JP4803108B2 - High strength hot-rolled steel sheet and manufacturing method thereof - Google Patents
High strength hot-rolled steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP4803108B2 JP4803108B2 JP2007134390A JP2007134390A JP4803108B2 JP 4803108 B2 JP4803108 B2 JP 4803108B2 JP 2007134390 A JP2007134390 A JP 2007134390A JP 2007134390 A JP2007134390 A JP 2007134390A JP 4803108 B2 JP4803108 B2 JP 4803108B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- inclusions
- hot
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 77
- 239000010959 steel Substances 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000001816 cooling Methods 0.000 claims description 40
- 229910000859 α-Fe Inorganic materials 0.000 claims description 37
- 239000002244 precipitate Substances 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 23
- 230000003749 cleanliness Effects 0.000 claims description 16
- 238000005098 hot rolling Methods 0.000 claims description 16
- 229910000734 martensite Inorganic materials 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000005204 segregation Methods 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000009749 continuous casting Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 15
- 238000005728 strengthening Methods 0.000 description 14
- 238000001556 precipitation Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Continuous Casting (AREA)
Description
本発明は、高強度熱延鋼板及びその製造方法に関する。具体的には、本発明は、自動車や各種の産業機械に用いられる構造部材の素材、なかでも自動車の足廻り部品やバンパーの補強材等に代表される構造部材の素材、又はホイール用の素材として用いるのに好適な、延性ならびに靭性に優れた980MPa以上の引張強度を有する高強度熱延鋼板及びその製造方法に関する。 The present invention relates to a high-strength hot-rolled steel sheet and a method for producing the same. Specifically, the present invention relates to a material for structural members used in automobiles and various industrial machines, in particular, a material for structural members typified by automobile suspension parts and bumper reinforcements, or a material for wheels. The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more and excellent in ductility and toughness, and a method for producing the same.
連続熱間圧延によって製造される、いわゆる熱延鋼板は、比較的安価な構造材料として、自動車を始めとする各種の産業機器に広く使用されている。特に自動車の燃費向上に大きく寄与することから、高強度熱延鋼板は、自動車の足廻り部品への適用が増加しつつある。 A so-called hot-rolled steel sheet produced by continuous hot rolling is widely used as a relatively inexpensive structural material in various industrial equipment including automobiles. In particular, the high strength hot-rolled steel sheet has been increasingly applied to undercarriage parts of automobiles because it greatly contributes to improving the fuel efficiency of automobiles.
最近は環境問題へのさらなる意識の高まりに応じて部品重量の軽量化が指向される中、熱延鋼板に対する高強度化の要望はさらに高まり、超高強度である980MPa以上の引張強さを有する熱延鋼板が要望されている。 Recently, the demand for higher strength for hot-rolled steel sheets has further increased, and the tensile strength of 980 MPa or more, which is ultra-high strength, has been increasing as the weight of parts has been reduced in light of further awareness of environmental issues. Hot rolled steel sheets are desired.
従来、自動車の足回り用の高強度部材は、含有するTiの析出強化を用いて高強度化を実現していた。例えば、特許文献1〜4にはTiの析出強化を主体に高強度化を行う発明が開示されている。 Conventionally, high strength members for automobile undercarriages have been realized to have high strength using precipitation strengthening of Ti contained therein. For example, Patent Documents 1 to 4 disclose inventions that increase the strength mainly by precipitation strengthening of Ti.
一方、高強度化を図る別の方法として、温度条件による変態強化を利用する方法がある。例えば、特許文献5には、低温巻取りにより変態強化を利用し、980Mpa以上の超高強度を実現する発明が開示されている。
しかし、特許文献1〜4に記載された発明では、引張強さで980MPa以上の超高強度は得られていない。その理由は、Tiの含有量を多くすることにより980MPa以上の引張強さを得ようとすると、粗大なTi炭窒化物が析出し、これが破壊の起点になって強度及び靭性が低下し、製品価値が著しく低下するためである。 However, in the inventions described in Patent Documents 1 to 4, an ultrahigh strength of 980 MPa or more in tensile strength has not been obtained. The reason for this is that when a tensile strength of 980 MPa or more is obtained by increasing the Ti content, coarse Ti carbonitride precipitates, which becomes the starting point of fracture, resulting in a decrease in strength and toughness. This is because the value is significantly reduced.
また、特許文献5に記載された発明では、靭性が不足するという課題があった。さらに、熱間圧延後の冷却過程で平坦度が不芳になるという課題もあった。
本発明の目的は、前述したような従来技術が有する課題を解決し、圧延直角方向の引張強さ980MPa以上を有し、かつ加工性ならびに靭性に優れた鋼板、例えば引張強度980MPa以上、伸び14.1%以上、−50℃でのシャルピー吸収エネルギー88J/cm2以上、−50℃でのシャルピー脆性破面率0%の鋼板を、熱間圧延後の平坦度を確実に維持しながら、製造することである。
Further, the invention described in Patent Document 5 has a problem that the toughness is insufficient. Furthermore, there has been a problem that flatness becomes unsatisfactory in the cooling process after hot rolling.
The object of the present invention is to solve the problems of the prior art as described above, a steel sheet having a tensile strength of 980 MPa or more in the direction perpendicular to the rolling and excellent in workability and toughness, for example, a tensile strength of 980 MPa or more and an elongation of 14 .1% or higher, Charpy absorbed energy at −50 ° C. at 88 J / cm 2 or higher, Charpy brittle fracture surface ratio at −50 ° C. with 0% steel sheet, while maintaining flatness after hot rolling with certainty It is to be.
本発明者らは、かかる課題を解決するため鋭意実験の結果、以下の事項が有効であるとの知見1〜4を得た。 As a result of intensive experiments to solve such problems, the present inventors have obtained knowledge 1 to 4 that the following matters are effective.
(知見1)
組成に関して、Tiの含有量よりもVの含有量を多くすることにより、靭性に優れた超高強度鋼板を得ることができる。
(Knowledge 1)
With respect to the composition, an ultrahigh strength steel sheet having excellent toughness can be obtained by increasing the V content rather than the Ti content.
(知見2)
組織に関して、フェライトの面積率を60%以上とすることにより加工性(全伸び)を確保するとともに、フェライトの平均粒径を5μm以下とし、かつ、JIS G 0555による清浄度を0.05%以下、さらに、平均粒径5μm以上の介在物ならびに析出物の合計の数密度を300個/mm2以下とすることにより靭性(低温靭性)を改善することができる。これにより、加工性と靭性を高レベルで両立することができる。
(Knowledge 2)
Regarding the structure, the workability (total elongation) is ensured by setting the area ratio of ferrite to 60% or more, the average particle diameter of ferrite is 5 μm or less, and the cleanliness according to JIS G 0555 is 0.05% or less. Furthermore, the toughness (low temperature toughness) can be improved by setting the total number density of inclusions and precipitates having an average particle size of 5 μm or more to 300 pieces / mm 2 or less. Thereby, both workability and toughness can be achieved at a high level.
(知見3)
製造方法に関して、靭性を改善するためには、製鋼段階におけるアルミナ系介在物の混入を低減することが有効である。具体的には、アルミナ系介在物の混入を低減するために、溶鋼の液相線温度からの加熱温度を5℃以上高い温度とし、かつ、溶鋼鋳込み量を6トン/分以下とすることが有効である。これにより、鋳造時の溶鋼温度の低下や、溶鋼の流動が大きくなり過ぎることを抑制でき、アルミナ系介在物がスラブ内に補足されることを防止できる。そのため、この製法により、清浄度を0.05%以下に抑えることができる。
(Knowledge 3)
Regarding the manufacturing method, in order to improve toughness, it is effective to reduce the mixing of alumina inclusions in the steelmaking stage. Specifically, in order to reduce the inclusion of alumina inclusions, the heating temperature from the liquidus temperature of the molten steel is set to a temperature higher by 5 ° C. or more, and the molten steel casting amount is set to 6 ton / min or less. It is valid. Thereby, the fall of the molten steel temperature at the time of casting and the flow of a molten steel can be suppressed, and it can prevent that an alumina type inclusion is supplemented in a slab. Therefore, the cleanliness can be suppressed to 0.05% or less by this manufacturing method.
また、平均粒径5μm以上の介在物ならびに析出物の合計の数密度を300個/mm2以下にするためには、中心偏析低減処理が有効である。この処理により、スラブ厚中心部にTiが濃化することを防止でき、粗大なTiNの析出を抑制できる。 Further, in order to reduce the total number density of inclusions and precipitates having an average particle size of 5 μm or more to 300 pieces / mm 2 or less, the center segregation reduction treatment is effective. By this treatment, it is possible to prevent Ti from being concentrated in the center portion of the slab thickness, and it is possible to suppress coarse TiN precipitation.
また、フェライトの面積率60%以上でフェライトの平均粒径5μm以下を達成するには、スラブを加熱炉に装入して1200℃以上に加熱してから熱間圧延を開始し、Ar3点以上で熱間仕上げ圧延を完了し、その後3秒間以内で平均冷却速度20℃/秒以上100℃/秒以下で冷却を開始し、その後、700℃以下500℃以上で1次冷却を終了することが有効である。 Also, in order to achieve an average ferrite particle size of 5 μm or less with an area ratio of ferrite of 60% or more, hot rolling is started after charging the slab into a heating furnace and heating to 1200 ° C. or more, and Ar 3 points The hot finish rolling is completed as described above, and then cooling is started within 3 seconds at an average cooling rate of 20 ° C / second or more and 100 ° C / second or less, and then primary cooling is finished at 700 ° C or less and 500 ° C or more. Is effective.
さらに、Ti、V系析出物が粗大化するのを防止するためには、スラブ加熱炉抽出から1次冷却終了までの時間を10分以内とすることが有効である。
すなわち、靭性に優れた高強度鋼板を製造するためには、まず連続鋳造中にスラブ内部へのアルミナ系介在物の混入を防止するとともにスラブ中心部に偏析するTiやVを、中心偏析低減処理を行うことにより抑制する。さらに、スラブ加熱炉抽出から1次冷却終了までの時間を短時間化することにより粗大なTi、V系析出物を発生しないこと、及び最適な金属組織の造り込みが有効である。
Furthermore, in order to prevent the Ti and V-based precipitates from becoming coarse, it is effective to set the time from the slab heating furnace extraction to the end of the primary cooling within 10 minutes.
That is, in order to produce a high-strength steel sheet with excellent toughness, first, Ti and V that segregate in the center of the slab and prevent segregation of alumina inclusions inside the slab during continuous casting are reduced. It suppresses by doing. Furthermore, by shortening the time from the extraction of the slab heating furnace to the end of the primary cooling, it is effective to prevent generation of coarse Ti and V-based precipitates and to build an optimum metal structure.
ここで、「中心偏析低減処理」とは、溶鋼が最終凝固する位置において、Fe以外の成分の濃化を減少させる処理を意味する。溶鋼が最終凝固する位置とは、溶鋼が徐々に冷やされて凝固する際に、液相状態から液相及び固相混合状態を経て、最終的に固相へと変化する時の最終凝固位置を意味する。具体的な中心偏析低減処理は、溶鋼が最終凝固する位置の近傍の未凝固部において、電磁攪拌及び/又は圧下を施すことを例示できる。 Here, the “center segregation reduction process” means a process of reducing the concentration of components other than Fe at the position where the molten steel is finally solidified. The position where the molten steel finally solidifies is the final solidification position when the molten steel gradually cools and solidifies, then changes from the liquid phase state to the liquid phase and solid phase mixed state, and finally changes to the solid phase. means. The specific center segregation reduction treatment can be exemplified by electromagnetic stirring and / or reduction in an unsolidified portion in the vicinity of the position where the molten steel is finally solidified.
(知見4)
製造方法に関して、熱間圧延の巻き取り温度を350℃以上にすることにより鋼板の平坦不芳を防止することができる。これにより、強制的に平坦不芳を修正してから巻き取る必要がなくなり、製造コストの面で有利である。
(Knowledge 4)
Regarding the manufacturing method, the flattening of the steel sheet can be prevented by setting the coiling temperature of the hot rolling to 350 ° C. or higher. As a result, there is no need to forcibly correct the flat odor and then take up, which is advantageous in terms of manufacturing cost.
本発明は、これらの知見に基づいてなされたものであり、引張強度980MPa以上の高強度鋼板を製造するものである。 The present invention has been made based on these findings, and produces a high-strength steel sheet having a tensile strength of 980 MPa or more.
本発明は、C:0.08%以上0.20%以下、Si:0.2%未満、Mn:1.0%超3.0%以下、P:0.05%以下、S:0.01%以下、Al:0.001%以上0.5%以下、N:0.01%以下、V:0.1%超0.5%以下、Ti:0.05%以上0.25%未満、Nb:0.005%以上0.10%以下、残部Fe及び不純物からなる鋼組成を有するとともに、フェライトの面積率が60%以上、マルテンサイトの面積率が5%以下の鋼組織を有し、フェライトの平均粒径が5μm以下、清浄度dが0.05%以下であり、かつ、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2以下であることを特徴とした引張強さ980MPa以上の強度を有する高強度熱延鋼板である。 In the present invention, C: 0.08% or more and 0.20% or less, Si: less than 0.2%, Mn: more than 1.0%, 3.0% or less, P: 0.05% or less, S: 0.0. 01% or less, Al: 0.001% or more and 0.5% or less, N: 0.01% or less, V: more than 0.1% and 0.5% or less, Ti: 0.05% or more and less than 0.25% , Nb: 0.005% or more and 0.10% or less, having a steel composition composed of the balance Fe and impurities, and having a steel structure in which the area ratio of ferrite is 60% or more and the area ratio of martensite is 5% or less The average particle size of ferrite is 5 μm or less, the cleanliness d is 0.05% or less, and the total number density of inclusions and precipitates having an average particle size of 5 μm or more is 300 pieces / mm 2 or less. Is a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more.
ここで清浄度dは下記(1)式により算出される。
d=(n/(p×f))×100 ・・・・・・・(1)
(1)式において、pはJIS G 0555における視野内のガラス板上の総格子点数を示し、fはJIS G 0555における視野数を示し、nはJIS G 0555におけるf個の視野における全介在物によって占められる格子点中心の数を示す。ここで、全介在物とは、JIS G 0555におけるA系介在物、B系介在物及びC系介在物の全てを意味する。
Here, the cleanliness d is calculated by the following equation (1).
d = (n / (p × f)) × 100 (1)
In the formula (1), p represents the total number of lattice points on the glass plate in the field of view in JIS G 0555, f represents the number of fields in JIS G 0555, and n represents all inclusions in f fields of view in JIS G 0555. Indicates the number of grid point centers occupied by. Here, all inclusions mean all of A-based inclusions, B-based inclusions, and C-based inclusions in JIS G 0555.
この本発明に係る高強度熱延鋼板では、Feの一部に代えて、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下及びB:0.01%以下のうちの1種又は2種以上を含有することが望ましい。 In the high-strength hot-rolled steel sheet according to the present invention, instead of a part of Fe, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% It is desirable to contain one or more of the following and B: 0.01% or less.
これらの本発明に係る高強度熱延鋼板では、Feの一部に代えて、REM:0.1%以下、Mg:0.01%以下及びCa:0.01%以下のうちの1種又は2種以上を含有することが望ましい。 In these high-strength hot-rolled steel sheets according to the present invention, instead of a part of Fe, one of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less or It is desirable to contain 2 or more types.
別の観点からは、本発明は、上述した鋼組成を有する溶鋼を、溶鋼の加熱温度を液相線温度から5℃以上高い温度とし、単位時間当たりの溶鋼鋳込み量を6トン/分以下とし、さらに溶鋼が完全凝固する前に中心偏析低減処理を施す連続鋳造法によりスラブとなし、このスラブを加熱炉に装入して1200℃以上の温度に加熱し、加熱炉から抽出したスラブにAr3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし、この熱延鋼板に、熱間圧延の完了後3秒以内に冷却を開始し、20℃/秒以上100℃/秒以下の平均冷却速度で700℃以下500℃以上の温度域まで冷却し、抽出から10分以内に冷却を完了する1次冷却を施し、ついで350℃以上の温度で巻き取ることを特徴とする高強度熱延鋼板の製造方法である。 From another point of view, the present invention relates to a molten steel having the above-described steel composition, in which the heating temperature of the molten steel is higher than the liquidus temperature by 5 ° C. or more, and the molten steel casting amount per unit time is 6 tons / min or less. Further, a slab is formed by a continuous casting method in which center segregation reduction treatment is performed before the molten steel is completely solidified. The slab is charged into a heating furnace and heated to a temperature of 1200 ° C. or higher, and Ar is added to the slab extracted from the heating furnace. Hot rolling is performed to complete rolling in a temperature range of 3 points or more to form a hot-rolled steel sheet. The hot-rolled steel sheet is cooled within 3 seconds after the completion of hot rolling, and is at least 20 ° C./second and 100 It is cooled to a temperature range of 700 ° C. or lower and 500 ° C. or higher at an average cooling rate of 0 ° C./second or less, subjected to primary cooling that completes cooling within 10 minutes after extraction, and then wound at a temperature of 350 ° C. or higher. It is a manufacturing method of a high-strength hot-rolled steel sheet .
本発明に係る高強度熱延鋼板は、高強度で優れた加工性を有し、さらに靭性に優れている。また、熱間圧延後の平坦度も優れており、安価に製造できる。そのため、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のメンバーや足廻り部品に代表される構造部材の素材として、最適である。 The high-strength hot-rolled steel sheet according to the present invention has high strength, excellent workability, and excellent toughness. Moreover, the flatness after hot rolling is excellent and can be manufactured at low cost. Therefore, it is optimal as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members represented by automobile members and undercarriage parts.
以下、本発明に係る高強度熱延鋼板及びその製造方法の実施の形態を、具体的に説明する。 Hereinafter, embodiments of the high-strength hot-rolled steel sheet and the manufacturing method thereof according to the present invention will be specifically described.
(A)鋼組成
C:0.08%以上0.20%以下
Cは高強度化に有効な元素である。C含有量が0.08%未満ではその効果が小さく、一方0.20%を超えて含有すると熱間圧延後の冷却の際に平坦不良や特性バラツキ、さらに例えばパーライト、ベイナイト、マルテンサイト等の金属組織第2相の増加により加工性の低下が生じる。そこで、本発明ではC含有量を0.08%以上0.20%以下と限定する。同様の観点から、好ましい下限は0.10%であり、好ましい上限は0.16%である。
(A) Steel composition
C: 0.08% to 0.20% C is an element effective for increasing the strength. If the C content is less than 0.08%, the effect is small. On the other hand, if the C content exceeds 0.20%, flatness and characteristic variations during cooling after hot rolling, such as pearlite, bainite, martensite, etc. A decrease in workability occurs due to an increase in the second phase of the metal structure. Therefore, in the present invention, the C content is limited to 0.08% or more and 0.20% or less. From the same viewpoint, the preferable lower limit is 0.10%, and the preferable upper limit is 0.16%.
Si:0.2%未満
Siは高強度化に有効な元素である。しかしながら、過剰に含有すると化成処理性の低下や島状スケール疵と呼ばれる表面不良が著しくなる。そこで、Si含有量は0.2%未満と限定する。同様の観点から、好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。
Si: Less than 0.2% Si is an element effective for increasing the strength. However, when it contains excessively, the chemical conversion processability fall and the surface defect called island scale flaw will become remarkable. Therefore, the Si content is limited to less than 0.2%. From the same viewpoint, it is preferably 0.1% or less, more preferably 0.05% or less.
Mn:1.0%超3.0%以下
Mnは高強度化に有効な元素である。変態点を下げ、V析出物の析出状態を制御するのに寄与するとともに、変態強化によって高強度化にも寄与する。その効果は1.0%以下では得られない。一方、3.0%を超えて含有すると熱間圧延での冷却での平坦不良や特性バラツキを生じさせる。したがって、その含有量を1.0%超3.0%以下と限定する。同様の観点から好ましい下限は1.5%であり、好ましい上限は2.5%である。
Mn: more than 1.0% to 3.0% or less Mn is an element effective for increasing the strength. This contributes to lowering the transformation point and controlling the precipitation state of V precipitates, and also contributes to higher strength by strengthening transformation. The effect cannot be obtained at 1.0% or less. On the other hand, if the content exceeds 3.0%, flatness failure and characteristic variation are caused by cooling in hot rolling. Therefore, the content is limited to more than 1.0% and not more than 3.0%. From the same viewpoint, the preferable lower limit is 1.5%, and the preferable upper limit is 2.5%.
P:0.05%以下
Pは靱性を劣化させる好ましくない元素であるので少ないほうが望ましいが、極端に低減するには相応のコストを伴う。したがって、P含有量は0.05%以下と限定する。好ましくは0.02%以下であり、さらに好ましくは0.015%以下である。
P: 0.05% or less P is an undesirable element that deteriorates toughness, so it is desirable that P be less. However, extreme reduction involves a corresponding cost. Therefore, the P content is limited to 0.05% or less. Preferably it is 0.02% or less, More preferably, it is 0.015% or less.
S:0.01%以下
SはMnS量を増加させ靭性を低下させる好ましくない元素である。したがってその含有量は0.01%以下と限定する。好ましくは0.008%以下であり、さらに好ましくは0.004%以下である。
S: 0.01% or less S is an undesirable element that increases the amount of MnS and decreases toughness. Therefore, the content is limited to 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.004% or less.
Al:0.001%以上0.5%以下
Alは、脱酸のため含有する。その効果は0.001%未満では不十分であり、また0.5%を超えて含有すると溶接性が低下する。そこで、本発明ではAl現有量は0.001%以上0.5%以下と限定する。好ましい上限は0.1%である。
Al: 0.001% or more and 0.5% or less Al is contained for deoxidation. The effect is insufficient if it is less than 0.001%, and if it exceeds 0.5%, the weldability is lowered. Therefore, in the present invention, the Al content is limited to 0.001% to 0.5%. A preferable upper limit is 0.1%.
N:0.01%以下
Nは、Tiと結合して窒化物を形成する。N含有量が0.01%超であると粗大なTiNが析出して靭性が低下する。したがってN含有量は0.01%以下と限定する。好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。下限は特に定めないが製鋼コストの兼ね合いから0.0005%以上であることが好ましい。
N: 0.01% or less N combines with Ti to form a nitride. If the N content exceeds 0.01%, coarse TiN precipitates and the toughness decreases. Therefore, the N content is limited to 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.005% or less. Although the lower limit is not particularly defined, it is preferably 0.0005% or more from the viewpoint of steelmaking cost.
V:0.1%超0.5%以下
Vは本発明で最も重要な元素である。比較的低い温度で析出し、高強度化に大きく寄与する。その効果は0.1%以下では不十分である。また過剰に含有すると、化成処理性が劣化する、V含有量は0.1%超0.50%以下と限定する。好ましい下限は0.16%であり、好ましい上限は0.35%である。
V: more than 0.1% and 0.5% or less V is the most important element in the present invention. It precipitates at a relatively low temperature and greatly contributes to high strength. The effect is insufficient at 0.1% or less. Moreover, when it contains excessively, chemical conversion property will deteriorate, V content is limited to more than 0.1% and 0.50% or less. A preferred lower limit is 0.16% and a preferred upper limit is 0.35%.
Ti:0.05%以上0.25%未満
Tiは本発明では重要な元素である。析出強化により鋼板の高強度化に寄与するとともに、V析出物の析出核として働き、高強度化及び析出による高強度化の達成に大きく寄与する。その効果は0.05%未満では不十分であり、一方含有量が多すぎても効果が飽和するのに加えてTiの析出強化を主体に高強度化を行うと、粗大なTi炭窒化物などが析出し靭性を劣化させる。そこでTi含有量は0.05%以上0.25%未満と限定する。好ましい下限は0.08%であり、好ましい上限は0.20%である。
Ti: 0.05% or more and less than 0.25% Ti is an important element in the present invention. Precipitation strengthening contributes to increasing the strength of the steel sheet, and also acts as a precipitation nucleus for V precipitates, greatly contributing to achieving higher strength and higher strength by precipitation. The effect is insufficient if it is less than 0.05%. On the other hand, if the content is too high, the effect is saturated, and when strengthening is performed mainly by precipitation strengthening of Ti, coarse Ti carbonitride Etc. precipitate and deteriorate toughness. Therefore, the Ti content is limited to 0.05% or more and less than 0.25%. A preferred lower limit is 0.08% and a preferred upper limit is 0.20%.
Nb:0.005%以上0.10%以下
Nbは、細粒化及び析出強化により鋼板の高強度化に寄与するが、過剰に含有すると効果が飽和するので、その含有量は0.10%以下と定めた。また、Nbの細粒化及び析出強化を得るには0.005%以上添加する必要がある。好ましくは0.01%以上含有させることが望ましい。
Nb: 0.005% or more and 0.10% or less Nb contributes to increasing the strength of the steel sheet by refining and precipitation strengthening, but if contained excessively, the effect is saturated, so its content is 0.10% It was determined as follows. Further, in order to obtain Nb fine particles and precipitation strengthening, it is necessary to add 0.005% or more. Preferably it is 0.01% or more.
次に、任意添加元素について説明する。
Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下及びB:0.01%以下のうちの1種又は2種以上
Next, the optional additive element will be described.
One or more of Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less and B: 0.01% or less
Cr、Mo、Cu、Ni及びBは、いずれも、本発明では任意添加元素であって、固溶強化によって強度を高める元素である。これらの元素を含有することにより、強度を一層高める作用を有し、2種以上含有しても、それぞれの作用は失われない。その作用は、Cr:1.0%、Mo:1.0%、Cu:1.0%、Ni:1.0%およびB:0.01%をそれぞれ超えて含有させても飽和し、コストが嵩むばかりである。そのため、これらの元素を含有する場合には、含有量の上限をCr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下とすることが望ましい。さらに、その効果は、Cr:0.05%以上ならびにMo:0.05%以上、Cu:0.05%以上、Ni:0.05%以上およびB:0.0002%以上含有することにより顕著に発現するので、これらを下限とすることがより望ましい。
REM:0.1%以下、Mg:0.01%以下及びCa:0.01%以下のうちの1種又は2種以上
Cr, Mo, Cu, Ni, and B are all optional addition elements in the present invention, and are elements that increase strength by solid solution strengthening. By containing these elements, there is an effect of further increasing the strength, and even if two or more kinds are contained, the respective effects are not lost. The effect is saturated even if Cr: 1.0%, Mo: 1.0%, Cu: 1.0%, Ni: 1.0% and B: 0.01% are contained, respectively, and the cost Is just bloated. Therefore, when these elements are contained, the upper limit of the content is Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B : 0.01% or less is desirable. Furthermore, the effect is remarkable by containing Cr: 0.05% or more and Mo: 0.05% or more, Cu: 0.05% or more, Ni: 0.05% or more and B: 0.0002% or more. Therefore, it is more desirable to set these as the lower limit.
One or more of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less
REM、Mg及びCaは、いずれも、本発明では任意添加元素であって、硫化物、酸化物等の介在物を球状化し無害化させることができる元素である。これらの元素を含有することにより、介在物を球状化し無害化する作用を有し、2種以上添加しても、それぞれの作用は失われない。その作用は、REM:0.1%、Mg:0.01%、Ca:0.01%をそれぞれ超えて含有させても飽和し、コストが嵩むばかりである。そのため、これらの元素を含有する場合には、含有量の上限をREM:0.1%以下、Mg:0.01%以下及びCa:0.01%以下とすることが望ましい。さらに、その効果は、REM:0.005%以上、Mg:0.0005%以上およびCa:0.0005%以上含有することにより顕著に発現するので、これらを下限とすることがより望ましい。 REM, Mg, and Ca are all optional elements in the present invention, and are elements that can spheroidize inclusions such as sulfides and oxides and make them harmless. By containing these elements, it has the effect | action which makes an inclusion spherical and detoxifies, and even if it adds 2 or more types, each effect | action is not lost. Even if the action exceeds REM: 0.1%, Mg: 0.01%, and Ca: 0.01%, the action is saturated and the cost is increased. Therefore, when these elements are contained, it is desirable that the upper limit of the content be REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less. Furthermore, since the effect is remarkably exhibited by containing REM: 0.005% or more, Mg: 0.0005% or more, and Ca: 0.0005% or more, it is more desirable to set these as the lower limit.
ここで、REMとは、Sc、Y及びランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。なお、本発明では、REMの含有量はこれらの元素の合計含有量を指す。 Here, REM refers to a total of 17 elements of Sc, Y, and lanthanoid. In the case of lanthanoid, it is added industrially in the form of misch metal. In the present invention, the content of REM refers to the total content of these elements.
上記以外の組成は、Fe及び不純物である。
(B)金属組織ならびに介在物
引張強度を980MPa以上を有し、かつ加工性及び靭性に優れた鋼板を得るためには、フェライトの面積率が60%以上でフェライトの平均粒径が5μm以下、マルテンサイト面積率が5%以下であって、980MPa以上の強度を有し、JIS G 0555による清浄度dが0.05%以下であり、かつ、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2以下であることが必要である。
Compositions other than the above are Fe and impurities.
(B) Metal structure and inclusions In order to obtain a steel sheet having a tensile strength of 980 MPa or more and excellent workability and toughness, the ferrite area ratio is 60% or more, and the average particle diameter of ferrite is 5 μm or less. It has a martensite area ratio of 5% or less, a strength of 980 MPa or more, a cleanliness d according to JIS G 0555 of 0.05% or less, and an inclusion and precipitate having an average particle size of 5 μm or more. It is necessary that the total number density is 300 pieces / mm 2 or less.
ここで、清浄度dは下記(1)式により算出される。
d=(n/(p×f))×100 ・・・・・・・(1)
(1)式において、pはJIS G 0555における視野内のガラス板上の総格子点数を示し、fはJIS G 0555における視野数を示し、nはJIS G 0555におけるf個の視野における全介在物によって占められる格子点中心の数を示す。ここで、全介在物とは、JIS G 0555におけるA系介在物、B系介在物及びC系介在物の全てを意味する。
Here, the cleanliness d is calculated by the following equation (1).
d = (n / (p × f)) × 100 (1)
In the formula (1), p represents the total number of lattice points on the glass plate in the field of view in JIS G 0555, f represents the number of fields in JIS G 0555, and n represents all inclusions in f fields of view in JIS G 0555. Indicates the number of grid point centers occupied by. Here, all inclusions mean all of A-based inclusions, B-based inclusions, and C-based inclusions in JIS G 0555.
フェライト面積率が60%未満であると、所望とする加工性を得られない。また、そのフェライトの平均粒径が5μm超であると、靭性が劣化する。金属組織第2相は、パーライト、セメンタイト、ベイナイト、残留オーステナイト、マルテンサイトが例示できる。好ましい金属組織第2相は、パーライト又はセメンタイト、ベイナイト、残留オーステナイトである。マルテンサイトは、面積率で5%以下であることが望ましい。マルテンサイトの面積率が5%以下であることが望ましい理由は、加工性と靭性を確保するためには、硬くて脆いマルテンサイトの面積率を抑制する必要があるからである。マルテンサイトの面積率を5%以下にするための手段としては、巻き取り温度に制限を設け、350℃以上で巻き取ることにより過度の冷却を防止し、マルテンサイト組織の生成を抑制することが例示される。 If the ferrite area ratio is less than 60%, desired processability cannot be obtained. Further, if the average particle diameter of the ferrite is more than 5 μm, the toughness is deteriorated. Examples of the metal phase second phase include pearlite, cementite, bainite, retained austenite, and martensite. The preferred second phase of the metal structure is pearlite or cementite, bainite, or retained austenite. The martensite is desirably 5% or less in terms of area ratio. The reason why the martensite area ratio is desirably 5% or less is that it is necessary to suppress the area ratio of hard and brittle martensite in order to ensure workability and toughness. As a means for reducing the martensite area ratio to 5% or less, a restriction is imposed on the coiling temperature, and excessive cooling is prevented by coiling at 350 ° C. or higher, thereby suppressing the formation of martensite structure. Illustrated.
さらに、引張り強度980MPa以上で所望の靭性を得るために、JIS G 0555による清浄度dが0.05%以下とする。清浄度dが0.05%超であると、母材と介在物、母材と析出物の界面から割れが発生しやすくなり、靭性が悪化する。さらに、JIS G 0555による清浄度dが0.05%以下であっても、その中に平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2超であると、満足する靭性は得られない。これは、同じ清浄度であっても靭性には、平均粒径5μm以上の大型介在物、析出物の影響が大きく、これらの大型介在物ならびに析出物が割れ等の起点となるため靭性低下を招く。 Furthermore, in order to obtain a desired toughness at a tensile strength of 980 MPa or more, the cleanliness degree d according to JIS G 0555 is set to 0.05% or less. If the cleanliness d is more than 0.05%, cracks are likely to occur from the interface between the base material and inclusions, and the base material and precipitates, and the toughness deteriorates. Furthermore, even when the cleanliness d according to JIS G 0555 is 0.05% or less, the total number density of inclusions and precipitates having an average particle diameter of 5 μm or more is more than 300 pieces / mm 2 . Satisfactory toughness cannot be obtained. This is because even if the cleanliness is the same, large inclusions and precipitates having an average particle size of 5 μm or more are greatly affected by toughness. Invite.
(C)製造条件
JIS G 0555による清浄度dが0.05%以下であり、かつ、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2以下とするには、溶鋼を連続鋳造する際、溶鋼の液相線温度からの溶鋼加熱温度を5℃以上とし、かつ単位時間当たりの溶鋼鋳込み量を6トン/分以下、かつスラブが完全凝固する前に中心偏析低減処理を施したスラブを用い、その後、熱間圧延前にスラブを1200℃以上で再加熱した後、加熱炉抽出から1次冷却終了までの時間を10分以内とすることが有効である。
(C) Manufacturing condition To make the total number density of inclusions and precipitates having a cleanness d according to JIS G 0555 of 0.05% or less and an average particle diameter of 5 μm or less to 300 pieces / mm 2 or less When continuously casting molten steel, the molten steel heating temperature from the liquidus temperature of the molten steel is set to 5 ° C or higher, the molten steel casting amount per unit time is 6 tons / min or less, and the center segregation before the slab is completely solidified. It is effective to use a slab subjected to a reduction treatment, and then reheat the slab at 1200 ° C. or higher before hot rolling, and set the time from extraction in the heating furnace to the end of primary cooling within 10 minutes.
溶鋼の液相線温度からの溶鋼加熱温度が5℃未満の場合の鋳造、又は単位時間当たりの溶鋼鋳込み量が6トン/分超の場合の鋳造では、鋳造時の溶鋼温度が低過ぎ、又は、溶鋼の流動が大きくなり過ぎ、アルミナ系介在物がスラブ内部に補足され、清浄度dが0.05%超になってしまう。また、スラブでの中心偏析低減処理を実施しない場合、スラブ厚中心部にTiが濃化し、粗大なTiNが多く析出するため、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2超になってしまう。 In casting when the molten steel heating temperature from the liquidus temperature of the molten steel is less than 5 ° C, or casting when the molten steel casting amount per unit time is over 6 tons / min, the molten steel temperature at the time of casting is too low, or The flow of molten steel becomes too large, and alumina inclusions are captured inside the slab, and the cleanliness d becomes more than 0.05%. In addition, when the center segregation reduction treatment in the slab is not performed, Ti is concentrated in the center portion of the slab thickness, and a large amount of coarse TiN is precipitated, so that the total number density of inclusions and precipitates having an average particle diameter of 5 μm or more is It becomes over 300 pieces / mm 2 .
スラブ加熱温度は、1200℃以上にする必要がある。スラブ加熱温度が1200℃未満であると、鋳造中又はスラブ冷却中に析出したTi、V系析出物が、十分な量固溶せず、析出強化が不十分となり引張強度980MPa以上を確保することができない。また、粗大なTi、V系析出物が残存し、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2超になってしまうため靭性が劣化してしまう。加熱温度の上限は特に規定しないが、操業コストの面から1320℃以下にすることが望ましい。加熱時間は、30分以上にすることで、引張強度980MPaを安定して得ることができる。 The slab heating temperature needs to be 1200 ° C. or higher. When the slab heating temperature is less than 1200 ° C., Ti and V precipitates precipitated during casting or slab cooling do not dissolve in a sufficient amount, resulting in insufficient precipitation strengthening and ensuring a tensile strength of 980 MPa or more. I can't. Further, coarse Ti and V-based precipitates remain, and the total number density of inclusions and precipitates having an average particle size of 5 μm or more exceeds 300 pieces / mm 2 , so that the toughness is deteriorated. Although the upper limit of the heating temperature is not particularly defined, it is preferably set to 1320 ° C. or less from the viewpoint of operation cost. By setting the heating time to 30 minutes or longer, a tensile strength of 980 MPa can be stably obtained.
さらに、スラブ加熱炉抽出から1次冷却終了までの時間が10分超になると、高温域での時間が長くTi、V系析出物が粗大化し、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が300個/mm2超になってしまい。靭性が劣化してしまう。 Furthermore, when the time from the extraction of the slab heating furnace to the end of the primary cooling exceeds 10 minutes, the time in the high temperature region becomes long and the Ti and V-based precipitates become coarse, and inclusions and precipitates with an average particle size of 5 μm or more The total number density is over 300 pieces / mm 2 . Toughness deteriorates.
さらに、析出強化に寄与する微細なTi、V系析出物が、減少するため引張強度980MPa以上を確保することができない。 Furthermore, since the fine Ti and V-based precipitates contributing to precipitation strengthening decrease, a tensile strength of 980 MPa or more cannot be ensured.
また、フェライトの面積率が60%以上でフェライトの平均粒径が5μm以下を得るには、Ar3点温度以上で熱間仕上げ圧延を完了し、その後3秒以内で平均冷却速度20℃/秒以上100℃/秒以下で冷却を開始した後、700℃以下500℃以上で1次冷却を終了することが必要である。Ar3点未満の圧延であるとフェライト域圧延のため、フェライトが異常粒成長を起こし、フェライトの平均粒径が5μm超になってしまう。仕上げ圧延後3秒以内で1次冷却を開始しない場合、フェライト粒が成長し過ぎ、フェライトの平均粒径が5μm超になってしまう。同様に1次冷却速度が20℃/秒未満であると、冷却速度が遅すぎるため、フェライト粒径が5μm超になってしまう。逆に冷却速度が100℃/秒超であると冷却速度が速すぎ、フェライト面積率が60%未満になってしまう。1次冷却終了温度は、700℃以下500℃以上でする必要がある。1次冷却停止温度が700℃超であるとフェライトが成長しすぎ、フェライトの平均粒径が5μm超になってしまう。逆に1次冷却停止温度が500℃未満であると1次冷却終了温度が低過ぎ、フェライト面積率60%以上を確保できない。 Further, in order to obtain a ferrite area ratio of 60% or more and an average grain size of ferrite of 5 μm or less, hot finish rolling is completed at an Ar 3 point temperature or higher, and then an average cooling rate of 20 ° C./second within 3 seconds. After starting the cooling at 100 ° C./second or lower, it is necessary to finish the primary cooling at 700 ° C. or lower and 500 ° C. or higher. If the rolling is less than Ar 3 points, the ferrite region is rolled, so that the ferrite causes abnormal grain growth, and the average grain diameter of the ferrite exceeds 5 μm. If primary cooling is not started within 3 seconds after finish rolling, ferrite grains grow too much and the average grain diameter of ferrite becomes more than 5 μm. Similarly, if the primary cooling rate is less than 20 ° C./second, the cooling rate is too slow, and the ferrite grain size becomes over 5 μm. On the other hand, if the cooling rate exceeds 100 ° C./second, the cooling rate is too high and the ferrite area ratio becomes less than 60%. The primary cooling end temperature needs to be 700 ° C. or lower and 500 ° C. or higher. If the primary cooling stop temperature is higher than 700 ° C., the ferrite grows too much, and the average grain size of the ferrite exceeds 5 μm. Conversely, if the primary cooling stop temperature is less than 500 ° C., the primary cooling end temperature is too low, and a ferrite area ratio of 60% or more cannot be secured.
その後、350℃以上で巻取ることにより、金属組織第2相をパーライト又はセメンタイト、ベイナイト、残留オーステナイトとし、マルテンサイトの面積率を5%以下とすることができる。 Then, by winding at 350 ° C. or higher, the second phase of the metal structure can be pearlite, cementite, bainite, or retained austenite, and the martensite area ratio can be 5% or less.
このような製造方法によって冷却条件及び巻き取り条件を制御することで、鋼板の平坦不芳を防止することができる。そのため、従来のように発生した平坦不芳を強制的に修正する必要がなく、コスト的にもメリットがある。 By controlling the cooling condition and the winding condition by such a manufacturing method, it is possible to prevent flatness of the steel sheet. For this reason, it is not necessary to forcibly correct the flattening that has occurred as in the prior art, and there is an advantage in terms of cost.
また、鋼板特性の均一化をするために、熱延仕上げ圧延前に粗バーヒーターにて加熱してもよい。ここで、粗バーヒーターとは、粗圧延されたバーを加熱する装置を意味する。加熱方法は、一般に誘導加熱装置が用いられるが、均一にバーを加熱できる装置であるならばガスバーナーなどを用いてもよい。 Moreover, in order to make a steel plate characteristic uniform, you may heat with a rough bar heater before hot rolling finish rolling. Here, the coarse bar heater means an apparatus for heating the roughly rolled bar. In general, an induction heating apparatus is used as a heating method, but a gas burner or the like may be used as long as the apparatus can uniformly heat the bar.
このようにして、本実施の形態により、高強度で優れた加工性を有し、さらに靭性に優れ、熱間圧延後の平坦度も優れており、安価に製造できるために、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のメンバーや足廻り部品に代表される構造部材の素材として最適な高強度熱延鋼板が提供される。 In this way, according to the present embodiment, it has high strength and excellent workability, is further excellent in toughness, is excellent in flatness after hot rolling, and can be manufactured at low cost. Provided is a high-strength hot-rolled steel sheet that is optimal as a material for structural members used in industrial machines, particularly as a material for structural members represented by automobile members and suspension parts.
さらに、本発明を、実施例を参照しながらさらに具体的に説明する。 Furthermore, the present invention will be described more specifically with reference to examples.
表1に示す組成を有する鋼を、試験転炉を用いて溶製した後、試験連続鋳造機にてスラブとした。中心偏析低減処理としては、最終未凝固部の上下対のロール間を狭くし、圧下率1.0%で圧下を行った。そのスラブで試験熱間仕上圧延機を用い熱間圧延を行い、板厚2.3mmの熱延鋼板を製造した。 Steel having the composition shown in Table 1 was melted using a test converter, and then made into a slab using a test continuous casting machine. As the center segregation reduction treatment, the gap between the upper and lower rolls of the final unsolidified portion was narrowed, and reduction was performed at a reduction rate of 1.0%. The slab was hot-rolled using a test hot finish rolling mill to produce a hot-rolled steel sheet having a thickness of 2.3 mm.
次いで、得られた熱延鋼板について、試験用の酸洗設備にてスケール除去を行った。製造条件を表2に示す。 Subsequently, about the obtained hot-rolled steel sheet, scale removal was performed with the pickling equipment for a test. The manufacturing conditions are shown in Table 2.
そして、圧延直角方向にJIS5号引張試験片を採取して引張試験を行った。また、得られた鋼板からシャルピー試験片を切り出し、シャルピー衝撃試験を行った。試験片の形状は、JIS Z 2202に規定されるUノッチシャルピー試験片とした。試験方法は、JIS Z 2242に規定される方法に準じ、−50℃温度における吸収エネルギーを調査した。 And the tension test was done by extract | collecting a JIS5 tension test piece in the rolling right angle direction. Moreover, the Charpy test piece was cut out from the obtained steel plate, and the Charpy impact test was done. The shape of the test piece was a U-notch Charpy test piece defined in JIS Z 2202. The test method investigated the absorbed energy at -50 degreeC temperature according to the method prescribed | regulated to JISZ2242.
また、鋼板の圧延方向に平行な断面について、切り出し、ナイタールエッチングを行った。そして、走査型電子顕微鏡を用いて、金属組織を観察した。
測定は、板厚表層部、(1/4)t部、(1/2)t部について、倍率1000倍で実施し、各供試材の各板厚位置について10視野ずつ測定した。得られた画像をもとに各組織の面積率、フェライトの結晶粒径を算術計算にて求めた。フェライトの平均結晶粒径は、JIS G 0552に準拠して測定した。
Moreover, it cut out about the cross section parallel to the rolling direction of a steel plate, and performed nital etching. And the metal structure was observed using the scanning electron microscope.
The measurement was performed at a magnification of 1000 times for the plate thickness surface layer portion, (1/4) t portion, and (1/2) t portion, and 10 visual fields were measured for each plate thickness position of each test material. Based on the obtained image, the area ratio of each structure and the crystal grain size of ferrite were obtained by arithmetic calculation. The average crystal grain size of ferrite was measured according to JIS G 0552.
また、得られた鋼板を鏡面研磨し後、エッチングをせず、板厚表層部、板厚(1/4)t部、(1/2)t部について走査型電子顕微鏡を用い倍率2000倍で実施した。各供試材の各板厚位置について10視野ずつ測定し、平均粒径5μm以上の介在物ならびに析出物の個数をカウントし、面積率に換算した。 Moreover, after mirror-polishing the obtained steel plate, etching is not performed, and the plate thickness surface layer portion, the plate thickness (1/4) t portion, and the (1/2) t portion are used at a magnification of 2000 using a scanning electron microscope. Carried out. Ten fields of view were measured for each plate thickness position of each specimen, and the number of inclusions and precipitates having an average particle size of 5 μm or more was counted and converted into an area ratio.
ここで、平均粒径の算出にあたっては、介在物と析出物を画像解析することでそれらの実面積を求め、この面積を円に置き換え、その円の直径を算出することにより平均粒径を求めた。 Here, in calculating the average particle diameter, the actual area of the inclusions and precipitates is obtained by image analysis, the area is replaced with a circle, and the diameter of the circle is calculated to obtain the average particle diameter. It was.
清浄度dは、JIS G 0555の方法に基づき、上述した(1)式により算出した。
結果を表3にまとめて示す。
The cleanliness d was calculated by the above-described equation (1) based on the method of JIS G 0555.
The results are summarized in Table 3.
本発明鋼である試験No1〜15の場合は引張強度980MPa以上で、伸び(全伸び)が14.1%以上で加工性に優れていた。また、−50℃でのシャルピー吸収エネルギーも88J/cm2以上で、−50℃でのシャルピー脆性破面率も0%であり靱性が良好であった。さらに、鋼板の平坦度も良好であった。 In the case of Test Nos. 1 to 15 which are steels of the present invention, the tensile strength was 980 MPa or more, the elongation (total elongation) was 14.1% or more, and the workability was excellent. Further, the Charpy absorbed energy at −50 ° C. was 88 J / cm 2 or more, the Charpy brittle fracture surface ratio at −50 ° C. was 0%, and the toughness was good. Furthermore, the flatness of the steel sheet was also good.
比較例No16は、溶鋼を連続鋳造する際、溶鋼の液相線温度からの溶鋼加熱温度が5℃未満であった。したがって、清浄度が0.062%と悪化し、−50℃でのシャルピー吸収エネルギーが60J/cm2、−50℃でのシャルピー脆性破面率が30%と靭性が劣化した。 When Comparative Example No16 continuously casts molten steel, the molten steel heating temperature from the liquidus temperature of the molten steel was less than 5 ° C. Therefore, the cleanliness deteriorated to 0.062%, the Charpy absorbed energy at -50 ° C was 60 J / cm 2 , and the Charpy brittle fracture surface rate at -50 ° C was 30%, and the toughness was deteriorated.
比較例No17は、鋳造をする際、単位時間当たりの溶鋼鋳込み量が6トン/分超であった。したがって、清浄度が0.073%と悪化し、−50℃でのシャルピー吸収エネルギーが55J/cm2、−50℃でのシャルピー脆性破面率が40%と靭性が劣化した。 When Comparative Example No17 was cast, the molten steel casting amount per unit time was more than 6 tons / minute. Accordingly, the cleanliness deteriorated to 0.073%, the Charpy absorbed energy at -50 ° C was 55 J / cm 2 , and the Charpy brittle fracture surface rate at -50 ° C was 40%.
比較例No18は、スラブが完全凝固する前に中心偏析低減処理を実施しなかった。したがって、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が320個/mm2と300個/mm2超になった。そのため、−50℃でのシャルピー吸収エネルギーが50J/cm2、−50℃でのシャルピー脆性破面率が45%と靭性が劣化した。 In Comparative Example No18, the center segregation reduction treatment was not performed before the slab completely solidified. Therefore, the total number density of inclusions and precipitates having an average particle diameter of 5 μm or more became 320 / mm 2 and more than 300 / mm 2 . Therefore, the Charpy absorbed energy at -50 ° C. was 50 J / cm 2 and the Charpy brittle fracture surface ratio at −50 ° C. was 45%.
比較例No19は、スラブ加熱が1150℃と1200℃以下と低かった。そのため、析出強化の効果が少なく引張強度が950MPaであり980MPa以下であった。また、平均粒径5μm以上の介在物ならびに析出物の合計の数密度も330個/mm2と300個/mm2超になった。そのため、−50℃でのシャルピー吸収エネルギーが58J/cm2、−50℃でのシャルピー脆性破面率が30%と靭性が劣化した。 In Comparative Example No19, the slab heating was as low as 1150 ° C. and 1200 ° C. or less. Therefore, the effect of precipitation strengthening was small, and the tensile strength was 950 MPa and 980 MPa or less. In addition, the total number density of inclusions and precipitates having an average particle diameter of 5 μm or more was 330 / mm 2 and more than 300 / mm 2 . Therefore, the Charpy absorbed energy at −50 ° C. was 58 J / cm 2 , and the Charpy brittle fracture surface ratio at −50 ° C. was 30%.
比較例No20は、仕上げ熱延温度が720℃とAr3点温度未満であった。フェライト粒が異常粒成長し、フェライトの平均粒径が7.2μmとなった。そのため、−50℃でのシャルピー吸収エネルギーが63J/cm2、−50℃でのシャルピー脆性破面率が10%と靭性が劣化した。 In Comparative Example No20, the finish hot rolling temperature was 720 ° C. and less than the Ar 3 point temperature. Ferrite grains grew abnormally, and the average grain diameter of ferrite became 7.2 μm. Therefore, the Charpy absorbed energy at −50 ° C. was 63 J / cm 2 and the Charpy brittle fracture surface ratio at −50 ° C. was 10%.
比較例No21は、仕上げ圧延後の冷却開始時間が4秒であった。そのため、フェライト粒が成長し、フェライトの平均粒径が6.8μmとなった。そのため、−50℃でのシャルピー吸収エネルギーが60J/cm2、−50℃でのシャルピー脆性破面率が15%と靭性が劣化した。 In Comparative Example No21, the cooling start time after finish rolling was 4 seconds. Therefore, ferrite grains grew and the average grain diameter of ferrite became 6.8 μm. Therefore, the Charpy absorbed energy at −50 ° C. was 60 J / cm 2 , and the Charpy brittle fracture surface ratio at −50 ° C. was 15%.
比較例No22は、1次冷却速度が15℃/secであった。そのため、フェライト粒が成長し、フェライトの平均粒径が7.6μmとなった。そのため、−50℃でのシャルピー吸収エネルギーが62J/cm2、−50℃でのシャルピー脆性破面率が10%と靭性が劣化した。 In Comparative Example No22, the primary cooling rate was 15 ° C./sec. Therefore, ferrite grains grew and the average grain diameter of ferrite became 7.6 μm. Therefore, the Charpy absorbed energy at −50 ° C. was 62 J / cm 2 , and the Charpy brittle fracture surface ratio at −50 ° C. was 10%.
比較例No23は、1次冷却速度が120℃/secであった。そのため、冷却速度が速すぎ、フェライト面積率が55%であった。伸びが8%と加工性が劣化した。
比較例No24は、1次冷却終了温度が720℃と高温であった。そのため、フェライト粒が成長し、フェライトの平均粒径が8.0μmとなった。そのため、−50℃でのシャルピー吸収エネルギーが55J/cm2、−50℃でのシャルピー脆性破面率が25%と靭性が劣化した。
In Comparative Example No23, the primary cooling rate was 120 ° C./sec. Therefore, the cooling rate was too fast and the ferrite area ratio was 55%. Elongation was 8% and workability deteriorated.
Comparative Example No24 had a primary cooling end temperature as high as 720 ° C. Therefore, ferrite grains grew and the average grain diameter of ferrite became 8.0 μm. Therefore, the Charpy absorbed energy at −50 ° C. was 55 J / cm 2 , and the Charpy brittle fracture surface ratio at −50 ° C. was 25%.
比較例No25は、1次冷却終了温度が480℃と低温であった。フェライト生成不足で、フェライト面積率が30%であった。伸びが7.2%と加工性が劣化した。
比較例No26は、加熱炉抽出から1次冷却終了までの時間が12分となった。1次冷却終了までの時間が長く析出物が粗大化した。そのため、平均粒径5μm以上の介在物ならびに析出物の合計の数密度が340個/mm2と300個/mm2超になった。そのため、−50℃でのシャルピー吸収エネルギーが52J/cm2、−50℃でのシャルピー脆性破面率が35%と靭性が劣化した。また、微細なTi、V系析出物が減少したため強度が940MPaとなった。
Comparative Example No25 had a primary cooling end temperature as low as 480 ° C. The ferrite area ratio was 30% due to insufficient ferrite formation. Elongation was 7.2% and workability was deteriorated.
In Comparative Example No. 26, the time from extraction in the heating furnace to the end of primary cooling was 12 minutes. The time until the end of the primary cooling was long and the precipitates became coarse. Therefore, the total number density of inclusions and precipitates having an average particle diameter of 5 μm or more became 340 / mm 2 and more than 300 / mm 2 . Therefore, the Charpy absorbed energy at −50 ° C. was 52 J / cm 2 and the Charpy brittle fracture surface ratio at −50 ° C. was 35%, which deteriorated toughness. Further, since the fine Ti and V-based precipitates decreased, the strength became 940 MPa.
比較例No27は、巻き取り温度が320℃であった。そのためマルテンサイト面積率が8%となり、鋼板の平坦が悪化した。 In Comparative Example No. 27, the winding temperature was 320 ° C. Therefore, the martensite area ratio became 8%, and the flatness of the steel sheet deteriorated.
Claims (4)
ここで清浄度dは下記(1)式により算出される。
d=(n/(p×f))×100 ・・・・・・・(1)
(1)式において、pはJIS G 0555における視野内のガラス板上の総格子点数を示し、fはJIS G 0555における視野数を示し、nはJIS G 0555におけるf個の視野における全介在物によって占められる格子点中心の数を示す。ここで、全介在物とは、JIS G 0555におけるA系介在物、B系介在物及びC系介在物の全てを意味する。 In mass%, C: 0.08% or more and 0.20% or less, Si: less than 0.2%, Mn: more than 1.0%, 3.0% or less, P: 0.05% or less, S: 0.0. 01% or less, Al: 0.001% or more and 0.5% or less, N: 0.01% or less, V: more than 0.1% and 0.5% or less, Ti: 0.05% or more and less than 0.25% , Nb: 0.005% or more and 0.10% or less, having a steel composition composed of the balance Fe and impurities, and having a steel structure in which the area ratio of ferrite is 60% or more and the area ratio of martensite is 5% or less The average particle size of the ferrite is 5 μm or less, the cleanliness d is 0.05% or less, and the total number density of inclusions and precipitates having an average particle size of 5 μm or more is 300 pieces / mm 2 or less. A high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more.
Here, the cleanliness d is calculated by the following equation (1).
d = (n / (p × f)) × 100 (1)
In the formula (1), p represents the total number of lattice points on the glass plate in the field of view in JIS G 0555, f represents the number of fields in JIS G 0555, and n represents all inclusions in f fields of view in JIS G 0555. Indicates the number of grid point centers occupied by. Here, all inclusions mean all of A-based inclusions, B-based inclusions, and C-based inclusions in JIS G 0555.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007134390A JP4803108B2 (en) | 2007-05-21 | 2007-05-21 | High strength hot-rolled steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007134390A JP4803108B2 (en) | 2007-05-21 | 2007-05-21 | High strength hot-rolled steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008285741A JP2008285741A (en) | 2008-11-27 |
JP4803108B2 true JP4803108B2 (en) | 2011-10-26 |
Family
ID=40145759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007134390A Expired - Fee Related JP4803108B2 (en) | 2007-05-21 | 2007-05-21 | High strength hot-rolled steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4803108B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5035162B2 (en) * | 2008-07-23 | 2012-09-26 | 住友金属工業株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
JP5353642B2 (en) * | 2009-11-06 | 2013-11-27 | 新日鐵住金株式会社 | Steel plate for heat treatment and manufacturing method thereof |
CN103842542B (en) | 2011-09-30 | 2016-01-20 | 新日铁住金株式会社 | The high-strength hot-dip galvanized steel sheet of shock-resistant characteristic good and manufacture method thereof and high-strength and high-ductility galvannealed steel sheet and manufacture method thereof |
JP5321671B2 (en) * | 2011-11-08 | 2013-10-23 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet with excellent strength and workability uniformity and method for producing the same |
WO2013111556A1 (en) * | 2012-01-26 | 2013-08-01 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing same |
CN103480815B (en) * | 2013-09-23 | 2015-07-08 | 首钢京唐钢铁联合有限责任公司 | Method for preventing continuous casting plate blank from adhesion |
WO2018055098A1 (en) | 2016-09-22 | 2018-03-29 | Tata Steel Ijmuiden B.V. | A method of producing a hot-rolled high-strength steel with excellent stretch-flange formability and edge fatigue performance |
KR102119975B1 (en) * | 2018-11-29 | 2020-06-08 | 주식회사 포스코 | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio |
KR102209582B1 (en) | 2019-12-16 | 2021-01-28 | 주식회사 포스코 | Moving and bonding unit and core manufacturing apparatus having thereof |
CN114130820B (en) * | 2021-11-08 | 2024-01-23 | 湖南华菱涟钢特种新材料有限公司 | Hot rolled steel plate for carriage and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3546297B2 (en) * | 1999-11-09 | 2004-07-21 | Jfeスチール株式会社 | Method of reducing center segregation in continuous cast slab |
JP4304421B2 (en) * | 2002-10-23 | 2009-07-29 | 住友金属工業株式会社 | Hot rolled steel sheet |
JP2004211184A (en) * | 2003-01-07 | 2004-07-29 | Sumitomo Metal Ind Ltd | Continuous casting method of nickel-containing steel, and its cast piece |
JP4581665B2 (en) * | 2004-12-08 | 2010-11-17 | 住友金属工業株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
-
2007
- 2007-05-21 JP JP2007134390A patent/JP4803108B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008285741A (en) | 2008-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803108B2 (en) | High strength hot-rolled steel sheet and manufacturing method thereof | |
KR101563929B1 (en) | 800 Steel plate with yield strength of 800MPa grade and low weld cracking sensitivity and manufacture method thereof | |
JP5041084B2 (en) | High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof | |
JP6872616B2 (en) | Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP5267048B2 (en) | Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction | |
KR101368514B1 (en) | Pearlite-based high-carbon steel rail having excellent ductility and process for production thereof | |
WO2010134220A1 (en) | Steel material for high heat input welding | |
JP4897126B2 (en) | Thick steel plate manufacturing method | |
JP5765497B1 (en) | ERW steel pipe with excellent weld quality and manufacturing method thereof | |
JP5760519B2 (en) | Rolled H-section steel with excellent toughness and method for producing the same | |
JP2011080156A (en) | Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding | |
WO2020078472A1 (en) | 800 mpa-grade hot-stamped axle housing steel and manufacturing method therefor | |
JP5432539B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP6426621B2 (en) | High strength steel plate and method of manufacturing the same | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP4878219B2 (en) | Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding | |
JP6665658B2 (en) | High strength steel plate | |
JP6418418B2 (en) | Steel material for large heat input welding | |
JP5223706B2 (en) | Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof | |
JP2003129180A (en) | Pearlitic rail superior in toughness and ductility, and manufacturing method therefor | |
JP5233364B2 (en) | Steel material for large heat input welding | |
JP5035162B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP4144123B2 (en) | Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness | |
KR102508128B1 (en) | Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110725 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4803108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |