JP4887219B2 - Method for producing carbon fiber precursor acrylonitrile fiber - Google Patents
Method for producing carbon fiber precursor acrylonitrile fiber Download PDFInfo
- Publication number
- JP4887219B2 JP4887219B2 JP2007151794A JP2007151794A JP4887219B2 JP 4887219 B2 JP4887219 B2 JP 4887219B2 JP 2007151794 A JP2007151794 A JP 2007151794A JP 2007151794 A JP2007151794 A JP 2007151794A JP 4887219 B2 JP4887219 B2 JP 4887219B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- acrylonitrile
- carboxy group
- carbon fiber
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Description
本発明は、炭素繊維前駆体アクリロニトリル系繊維の製造方法に関する。 The present invention relates to a method for producing a carbon fiber precursor acrylonitrile fiber.
従来、炭素繊維は、その優れた力学的性質により、航空宇宙用途を始め、スポーツ、レジャー用途の複合材料の補強繊維としてなど、広い範囲で利用されている。現在、産業資材用途への更なる広がりが期待されており、これらの複合材料の高性能化等のために、炭素繊維の品質や性能の向上、製造コストの低減等が求められる。
炭素繊維の製造に用いられる炭素繊維前駆体は、一般的には、重合体を有機又は無機溶媒に溶解して溶液(ドープ)とした後、湿式あるいは乾湿式紡糸を行って繊維状に賦型し、延伸、洗浄、乾燥緻密化することにより製造される。炭素繊維の製造方法としては、この炭素繊維前駆体を200〜300℃の酸化性雰囲気下で熱処理することによって耐炎化繊維とし、引き続き、少なくとも1000℃の不活性雰囲気下で炭素化(焼成)する方法が工業的に広く採用されている。
Conventionally, carbon fibers have been used in a wide range due to their excellent mechanical properties, such as a reinforcing fiber for composite materials for aerospace use, sports and leisure use. Currently, further expansion to industrial material applications is expected, and in order to improve the performance of these composite materials, it is required to improve the quality and performance of carbon fibers, reduce manufacturing costs, and the like.
Carbon fiber precursors used in the production of carbon fibers are generally shaped into fibers by dissolving the polymer in an organic or inorganic solvent to form a solution (dope) and then performing wet or dry wet spinning. It is manufactured by stretching, washing, and drying and densifying. As a method for producing carbon fiber, the carbon fiber precursor is heat-treated in an oxidizing atmosphere at 200 to 300 ° C. to form a flame-resistant fiber, and subsequently carbonized (fired) in an inert atmosphere at least 1000 ° C. The method is widely adopted industrially.
炭素繊維前駆体として用いられるアクリロニトリル系繊維(炭素繊維前駆体アクリロニトリル系繊維)の原料としては、アクリロニトリル系重合体が広く利用されている。
炭素繊維前駆体アクリロニトリル系繊維を用いて炭素繊維を製造するにあたり、焼成を短時間で行うために、アミン類や過酸化物を添加して炭素繊維前駆体アクリロニトリル系繊維を製造する方法が提案されている(特許文献1〜2参照。)。しかしながら、この方法はドープや炭素繊維前駆体アクリロニトリル系繊維の安定性に悪影響を及ぼし工業的に優れた方法ではない。
また、アクリロニトリル系重合体に、ニトリル基の環化縮合反応を促進する反応開始基として、カルボキシ基を導入する方法も提案されている(特許文献3参照。)。
一方、カルボキシ基は焼成段階で環構造に取り込まれ難いため、得られる炭素繊維中に欠陥点として存在し、機械的特性を低下させるおそれがあるため、アクリロニトリル系重合体中にカルボキシ基をランダムに分散させる提案もなされている(特許文献4参照。)。
In producing carbon fiber using carbon fiber precursor acrylonitrile fiber, a method for producing carbon fiber precursor acrylonitrile fiber by adding amines and peroxides has been proposed in order to perform firing in a short time. (See Patent Documents 1 and 2). However, this method adversely affects the stability of the dope and the carbon fiber precursor acrylonitrile fiber and is not an industrially excellent method.
In addition, a method of introducing a carboxy group into the acrylonitrile polymer as a reaction initiating group for promoting the cyclization condensation reaction of the nitrile group has been proposed (see Patent Document 3).
On the other hand, since the carboxy group is difficult to be incorporated into the ring structure at the firing stage, it exists as a defect point in the obtained carbon fiber and may deteriorate the mechanical properties. Therefore, the carboxy group is randomly added to the acrylonitrile-based polymer. Proposals for dispersion have also been made (see Patent Document 4).
しかし、カルボキシ基を共重合で導入するような上記方法では、カルボキシ基量を変更するような品種を生産したい場合、生産ラインの洗浄や、複数の重合体の保存庫が必要であり、生産性が著しく悪化する。
本発明は、上記事情に鑑みてなされたものであって、生産性や、組成設計の自由度が高く、高性能の炭素繊維前駆体アクリロニトリル系繊維を製造するのに好適な炭素繊維前駆体アクリロニトリル系繊維の製造方法を提供することを目的とする。
However, in the above method in which carboxy groups are introduced by copolymerization, if it is desired to produce varieties that change the amount of carboxy groups, it is necessary to clean the production line and store multiple polymers. Is significantly worse.
The present invention has been made in view of the above circumstances, and has a high degree of freedom in productivity and composition design, and is suitable for producing a high-performance carbon fiber precursor acrylonitrile fiber. An object of the present invention is to provide a method for producing a fiber.
上記課題を解決する本発明の炭素繊維前駆体アクリロニトリル系繊維の製造方法は、カルボキシ基を含まないアクリロニトリル系重合体(A)と、カルボキシ基を含む重合体(B)と、溶媒とを、ニーダーで混合したのち加熱溶解して、前記アクリロニトリル系重合体(A)および前記重合体(B)が均一に溶解したアクリロニトリル系重合体溶液を調製して紡糸することを特徴とする。 The method for producing a carbon fiber precursor acrylonitrile fiber of the present invention that solves the above-mentioned problems is a kneader comprising an acrylonitrile polymer (A) not containing a carboxy group, a polymer (B) containing a carboxy group, and a solvent. in mixed dissolved by heating after, characterized by spinning with the acrylonitrile polymer (a) and the polymer (B), prepare uniformly dissolved acrylonitrile polymer solution.
本発明によれば、生産性や、組成設計の自由度が高く、高性能の炭素繊維を製造するのに好適な炭素繊維前駆体アクリロニトリル系繊維の製造方法を提供できる。 According to the present invention, productivity and a high degree of freedom in composition design, it can provide a method for producing a suitable carbon fiber precursor acrylonitrile fiber to produce a high-performance carbon textiles.
本発明の炭素繊維前駆体アクリロニトリル系繊維の製造方法においては、まず、カルボキシ基を含まないアクリロニトリル系重合体(A)と、カルボキシ基を含む重合体(B)をブレンドする。
ここで、本明細書及び特許請求の範囲において、カルボキシ基を含まないアクリロニトリル系重合体(A)とは、重合体中のアクリロニトリル単位の割合が、90質量%以上100質量%以下のものをいう。重合体中のアクリロニトリル単位の割合は95質量%以上100質量%以下がより好ましい。上記範囲において、アクリロニトリル単位が多いほど、得られる炭素繊維前駆体アクリロニトリル系繊維を焼成して炭素繊維としたときに、高強度で、品質並びに性能に優れた炭素繊維が得られる。
In the method for producing a carbon fiber precursor acrylonitrile fiber of the present invention, first, an acrylonitrile polymer (A) not containing a carboxy group and a polymer (B) containing a carboxy group are blended.
Here, in the present specification and claims, the acrylonitrile-based polymer (A) that does not contain a carboxy group means that the ratio of acrylonitrile units in the polymer is 90% by mass or more and 100% by mass or less. . The ratio of the acrylonitrile unit in the polymer is more preferably 95% by mass or more and 100% by mass or less. Within the above range, the more acrylonitrile units, the higher the strength and the quality and performance of the carbon fiber when the resulting carbon fiber precursor acrylonitrile fiber is baked into carbon fiber.
本発明に用いるカルボキシ基を含まないアクリロニトリル系重合体(A)は、上記条件を満足する限り、アクリル酸のエステル類、メタクリル酸のエステル類、酢酸ビニル、プロピオン酸ビニル、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド、メタクリロニトリル、スチレン、α−メチルスチレン等の、カルボキシ基を含まないモノマーを共重合することによって製造することができる。使用するモノマーは1種類でも多種類でもかまわない。
カルボキシ基を含まないアクリロニトリル系重合体(A)の製造方法は特に限定されず、溶液重合、懸濁重合等公知の重合方法のうちの任意の重合方法を用いて、上述したカルボキシ基を含まないモノマーを重合させればよい。
重合に用いる重合開始剤、触媒は特に限定されず、たとえばアゾ系化合物、有機過酸化物、又は過硫酸/亜硫酸、塩素酸/亜硫酸あるいはそれらのアンモニウム塩等のレドックス触媒が挙げられる。
カルボキシ基を含まないアクリロニトリル系重合体(A)の製造方法として、最適な方法としては、オーバーフロー式の重合容器に、モノマー、蒸留水、重合開始剤として過硫酸アンモニウム、亜硫酸水素アンモニウム及び硫酸を毎分一定量供給し、一定の温度に維持しながら攪拌を続け、オーバーフローしてきた重合スラリーから洗浄、乾燥を経てアクリロニトリル系重合体を得る方法が挙げられる。
As long as the acrylonitrile-based polymer (A) containing no carboxy group used in the present invention satisfies the above conditions, acrylic acid esters, methacrylic acid esters, vinyl acetate, vinyl propionate, acrylamide, methacrylamide, It can be produced by copolymerizing monomers that do not contain a carboxy group, such as acetone acrylamide, methacrylonitrile, styrene, and α-methylstyrene. One or more types of monomers may be used.
The production method of the acrylonitrile-based polymer (A) not containing a carboxy group is not particularly limited, and any of the known polymerization methods such as solution polymerization and suspension polymerization is used, and the carboxy group is not contained. A monomer may be polymerized.
The polymerization initiator and catalyst used for the polymerization are not particularly limited, and examples thereof include azo compounds, organic peroxides, or redox catalysts such as persulfuric acid / sulfurous acid, chloric acid / sulfurous acid, or ammonium salts thereof.
As an optimal method for producing an acrylonitrile-based polymer (A) containing no carboxy group, an overflow type polymerization vessel is charged with monomer, distilled water, ammonium persulfate, ammonium bisulfite and sulfuric acid as polymerization initiators per minute. There is a method in which a fixed amount is supplied, stirring is continued while maintaining a constant temperature, and an acrylonitrile-based polymer is obtained from the overflowed polymerization slurry through washing and drying.
カルボキシ基を含まないアクリル系重合体(A)の重合度は、カルボキシ基を含まないアクリル系重合体(A)とカルボキシ基を含む重合体(B)とのブレンド後の紡糸工程での延伸特性や、炭素繊維の性能発現性などの点から、極限粘度[η]で1以上が好ましく、1.4以上が更に好ましい。 The degree of polymerization of the acrylic polymer (A) containing no carboxy group is determined by the drawing characteristics in the spinning step after blending the acrylic polymer (A) containing no carboxy group and the polymer (B) containing the carboxy group. From the viewpoint of carbon fiber performance, etc., the intrinsic viscosity [η] is preferably 1 or more, more preferably 1.4 or more.
カルボキシ基を含まないアクリル系重合体(A)は、1種を単独で用いてもよく、2種類以上のポリマーの混合物を用いてもかまわない。 As the acrylic polymer (A) not containing a carboxy group, one kind may be used alone, or a mixture of two or more kinds of polymers may be used.
カルボキシ基を含む重合体(B)とは、カルボキシ基を含むモノマー単位を含有する重合体をいう。
カルボキシ基を含むモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられ、また、加水分解することによりカルボキシ基となる酸無水物基を含むモノマーも含まれる。酸無水物基を含むモノマーとしては無水マレイン酸等が挙げられる。これらのモノマーは、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。
カルボキシ基を含むモノマーとしては、アクリル酸及び/又はメタクリル酸及び/又はイタコン酸が好ましい。
The polymer (B) containing a carboxy group refers to a polymer containing monomer units containing a carboxy group.
Examples of the monomer containing a carboxy group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like, and also include a monomer containing an acid anhydride group that becomes a carboxy group by hydrolysis. It is. Examples of the monomer containing an acid anhydride group include maleic anhydride. One of these monomers may be used alone, or two or more thereof may be used in combination.
As a monomer containing a carboxy group, acrylic acid and / or methacrylic acid and / or itaconic acid are preferable.
カルボキシ基を含む重合体(B)中のカルボキシ基を含むモノマー単位の割合は、0.014質量%以上100質量%以下であることが好ましい。カルボキシ基が0.014質量%以上含まれると、焼成時間を短時間で進めることができる。得られるカルボキシ基を含む重合体(B)が、ドープ作製の際に溶媒に溶解可能であれば、全てのモノマー単位がカルボキシ基を含むモノマー単位でもかまわない。
カルボキシ基を含むモノマー単位が多いほど、炭素繊維前駆体アクリロニトリル系繊維中のカルボキシ基量を調整しやすいため、カルボキシ基を含むモノマー単位の割合は、0.1質量%以上100質量%以下であることがより好ましく、1質量%以上100質量%以下であることがさらに好ましい。
The ratio of the monomer unit containing a carboxy group in the polymer (B) containing a carboxy group is preferably 0.014% by mass or more and 100% by mass or less. When the carboxy group is contained in an amount of 0.014% by mass or more, the firing time can be advanced in a short time. As long as the polymer (B) containing a carboxy group can be dissolved in a solvent during dope preparation, all the monomer units may be monomer units containing a carboxy group.
The more monomer units containing carboxy groups, the easier it is to adjust the amount of carboxy groups in the carbon fiber precursor acrylonitrile fiber, so the proportion of monomer units containing carboxy groups is 0.1% by mass or more and 100% by mass or less. More preferably, the content is 1% by mass or more and 100% by mass or less.
カルボキシ基を含む重合体(B)は、本発明の効果を損なわない範囲で、カルボキシ基を含むモノマー単位以外のモノマー単位を有していてもよい。
カルボキシ基を含むモノマー以外の成分としては、特に限定しないが、焼成時に炭素骨格へ取り込まれやすい点から、アクリロニトリル、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド、メタクリロニトリル等が好ましい。これらのモノマーは、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。
また、本発明の効果を損なわない範囲で、スルホン酸基含有ビニル単量体及び硫酸基含有ビニル単量体等のニトリル基の環化縮合反応を促進する基を含む化合物を共重合することもできる。
The polymer (B) containing a carboxy group may have a monomer unit other than the monomer unit containing a carboxy group as long as the effects of the present invention are not impaired.
The component other than the monomer containing a carboxy group is not particularly limited, but acrylonitrile, acrylamide, methacrylamide, diacetone acrylamide, methacrylonitrile and the like are preferable because they are easily incorporated into the carbon skeleton at the time of firing. One of these monomers may be used alone, or two or more thereof may be used in combination.
In addition, a compound containing a group that promotes the cyclization condensation reaction of a nitrile group, such as a sulfonic acid group-containing vinyl monomer and a sulfuric acid group-containing vinyl monomer, may be copolymerized without impairing the effects of the present invention. it can.
カルボキシ基を含む重合体(B)の製造方法は特に限定されず、前記カルボキシ基を含まないアクリロニトリル系重合体(A)と同様の方法で製造できる。 The manufacturing method of the polymer (B) containing a carboxy group is not specifically limited, It can manufacture by the method similar to the acrylonitrile type polymer (A) which does not contain the said carboxy group.
カルボキシ基を含む重合体(B)の重合度は、カルボキシ基を含まないアクリロニトリル系重合体(A)とカルボキシ基を含む重合体(B)とのブレンド後の紡糸工程で系外へ著しく溶け出さず、延伸特性や炭素繊維の性能発現性を損なわない範囲であれば特に限定されない。 The degree of polymerization of the polymer (B) containing a carboxy group is remarkably dissolved out of the system in the spinning step after blending the acrylonitrile polymer (A) not containing a carboxy group and the polymer (B) containing a carboxy group. However, there is no particular limitation as long as it does not impair the drawing characteristics and the performance of the carbon fiber.
カルボキシ基を含む重合体(B)としては、1種を単独で用いてもよく、2種類以上を併用してもよい。 As a polymer (B) containing a carboxy group, 1 type may be used independently and 2 or more types may be used together.
本発明においてブレンドする、カルボキシ基を含む重合体(B)と、カルボキシ基を含まないアクリロニトリル系重合体(A)との質量比((B)/(A))は、0.0001以上2.3以下であることが好ましい。(B)/(A)が0.0001以上であると、焼成時間を短時間で進めることが可能になり、2.3以下であると、炭素繊維前駆体アクリロニトリル系繊維中のカルボキシ基量を調整しやすいため好ましい。
焼成時間を短時間で進める効果と、プレカーサー中のカルボキシ基量を調整しやすさとのバランスから、(B)/(A)は、0.001以上1.5以下がより好ましく、0.002以上1以下がさらに好ましい。
The mass ratio ((B) / (A)) of the polymer (B) containing a carboxy group and the acrylonitrile-based polymer (A) containing no carboxy group blended in the present invention is 0.0001 or more and 2. It is preferable that it is 3 or less. When (B) / (A) is 0.0001 or more, the firing time can be advanced in a short time, and when it is 2.3 or less, the amount of carboxy groups in the carbon fiber precursor acrylonitrile-based fiber is reduced. It is preferable because it is easy to adjust.
From the balance between the effect of advancing the firing time in a short time and the ease of adjusting the amount of carboxy groups in the precursor, (B) / (A) is more preferably 0.001 or more and 1.5 or less, and 0.002 or more. 1 or less is more preferable.
紡糸方法としては、カルボキシ基を含まないアクリロニトリル系重合体(A)とカルボキシ基を含む重合体(B)とが溶媒に溶解したドープを、紡糸口金(円形断面を有するノズル孔等)から湿式紡糸法又は乾−湿式紡糸法により紡出する方法が好ましい。
ドープの溶媒としては、カルボキシ基を含まないアクリロニトリル系重合体(A)及びカルボキシ基を含む重合体(B)を均一に溶解できるものならば特に限定されず、たとえばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、塩化亜鉛水溶液、チオシアン酸水溶液などが挙げられる。
アクリロニトリル系重合体を溶媒に溶解する方法は、特に限定されず、例えば、アクリロニトリル系重合体と溶媒とをニーダーで混合したのち、加熱することにより溶解できる。
このとき、カルボキシ基を含まないアクリロニトリル系重合体(A)とカルボキシ基を含む重合体(B)とをブレンドした後で溶媒に溶解させてもかまわないし、カルボキシ基を含まないアクリロニトリル系重合体(A)及びカルボキシ基を含む重合体(B)をそれぞれ別個に溶解させた後、それらの溶液を混合してもかまわない。また、いずれか一方の重合体を溶解させた溶液に他方の重合体を添加し、溶解させてもよい。たとえば、カルボキシ基を含む重合体(B)を紡糸直前で添加することにより、ドープのゲル化を抑制することも可能である。
ドープは、紡糸性の観点から、重合体濃度(カルボキシ基を含まないアクリロニトリル系重合体(A)及びカルボキシ基を含む重合体(B)の合計の濃度)が10質量%以上であることが好ましく、17質量%以上がより好ましく、19質量%以上がさらに好ましい。アクリロニトリル系重合体濃度の上限は、紡糸性を考慮すると、30質量%以下が好ましく、27質量%以下がより好ましい。
紡糸ドラフト(紡糸工程中、どの部分で延伸をかけるか)は、アクリロニトリル系重合体濃度、延伸倍率に応じ、所望の繊度が得られるように適切に設定すればよい。
炭素繊維用前駆体繊維として用いる場合、アクリロニトリル繊維の単糸繊度は、炭素繊維の機械物性の観点から、2.0dtex以下が好ましく、1.5dtex以下がより好ましい。
As a spinning method, a dope in which an acrylonitrile-based polymer (A) containing no carboxy group and a polymer containing a carboxy group (B) are dissolved in a solvent is wet-spun from a spinneret (such as a nozzle hole having a circular cross section). A method of spinning by a method or a dry-wet spinning method is preferred.
The dope solvent is not particularly limited as long as it can uniformly dissolve the acrylonitrile-based polymer (A) not containing a carboxy group and the polymer (B) containing a carboxy group. For example, dimethylformamide, dimethylacetamide, dimethylsulfoxide , Zinc chloride aqueous solution, thiocyanic acid aqueous solution and the like.
The method for dissolving the acrylonitrile-based polymer in the solvent is not particularly limited. For example, the acrylonitrile-based polymer and the solvent can be dissolved by mixing with a kneader and then heated.
At this time, the acrylonitrile-based polymer (A) not containing a carboxy group and the polymer (B) containing a carboxy group may be blended and then dissolved in a solvent, or an acrylonitrile-based polymer containing no carboxy group ( A) and the polymer (B) containing a carboxy group may be dissolved separately, and then the solutions may be mixed. Alternatively, the other polymer may be added to a solution in which one of the polymers is dissolved and dissolved. For example, the gelation of the dope can be suppressed by adding the polymer (B) containing a carboxy group immediately before spinning.
From the viewpoint of spinnability, the dope preferably has a polymer concentration (the total concentration of the acrylonitrile-based polymer (A) not containing a carboxy group and the polymer (B) containing a carboxy group) of 10% by mass or more. 17 mass% or more is more preferable, and 19 mass% or more is further more preferable. The upper limit of the acrylonitrile-based polymer concentration is preferably 30% by mass or less and more preferably 27% by mass or less in consideration of spinnability.
The spinning draft (which part should be stretched during the spinning process) may be appropriately set so as to obtain a desired fineness according to the acrylonitrile polymer concentration and the stretching ratio.
When used as a precursor fiber for carbon fiber, the single yarn fineness of the acrylonitrile fiber is preferably 2.0 dtex or less, more preferably 1.5 dtex or less, from the viewpoint of the mechanical properties of the carbon fiber.
湿式紡糸法の場合は、ドープを紡糸口金より直接凝固浴中に吐出し凝固糸とし、乾湿式紡糸の場合は、ドープを紡糸口金より一旦空気中に吐出しその後直ちに凝固浴にて凝固糸とする。
凝固浴は、凝固糸引き取り及び後の延伸に充分な余裕がある条件に設定することが好ましく、これらの要件を満たすよう凝固浴濃度、温度を設定することが好ましい。
凝固浴には、ドープに用いられる溶剤を含む水溶液が好適に使用され、含まれる溶剤の濃度を適宜調節する。
凝固浴の温度は、凝固糸の緻密性の観点からは温度が低い方が好ましいが、温度を下げすぎると凝固糸の引き取り速度が低下し生産性が低下する点を考慮し、湿式紡糸では、50℃以下が好ましく、さらに好ましくは20℃以上40℃以下である。乾湿式紡糸では、30℃以下が好ましく、さらに好ましくは0℃以上20℃以下である。
In the case of the wet spinning method, the dope is discharged directly from the spinneret into the coagulation bath to obtain a coagulated yarn. In the case of dry and wet spinning, the dope is once discharged into the air from the spinneret and then immediately set in the coagulation bath. To do.
The coagulation bath is preferably set to a condition with sufficient margin for taking up the coagulated yarn and subsequent drawing, and the coagulation bath concentration and temperature are preferably set so as to satisfy these requirements.
For the coagulation bath, an aqueous solution containing a solvent used for the dope is preferably used, and the concentration of the contained solvent is appropriately adjusted.
The temperature of the coagulation bath is preferably lower from the viewpoint of the density of the coagulated yarn, but considering the point that if the temperature is lowered too much, the take-up speed of the coagulated yarn is lowered and the productivity is lowered. It is preferably 50 ° C. or lower, more preferably 20 ° C. or higher and 40 ° C. or lower. In dry-wet spinning, it is preferably 30 ° C. or lower, more preferably 0 ° C. or higher and 20 ° C. or lower.
凝固糸は、通常、洗浄、延伸を経た後、油剤処理が施される。また、油剤処理後、乾燥緻密化し、必要に応じて、加熱ロールや加圧スチーム下で再度延伸が施される。これにより、炭素繊維前駆体アクリロニトリル系繊維が得られる。 The coagulated yarn is usually subjected to an oil agent treatment after being washed and stretched. Further, after the oil agent treatment, it is dried and densified, and is stretched again under a heating roll or pressurized steam as necessary. Thereby, a carbon fiber precursor acrylonitrile fiber is obtained.
凝固糸の延伸方法としては、沸水中で凝固糸に含まれている溶媒を洗浄しながら延伸する湿熱延伸法が好ましい。乾燥緻密化後にさらに延伸を加える場合、このときの延伸倍率は、特に大きな倍率を必要としないので2倍以上5倍以下であれば十分である。乾燥緻密化後に延伸を加えない場合はここで必要なだけの延伸倍率に設定する必要がある。また、湿熱延伸法として、2段以上の多段延伸法を用いることも可能である。また、湿熱延伸より前に空気中延伸を行うことも可能である。空気中延伸および湿熱延伸の手順は、本発明による特段の制限はなく、公知の方法を適用することができる。
湿熱延伸法における延伸浴温度は、単糸同士が融着しない範囲でできるだけ高温にすることが効果的である。この観点から、延伸浴の温度は70℃以上とすることが好ましい。湿熱延伸を多段で行う場合は、最終浴を90℃以上とすることが好ましい。
As a method for drawing the coagulated yarn, a wet heat drawing method is preferably used in which the solvent contained in the coagulated yarn is washed in boiling water. When further stretching is performed after drying and densification, the stretching ratio at this time does not require a particularly large ratio, so it is sufficient if it is 2 to 5 times. When stretching is not applied after drying and densification, it is necessary to set the stretching ratio as much as necessary. Moreover, it is also possible to use a multistage stretching method of two or more stages as the wet heat stretching method. It is also possible to perform stretching in the air before wet heat stretching. The procedure of stretching in air and wet heat stretching is not particularly limited according to the present invention, and a known method can be applied.
It is effective to set the drawing bath temperature in the wet heat drawing method as high as possible within a range in which the single yarns are not fused. From this viewpoint, the temperature of the stretching bath is preferably 70 ° C. or higher. When wet heat stretching is performed in multiple stages, the final bath is preferably 90 ° C or higher.
油剤処理方法については本発明による特段の制限はなく、公知の方法を適用することができる。油剤の種類は特に限定されないが、アミノシリコーン系油剤が好適に使用される。
乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもあり、100〜200℃程度の加熱ローラーによる方法が好ましい。
合計延伸倍率が低いと繊維の配向が低下して、アクリロニトリル系繊維及び炭素繊維の性能が低下する傾向があるという点で不利であり、高いと糸切れが生じる傾向があり生産上不利である。この観点から、乾燥緻密化後、さらに延伸を施すのが好ましい。この延伸の方法は加熱ローラー間で行う乾熱延伸、加熱板上で行う熱板延伸、加圧蒸気中で行うスチーム延伸等を採用することができる。特に、高い延伸倍率を実現できるスチーム延伸が好ましい。また、同じ観点からこの延伸を含む合計延伸倍率は、8倍以上20倍以下が好ましい。
There is no special limitation by this invention about an oil agent processing method, A well-known method is applicable. Although the kind of oil agent is not specifically limited, Amino silicone type oil agent is used suitably.
The temperature for drying and densification needs to be performed at a temperature exceeding the glass transition temperature of the fiber, but may be substantially different depending on the drying state from the water-containing state, and a method using a heating roller of about 100 to 200 ° C. is preferable. .
If the total draw ratio is low, the fiber orientation is lowered, which is disadvantageous in that the performance of the acrylonitrile fiber and the carbon fiber tends to be lowered. If the total draw ratio is high, yarn breakage tends to occur, which is disadvantageous in production. From this point of view, it is preferable to perform further stretching after drying and densification. As the stretching method, dry heat stretching performed between heating rollers, hot plate stretching performed on a heating plate, steam stretching performed in pressurized steam, or the like can be employed. In particular, steam stretching that can realize a high stretching ratio is preferable. From the same viewpoint, the total draw ratio including this draw is preferably 8 times or more and 20 times or less.
上記のようにして得られた炭素前駆体アクリロニトリル系繊維は、200℃〜400℃の酸化性雰囲気中で加熱処理(耐炎化処理)することにより耐炎化繊維に転換することができる。さらに、該耐炎化繊維を、公知の方法により1000℃〜1500℃程度の不活性雰囲気中で炭素化することにより、炭素繊維を得ることができる。 The carbon precursor acrylonitrile fiber obtained as described above can be converted into a flame resistant fiber by heat treatment (flame resistant treatment) in an oxidizing atmosphere at 200 ° C. to 400 ° C. Furthermore, carbon fiber can be obtained by carbonizing the flame-resistant fiber in an inert atmosphere of about 1000 ° C. to 1500 ° C. by a known method.
以下、本発明を実施例により更に詳細に説明する。
実施例中において、アクリロニトリル、アクリルアミド及びメタクリル酸はそれぞれAN、AAm及びMAAと表し、%は質量%を表す。
(イ)「重合体の組成」
系重合体の組成(各モノマー単位の比率(質量比))は、1H−NMR法(日本電子社製、GSZ−400型超伝導FT−NMR)により定量した。
(ロ)「重合体の極限粘度[η]」
25℃のジメチルホルムアミド溶液を用い、ウベローデ式粘度計を用い測定した。
(ハ)「炭素繊維のストランド特性」
ストランド強度及びストランド弾性率は、JIS−R−7601に記載された試験法に準拠して測定した。
Hereinafter, the present invention will be described in more detail with reference to examples.
In the examples, acrylonitrile, acrylamide and methacrylic acid are represented by AN, AAm and MAA, respectively, and% represents mass%.
(B) “Polymer composition”
The composition of the polymer (the ratio of each monomer unit (mass ratio)) was quantified by 1 H-NMR method (manufactured by JEOL Ltd., GSZ-400 type superconducting FT-NMR).
(B) “Intrinsic viscosity of polymer [η]”
Measurement was performed using a Ubbelohde viscometer using a dimethylformamide solution at 25 ° C.
(C) “Strand characteristics of carbon fiber”
The strand strength and strand elastic modulus were measured according to the test method described in JIS-R-7601.
[製造例1:重合体(A1)の作製]
オーバーフロー式の重合容器にAN、AAmと蒸留水、そして重合開始剤の過硫酸アンモニウム、亜硫酸水素アンモニウムを毎分一定量供給し、50℃に維持しながら攪拌を続け、オーバーフローしてきた重合スラリーから洗浄、乾燥を経て重合体(A1)を得た。この重合体の組成はAN/AAm=97.5/2.5であった。また、この重合体の極限粘度[η]は1.8であった。
[Production Example 1: Production of polymer (A1)]
An AN, AAm, distilled water, and a constant amount of ammonium persulfate and ammonium hydrogen sulfite are supplied to an overflow type polymerization vessel every minute, and the stirring is continued while maintaining at 50 ° C., and the overflowed polymerization slurry is washed. A polymer (A1) was obtained through drying. The composition of this polymer was AN / AAm = 97.5 / 2.5. The intrinsic viscosity [η] of this polymer was 1.8.
[製造例2:重合体(B1)の作製]
AN、AAmの代わりにAN、AAm、MAAを用いた以外は製造例1と同様にして重合体(B1)を得た。この重合体の組成はAN/AAm/MAA=95.7/2.5/1.8であった。また、この重合体の極限粘度[η]は1.8であった。
[Production Example 2: Production of polymer (B1)]
A polymer (B1) was obtained in the same manner as in Production Example 1 except that AN, AAm, and MAA were used instead of AN and AAm. The composition of this polymer was AN / AAm / MAA = 95.7 / 2.5 / 1.8. The intrinsic viscosity [η] of this polymer was 1.8.
[製造例3:重合体(C1)の作製]
AN、AAm、MAAの使用量を変更した以外は製造例1と同様にしてアクリロニトリル系重合体(C1)を得た。この重合体の組成はAN/AAm/MAA=96.6/2.5/0.9であった。また、この重合体の極限粘度[η]は1.8であった。
[Production Example 3: Production of polymer (C1)]
An acrylonitrile polymer (C1) was obtained in the same manner as in Production Example 1 except that the amounts of AN, AAm, and MAA used were changed. The composition of this polymer was AN / AAm / MAA = 96.6 / 2.5 / 0.9. The intrinsic viscosity [η] of this polymer was 1.8.
[実施例1]
製造例1で作製した重合体(A1)50部と、製造例2で作製した重合体(B1)50部と、ジメチルアセトアミドとを、ニーダーで混合したのち、加熱溶解して、重合体濃度21質量%のアクリロニトリル系重合体溶液(ドープ)を調製した。
このドープを、孔径0.75mm、孔数3000の紡糸口金を用いて、濃度69%のジメチルアセトアミド水溶液(浴温35℃)中に吐出して凝固繊維とし、更にこの凝固繊維を水洗槽中で脱溶媒するとともに3倍に延伸して水膨潤状態のアクリロニトリル系繊維とした。この水膨潤状態のアクリロニトリル系繊維にアミノシリコーン系油剤を付与し、表面温度130℃の加熱ロールで乾燥緻密化し、170℃の加圧蒸気中で3倍延伸を施して炭素繊維前駆体アクリロニトリル系繊維を得た。
この炭素繊維前駆体アクリロニトリル系繊維を、230℃〜270℃の温度勾配を有する耐炎化炉で60分かけて通し、さらに窒素雰囲気下で300℃〜1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維を得た。この炭素繊維のストランド特性を表1に示す。
[Example 1]
50 parts of the polymer (A1) produced in Production Example 1, 50 parts of the polymer (B1) produced in Production Example 2 and dimethylacetamide were mixed with a kneader and dissolved by heating to obtain a polymer concentration of 21. A mass% acrylonitrile-based polymer solution (dope) was prepared.
This dope was discharged into a 69% concentration dimethylacetamide aqueous solution (bath temperature 35 ° C.) using a spinneret having a pore diameter of 0.75 mm and a pore number of 3000 to obtain coagulated fibers, and the coagulated fibers were further washed in a washing tank. The solvent was removed and the film was stretched 3 times to obtain a water-swollen acrylonitrile fiber. Aminosilicone-based oil is added to this water-swelled acrylonitrile fiber, dried and densified with a heating roll having a surface temperature of 130 ° C., and stretched three times in a pressurized steam at 170 ° C. to give a carbon fiber precursor acrylonitrile fiber. Got.
The carbon fiber precursor acrylonitrile fiber is passed through a flameproof furnace having a temperature gradient of 230 ° C. to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 ° C. to 1400 ° C. in a nitrogen atmosphere. To obtain carbon fiber. Table 1 shows the strand characteristics of this carbon fiber.
[比較例1]
製造例3で作製した重合体(C1)とジメチルアセトアミドとを所定量、常温で、ニーダーで混合したのち、加熱溶解して、重合体濃度21質量%のドープを調製した。
このドープを用いて、実施例1と同様にして炭素繊維前駆体アクリロニトリル系繊維を得た。
この炭素繊維前駆体アクリロニトリル系繊維を、230℃〜270℃の温度勾配を有する耐炎化炉で60分かけて通し、さらに窒素雰囲気下で300℃〜1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維を得た。この炭素繊維のストランド特性を表1に示す。
[Comparative Example 1]
A predetermined amount of the polymer (C1) produced in Production Example 3 and dimethylacetamide were mixed at room temperature with a kneader, and then dissolved by heating to prepare a dope having a polymer concentration of 21% by mass.
Using this dope, a carbon fiber precursor acrylonitrile fiber was obtained in the same manner as in Example 1.
The carbon fiber precursor acrylonitrile fiber is passed through a flameproof furnace having a temperature gradient of 230 ° C. to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 ° C. to 1400 ° C. in a nitrogen atmosphere. To obtain carbon fiber. Table 1 shows the strand characteristics of this carbon fiber.
上記結果に示すように、実施例1においては、重合体(A1)と重合体(B1)とをブレンドし、紡糸することで、みかけ上同じ組成である単一の重合体(C)を用いた比較例1と同レベルの高性能の炭素繊維を得られる炭素繊維前駆体アクリロニトリル系繊維が製造できた。 As shown in the above results, in Example 1, the polymer (A1) and the polymer (B1) were blended and spun to use a single polymer (C) that apparently has the same composition. As a result, a carbon fiber precursor acrylonitrile-based fiber capable of obtaining high-performance carbon fibers at the same level as in Comparative Example 1 could be produced.
本発明の炭素繊維前駆体アクリロニトリル系繊維の製造方法は、生産性や、組成設計の自由度が高く、高性能の炭素繊維前駆体アクリロニトリル系繊維を製造するのに好適である。
たとえば、本発明により製造される炭素繊維前駆体アクリロニトリル系繊維によれば、重合体(A)と重合体(B)とのブレンドと見かけ上同じ組成の単一重合体を用いて得られる炭素繊維前駆体アクリロニトリル系繊維を用いる場合と同等の性能(たとえば強度、弾性率等)を有する炭素繊維を得ることができる。そのため、単一重合体を用いる場合に比べ、容易に高性能の炭素繊維前駆体アクリロニトリル系繊維を製造できる。
また、重合体(A)と重合体(B)とのブレンド比率を変えるだけで、炭素繊維前駆体アクリロニトリル系繊維中のカルボキシ基量を容易に変更できる。
また、重合体(B)により、炭素繊維製造時の焼成を短時間で行うために必要なカルボキシ基の量を確保できるため、アクリロニトリル系重合体(A)として、共重合が困難な、立体規則性を制御したポリアクリロニトリルや、超高分子量ポリアクリロニトリルなどを用いることができ、高性能な炭素繊維を得ることが可能となる。「立体規則性を制御したポリマー」とは、13C−NMR測定により定量可能なアイソタクチックトライアッド(mm)、やシンジオタクチックトリアッド(rr)が0.3を超えるようなポリマーを意味する。超高分子量ポリアクリロニトリルは、極限粘度[η]で3以上の超高分子量のものである。
The method for producing a carbon fiber precursor acrylonitrile fiber of the present invention is suitable for producing a high-performance carbon fiber precursor acrylonitrile fiber having high productivity and a high degree of freedom in composition design.
For example, according to the carbon fiber precursor acrylonitrile fiber produced according to the present invention, a carbon fiber precursor obtained by using a single polymer having the same composition as that of the blend of the polymer (A) and the polymer (B). A carbon fiber having the same performance (for example, strength, elastic modulus, etc.) as that using the body acrylonitrile fiber can be obtained. Therefore, compared with the case where a single polymer is used, a high-performance carbon fiber precursor acrylonitrile fiber can be easily produced.
Moreover, the amount of carboxy groups in the carbon fiber precursor acrylonitrile fiber can be easily changed simply by changing the blend ratio of the polymer (A) and the polymer (B).
In addition, since the polymer (B) can secure the amount of carboxy groups necessary for firing in the production of carbon fibers in a short time, the steric rule is difficult to copolymerize as the acrylonitrile-based polymer (A). It is possible to use polyacrylonitrile with controlled properties, ultrahigh molecular weight polyacrylonitrile, or the like, and to obtain a high-performance carbon fiber. “Polymer with controlled stereoregularity” means a polymer whose isotactic triad (mm) or syndiotactic triad (rr) quantifiable by 13 C-NMR measurement exceeds 0.3. . The ultrahigh molecular weight polyacrylonitrile has an intrinsic viscosity [η] of 3 or higher.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151794A JP4887219B2 (en) | 2007-06-07 | 2007-06-07 | Method for producing carbon fiber precursor acrylonitrile fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151794A JP4887219B2 (en) | 2007-06-07 | 2007-06-07 | Method for producing carbon fiber precursor acrylonitrile fiber |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008303500A JP2008303500A (en) | 2008-12-18 |
JP2008303500A5 JP2008303500A5 (en) | 2011-06-30 |
JP4887219B2 true JP4887219B2 (en) | 2012-02-29 |
Family
ID=40232471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007151794A Expired - Fee Related JP4887219B2 (en) | 2007-06-07 | 2007-06-07 | Method for producing carbon fiber precursor acrylonitrile fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4887219B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010111882A1 (en) * | 2009-03-31 | 2010-10-07 | 东华大学 | Processes for producing carbon fiber, the filament thereof, and pre-oxidized fiber |
CN103409854B (en) * | 2013-08-28 | 2015-11-04 | 西安元创化工科技股份有限公司 | A kind of production method of carbon fiber |
KR101925519B1 (en) * | 2017-05-10 | 2018-12-05 | 재단법인 한국탄소융합기술원 | Additives for the enhancement of carbon fiber thermal production and carbon fibers made from same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11200140A (en) * | 1998-01-12 | 1999-07-27 | Mitsubishi Rayon Co Ltd | Production of acrylic fiber precursor |
JP4594055B2 (en) * | 2004-12-01 | 2010-12-08 | 三菱レイヨン株式会社 | Carbon fiber and manufacturing method thereof, carbon nanofiber aggregate, precursor fiber |
-
2007
- 2007-06-07 JP JP2007151794A patent/JP4887219B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008303500A (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5691366B2 (en) | Carbon fiber manufacturing method | |
JP2008308776A (en) | Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber | |
JP2011046942A (en) | Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber | |
JP2007182657A (en) | Polymer composition for carbon fiber precursor fiber | |
JP4887219B2 (en) | Method for producing carbon fiber precursor acrylonitrile fiber | |
US11286580B2 (en) | Method for producing acrylonitrile-based fiber | |
JP5724647B2 (en) | Polyacrylonitrile-based copolymer, method for producing the same, carbon fiber precursor fiber, and carbon fiber | |
JPH11229232A (en) | Production of acrylonitrile-based precursor yarn for carbon fiber | |
JP2011001653A (en) | Method for producing polyacrylonitrile-based fiber | |
JP5504678B2 (en) | Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber | |
KR101276469B1 (en) | Method of preparing precursors for polyacrylonitrile-based carbon fibers | |
KR20120077628A (en) | Carbon fiber precursor and manufacturing method | |
JPS63275718A (en) | Production of high-tenacity carbon fiber | |
JP2015183166A (en) | Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber | |
KR101490530B1 (en) | Method of preparing precursors for polyacrylonitrile-based carbon fibers | |
JP2008214562A (en) | Polyacrylonitrile polymer composition and process for producing carbon fiber | |
JP2011213774A (en) | Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber | |
JP6048395B2 (en) | Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber | |
KR20120007183A (en) | Manufacturing method of carbon fiber | |
JP2014167038A (en) | Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber | |
KR102216640B1 (en) | Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer used in the method | |
JPS63275713A (en) | Production of high-strength carbon fiber | |
CN117535815A (en) | Method for improving drawability of dry-jet wet-spun carbon fiber precursor | |
JP2014167039A (en) | Polyacrylonitrile-based polymer, carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber | |
JPS63275717A (en) | Production of high-tenacity carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100607 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4887219 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |