[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4892197B2 - Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell - Google Patents

Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell Download PDF

Info

Publication number
JP4892197B2
JP4892197B2 JP2005105785A JP2005105785A JP4892197B2 JP 4892197 B2 JP4892197 B2 JP 4892197B2 JP 2005105785 A JP2005105785 A JP 2005105785A JP 2005105785 A JP2005105785 A JP 2005105785A JP 4892197 B2 JP4892197 B2 JP 4892197B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
electrode substrate
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005105785A
Other languages
Japanese (ja)
Other versions
JP2006286434A (en
Inventor
和敏 原田
聡 内田
和巧 小坂
崇志 横山
Original Assignee
関西パイプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西パイプ工業株式会社 filed Critical 関西パイプ工業株式会社
Priority to JP2005105785A priority Critical patent/JP4892197B2/en
Publication of JP2006286434A publication Critical patent/JP2006286434A/en
Application granted granted Critical
Publication of JP4892197B2 publication Critical patent/JP4892197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池に関し、より詳細には、該太陽電池の光電極や対向電極に用いられる電極基板に関する。   The present invention relates to a dye-sensitized solar cell, and more particularly to an electrode substrate used for a photoelectrode or a counter electrode of the solar cell.

近年、クリーンで非枯渇性の太陽エネルギーを利用する太陽電池の本格的な実用化に向けて、研究開発が盛んに行われている。   In recent years, research and development have been actively conducted toward full-scale practical application of solar cells using clean and non-depleting solar energy.

太陽電池は、使用する半導体材料によって、シリコン系、化合物半導体系、有機半導体系、色素増感型(金属酸化物半導体系)などに分類される。これらのうち最も実用化が進んでいるのはシリコン系太陽電池であるが、価格が高いという問題があり、未だ広く普及するには至っていない。   Solar cells are classified into silicon-based, compound semiconductor-based, organic semiconductor-based, dye-sensitized type (metal oxide semiconductor-based), etc., depending on the semiconductor material used. Of these, silicon solar cells are most practically used, but have a problem of high price and have not yet been widely used.

色素増感型太陽電池は、1991年にローザンヌ工科大学(スイス)のGraetzel教授らによって発表されたいわゆる「グレッツェル・セル」の開発を契機に、世界的に脚光を浴びるようになった(特許文献1参照)。このグレッツェル・セルは、ナノポーラスなチタニア半導体膜にルテニウム金属錯体色素を固定した光電極と、白金層を有する対向電極との間に、電解液を封止してなるものであって、大がかりな製造設備を必要とせず、高い光電変換効率を確保しつつコストの大幅な低減化を実現できる可能性があることから、多数の研究機関や企業が研究開発に取り組んでいる。   Dye-sensitized solar cells have gained worldwide attention as a result of the development of the so-called “Gretzel cell” announced by Professor Graetzel of Lausanne Institute of Technology (Switzerland) in 1991 (Patent Literature) 1). This Gretzel cell is made by sealing an electrolyte solution between a photoelectrode in which a ruthenium metal complex dye is fixed on a nanoporous titania semiconductor film and a counter electrode having a platinum layer. Many research institutes and companies are engaged in research and development because there is a possibility that a significant reduction in cost can be achieved while securing high photoelectric conversion efficiency without requiring equipment.

色素増感型太陽電池において、光電極を構成するチタニア(TiO)などの金属酸化物半導体膜は、ガラス板等の透明板上にFTO(フッ素ドープ酸化スズ)やITO(インジウムドープ酸化スズ)等よりなる透明導電膜を積層してなる電極基板の上に形成される。ところが、FTOやITOは電気抵抗値が大きいため、単位面積当たりの出力電流密度が低い。よって、電極基板の抵抗を小さくすることができれば、光電変換効率が向上し、セルの大型化にもつながる。 In a dye-sensitized solar cell, a metal oxide semiconductor film such as titania (TiO 2 ) constituting a photoelectrode is formed on a transparent plate such as a glass plate by FTO (fluorine-doped tin oxide) or ITO (indium-doped tin oxide). It is formed on an electrode substrate formed by laminating transparent conductive films made of, for example. However, since FTO and ITO have a large electric resistance value, the output current density per unit area is low. Therefore, if the resistance of the electrode substrate can be reduced, the photoelectric conversion efficiency is improved and the cell is increased in size.

電極基板の抵抗を低減する手段としては、透明導電膜の表面に銀ペーストや銅テープによって集電回路を形成する方法が知られている。しかしながら、これらの方法は、材料コストが高くつく上、集電回路を形成する工程が複雑であるため、製造コストのアップにつながるという問題がある。   As a means for reducing the resistance of the electrode substrate, a method of forming a current collecting circuit with a silver paste or copper tape on the surface of a transparent conductive film is known. However, these methods have problems that the material cost is high and the process of forming the current collecting circuit is complicated, leading to an increase in manufacturing cost.

また、上記以外の手段として、ITO等の透明導電膜の表面にフォトマスクを施しておいてから、Au、Al、Cr等の導電性金属材料をスパッタすることにより集電用電極(集電回路)を形成した後、フォトマスクを溶解除去する方法が開示されている(特許文献2参照)。
上記の方法にあっても、集電回路を形成する工程が複雑であり、それによって製造コストの増大を招くおそれがある。
また、上記の透明導電膜の表面に形成された集電回路は、ナノポーラスなチタニア半導体膜を通して、電解質に晒されることになるが、電解質にはヨウ素溶液等が用いられるため、集電回路を構成するAuやAl等の金属が腐食して、集電機能が損なわれ、そのままでは実用に供することができないという問題があった。
特開平1−220380号公報 特開2005−11609号公報
Further, as a means other than the above, a current collecting electrode (current collecting circuit) is formed by sputtering a conductive metal material such as Au, Al, Cr after applying a photomask on the surface of a transparent conductive film such as ITO. ), And a method for dissolving and removing the photomask is disclosed (see Patent Document 2).
Even in the above method, the process of forming the current collecting circuit is complicated, which may increase the manufacturing cost.
In addition, the current collector circuit formed on the surface of the transparent conductive film is exposed to the electrolyte through the nanoporous titania semiconductor film. Since the electrolyte uses an iodine solution, the current collector circuit is configured. The metal such as Au or Al corrodes and the current collecting function is impaired, and there is a problem that it cannot be put into practical use as it is.
Japanese Patent Laid-Open No. 1-220380 JP 2005-11609 A

本発明の目的は、透明板の片面に透明導電膜が積層されている色素増感型太陽電池用電極基板として、透明導電膜の抵抗値を効果的に低減することができる上、電解質に対する耐食性および耐久性に優れているものを、より低価格で提供することにある。   An object of the present invention is to effectively reduce the resistance value of a transparent conductive film as an electrode substrate for a dye-sensitized solar cell in which a transparent conductive film is laminated on one side of a transparent plate, and has corrosion resistance to an electrolyte. In addition, it is to provide a product having excellent durability at a lower price.

本発明による第1の色素増感型太陽電池用電極基板は、透明板の片面および透明導電膜の表面のうち少なくともいずれか一方に、Alを所定パターンに真空蒸着してなる集電回路が設けられ、集電回路の表面が酸化被膜で覆われていることを特徴とするものである。
上記第1の電極基板にあっては、透明板の片面および/または透明導電膜の表面に、Alを所定パターンに真空蒸着しかつその表面を酸化被膜で覆うことによって集電回路が形成されているので、それによって透明導電膜の抵抗値が効果的に低減されるにもかかわわず、従来技術と比べて材料費が安く製造工程も単純であるから、製造コストを下げることが可能となる。しかも、第1の電極基板の場合、集電回路を構成するAl蒸着膜が酸化被膜で覆われているため、電解質に対する耐腐食性に優れており、耐久性も向上する。
The electrode substrate for a first dye-sensitized solar cell according to the present invention is provided with a current collecting circuit formed by vacuum-depositing Al in a predetermined pattern on at least one of one surface of a transparent plate and the surface of a transparent conductive film. The surface of the current collecting circuit is covered with an oxide film.
In the first electrode substrate, a current collecting circuit is formed by vacuum-depositing Al in a predetermined pattern on one side of the transparent plate and / or the surface of the transparent conductive film and covering the surface with an oxide film. Therefore, although the resistance value of the transparent conductive film is effectively reduced, the material cost is lower and the manufacturing process is simpler than that of the conventional technique, so that the manufacturing cost can be reduced. . In addition, in the case of the first electrode substrate, since the Al vapor deposition film constituting the current collecting circuit is covered with an oxide film, the first electrode substrate is excellent in corrosion resistance to the electrolyte and also improved in durability.

また、本発明による第2の色素増感型太陽電池用電極基板は、透明板の片面および透明導電膜の表面のうち少なくともいずれか一方に、Alを所定パターンに真空蒸着してなる集電回路が設けられ、集電回路の表面が、Ti、Ni、Nb、Ta、W、SUSおよびITOのうちいずれか1つの膜で覆われていることを特徴とするものである。
上記第2の電極基板にあっても、透明板の片面および/または透明導電膜の表面に設けられた集電回路によって、透明導電膜の抵抗値が効果的に低減される上、製造コストも下げられる。また、第2の電極基板の場合、集電回路を構成するAl蒸着膜が、Ti、Ni、Nb、Ta、W、SUSおよびITOのうちいずれか1つの膜で覆われているため、電解質に対する耐腐食性に優れており、耐久性も向上する。
The second dye-sensitized solar cell electrode substrate according to the present invention is a current collecting circuit formed by vacuum-depositing Al in a predetermined pattern on at least one of one surface of a transparent plate and the surface of a transparent conductive film. And the surface of the current collecting circuit is covered with any one film of Ti, Ni, Nb, Ta, W, SUS and ITO.
Even in the second electrode substrate, the resistance value of the transparent conductive film is effectively reduced by the current collecting circuit provided on one surface of the transparent plate and / or the surface of the transparent conductive film, and the manufacturing cost is also reduced. Be lowered. In the case of the second electrode substrate, the Al vapor deposition film constituting the current collecting circuit is covered with any one film of Ti, Ni, Nb, Ta, W, SUS, and ITO. Excellent corrosion resistance and improved durability.

次に、本発明による第3の色素増感型太陽電池用電極基板は、透明板の片面および透明導電膜の表面のうち少なくともいずれか一方に、Nb、Ta、W、Ti、Ni、SUSのうちいずれか1つを所定パターンに真空蒸着してなる集電回路が設けられていることを特徴とするものである。
上記第3の電極基板にあっては、透明板の片面および/または透明導電膜の表面に、耐腐食性に優れたNb、Ta、W、Ti、Ni、SUSのうちいずれか1つを所定パターンに真空蒸着することによって集電回路が形成されているので、同回路によって透明導電膜の抵抗値が効果的に低減されるにもかかわわず、従来技術と比べて材料費が安く製造工程も単純であるから、製造コストを下げることが可能となり、しかも、電解質に対する耐腐食性および耐久性も向上するから、十分に実用に供することが可能である。
Next, the third electrode substrate for a dye-sensitized solar cell according to the present invention is made of Nb, Ta, W, Ti, Ni, SUS on at least one of one surface of the transparent plate and the surface of the transparent conductive film. A current collecting circuit formed by vacuum-depositing any one of them in a predetermined pattern is provided.
In the third electrode substrate, one of Nb, Ta, W, Ti, Ni, and SUS excellent in corrosion resistance is predetermined on one surface of the transparent plate and / or the surface of the transparent conductive film. Since the current collection circuit is formed by vacuum deposition on the pattern, the material cost is low compared to the conventional technology, even though the resistance value of the transparent conductive film is effectively reduced by the circuit. However, the manufacturing cost can be reduced and the corrosion resistance and durability against the electrolyte can be improved, so that it can be sufficiently put into practical use.

本発明による第1〜第3の色素増感型太陽電池用電極基板において、集電回路の厚さが1〜30μmであるのが好ましい。
集電回路の厚さが1μmを下回ると、十分な面抵抗の低減という本来の目的が薄れてしまう。一方、集電回路の厚さが10μmを超えると、TiO等の金属酸化物半導体膜で被覆することができず、対向電極とショートし易くなってしまう。集電回路の厚さは、より好ましくは、5〜10μmとなされる。
In the first to third dye-sensitized solar cell electrode substrates according to the present invention, the thickness of the current collecting circuit is preferably 1 to 30 μm.
When the thickness of the current collecting circuit is less than 1 μm, the original purpose of sufficiently reducing the sheet resistance is diminished. On the other hand, when the thickness of the current collecting circuit exceeds 10 μm, it cannot be covered with a metal oxide semiconductor film such as TiO 2 and is likely to be short-circuited with the counter electrode. More preferably, the thickness of the current collecting circuit is 5 to 10 μm.

本発明による第1〜第3の色素増感型太陽電池用電極基板において、集電回路の幅が0.01〜5mmであるのが好ましい。
集電回路の幅が0.01mmを下回ると、面抵抗低減効果が小さくなる。一方、集電回路の厚さが5mmを超えると、遮光比率が高くなり、光電変換効率を損なうおそれがある。なお、集電回路の幅は、装置上の制約により、通常0.05〜1mmとなされる。
In the first to third dye-sensitized solar cell electrode substrates according to the present invention, the width of the current collecting circuit is preferably 0.01 to 5 mm.
When the width of the current collecting circuit is less than 0.01 mm, the surface resistance reduction effect is reduced. On the other hand, when the thickness of the current collecting circuit exceeds 5 mm, the light shielding ratio increases, and the photoelectric conversion efficiency may be impaired. Note that the width of the current collecting circuit is normally 0.05 to 1 mm due to restrictions on the apparatus.

また、本発明による第1〜第3の色素増感型太陽電池用電極基板において、集電回路のパターンが、平行線型、平行線どうしの間に横線が非連続状に配されたあみだくじ型、および渦巻き線型のうちいずれか1つである場合がある。
上記各パターンの場合、金属マスクを用いて、1回のAl真空蒸着工程により集電回路を形成することが可能であるので、その分だけコストを抑えることができる。
Further, in the first to third dye-sensitized solar cell electrode substrates according to the present invention, the current collecting circuit pattern is a parallel line type, and an Amida lottery type in which horizontal lines are arranged discontinuously between the parallel lines. And a spiral wire type.
In the case of each of the above patterns, the current collecting circuit can be formed by a single Al vacuum vapor deposition process using a metal mask, so that the cost can be reduced accordingly.

次に、本発明による色素増感型太陽電池用光電極は、上述した本発明による第1〜第3のうちいずれか1つの電極基板と、該電極基板における透明導電膜の表面に積層された金属酸化物半導体膜と、金属酸化物半導体膜に保持された増感色素とを備えてなるものである。
上記の光電極によれば、電極基板に設けられた集電回路によって、透明導電膜の抵抗値が効果的に低減され、製造コストを抑えることができる上、電解質に対する耐腐食性および耐久性にも優れている。
Next, the photoelectrode for dye-sensitized solar cell according to the present invention was laminated on any one of the first to third electrode substrates according to the present invention described above and the surface of the transparent conductive film in the electrode substrate. It comprises a metal oxide semiconductor film and a sensitizing dye held on the metal oxide semiconductor film.
According to the above-mentioned photoelectrode, the resistance value of the transparent conductive film can be effectively reduced by the current collecting circuit provided on the electrode substrate, the manufacturing cost can be suppressed, and the corrosion resistance and durability against the electrolyte can be reduced. Is also excellent.

本発明による色素増感型太陽電池用対向電極は、上述した本発明による第1〜第3のうちいずれか1つの電極基板を備えてなるものである。
上記の対向電極によれば、電極基板に設けられた集電回路によって、透明導電膜の抵抗値が効果的に低減され、製造コストを抑えることができる上、電解質に対する耐腐食性および耐久性にも優れている。
The counter electrode for a dye-sensitized solar cell according to the present invention includes any one of the first to third electrode substrates according to the present invention described above.
According to the above counter electrode, the current collector circuit provided on the electrode substrate can effectively reduce the resistance value of the transparent conductive film, reduce the manufacturing cost, and provide corrosion resistance and durability to the electrolyte. Is also excellent.

また、本発明には、上述した本発明による光電極と、対向電極と、両電極間に介在された電解質層とを備えてなる色素増感型太陽電池が含まれる。対向電極は、好ましくは、上述した本発明による対向電極によって構成される。
上記の太陽電池によれば、透明導電膜の抵抗値が集電回路によって低減されているため、光電変換効率が向上し、セルの大型化も可能となる。また、上記の太陽電池によれば、電解質層に対する集電回路の耐腐食性が向上しているため、耐久性および安定性も向上する。
The present invention also includes a dye-sensitized solar cell comprising the above-described photoelectrode according to the present invention, a counter electrode, and an electrolyte layer interposed between the two electrodes. The counter electrode is preferably constituted by the counter electrode according to the present invention described above.
According to the solar cell, the resistance value of the transparent conductive film is reduced by the current collecting circuit, so that the photoelectric conversion efficiency is improved and the cell can be enlarged. Moreover, according to said solar cell, since the corrosion resistance of the current collection circuit with respect to an electrolyte layer is improving, durability and stability are also improved.

本発明の実施形態を、図1〜図6を参照して説明する。なお、以下の説明において、「上下」は図1〜図3の上下をいうものとし、光は上方から当てられるものとする。   An embodiment of the present invention will be described with reference to FIGS. In the following description, “upper and lower” means the upper and lower sides of FIGS. 1 to 3, and light is applied from above.

図1は、本発明による色素増感型太陽電池の実施形態を示す部分断面図である。図示の太陽電池(1)は、光電極(2)と、光電極(2)の下方に所定間隔をおいて配置された対向電極(3)と、両電極(2)(3)間に介在された電解質層(4)とを備えてなる。   FIG. 1 is a partial cross-sectional view showing an embodiment of a dye-sensitized solar cell according to the present invention. The illustrated solar cell (1) includes a photoelectrode (2), a counter electrode (3) disposed at a predetermined interval below the photoelectrode (2), and an electrode between the electrodes (2) and (3). An electrolyte layer (4).

光電極(2)は、透明板(21A)の下面に透明導電膜(21B)が積層されてなる電極基板(21)と、透明導電膜(21B)の下面(表面)に積層された金属酸化物半導体膜(22)と、金属酸化物半導体膜(22)に保持された増感色素(23)とを備えている。電極基板(21)における透明導電膜(21B)の下面には、Alを所定パターンに真空蒸着してなる集電回路(21C)が設けられている。   The photoelectrode (2) consists of an electrode substrate (21) in which a transparent conductive film (21B) is laminated on the lower surface of a transparent plate (21A), and a metal oxide layered on the lower surface (front surface) of the transparent conductive film (21B). A physical semiconductor film (22), and a sensitizing dye (23) held on the metal oxide semiconductor film (22). On the lower surface of the transparent conductive film (21B) in the electrode substrate (21), a current collector circuit (21C) is provided, which is obtained by vacuum-depositing Al in a predetermined pattern.

対向電極(3)は、透明板(31A)の下面に透明導電膜(31B)が積層されてなる電極基板(31)と、透明導電膜(31B)の上面(表面)に積層された還元膜(32)とを備えている。   The counter electrode (3) includes an electrode substrate (31) in which a transparent conductive film (31B) is laminated on the lower surface of the transparent plate (31A), and a reduction film laminated on the upper surface (front surface) of the transparent conductive film (31B). (32).

透明板(21A)(31A)としては、通常、ガラス板が用いられるが、PETフィルム等の透明プラスチックフィルムを用いてもよい。   As the transparent plates (21A) and (31A), a glass plate is usually used, but a transparent plastic film such as a PET film may be used.

透明導電膜(21B)(31B)の材料としては、ITO、FTO等が挙げられる。   Examples of the material for the transparent conductive films (21B) and (31B) include ITO and FTO.

金属酸化物半導体膜(22)は、チタニア(TiO)の他、ZnO、SnO、ZrOやこれらの酸化物間の複合系などによって形成される。これら金属酸化物半導体の成膜手段としては、例えば、スピンコート法、ドクターブレード法、スクリーン印刷法、スキージ法などの湿式プロセスによって塗布した後、450℃程度で焼結する方法や、スパッタリング法、CVD法、蒸着法等の乾式プロセスによるものなどが挙げられる。 In addition to titania (TiO 2 ), the metal oxide semiconductor film (22) is formed of ZnO 2 , SnO 2 , ZrO 2 , a composite system between these oxides, or the like. As a film forming means of these metal oxide semiconductors, for example, a method of applying a wet process such as a spin coating method, a doctor blade method, a screen printing method, a squeegee method, and sintering at about 450 ° C., a sputtering method, Examples include a dry process such as a CVD method and a vapor deposition method.

増感色素(23)としては、通常、ルテニウム系色素が用いられ、ナノサイズのチタニア等よりなる金属酸化物半導体膜(22)の空孔に担持される。   As the sensitizing dye (23), a ruthenium-based dye is usually used, and is carried in the pores of the metal oxide semiconductor film (22) made of nano-sized titania or the like.

対向電極(3)の還元膜(32)は、通常、白金(Pt)を蒸着させることによって形成されるが、白金に代えてカーボン、ロジウム、ルテニウム等を用いてもよい。なお、対向電極(3)の還元膜(32)は、例えば太陽電池(1)全体を透明に形成するような場合には、形成しないこともある。   The reducing film (32) of the counter electrode (3) is usually formed by vapor deposition of platinum (Pt), but carbon, rhodium, ruthenium or the like may be used instead of platinum. Note that the reduction film (32) of the counter electrode (3) may not be formed, for example, when the entire solar cell (1) is formed transparently.

電解質層(4)は、光電極(2)と対向電極(3)との間に設けられたスペースに、ヨウ素溶液等よりなる電解質を封止することによって形成されている。   The electrolyte layer (4) is formed by sealing an electrolyte made of an iodine solution or the like in a space provided between the photoelectrode (2) and the counter electrode (3).

図示は省略したが、両電極(2)(3)は、これらの間に電解質を介在させた状態で、周縁部同士がシール剤等によって接合されることにより一体化されている。そして、両電極(2)(3)における透明導電膜(21B)(31B)の一端に、リード線が接続される。   Although not shown in the drawing, the electrodes (2) and (3) are integrated by joining the peripheral portions with a sealant or the like with an electrolyte interposed therebetween. Then, a lead wire is connected to one end of the transparent conductive film (21B) (31B) in both electrodes (2) (3).

図2は、図1の太陽電池(1)における光電極(2)の電極基板(21)を拡大して示す部分断面図である。同図に示すように、透明導電膜(21B)上に形成された集電回路(21C)の表面は、酸化被膜(21D)によって覆われている。酸化被膜(21D)は、Al蒸着膜(21C)の表面を、熱処理することによって、または電気的もしくは化学的に酸化させることによって形成される。熱処理の場合、通常、大気中、300〜600℃で、0.2〜12時間実施するのが好ましい。電気的方法としては、アルマイト処理や陽極酸化処理が挙げられる。化学的方法としては、加水分解による水和酸化物の形成といったものが挙げられる。これらの方法のうち、特に熱処理は、特別な設備を必要とせず、製造コストを抑えられる点で有利である。集電回路(21C)の厚さは、1〜30μmとなされている。   FIG. 2 is an enlarged partial sectional view showing the electrode substrate (21) of the photoelectrode (2) in the solar cell (1) of FIG. As shown in the figure, the surface of the current collector circuit (21C) formed on the transparent conductive film (21B) is covered with an oxide film (21D). The oxide film (21D) is formed by heat-treating or electrically or chemically oxidizing the surface of the Al vapor deposition film (21C). In the case of heat treatment, it is usually preferable to carry out at 300 to 600 ° C. for 0.2 to 12 hours in the air. Examples of the electrical method include alumite treatment and anodization treatment. Chemical methods include the formation of hydrated oxides by hydrolysis. Among these methods, the heat treatment is particularly advantageous in that it does not require special equipment and can suppress the production cost. The thickness of the current collector circuit (21C) is 1 to 30 μm.

また、酸化被膜(21D)に代え、Ti、Ni、Nb、Ta、W、SUSおよびITOのうちいずれか1つの膜によって、集電回路(21C)の表面を被覆するようにしてもよい。これらの膜は、集電回路(21C)を構成するAl蒸着膜の表面に、Ti、Ni、Nb、Ta、W、SUSまたはITOを真空蒸着させることによって形成されるが、ITOの場合は、更に焼結処理が必要となる。   Further, instead of the oxide film (21D), the surface of the current collecting circuit (21C) may be covered with any one film of Ti, Ni, Nb, Ta, W, SUS and ITO. These films are formed by vacuum-depositing Ti, Ni, Nb, Ta, W, SUS or ITO on the surface of the Al deposited film constituting the current collecting circuit (21C). In the case of ITO, Furthermore, a sintering process is required.

図3は、電極基板(21)の他の実施形態を示す部分断面図である。この電極基板(21)では、透明板(21A)の下面に、Alを所定パターンに真空蒸着してなる集電回路(21C)が設けられ、集電回路(21C)の表面が酸化被膜(21D)で覆われている。この実施形態の場合、有利には、透明導電膜(21B)がITO膜によって形成される。ITO膜を形成する際の焼結処理と同時に集電回路(21C)の表面に酸化被膜(211)が形成されるため、工数を減らすことが可能だからである。   FIG. 3 is a partial cross-sectional view showing another embodiment of the electrode substrate (21). In this electrode substrate (21), a current collector circuit (21C) formed by vacuum-depositing Al in a predetermined pattern is provided on the lower surface of the transparent plate (21A), and the surface of the current collector circuit (21C) is an oxide film (21D ). In the case of this embodiment, the transparent conductive film (21B) is advantageously formed of an ITO film. This is because the oxide film (211) is formed on the surface of the current collecting circuit (21C) at the same time as the sintering process for forming the ITO film, thereby reducing the number of steps.

なお、図示を省略したが、透明板(21A)の下面と透明導電膜(21B)の下面の双方に、集電回路(21C)を形成するようにしてもよい。
また、対向電極(3)の電極基板(31)に、上述した光電極(2)の電極基板(21)の集電回路(21C)と同様の集電回路を形成するようにしてもよい。この場合、集電回路は、電極基板(31)における透明板(31A)の上面および透明導電膜(31B)の上面(表面)のうち少なくともいずれか一方に形成される。
Although not shown, the current collector circuit (21C) may be formed on both the lower surface of the transparent plate (21A) and the lower surface of the transparent conductive film (21B).
Further, a current collecting circuit similar to the current collecting circuit (21C) of the electrode substrate (21) of the photoelectrode (2) may be formed on the electrode substrate (31) of the counter electrode (3). In this case, the current collecting circuit is formed on at least one of the upper surface of the transparent plate (31A) and the upper surface (surface) of the transparent conductive film (31B) in the electrode substrate (31).

図4は、電極基板(21)に形成される集電回路(21C)のパターンを示す底面図である。図4の集電回路(21C)は、6本の縦線(211)が平行に並んだ平行線型のパターンを有しており、透明導電膜(21B)のほぼ全面に広がっている。各縦線(211)の幅は、0.01〜5mmである。   FIG. 4 is a bottom view showing a pattern of the current collecting circuit (21C) formed on the electrode substrate (21). The current collecting circuit (21C) in FIG. 4 has a parallel line pattern in which six vertical lines (211) are arranged in parallel, and extends almost over the entire surface of the transparent conductive film (21B). The width of each vertical line (211) is 0.01 to 5 mm.

図5は、集電回路(21C)の別のパターンを示す電極基板(21)の底面図である。図5において、集電回路(21C)は、平行な6本の縦線(211)どうしの間に横線(212)が非連続状に配された「あみだくじ」型のパターンを有している。   FIG. 5 is a bottom view of the electrode substrate (21) showing another pattern of the current collecting circuit (21C). In FIG. 5, the current collecting circuit (21C) has an “Amidakuji” pattern in which horizontal lines (212) are arranged discontinuously between six parallel vertical lines (211).

図6は、集電回路(21C)の更に別のパターンを示す電極基板(21)の底面図である。図6の集電回路(21C)は、透明導電膜(21B)の外周部から中心部に向かって渦巻を描くように折れ線(213)が連続した渦巻き線型のパターンを有している。   FIG. 6 is a bottom view of the electrode substrate (21) showing still another pattern of the current collecting circuit (21C). The current collecting circuit (21C) of FIG. 6 has a spiral pattern in which the broken lines (213) are continuous so as to draw a spiral from the outer peripheral portion to the center portion of the transparent conductive film (21B).

図4〜図6に示すようなパターンを有する集電回路(21C)を透明導電膜(21B)の表面に形成する場合、例えば、蒸着室内において、形成すべき集電回路(21C)のパターンに応じた金属マスクを透明導電膜(21B)の下面に重ねておいてから、金属マスクで覆われていない透明導電膜(21B)の下面部分にAlを真空蒸着させ、その後、金属マスクを取り外せばよい。なお、集電回路(21C)のパターンは、図4〜図6に示すものには限定されず、例えば、工程数は多くなるが格子状等としてもよい。   When the current collector circuit (21C) having the pattern as shown in FIGS. 4 to 6 is formed on the surface of the transparent conductive film (21B), for example, the pattern of the current collector circuit (21C) to be formed in the deposition chamber is used. After the corresponding metal mask is overlaid on the lower surface of the transparent conductive film (21B), Al is vacuum-deposited on the lower surface portion of the transparent conductive film (21B) not covered with the metal mask, and then the metal mask is removed. Good. Note that the pattern of the current collecting circuit (21C) is not limited to that shown in FIGS. 4 to 6, and for example, the number of steps may be increased, but may be a lattice shape.

(実施例1)
膜厚約2400ÅのITO膜付きガラス板(三容真空工業製、80mm×90mm)を用意し、同ガラス板のITO膜表面に、Alを真空蒸着させた後、Al蒸着膜表面を酸化処理して、平行線型のパターン(図4参照)を有する集電回路を形成することにより、電極基板を作製した。なお、集電回路は、幅0.2mm、ピッチ10mmとした。また、Al蒸着膜の酸化処理は、大気中、300℃で3時間加熱することにより実施した。
(実施例2)
集電回路のピッチを5mmとした点を除いて、実施例1と同じ要領で、電極基板を作製した。
(実施例3)
集電回路のパターンを、幅0.2mm、ピッチ10mmのあみだくじ型(図5参照)とした点を除いて、実施例1と同じ要領で、電極基板を作製した。
(実施例4)
集電回路のパターンを、幅0.2mm、ピッチ10mmの渦巻き線型(図6参照)とした点を除いて、実施例1と同じ要領で、電極基板を作製した。
(比較例1)
実施例1で使用したのと同じITO膜付きガラス板であって、ITO膜表面にAl蒸着膜(集電回路)を形成していないものを、電極基板とした。
Example 1
Prepare a glass plate with an ITO film thickness of about 2400 mm (Sanyo Vacuum Industry, 80 mm x 90 mm), vacuum-deposit Al on the ITO film surface of the glass plate, and then oxidize the surface of the Al deposited film Then, an electrode substrate was manufactured by forming a current collecting circuit having a parallel line pattern (see FIG. 4). The current collecting circuit had a width of 0.2 mm and a pitch of 10 mm. Moreover, the oxidation treatment of the Al deposited film was performed by heating at 300 ° C. for 3 hours in the air.
(Example 2)
An electrode substrate was produced in the same manner as in Example 1 except that the current collector circuit pitch was 5 mm.
(Example 3)
An electrode substrate was fabricated in the same manner as in Example 1 except that the current collecting circuit pattern was an amide lottery type (see FIG. 5) having a width of 0.2 mm and a pitch of 10 mm.
Example 4
An electrode substrate was fabricated in the same manner as in Example 1 except that the current collecting circuit pattern was a spiral type (see FIG. 6) having a width of 0.2 mm and a pitch of 10 mm.
(Comparative Example 1)
The same glass plate with an ITO film as used in Example 1, in which an Al vapor deposition film (current collecting circuit) was not formed on the surface of the ITO film, was used as an electrode substrate.

上記実施例1〜4および比較例1の電極基板それぞれについて、テスターにより対角100mmL間の表面抵抗を測定した。結果は、以下の表1に示す通りである。   For each of the electrode substrates of Examples 1 to 4 and Comparative Example 1, the surface resistance between 100 mmL diagonal was measured with a tester. The results are as shown in Table 1 below.

Figure 0004892197
Figure 0004892197

表1から明らかなように、表面酸化処理されたAl蒸着膜よりなる集電回路を有する実施例1〜4では、このような集電回路を有しない比較例1と比べて、表面抵抗が約38〜47%減少した。   As can be seen from Table 1, in Examples 1 to 4 having a current collecting circuit made of a surface-oxidized Al vapor deposition film, the surface resistance was about as compared with Comparative Example 1 having no such current collecting circuit. It decreased by 38 to 47%.

(実施例5)
膜厚9500ÅのFTO膜付きガラス板(旭硝子製、80mm×80mm)を用意し、同ガラス板のFTO膜表面に、Alを真空蒸着させた後、Al蒸着膜表面を酸化処理して、平行線型のパターン(図4参照)を有する集電回路を形成することにより、電極基板を作製した。なお、集電回路は、幅0.2mm、ピッチ10mmとした。また、Al蒸着膜の酸化処理は、大気中、300℃で3時間加熱することにより実施した。
(実施例6)
集電回路のピッチを5mmとした点を除いて、実施例5と同じ要領で、電極基板を作製した。
(実施例7)
集電回路のパターンを、幅0.2mm、ピッチ10mmのあみだくじ型(図5参照)とした点を除いて、実施例5と同じ要領で、電極基板を作製した。
(実施例8)
集電回路のパターンを、幅0.2mm、ピッチ10mmの渦巻き線型(図6参照)とした点を除いて、実施例5と同じ要領で、電極基板を作製した。
(比較例2)
実施例5で使用したのと同じFTO膜付きガラス板であって、FTO膜表面にAl蒸着膜(集電回路)を形成していないものを、電極基板とした。
(Example 5)
A glass plate with an FTO film thickness of 9500 mm (Asahi Glass Co., Ltd., 80 mm x 80 mm) is prepared. After Al is vacuum-deposited on the surface of the FTO film on the glass plate, the surface of the Al vapor-deposited film is oxidized to produce a parallel line type. An electrode substrate was produced by forming a current collecting circuit having the pattern (see FIG. 4). The current collecting circuit had a width of 0.2 mm and a pitch of 10 mm. Moreover, the oxidation treatment of the Al deposited film was performed by heating at 300 ° C. for 3 hours in the air.
(Example 6)
An electrode substrate was fabricated in the same manner as in Example 5 except that the current collector circuit pitch was 5 mm.
(Example 7)
An electrode substrate was fabricated in the same manner as in Example 5 except that the current collecting circuit pattern was an amide lottery type (see FIG. 5) having a width of 0.2 mm and a pitch of 10 mm.
(Example 8)
An electrode substrate was fabricated in the same manner as in Example 5 except that the current collecting circuit pattern was a spiral wire type having a width of 0.2 mm and a pitch of 10 mm (see FIG. 6).
(Comparative Example 2)
The same glass plate with an FTO film as used in Example 5 and having no Al deposited film (current collector circuit) formed on the surface of the FTO film was used as an electrode substrate.

上記実施例5〜8および比較例2の電極基板それぞれについて、テスターにより対角100mmL間の表面抵抗を測定した。結果は、以下の表2に示す通りである。   For each of the electrode substrates of Examples 5 to 8 and Comparative Example 2, the surface resistance between 100 mmL diagonal was measured by a tester. The results are as shown in Table 2 below.

Figure 0004892197
Figure 0004892197

表2から明らかなように、表面酸化処理されたAl蒸着膜よりなる集電回路を有する実施例5〜8では、このような集電回路を有しない比較例2と比べて、表面抵抗が約32〜42%減少した。   As is apparent from Table 2, in Examples 5 to 8 having a current collecting circuit made of an Al deposited film subjected to surface oxidation treatment, the surface resistance was about as compared with Comparative Example 2 having no such current collecting circuit. It decreased by 32-42%.

本発明の実施形態を示すものであって、色素増感型太陽電池の部分断面図である。1 is a partial sectional view of a dye-sensitized solar cell according to an embodiment of the present invention. 図1の太陽電池における光電極の電極基板を拡大して示す部分断面図である。It is a fragmentary sectional view which expands and shows the electrode substrate of the photoelectrode in the solar cell of FIG. 電極基板の他の実施形態を示す部分断面図である。It is a fragmentary sectional view showing other embodiments of an electrode substrate. 集電回路のパターンを示す電極基板の底面図である。It is a bottom view of the electrode substrate which shows the pattern of a current collection circuit. 集電回路の他のパターンを示す電極基板の底面図である。It is a bottom view of the electrode substrate which shows the other pattern of a current collection circuit. 集電回路のさらに別のパターンを示す電極基板の底面図である。It is a bottom view of the electrode substrate which shows another pattern of a current collection circuit.

符号の説明Explanation of symbols

(1):色素増感型太陽電池
(2):光電極
(21):電極基板
(21A):透明板
(21B):透明導電膜
(21C):集電回路
(21D):酸化被膜
(22):金属酸化物半導体層
(23):増感色素
(3):対向電極
(31):電極基板
(31A):透明板
(31B):透明導電膜
(32):還元層
(4):電解質層
(1): Dye-sensitized solar cell
(2): Photoelectrode
(21): Electrode substrate
(21A): Transparent plate
(21B): Transparent conductive film
(21C): Current collector circuit
(21D): Oxide film
(22): Metal oxide semiconductor layer
(23): Sensitizing dye
(3): Counter electrode
(31): Electrode substrate
(31A): Transparent plate
(31B): Transparent conductive film
(32): Reduction layer
(4): Electrolyte layer

Claims (9)

透明板の片面に透明導電膜が積層されている色素増感型太陽電池用電極基板において、前記透明板の片面および前記透明導電膜の表面のうち少なくともいずれか一方に、Alを平行な複数の縦線どうしの間に横線が非連続状に配されたあみだくじ型または渦巻き線型のパターンに真空蒸着してなる集電回路が設けられ、前記集電回路の表面が、酸化被膜で覆われていることを特徴とする、色素増感型太陽電池用電極基板。 In the electrode substrate for a dye-sensitized solar cell in which a transparent conductive film is laminated on one side of the transparent plate, a plurality of parallel Al are provided on at least one of the one side of the transparent plate and the surface of the transparent conductive film . A current collecting circuit is formed by vacuum deposition on an Amida lottery or spiral line pattern in which horizontal lines are arranged discontinuously between vertical lines, and the surface of the current collecting circuit is covered with an oxide film An electrode substrate for a dye-sensitized solar cell, characterized in that. 透明板の片面に透明導電膜が積層されている色素増感型太陽電池用電極基板において、前記透明板の片面および前記透明導電膜の表面のうち少なくともいずれか一方に、Alを平行な複数の縦線どうしの間に横線が非連続状に配されたあみだくじ型または渦巻き線型のパターンに真空蒸着してなる集電回路が設けられ、前記集電回路の表面が、Ti、Ni、Nb、Ta、W、SUSおよびITOのうちいずれか1つの膜で覆われていることを特徴とする、色素増感型太陽電池用電極基板。 In the electrode substrate for a dye-sensitized solar cell in which a transparent conductive film is laminated on one side of the transparent plate, a plurality of parallel Al are provided on at least one of the one side of the transparent plate and the surface of the transparent conductive film . A current collecting circuit is provided by vacuum deposition on an Amida lottery or spiral pattern in which horizontal lines are arranged discontinuously between vertical lines, and the surface of the current collecting circuit is formed of Ti, Ni, Nb, Ta An electrode substrate for a dye-sensitized solar cell, which is covered with any one film of W, SUS, and ITO. 透明板の片面に透明導電膜が積層されている色素増感型太陽電池用電極基板において、前記透明板の片面および前記透明導電膜の表面のうち少なくともいずれか一方に、Nb、Ta、W、Ti、Ni、SUSのうちいずれか1つを平行な複数の縦線どうしの間に横線が非連続状に配されたあみだくじ型または渦巻き線型のパターンに真空蒸着してなる集電回路が設けられていることを特徴とする、色素増感型太陽電池用電極基板。 In the dye-sensitized solar cell electrode substrate in which a transparent conductive film is laminated on one side of the transparent plate, at least one of the one side of the transparent plate and the surface of the transparent conductive film has Nb, Ta, W, A current collecting circuit is provided, in which any one of Ti, Ni, and SUS is vacuum-deposited into an Amida lottery or spiral line pattern in which horizontal lines are discontinuously arranged between a plurality of parallel vertical lines. A dye-sensitized solar cell electrode substrate, wherein: 前記集電回路の厚さが1〜30μmである、請求項1〜3のいずれか1つに記載の色素増感型太陽電池用電極基板。   The dye-sensitized solar cell electrode substrate according to any one of claims 1 to 3, wherein the current collecting circuit has a thickness of 1 to 30 µm. 前記集電回路の幅が0.01〜5mmである、請求項1〜4のいずれか1つに記載の色素増感型太陽電池用電極基板。   The electrode substrate for a dye-sensitized solar cell according to any one of claims 1 to 4, wherein the current collecting circuit has a width of 0.01 to 5 mm. 請求項1〜のいずれか1つに記載の電極基板と、該電極基板における透明導電膜の表面に積層された金属酸化物半導体膜と、金属酸化物半導体膜に保持された増感色素とを備えてなる、色素増感型太陽電池用光電極。 An electrode substrate according to any one of claims 1 to 5 , a metal oxide semiconductor film laminated on a surface of a transparent conductive film in the electrode substrate, and a sensitizing dye held on the metal oxide semiconductor film A photoelectrode for a dye-sensitized solar cell, comprising: 請求項1〜のいずれか1つに記載の電極基板を備えてなる、色素増感型太陽電池用対向電極。 A counter electrode for a dye-sensitized solar cell, comprising the electrode substrate according to any one of claims 1 to 5 . 請求項記載の光電極と、対向電極と、両電極間に介在された電解質層とを備えてなる、色素増感型太陽電池。 A dye-sensitized solar cell comprising the photoelectrode according to claim 6 , a counter electrode, and an electrolyte layer interposed between the two electrodes. 対向電極が、請求項記載の対向電極よりなる、請求項記載の色素増感型太陽電池。 Counter electrode consists of opposing electrodes according to claim 7, dye-sensitized solar cell of claim 8.
JP2005105785A 2005-04-01 2005-04-01 Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell Expired - Fee Related JP4892197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105785A JP4892197B2 (en) 2005-04-01 2005-04-01 Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105785A JP4892197B2 (en) 2005-04-01 2005-04-01 Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006286434A JP2006286434A (en) 2006-10-19
JP4892197B2 true JP4892197B2 (en) 2012-03-07

Family

ID=37408119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105785A Expired - Fee Related JP4892197B2 (en) 2005-04-01 2005-04-01 Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4892197B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993895B2 (en) * 2005-02-17 2012-08-08 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell element
JP5141685B2 (en) * 2007-06-11 2013-02-13 コニカミノルタホールディングス株式会社 Method for manufacturing photoelectric conversion element
JP2012113839A (en) * 2010-11-19 2012-06-14 Kobe Steel Ltd Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element
WO2012086377A1 (en) * 2010-12-20 2012-06-28 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP2012204178A (en) * 2011-03-25 2012-10-22 Sony Corp Photoelectric conversion element, photoelectric conversion element array and their manufacturing methods, and electric equipment
WO2020196025A1 (en) * 2019-03-22 2020-10-01 株式会社Kokusai Electric Substrate treatment device, method for manufacturing semiconductor device, and substrate supporting tool and method for treating same
CN110656339B (en) * 2019-09-30 2021-02-26 清华大学 Method for preparing large-area photoelectrode with patterned metal electrode

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214049A (en) * 1998-01-28 1999-08-06 Toshihiko Masuzawa Solar battery
JP2002536805A (en) * 1999-02-08 2002-10-29 クルス グラス プラス スピーゲル アクチエンゲゼルシヤフト Photocell and method of manufacturing the same
JP4415448B2 (en) * 2000-03-29 2010-02-17 パナソニック電工株式会社 Photoelectric conversion element
JP4099988B2 (en) * 2001-12-28 2008-06-11 凸版印刷株式会社 Dye-sensitized solar cell
JP2003249277A (en) * 2002-02-22 2003-09-05 Matsushita Electric Works Ltd Dye sensitized solar cell electrode
TWI234885B (en) * 2002-03-26 2005-06-21 Fujikura Ltd Electroconductive glass and photovoltaic cell using the same
TW200703673A (en) * 2002-07-09 2007-01-16 Fujikura Ltd Solar cell
JP4515061B2 (en) * 2003-08-28 2010-07-28 株式会社フジクラ Method for producing dye-sensitized solar cell
JP4454007B2 (en) * 2003-06-18 2010-04-21 日本化薬株式会社 Conductive support and photoelectric conversion element using the same
JP2005141996A (en) * 2003-11-05 2005-06-02 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP4797324B2 (en) * 2004-01-09 2011-10-19 株式会社ブリヂストン Dye-sensitized solar cell electrode

Also Published As

Publication number Publication date
JP2006286434A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US9704653B2 (en) Photovoltaic cell
KR100554179B1 (en) Flexible dye-sensitized solar cell using conducting metal substrate
JP4488034B2 (en) Dye-sensitized solar cell
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
JP5252929B2 (en) Dye-sensitized solar cell and method for producing the same
JP4620794B1 (en) Dye-sensitized solar cell
WO2005041216A1 (en) Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP5539327B2 (en) Dye-sensitive solar cell module
JP2011508946A (en) Conductive glass for dye-sensitized solar cell and method for producing the same
JP4892197B2 (en) Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP5398205B2 (en) Dye-sensitized solar cell
JP4578786B2 (en) Method for producing dye-sensitized solar cell
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP2010034158A (en) Photoelectrode structure for dye-sensitized solar cell and dye-sensitized solar cell using the same
WO2013031939A1 (en) Electrode for photoelectric conversion element, method for manufacturing electrode for photoelectric conversion element, and photoelectric conversion element
JP4788838B2 (en) Dye-sensitized solar cell
KR100998146B1 (en) Photovoltaic cell with Ti-Grid/TiO2 nano tube
JP2009117337A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery
KR101546585B1 (en) Method of forming electrode for dye sensitive solar cell using surface pattering
JP4635518B2 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP6284138B2 (en) Dye-sensitized solar cell and method for producing the same
JP2006083036A (en) Glass etching method, manufacturing method of transparent conductive substrate and photoelectric transducer
JP2003123855A (en) Electrode for photoelectric conversion element
JP5593881B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees