、電解試験後、試験に用いた親水性ポアフロンを純水で水洗・乾燥し、再度純水に浸漬したところ、親水性は失われており、水は浸透しなかった。
[Example 5]
When perforated sulfuric acid was produced under the same conditions as in Example 2 except that hydrophilic pore-flon WPW-045-40 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) was used as a diaphragm, the same electrolysis results as in Example 2 were obtained. Hydrophilic pore flon has hydrophilicity and can be electrolyzed without IPA treatment. However, after the electrolysis test, the hydrophilic pore fluorocarbon used in the test was washed with pure water, dried, and immersed again in pure water. As a result, the hydrophilicity was lost and water did not penetrate.
実施例2〜5及び比較例1の結果を表1に纏めた。 The results of Examples 2 to 5 and Comparative Example 1 are summarized in Table 1.
[実施例6]
電解時間を1分としたこと以外は実施例2と同じ条件で過硫酸の電解合成を行った。
1分間の電解の後、電解液タンク中の液を5ml採取し水で希釈して5%硫酸とし、その全量をヨウ素滴定法で酸化還元滴定し、過硫酸(H2 S2 O8 )生成を想定して電流効率を算出したところ表2に示す通り95%であった。
[Example 6]
Electrosynthesis of persulfuric acid was carried out under the same conditions as in Example 2 except that the electrolysis time was 1 minute.
After 1 minute of electrolysis, 5 ml of the liquid in the electrolyte tank is collected and diluted with water to make 5% sulfuric acid, and the total amount is subjected to redox titration by iodine titration to produce persulfuric acid (H 2 S 2 O 8 ). As a result, the current efficiency was calculated to be 95% as shown in Table 2.
[比較例2及び3]
96%硫酸の替わりに、50%硫酸(比較例2)及び10%(比較例3)を使用したこと以外は実施例6と同じ条件で電流効率を測定したところ、表2に示す通り83%(比較例2)及び77%(比較例3)であった。
[Comparative Examples 2 and 3]
When the current efficiency was measured under the same conditions as in Example 6 except that 50% sulfuric acid (Comparative Example 2) and 10% (Comparative Example 3) were used instead of 96% sulfuric acid, 83% as shown in Table 2. (Comparative Example 2) and 77% (Comparative Example 3).
1 電解槽
2 隔膜(フッ素樹脂系陽イオン交換膜、多孔質フッ素系樹脂膜)
3 導電性ダイヤモンド陽極
4 陽極室
5 陰極
6 陰極室
7 陽極液循環パイプ
8 陽極液タンク
9 陽極液循環ポンプ
10 陰極液循環パイプ
11 陰極液タンク
12 陰極液循環ポンプ
13 恒温槽
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Diaphragm (Fluoro resin cation exchange membrane, porous fluorine resin membrane)
DESCRIPTION OF SYMBOLS 3 Conductive diamond anode 4
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167616A JP4808551B2 (en) | 2006-06-16 | 2006-06-16 | Method for producing persulfuric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167616A JP4808551B2 (en) | 2006-06-16 | 2006-06-16 | Method for producing persulfuric acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007332441A JP2007332441A (en) | 2007-12-27 |
JP4808551B2 true JP4808551B2 (en) | 2011-11-02 |
Family
ID=38932192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006167616A Active JP4808551B2 (en) | 2006-06-16 | 2006-06-16 | Method for producing persulfuric acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4808551B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI351446B (en) | 2006-06-16 | 2011-11-01 | Toshiba Kk | Cleaning system and cleaning method |
JP5087325B2 (en) * | 2006-06-16 | 2012-12-05 | 株式会社東芝 | Cleaning system and cleaning method |
JP5207529B2 (en) | 2008-06-30 | 2013-06-12 | クロリンエンジニアズ株式会社 | Sulfuric acid electrolytic tank and sulfuric acid recycling type cleaning system using sulfuric acid electrolytic tank |
JP5320173B2 (en) | 2008-06-30 | 2013-10-23 | クロリンエンジニアズ株式会社 | Sulfuric acid electrolysis method |
JP5358303B2 (en) * | 2008-06-30 | 2013-12-04 | クロリンエンジニアズ株式会社 | Method of cleaning with electrolytic sulfuric acid and method of manufacturing semiconductor device |
JP5419881B2 (en) * | 2008-09-24 | 2014-02-19 | 栗田工業株式会社 | Diamond electrode and method for producing diamond electrode |
CN102470357B (en) | 2009-07-21 | 2014-12-10 | 国立大学法人北海道大学 | Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same |
JP5376152B2 (en) * | 2009-09-05 | 2013-12-25 | 栗田工業株式会社 | Sulfuric acid electrolysis method |
US20170028361A1 (en) * | 2015-07-31 | 2017-02-02 | Pall Corporation | Ptfe/pfsa blended membrane |
JP6477832B1 (en) * | 2017-10-31 | 2019-03-06 | 栗田工業株式会社 | Method for hydrophilic treatment of polypropylene resin |
JP6477831B1 (en) * | 2017-10-31 | 2019-03-06 | 栗田工業株式会社 | Method for hydrophilizing polyphenylene sulfide resin |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02133448A (en) * | 1988-11-15 | 1990-05-22 | Asahi Glass Co Ltd | Production of hydrophilic porous film |
JP2001192874A (en) * | 1999-12-28 | 2001-07-17 | Permelec Electrode Ltd | Method for preparing persulfuric acid-dissolving water |
JP2003293180A (en) * | 2002-04-02 | 2003-10-15 | Takayuki Shimamune | Electrolytic cell and electrolytic method |
JP4462146B2 (en) * | 2004-09-17 | 2010-05-12 | 栗田工業株式会社 | Sulfuric acid recycling type cleaning system and sulfuric acid recycling type persulfuric acid supply device |
-
2006
- 2006-06-16 JP JP2006167616A patent/JP4808551B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007332441A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4808551B2 (en) | Method for producing persulfuric acid | |
JP5320173B2 (en) | Sulfuric acid electrolysis method | |
US8815064B2 (en) | Ozone generator | |
EP0636051B1 (en) | Apparatus comprising a water ionizing electrode and process of use of said apparatus | |
US8277623B2 (en) | Conductive diamond electrode and ozone generator using the same | |
JP3859358B2 (en) | Electrolyzed water production equipment | |
KR101081468B1 (en) | Oxygen gas diffusion cathode for sodium chloride electrolysis | |
JP2001192874A (en) | Method for preparing persulfuric acid-dissolving water | |
JP2000104189A (en) | Production of hydrogen peroxide and electrolytic cell for production | |
KR101220199B1 (en) | Electrolytic synthesis of hydrogen peroxide directly from water and application thereof | |
JP2007242433A (en) | Electrode catalyst for electrochemical reaction, manufacturing method of the same, and electrochemical electrode having the same | |
US8187449B2 (en) | Cleaning method by electrolytic sulfuric acid and manufacturing method of semiconductor device | |
JP2006219694A (en) | Gas diffusion electrode | |
JP2007197740A (en) | Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method | |
JP4157615B2 (en) | Method for producing insoluble metal electrode and electrolytic cell using the electrode | |
JPH07331475A (en) | Method for electrolyzing brine | |
TWI467058B (en) | A sulfuric acid electrolytic cell and a sulfuric acid recycle type cleaning system applying the sulfuric acid electrolytic cell | |
US20130078537A1 (en) | Oxygen-consuming electrode and process for production thereof | |
CZ20011317A3 (en) | Process for preparing sodium and potassium peroxodisulfates and ammonium peroxodisulfate | |
JP3421021B2 (en) | Electrolysis method of alkali chloride | |
JP2010007151A5 (en) | ||
JP2015224392A (en) | Oxygen-consuming electrode and method for its production | |
JP3538271B2 (en) | Hydrochloric acid electrolyzer | |
JP3645636B2 (en) | 3-chamber electrolytic cell | |
JP2004099914A (en) | Method for producing peroxodisulfate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110817 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4808551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |