JP4886577B2 - Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method - Google Patents
Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method Download PDFInfo
- Publication number
- JP4886577B2 JP4886577B2 JP2007100520A JP2007100520A JP4886577B2 JP 4886577 B2 JP4886577 B2 JP 4886577B2 JP 2007100520 A JP2007100520 A JP 2007100520A JP 2007100520 A JP2007100520 A JP 2007100520A JP 4886577 B2 JP4886577 B2 JP 4886577B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion rate
- measurement
- resistance
- circuit
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007797 corrosion Effects 0.000 title claims description 168
- 238000005260 corrosion Methods 0.000 title claims description 168
- 238000000034 method Methods 0.000 title claims description 34
- 238000005259 measurement Methods 0.000 claims description 151
- 239000012190 activator Substances 0.000 claims description 48
- 230000010287 polarization Effects 0.000 claims description 43
- 230000005540 biological transmission Effects 0.000 claims description 26
- 238000004891 communication Methods 0.000 claims description 24
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000002847 impedance measurement Methods 0.000 claims description 12
- 239000004570 mortar (masonry) Substances 0.000 claims description 9
- 239000004567 concrete Substances 0.000 claims description 8
- 238000000691 measurement method Methods 0.000 claims description 8
- 239000013535 sea water Substances 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 5
- 239000003570 air Substances 0.000 claims description 3
- 239000013505 freshwater Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 description 32
- 239000010959 steel Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
本発明は、構造物の腐食劣化環境を評価する技術に関するものであり、さらに詳しくは、構造物の腐食速度を非接触で測定するための、腐食速度測定用回路、センサ、装置、及び測定方法に関するものである。 The present invention relates to a technique for evaluating a corrosion deterioration environment of a structure, and more specifically, a corrosion rate measuring circuit, sensor, apparatus, and measuring method for measuring the corrosion rate of a structure in a non-contact manner. It is about.
高度成長期に数多く建設された構造物の維持管理は今や大きな社会的課題である。したがって構造物の劣化要因の一つである鋼材の腐食劣化を適切に把握する腐食速度評価技術は重要な開発すべき課題となっている。したがって、これまで様々な環境での鋼材の腐食速度や腐食量を予測する技術が考えられてきた。例えば非特許文献1には、交流インピーダンス法を用いた鋼材の腐食速度測定法が示されている。この方法は汎用的な装置構成、関数発生器、周波数解析器と電圧印加装置、所謂ポテンショスタットを用いて作成した微小な交流電圧波形、5から20mV程度を用いて対象鋼材の電気化学的なインピーダンスを測定する手法である。この方法は、複雑な腐食反応を解析するためのもので鋼材の腐食速度を測定可能である。ここで測定周波数は10kHzから0.001Hzまでの範囲が一般的で、装置電源は100Vを使用している。しかしながら、屋外特に現場で構造物を構成する鋼材の腐食速度を測定するには各装置は数十キロもの重量があり、また、搬入組み立てに手間がかかり、高所や狭隘な場所では、この装置の設置は不可能である。その上、あわせて外乱を避けて精度を確保した安定性の高い測定をするには、ノイズ考慮した配線や接触抵抗の少ない結線配線が重要で、ハンダによる結線、配線コードのシールド対策、当然ながら風雨を凌ぐつい立や暴雨カバー等も必要となる。
Maintenance of many structures built during the high growth period is now a major social issue. Therefore, corrosion rate evaluation technology that properly grasps the corrosion deterioration of steel, which is one of the deterioration factors of structures, has become an important issue to be developed. Therefore, techniques for predicting the corrosion rate and the amount of corrosion of steel materials in various environments have been considered so far. For example, Non-Patent
非特許文献2では、鋼材の腐食速度を測定する手法として、交流インピーダンス法を簡略化した手法として特定した2周波のみを用いて微小な交流電圧波形を用いて対象鋼材の電気化学的なインピーダンス測定法を開示している。この手法では周波数を特定することで、スキャン時間を減らし計測時間を大幅に短縮したことが特徴である。また、装置も関数発生器、周波数解析器の回路が単純化でき、装置の大きさは20cmから30cm角程度、重量も20キロ程度と幾分小さくできる。しかしながら、現場で構造物を構成する鋼材の腐食速度を測定するには、高所や狭隘な場所ではこの装置の設置は困難である。また、あわせて外乱を避けて精度を確保した測定をするには、ノイズ考慮した配線が重要でハンダによる結線、配線コードのシールド対策、当然ながら風雨を凌ぐつい立や暴雨カバー等も必要となる。
In
非特許文献3では、交流インピーダンス測定システム(SIMP-301E)として測定回路をできる限りデジタル化をはかり、CPUを用いて微小な交流電圧波形を生成し、応答値もデジタル解析をする装置が開示されている。重量は5kgで、電源は100V又はバッテリーでの使用が可能である。しかしながら、依然として現場で構造物を構成する鋼材の腐食速度を測定する目的で、高所や狭隘な場所ではこの装置の設置は困難である。また、あわせて外乱を避けて精度を確保した安定性の高い測定をするには、ノイズ考慮した配線や接触抵抗の少ない結線が重要でハンダによる結線、配線コードのシールド対策、当然ながら風雨を凌ぐつい立や暴雨カバー等も必要となる。
Non-Patent
また、特許文献1では、鋼構造物の一部にセンサ電極を挿入することで、1対の電極を構成し、鋼構造物の腐食速度を計測する特許が開示されている。この発明は、基本的に現場で腐食速度を電気化学的手法で計測する際のセンサ配置に関するもので、計測装置に関するものではない。したがって、高所や狭隘な場所での装置の設置や外乱を避けて精度を確保した測定をすることに対する困難性は避けられない。
本発明では、上記の従来技術の問題点を鑑み、高所や狭隘な場所でも容易に測定が可能で、構造物の腐食速度を非接触で精度よく安定して測定するための、腐食速度測定用回路、センサ、装置、及び測定方法を提供することを目的とする。 In the present invention, in view of the above-mentioned problems of the prior art, it is possible to easily measure even in high places and narrow places, and to measure the corrosion rate of a structure accurately and stably without contact, corrosion rate measurement It is an object to provide a circuit, a sensor, a device, and a measurement method.
本発明は、以下の特徴を有する。 The present invention has the following features.
(1)一対の測定対象電極と、電気化学抵抗測定回路、通信回路、及び、外部のアクティベータとの間で電磁波を送受信する送受信アンテナを有する腐食速度測定用回路とを備えた腐食速度測定用センサであって、前記電気化学抵抗測定回路は、前記一対の測定対象電極間にリード線を通して電圧又は電流を負荷することによる電気抵抗の測定、若しくは、当該電気抵抗の測定に加えて前記測定した電気抵抗からの分極抵抗の算出、又は、前記電気抵抗の測定及び前記分極抵抗の算出に加えて前記算出した分極抵抗からの腐食速度の算出を行うインピーダンス測定回路を有すると共に、前記インピーダンス測定回路に少なくとも2種類の周波数の電圧又は2種類の周波数の電流を印加することができる2周波印加回路を有し、前記2周波印加回路は、前記印加する少なくとも2種類の周波数の電圧のうちの1つを、又は前記印加する少なくとも2種類の周波数の電流のうちの1つを、前記アクティベータから送られる駆動電磁波の周波数と同一とし、若しくは前記アクティベータから送られる駆動電磁波から生成した直流電圧としているか、又は前記印加する少なくとも2種類の周波数の電流のうちの1つを、前記アクティベータから送られる駆動電磁波から生成した直流電流としていることを特徴とする腐食速度測定用センサ。 ( 1 ) For corrosion rate measurement, comprising a pair of electrodes to be measured, an electrochemical resistance measurement circuit, a communication circuit, and a corrosion rate measurement circuit having a transmission / reception antenna that transmits and receives electromagnetic waves between external activators In the sensor, the electrochemical resistance measurement circuit measures the electrical resistance by applying a voltage or a current through a lead wire between the pair of measurement target electrodes, or the measurement in addition to the measurement of the electrical resistance. In addition to the measurement of the polarization resistance from the electrical resistance, or the measurement of the electrical resistance and the calculation of the polarization resistance, the impedance measurement circuit for calculating the corrosion rate from the calculated polarization resistance, the impedance measurement circuit It has a dual frequency application circuit capable of applying at least two kinds of voltages or two kinds of frequencies of the current frequency, the two-frequency indicia The circuit is configured such that one of the applied voltages of at least two frequencies or one of the applied currents of the at least two frequencies is the same as the frequency of the driving electromagnetic wave sent from the activator. Or a DC voltage generated from the driving electromagnetic wave sent from the activator, or one of the applied currents of at least two frequencies is a DC current generated from the driving electromagnetic wave sent from the activator. the corrosion rate measurement sensor, wherein you are.
(2)前記測定対象電極が複数存在し、その中から選ばれる一対の測定対象電極間にリード線を通して電圧又は電流を負荷することを特徴とする上記(1)に記載の腐食速度測定用センサ。 ( 2 ) The corrosion rate measuring sensor according to (1) , wherein a plurality of the measurement target electrodes exist, and a voltage or a current is loaded through a lead wire between a pair of measurement target electrodes selected from the plurality of measurement target electrodes. .
(3)前記一対の測定対象電極のうち、少なくともいずれか一方の測定対象電極が、腐食速度測定対象物の構造物そのものであることを特徴とする上記(1)又は(2)に記載の腐食速度測定用センサ。 ( 3 ) Corrosion as described in (1) or (2) above, wherein at least one of the pair of measurement target electrodes is a structure itself of a corrosion rate measurement target object. Sensor for speed measurement.
(4)上記(1)〜(3)のいずれか1項に記載の腐食速度測定用センサと、前記腐食速度測定用センサに駆動電磁波を送信できると共に、前記腐食速度測定用センサから送られる電磁波に変換された前記電気抵抗の測定データ、前記分極抵抗の算出データ、又は前記腐食速度の算出データを受信できるアクティベータとからなることを特徴とする腐食速度測定用装置。 ( 4 ) The electromagnetic wave transmitted from the corrosion rate measuring sensor and the corrosion rate measuring sensor according to any one of the above (1) to (3) and the corrosion rate measuring sensor. An apparatus for measuring a corrosion rate, comprising: an activator capable of receiving the measurement data of the electrical resistance, the calculation data of the polarization resistance, or the calculation data of the corrosion rate converted into the above.
(5)上記(4)に記載の腐食速度測定用装置を用いた腐食速度測定方法であって、前記一対の測定対象電極を腐食環境の媒体中に浸漬し、前記一対の測定対象電極間に、前記電気化学抵抗測定回路にて印加された2種類の周波数の電圧をかけて、異なる2種類の電流を通すか、又は、前記電気化学抵抗測定回路にて印加された2種類の周波数の電流を流して、異なる2種類の電圧を生じさせ、前記2種類の電圧値及び電流値に対応する前記測定対象電極間の電気抵抗を測定し、前記測定した電気抵抗から前記電気化学抵抗測定回路内で分極抵抗を算出するか、又は前記アクティベータへ前記電気抵抗の測定データを送信した後に前記電極間の分極抵抗を算出することで、腐食速度を求めることを特徴とする腐食速度の測定方法。 ( 5 ) A corrosion rate measurement method using the apparatus for measuring corrosion rate according to ( 4 ) above, wherein the pair of measurement target electrodes are immersed in a medium in a corrosive environment, and the pair of measurement target electrodes are interposed between the pair of measurement target electrodes. Apply two different frequency voltages applied in the electrochemical resistance measurement circuit and pass two different currents, or apply two frequency currents applied in the electrochemical resistance measurement circuit To generate two different types of voltages, measure the electrical resistance between the electrodes to be measured corresponding to the two types of voltage values and current values, and use the measured electrical resistances in the electrochemical resistance measurement circuit. The corrosion rate is calculated by calculating the polarization resistance or calculating the polarization resistance between the electrodes after transmitting the electrical resistance measurement data to the activator.
(6)前記腐食環境の媒体が、淡水、海水、セメント、モルタル、コンクリート、又は大気であることを特徴とする上記(5)に記載の腐食速度の測定方法。 ( 6 ) The method for measuring a corrosion rate according to ( 5 ) above, wherein the medium of the corrosive environment is fresh water, seawater, cement, mortar, concrete, or air.
(7)前記2種類の周波数の電圧又は電流は、一方が10Hz以上の高周波電圧又は電流で、もう一方が0.25Hz以下の低周波電圧又は直流電圧であること、或いはもう一方が0.25Hz以下の低周波電流又は直流電流であることを特徴とする上記(5)又は(6)に記載の腐食速度の測定方法。
( 7 ) One of the two types of voltages or currents of the two frequencies is a high frequency voltage or current of 10 Hz or more, and the other is a low frequency voltage or DC voltage of 0.25 Hz or less, or the other is 0.25 Hz. The method for measuring a corrosion rate according to ( 5 ) or ( 6 ) above, wherein the corrosion rate is the following low frequency current or direct current.
本発明の腐食速度測定用回路、センサ、装置、及び測定方法を用いることにより、構造物の腐食劣化環境における鋼材の腐食速度を非接触で測定でき、補修や保全などの管理に役立てることができる。また、本発明を用いることで、電源設備のない屋外環境や特殊環境においても簡便に、かつ非接触で腐食速度を測定することが可能となる。また、本発明の腐食速度測定用センサは、電池の交換や電源配置を行わないため、長期間、特別な管理をせずに測定を行うことができ、構造物の維持・管理を容易にするものである。 By using the corrosion rate measuring circuit, sensor, apparatus, and measuring method of the present invention, the corrosion rate of the steel material in the corrosion-degrading environment of the structure can be measured in a non-contact manner, which can be used for management of repair and maintenance. . Further, by using the present invention, it is possible to easily and non-contactly measure the corrosion rate even in an outdoor environment or a special environment without a power supply facility. In addition, since the corrosion rate measurement sensor of the present invention does not perform battery replacement or power supply arrangement, it can perform measurement without special management for a long time, and facilitates maintenance and management of the structure. Is.
本発明の第1の実施形態である腐食速度測定用装置の構成を図1に示す。腐食速度測定用装置Mは、腐食速度測定用センサ5と外部のアクティベータ6から構成されている。腐食速度測定用センサ5は、腐食速度測定用回路5'と、この腐食速度測定用回路5’の外部にある一対の測定対象電極1と、からなる。
FIG. 1 shows the configuration of the corrosion rate measuring apparatus according to the first embodiment of the present invention. The corrosion rate measuring device M includes a corrosion
さらに腐食速度測定用回路5'は、電気化学抵抗測定回路2、通信回路3と外部のアクティベータ6との間で電磁波を送受信する送受信アンテナ4とからなる。アクティベータ6は、送受信アンテナ7と送受信回路8からなる。
Further, the corrosion
前記電気化学抵抗測定回路2は外部にある一対の測定対象電極1に接続されるリード線13を有している。また、前記電気化学抵抗測定回路2は、インピーダンス測定回路10を有しており、このインピーダンス測定回路10は、前記リード線13を通して前記一対の測定対象電極1間に電圧又は電流を付加することで電気抵抗を測定することができる。更に、前記インピーダンス測定回路10は、測定した電気抵抗の測定データを用いて腐食速度と反比例の関係にある分極抵抗を算出することができる。更に、前記インピーダンス測定回路10は、算出した分極抵抗から腐食速度を算出することができる。また、前記電気化学抵抗測定回路2は、前記インピーダンス測定回路10に少なくとも2種類の周波数の電圧又は2種類の周波数の電流を印加することができる2周波印加回路9を有する。
The electrochemical
前記通信回路3は、前記送受信アンテナ4で変換された前記誘導電流を前記電気化学抵抗測定回路2へ伝送すると共に、前記電気化学抵抗測定回路2から前記電気抵抗の測定データ、前記分極抵抗の算出データ、又は前記腐食速度の算出データを受け取って前記送受信アンテナ4へ伝送する手段を有する。
The
前記送受信アンテナ4は、前記外部のアクティベータ6から送られる駆動電磁波を誘導電流へ変換可能であり、且つ、前記インピーダンス測定回路から前記通信回路経由で送られる電気抵抗の測定データ、分極抵抗の算出データ、又は腐食速度の算出データの信号電流を電磁波へ変換可能な誘導コイルを有する。
The transmission / reception antenna 4 can convert a driving electromagnetic wave sent from the
ここで、図2に示すように、前記の腐食速度測定用センサ5は、通信回路3に、前記測定対象電極1に固有の識別コードを記憶するメモリを有していてもよい。また、前記通信回路3は、前記電気抵抗値に加えて、メモリに記憶した前記識別コードを送信する機能を有しても良い。
Here, as shown in FIG. 2, the corrosion
また、図1に示す場合には、送受信アンテナ4を、腐食速度測定用センサ5の駆動電力取り込み用受信アンテナと測定で得たデータの送信用アンテナとを兼ねたアンテナとして使用する例を示しているが、データ送信用アンテナと駆動電力受信用アンテナとを別々に別途設けることも可能である。また、送受信アンテナ4は、アクティベータ6から送られる駆動電力用の電磁波だけでなく、識別番号等のデータも受信可能なアンテナとすることもできる。
In the case shown in FIG. 1, an example is shown in which the transmitting / receiving antenna 4 is used as an antenna that serves as both a receiving antenna for capturing driving power of the
本発明に用いるアクティベータ6は、腐食速度測定用センサ5に電磁波を送信して起電力を誘起し、腐食速度測定用センサ5より送信されたデータを読み取ることのできる機能を有するものであれば、特に限定するものではない。たとえば、市販品としては、125kHz帯用の吉川アールエフシステム社製のRX2100などが利用でき、13.56MHz帯では同じく吉川アールエフシステム社製のRX-TP-RW-01などが適用できる。
The
なお、本発明における腐食速度測定用センサ5は、一体となった形でも、測定対象電極1、電気化学抵抗測定回路2、通信回路3、送受信アンテナ4とがそれぞれ分離してその間を電気的に接続したものであっても問題はない。
In addition, the corrosion
図2は、電気化学抵抗測定回路2、通信回路3及び外部のアクティベータ6の詳細を示している。前記通信回路3内には、例えばd1、d2、d3、d4からなる内部メモリ27を有する。また、外部のアクティベータ6内の送受信回路8にも同様に例えばd5、d6、d7、d8からなる内部メモリ27を有している。
FIG. 2 shows details of the electrochemical
一対の測定対象電極1の金属表面の腐食速度を計測するにあたり、まず、第一に腐食速度測定用センサ5は、外部のアクティベータ6内の送受信アンテナ7から送られる駆動電磁波を送受信アンテナ4で受け、これを誘導電流に変換した後、通信回路3に伝送し、通信回路3は誘導電流を電気化学抵抗測定回路2に送る。そして2周波印加回路9では少なくとも2つの周波数を有する電圧を準備し、例えば最初に高周波電源を用いてインピーダンス測定回路10で測定対象電極1の高周波抵抗を測定する。そしてその値を内部メモリ27内の例えばd1に書き込む。この値を液抵抗と呼ぶ。次に低周波電源を用いて同じくインピーダンス測定回路10で測定対象電極1の低周波抵抗を測定する。
In measuring the corrosion rate of the metal surface of the pair of
そしてその値を内部メモリ27内の例えばd2に書き込む。その後、内部メモリd2の値からd1の値を減じた抵抗、すなわち分極抵抗値を計算し、その値を例えばd3に書き込む。また、例えばd4には上記測定対象電極1の識別番号を格納しておき、これら内部メモリの値d1、d2、d3、d4を通信回路3の送受信アンテナ4を用いて、電磁波によりアクティベータ6の送受信アンテナ7に転送し、送受信回路8内の内部メモリ28内のd5、d6、d7、d8にそれぞれの抵抗値と認識番号を格納する。ここで、2周波数印加回路を例に説明したが、必ずしも2周波数である必要は無く、2周波数以上を用いることもより多くの情報を得ることができるので必要に応じて選定すればよい。
Then, the value is written in, for example, d2 in the
また、上記では内部メモリd3に分極抵抗が格納されているが、このデータの転送にあたってはインピーダンス測定回路10あるいは通信回路3で後述する係数Kを用いて腐食速度に変換して転送してもよい。
In the above description, the polarization resistance is stored in the internal memory d3. However, when this data is transferred, the
また、上記では、2周波印加回路9では少なくとも2つの周波数を有する電圧を準備するとしたが、これは電圧制御方式で回路を構成する場合で、必ずしも電圧制御方式でなくてもよい。電流制御方式では、2周波印加回路9では少なくとも2つの周波数を有する電流を準備すればよい。
In the above description, the two-
次に本発明の第2の実施形態について述べる。本発明の第2の実施形態では、腐食速度測定用装置Mは、外部のアクティベータ6内の送受信アンテナ7からの駆動電磁波を送受信アンテナ4で受け、これを通信回路3を経由して電気化学抵抗測定回路2に送り、2周波印加回路9で2つの周波数を有する電圧もしくは2つの周波数を有する電流を準備するようになっている。この準備の際に、2周波数を有する電圧又は電流は2つの発振回路を用いれば任意に作成することもできるが、2周波数の一方をアクティベータからの駆動電磁波の周波数と同一とすることで、周波数発振回路を1つ省略でき単純化することができる。回路を単純化することは、故障の防止、回路の小型化の面で重要なことである。例えば、高周波側を一致させることは合理的で有効である。
Next, a second embodiment of the present invention will be described. In the second embodiment of the present invention, the corrosion rate measuring apparatus M receives the driving electromagnetic wave from the transmission /
また、本発明の第3の実施形態として、上記2周波数の一方を外部のアクティベータ6からの駆動電磁波を用いて、低周波側電圧又は電流として極めて低周波数、すなわち直流電圧又は電流を作成することもできる。つまり低周波数をアクティベータ6からの駆動電磁波をもとに整流を行い直流で代替することで1つの発振回路を省略でき電気化学抵抗測定回路を、ひいては腐食速度測定用センサをコンパクト化できる。また、低周波側電源を直流とすることで前記分極抵抗は原理的に精度が向上することにもなる。特に腐食速度の遅い環境、例えばコンクリート中、土中等の環境で分極抵抗を測定するには極めて有効となる。
Also, as a third embodiment of the present invention, one of the two frequencies is generated as a low frequency side voltage or current using a driving electromagnetic wave from an
分極抵抗を計測する電気化学抵抗測定の原理、及び分極抵抗から腐食速度を計算する詳細手法については後述する。以上のような構成及び手順により、一対の測定対象電極1の金属表面あるいは構造物表面の腐食速度を非接触で求めることが可能となる。
The principle of electrochemical resistance measurement for measuring the polarization resistance and the detailed method for calculating the corrosion rate from the polarization resistance will be described later. With the configuration and procedure as described above, the corrosion rate of the metal surface or the structure surface of the pair of
次に本発明の第4の実施形態について述べる。図3は、腐食速度測定用センサ5を実際の環境で適用する際の測定対象電極1の構成例を示しており、1対の金属製の棒状電極11、電極保持材12とリード線13から成っている。ここでは、電極は1対であるが、必ずしも1対である必要はなく、一般的には複数本あってもよい。複数本の中から1対を選定して測定すればよい。複数の組合わせで測定し、これら数値を平均化して抵抗値を用いることもできる。
Next, a fourth embodiment of the present invention will be described. FIG. 3 shows a configuration example of the
ここで、図3では、いずれの金属棒の暴露面積は同じとなっている。これは、後の原理で説明するように暴露面積が同じ場合には分極抵抗の算出が容易となるからである。しかし、必ずしも同一とする必要はない。あらかじめ詳細な電流分布計算や実験によって抵抗算出に関して面積の異なることを考慮した換算係数を準備しておけばよい。 Here, in FIG. 3, the exposed area of any metal bar is the same. This is because, as will be described later, when the exposed area is the same, the polarization resistance can be easily calculated. However, they are not necessarily the same. It is sufficient to prepare a conversion factor that takes into account the difference in area regarding resistance calculation through detailed current distribution calculations and experiments in advance.
この事例の測定対象電極1は、構造物に用いる金属を用いて作成することで、構造物の環境下、例えば海水中や土中、コンクリートやモルタル中などで金属の腐食速度を測定する場合に用いることができる。
The
次に本発明の第5の実施形態について述べる。図4及び図5は、鋼構造物等の電気伝導性を有する構造物部材14の表面に、2つの棒状電極11を電極保持材12を用いて設置した例で、構造物部材14を含めて測定対象電極1を形成している。図4は平面図、図5は断面図である。リード線13は棒状電極11と構造部材14に接続されている。棒状電極は必ずしも2つである必要はなく、1つ以上あればよい。この構成の場合には2通りの測定手法が可能となる。すまり、第一には対を成す棒状電極11を用いた抵抗測定が可能である。第二には棒状電極11と構造部材14とを対として抵抗測定することもできる。構造部材14を用いた場合には、構造物表面の抵抗を直接測定することも可能となる。この場合、前記同様にあらかじめ計算や実験によって抵抗算出に関して面積の異なることを考慮した換算係数を準備しておけばよい。
Next, a fifth embodiment of the present invention will be described. 4 and 5 show an example in which two rod-
次に本発明の第6の実施形態について述べる。図6及び図7は、鋼構造物等の電気伝導性を有する構造物部材14の表面に窪みをつけておき、4つの板状電極15の表面が構造物材の表面と同じレベルとなるように電極保持材12を解して設置した例である。リード線13は板状電極15と構造部材14に接続されている。この場合にも構造物部材14を含めて測定対象電極1を形成している。図6は平面図、図7は断面図である。この構成の場合にも上記第5の実施形態の場合と同様に2通りの測定手法が可能となる。この場合には板状電極は必ずしも4つである必要はなく、1つ以上あればよい。この図では、板状電極の表面レベルを構造物の表面レベルと同一にしているが必ずしも必要はないが、この配置では、構造物表面の環境に障害や環境変化を与えないというメリットがある。
Next, a sixth embodiment of the present invention will be described. 6 and 7, the surface of the
次に本発明の第7の実施形態について述べる。図8は、鋼構造物等の電気伝導性を有する構造部材14のあらかじめ開けられた電極設置穴に測定対象電極1を設置した場合の構成例であり、図8(a)は平面図、図8(b)は断面図である。なお、図8(a)は、図8(b)中の対象電極11を紙面の左手から見た図になっている。測定対象電極1はリング状及び円盤状電極16が、暴露面だけが露出するようにして電極保持材12に埋め込まれているという特徴がある。リード線13は板状電極15と構造部材14に接続されている。この構成でも構造物部材14を含めて測定対象電極1を形成しており、上記同様に2通りの測定手法が可能となる。この場合にもリング状電極、円盤状電極は必ずしも各1個である必要はなく、両者を含め1つ以上あればよい。この図でも、電極の表面レベルを構造物の表面レベルと同一にしているが必ずしも必要はない。また、外側のリング状の暴露面積と中心に置かれた円盤状の金属の暴露面積が同じとしているがこれも必ずしも必要ない。この例では、金属保持材12が円筒状となっているので、円筒表面にねじを切るもしくはボルトねじ先端に取り付ける等の工夫をして、溶液が流れる配管内部の腐食速度を計測することも有効となる。
Next, a seventh embodiment of the present invention will be described. FIG. 8 is a configuration example in which the
上記記載してきた本発明において金属保持材12は電気的絶縁材であることが望ましい。特に既定するものではないが、電気的抵抗が大きいことが必須用件であり、抵抗率として106Ωcm以上が望ましい。さらに、加工が容易で、かつ耐久性、耐腐食性に優れることも重要で、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン樹脂などを用いることができる。
In the present invention described above, the
次に本発明の第8の実施形態について述べる。図9は、構造物部材14'の表面に施工された塗膜や構造物表面に生成された錆被膜の電気化学抵抗の測定に本特許手法を応用する場合の構成例である。17は対抗電極、18は電極カバー、19は電解液を含浸させた接触材である。これは、対抗電極17からの電流を構造物表面の被膜20を解して構造部材14'に部材内電流35を流す目的で用いる。この材質としてはスポンジ、脱脂綿、又は吸水性高分子などのゲル状材料が適当である。
Next, an eighth embodiment of the present invention will be described. FIG. 9 shows a configuration example in the case where the present patent technique is applied to the measurement of the electrochemical resistance of the coating film applied on the surface of the
リード線13は2つの対抗電極17と構造部材14に接続されている。この構成でも構造物部材14を含めて測定対象電極1を形成しており、上記同様に2通りの測定手法が可能となる。第1の手法では、測定電流は一方の対抗電極17から塗膜あるいは錆被膜を通り鋼材中の矢印で示す経路を通り、もう一方の対抗電極17に流れることになる。第2の手法では、測定電流は1つの対抗電極17から塗装あるいは錆膜を通り構造部材14'にながれる。
The
次に本発明の第9の実施形態は、上記記載のいずれかの腐食速度測定用センサとこれらを非接触で駆動することができるアクティベータの両者から構成される腐食速度測定用装置を特徴としている。 Next, a ninth embodiment of the present invention is characterized by a corrosion rate measuring device comprising both the corrosion rate measuring sensor described above and an activator capable of driving them in a non-contact manner. Yes.
すなわち、一例を挙げれば、図1に示すように、本発明の第9の実施形態に係る腐食速度測定用装置Mは、腐食速度測定用センサ5と、この腐食速度測定用センサ5に駆動電磁波を送信できると共に、この腐食速度測定用センサ5から送られる電磁波に変換された電気抵抗の測定データ、分極抵抗の算出データ、又は腐食速度の算出データを受信できるアクティベータ6とからなるものである。
That is, as an example, as shown in FIG. 1, the corrosion rate measuring device M according to the ninth embodiment of the present invention includes a corrosion
また、本発明の第10の実施形態は、実施形態9で記載の装置を用いて、腐食速度を測定する方法である。 The tenth embodiment of the present invention is a method for measuring the corrosion rate using the apparatus described in the ninth embodiment.
すなわち、一例を挙げれば、一対の測定対象電極を腐食環境の媒体中に浸漬し、この一対の測定対象電極間に、上記電気化学抵抗測定回路にて印加された2種類の周波数の電圧をかけて、異なる2種類の電流を通すか、又は、上記電気化学抵抗測定回路にて印加された2種類の周波数の電流を流して、異なる2種類の電圧を生じさせ、上記2種類の電圧値及び電流値に対応する上記測定対象電極間の電気抵抗を測定し、前記測定した電気抵抗の測定データを用いて、上記電気化学抵抗測定回路内で分極抵抗を算出するか、又は上記アクティベータへ前記電気抵抗の測定データを送信した後に上記測定対象電極間の分極抵抗を算出することで、腐食速度を求めるものである。 That is, as an example, a pair of electrodes to be measured are immersed in a medium in a corrosive environment, and voltages having two types of frequencies applied by the electrochemical resistance measurement circuit are applied between the pair of electrodes to be measured. Two different types of currents are passed, or currents of two types of frequencies applied by the electrochemical resistance measurement circuit are passed to generate two different types of voltages, and the two types of voltage values and The electrical resistance between the electrodes to be measured corresponding to the current value is measured, and using the measurement data of the measured electrical resistance, the polarization resistance is calculated in the electrochemical resistance measurement circuit, or the activator The corrosion rate is obtained by calculating the polarization resistance between the electrodes to be measured after transmitting measurement data of electrical resistance.
ここで、媒体とは、淡水、海水、セメント、モルタル、コンクリート、又は大気である。これらは鋼構造物を対象とした媒体であるが、必ずしもこれらに限定されるものではなく、その他化学薬品溶液などの媒体でも問題はない。 Here, the medium is fresh water, seawater, cement, mortar, concrete, or air. These are media intended for steel structures, but are not necessarily limited to these, and there is no problem with other media such as chemical solutions.
次ぎに、本発明の腐食速度測定用センサに係る一実施形態として、複数の測定対象電極を使用する場合について説明する。 Next, a case where a plurality of electrodes to be measured are used will be described as one embodiment of the sensor for measuring corrosion rate of the present invention.
腐食速度測定用センサ内に、識別用のコード(以下、「識別コード」と呼称する)をメモリする機能を有し、更にこの識別コードをアクティベータへ非接触で送信する機能を有する例について説明する。測定対象電極29に固有な識別コードを通信回路の中に持たせ、アクティベータに測定した液抵抗値、分極抵抗値、ならびに測定対象電極29の識別コードを非接触で送信する機能を持たせることができる。これにより、複数の腐食速度測定装置を使用した際には、アクティベータへ送信される液抵抗値、分極抵抗値のデータが、どの測定対象電極から送られたデータかを、識別コードによって識別することが可能となる。
An example of having a function of storing an identification code (hereinafter referred to as “identification code”) in the corrosion rate measurement sensor and further having a function of transmitting the identification code to the activator in a non-contact manner will be described. To do. An identification code unique to the
識別コードのメモリ機能としては、例えば、すなわち本発明における通信回路内には、例えば16進数で8桁以上の識別コード番号を記憶する回路を保有させることができる。このことで、複数設置された腐食速度測定装置の個々の測定値を個別に認識することが可能となる。 As a memory function of the identification code, for example, in the communication circuit of the present invention, for example, a circuit for storing an identification code number of 8 digits or more in hexadecimal can be stored. This makes it possible to individually recognize individual measured values of a plurality of installed corrosion rate measuring devices.
この場合、具体的には予め設定した識別コード番号をアクティベータの送受信アンテナを介して電磁波として送信し、これを腐食速度測定用センサの送受信アンテナで受信し、通信回路内のメモリに記憶させる。 In this case, specifically, a preset identification code number is transmitted as an electromagnetic wave via a transmission / reception antenna of the activator, which is received by the transmission / reception antenna of the corrosion rate measuring sensor and stored in a memory in the communication circuit.
また、別の実施形態として、図10に示すように、腐食速度測定用センサ5内に複数の測定対象電極29を設けることもできる。この場合は、識別コードを、複数の測定対象電極29それぞれに割り当てるとよく、実際に、同一管理場所で複数の測定対象電極を使用する場合には、それぞれの測定対象電極29をチャンネル毎に識別コード番号を有するマルチプレクサ30に接続し、識別番号をそれぞれの測定対象電極29に識別コードを割り振ることで、測定対象電極29の識別コード番号を決めることもできる。
As another embodiment, as shown in FIG. 10, a plurality of
そして、その識別コード番号と抵抗値のデータを同時に送信することで、それぞれの測定対象電極の電気抵抗値を認識することが可能となる。 Then, by simultaneously transmitting the identification code number and the resistance value data, it is possible to recognize the electrical resistance value of each measurement target electrode.
この例として、一つの腐食速度測定用センサの中に、複数の測定対象電極を含む構成を造ることができる例を図10に示す。この図10においては、4個の測定対象電極29をマルチプレクサ30に接続している。マルチプレクサ30は、それぞれの測定対象電極29を順次切り換えることで、測定対象電極29毎に電気化学抵抗測定回路2で測定した電気抵抗値と識別コード番号を、送受信アンテナ4を介して通信回路5からアクティベータへ送信する。
As an example of this, FIG. 10 shows an example in which a structure including a plurality of electrodes to be measured can be formed in one corrosion rate measuring sensor. In FIG. 10, four
これらの識別コードは、予め例えば工場出荷の段階で腐食速度測定用センサ1内にメモリしておくことも出来るが、当該腐食速度測定用センサ5を被測定構造物にセットした後に、アクティベータからデータを送信し、腐食速度測定用センサ5の通信回路3内のメモリに記憶させることもできる。
These identification codes can be stored in advance in the corrosion
更には、腐食速度測定用センサ5毎に識別コードを割り当て、更に、腐食速度測定用センサ5内に複数存在する各測定対象電極29にも識別コードを割り当てるといった組み合わせも可能である。更には、複数の腐食速度測定用センサを個々に識別することも必要となるが、この識別番号も通信回路内のメモリに記憶させることが有効となる。この場合にも、予め割り振った識別番号をアクティベータの送受信アンテナを介して電磁波として送信し、これを腐食速度測定用センサの送受信アンテナ4で受信し、通信回路3内のメモリに記憶させることも可能である。
Furthermore, a combination in which an identification code is assigned to each corrosion
腐食速度測定用センサを取り付ける構造物としては、腐食により劣化が進むことで問題が生じる怖れのある構造物で、橋、道路、トンネルなどの陸上構造物や、ビル、体育館、競技場などの建築物、河川、港湾、護岸などの海洋・水上構造物、に代表される社会資本や船舶、発電所、工場などの民間資本による構造物などが対象となる。 The structure to which the sensor for measuring corrosion rate is attached is a structure that may cause problems due to deterioration due to corrosion, such as land structures such as bridges, roads, tunnels, buildings, gymnasiums, stadiums, etc. This includes social capital represented by buildings, rivers, harbors, seawalls such as seawalls, and private capital structures such as ships, power plants, and factories.
腐食速度測定用センサを取り付ける部位としては、腐食が懸念される部位で、軒天部や雨掛かりのある部位、排水の流れや結露により濡れる可能性が高い部位、海水に没している部位、土中埋設されている部位が適当である。これらの構造物に取り付ける方法としては、接着剤や粘着材による貼り付け、電気的絶縁を考慮したボルト接合や、構造物に直接埋め込む方法などが適宜選ばれる。 The part where the sensor for corrosion rate measurement is attached is a part where corrosion is a concern, a part with eaves or rain, a part that is highly likely to get wet due to the flow or condensation of drainage, a part immersed in seawater, Sites buried in the soil are appropriate. As a method of attaching to these structures, a method of attaching with an adhesive or a pressure-sensitive adhesive, bolt joining considering electric insulation, a method of directly embedding in the structure, or the like is appropriately selected.
例えば、鋼製の桁では下フランジ鋼表面に直接、接着材や粘着材で鋼と絶縁した状態で貼り付けることが適当である。鋼表面を電極の1つとする場合には、腐食速度測定用センサを貼り付けた近傍の鋼表面にリード線を直接ハンダや溶接により取り付ければよい。コンクリートに埋設された鉄筋に対しては、腐食速度測定用センサの測定対象電極をコンクリート中の鉄筋表面に電極保持材部を接着テープや結束バンド等で固定し、腐食速度測定回路部を防水性のプラスチックケース等に入れてコンクリート表面部に埋め込むことが適当である。 For example, in the case of a steel girder, it is appropriate to apply it directly to the surface of the lower flange steel while being insulated from the steel with an adhesive or adhesive material. When the steel surface is one of the electrodes, the lead wire may be directly attached to the steel surface in the vicinity of which the corrosion rate measuring sensor is attached by soldering or welding. For reinforcing bars embedded in concrete, the electrode for the corrosion rate measurement sensor is fixed to the surface of the reinforcing bar in the concrete with adhesive tape or a binding band, and the corrosion rate measuring circuit is waterproof. It is appropriate to embed in a concrete surface part in a plastic case.
構造物である鉄筋を電極の1つとする場合には、腐食速度測定用センサを貼り付けた近傍の鉄筋表面にリード線を溶接により取り付ければよい。また、鉄筋以外の電気伝導性を有する構造物に取り付ける場合も同様に、構造物表面にリード線を溶接すれば良い。 In the case where a reinforcing bar which is a structure is used as one of the electrodes, a lead wire may be attached to the surface of the reinforcing bar in the vicinity where the corrosion rate measuring sensor is attached by welding. Similarly, when attaching to a structure having electrical conductivity other than the reinforcing bar, the lead wire may be welded to the structure surface.
腐食速度測定用センサを設置してから腐食が進行した時点、又は腐食が進行したと考えられる時点でアクティベータにより測定を行う。測定を行っている様子を示したのが図18である。この場合は橋梁に設置したセンサ34を手に持ったアクティベータ33で測定している。センサとアクティベータの距離は、使用する周波数や周りの電波の状況などにより異なり、通常は接触に近い状態から50cm程度までである。
Measurement is performed by an activator at the time when the corrosion has progressed after the sensor for measuring the corrosion rate has been installed or when the corrosion is considered to have progressed. FIG. 18 shows how the measurement is performed. In this case, measurement is performed by an
腐食速度測定用センサの測定対象電極部が高所となる場合には、リード線を延長して腐食速度測定用回路部又は送受信アンテナ部のみをできる限り、測定者がアクセスできる位置に設置することが望ましい。更にこれが困難な場合はアクティベータの送受信アンテナのみを棒状の補助治具に取り付けて腐食速度測定用センサの送受信アンテナに近づけられるように工夫することも有効である。 If the measurement target electrode of the sensor for corrosion rate measurement is at a high location, extend the lead wire and install only the circuit for corrosion rate measurement or the transmission / reception antenna as much as possible so that the operator can access it. Is desirable. If this is difficult, it is also effective to attach only the activator's transmission / reception antenna to a rod-shaped auxiliary jig so as to be close to the transmission / reception antenna of the corrosion rate measuring sensor.
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例又は修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
次に、本発明の腐食速度測定用回路及び測定用センサを用いた腐食速度の測定原理を説明する。図11は、2周波数法を用いた電気化学抵抗測定を説明する説明図である。図11で、21は暴露金属、22は電気化学抵抗測定器(電気化学抵抗回路に相当)、23は溶液(媒体に相当)である。 Next, the measurement principle of the corrosion rate using the corrosion rate measurement circuit and the measurement sensor of the present invention will be described. FIG. 11 is an explanatory diagram for explaining electrochemical resistance measurement using a two-frequency method. In FIG. 11, 21 is an exposed metal, 22 is an electrochemical resistance measuring device (corresponding to an electrochemical resistance circuit), and 23 is a solution (corresponding to a medium).
図12はリード線13と暴露金属21を含む回路の電気特性を電気的に等価回路で模式したものである。ここで溶液中の暴露金属表面は、分極抵抗素子25とコンデンサー素子26の並列回路で、1対の暴露金属間にある溶液は溶液抵抗素子24で模擬されている。図中この回路に流れる電流をΔIとして、その時発生する電圧をΔEとしている。
FIG. 12 schematically shows the electrical characteristics of a circuit including the
図13は矩形波の電流制御型の2周波数法を用いた電気化学抵抗測定法で分極抵抗25(Rp)を算出する方法を説明している。 FIG. 13 illustrates a method for calculating the polarization resistance 25 (Rp) by an electrochemical resistance measurement method using a rectangular-wave current-controlled two-frequency method.
まず、第一ステップとして高周波矩形波電流を印加した測定を行なう。高周波電流の場合、図12の等価回路でコンデンサー素子Cpの抵抗がゼロとなり、式(1)で示すように全回路抵抗Rt=溶液抵抗Rsとなる。次に、第二ステップとして低周波矩形電流を印加した測定を行なう。この場合、コンデンサー素子Cpの抵抗が分極抵抗Rpより大幅に大となり、式(2)で示すように全回路抵抗はRt=Rs+2Rpと見なすことができる。その後、第三ステップとして、式(2)から得られる抵抗値Rt=Rs+2Rpから式(1)で得られる溶液抵抗値Rsを減ずることで、最終的に分極抵抗値Rpが算出されることになる。 First, as a first step, measurement is performed by applying a high-frequency rectangular wave current. In the case of a high-frequency current, the resistance of the capacitor element Cp becomes zero in the equivalent circuit of FIG. 12, and the total circuit resistance Rt = solution resistance Rs as shown in Expression (1). Next, the measurement which applied the low frequency rectangular current as a 2nd step is performed. In this case, the resistance of the capacitor element Cp is significantly larger than the polarization resistance Rp, and the total circuit resistance can be regarded as Rt = Rs + 2Rp as shown in Equation (2). Then, as a third step, the polarization resistance value Rp is finally calculated by subtracting the solution resistance value Rs obtained from the equation (1) from the resistance value Rt = Rs + 2Rp obtained from the equation (2). become.
ここで、高周波とはコンデンサー素子容量の抵抗成分が小さくなるとの観点からは10Hz以上が適当である。しかし、現状は、アクティベータ6と腐食速度測定用センサ5の電力の送受信や通信に用いる交流の周波数は電波法などの規定により、125kHz帯や、13.56MHz帯が多く、これらを目的によって使うことができる。
Here, the high frequency is suitably 10 Hz or more from the viewpoint of reducing the resistance component of the capacitor element capacitance. However, at present, the AC frequency used for power transmission / reception and communication of the
また低周波とはRt=Rs+2Rpと見なすことができる 1Hz以下、好ましくは0.25Hz以下もしくは直流が望ましい。
Rt=ΔEs / ΔI=Rs ------(1)
Rt=(ΔEs +ΔEp) / ΔI=Rs+2Rp ------(2)
The low frequency can be regarded as Rt = Rs + 2Rp. 1 Hz or less, preferably 0.25 Hz or less, or DC is desirable.
Rt = ΔEs / ΔI = Rs ------ (1)
Rt = (ΔEs + ΔEp) / ΔI = Rs + 2Rp ------ (2)
上記の分極抵抗は理論的に腐食速度に逆比例するものであるが、腐食速度を求めるには次式による計算を行なう。
V=α・K/Rp ----(3)
ここで、V:腐食速度(mm/年)、α:定数(mm/年・A-1 cm2)、K:定数(V)、
Rp:分極抵抗(Ωcm2)
The above-mentioned polarization resistance is theoretically inversely proportional to the corrosion rate, but the following equation is used to obtain the corrosion rate.
V = α · K / Rp ---- (3)
Where V: corrosion rate (mm / year), α: constant (mm / year · A −1 cm 2 ), K: constant (V),
Rp: Polarization resistance (Ωcm 2 )
αの値は、鉄の腐食の場合には11.6×103を用いる。アルミニウムで10.8×103、亜鉛で14.9×103、銅で11.6×103を用いる。Kの値としては、金属と腐食環境により適切な値を選定する必要があるが、通常分極抵抗測定と重量減少量との関係を求める実験により決定される。しかしながら、中性環境下ではこれまでの研究結果から、活性な腐食では0.03、不動態化状態では0.052などが用いられる。より精度をあげるには、あらかじめ実際の腐食環境を模擬した腐食実験により適切な数値を決めるのがよい。 As the value of α, 11.6 × 10 3 is used in the case of iron corrosion. Use 10.8 × 10 3 for aluminum, 14.9 × 10 3 for zinc, and 11.6 × 10 3 for copper. As the value of K, an appropriate value needs to be selected depending on the metal and the corrosive environment, but is usually determined by an experiment for determining the relationship between the polarization resistance measurement and the weight loss. However, under neutral conditions, 0.03 is used for active corrosion, 0.052 for passive state, etc., based on previous research results. In order to improve accuracy, it is better to determine an appropriate numerical value in advance by a corrosion experiment simulating an actual corrosive environment.
(実施例1)
異形鉄筋D13から30mm長さで直径が5mmの丸鋼を切削加工し、この表面を400番研磨紙で研磨した。これを8本準備し、上端にリード線を半田付けした。2本対の丸鋼の間隔を5mmとして、上下2箇所をエポキシ樹脂36中に埋め込み固定し、計4個を製作した。丸鋼の暴露長さはいずれも20mmを確保した。その後、上下を固定したエポキシ樹脂36の間にモルタルを充填した表1に示す4種類の供試体を作成した。すなわち、水セメント比(W/C=0.5と0.7)とセメントの混錬水としてNaCl濃度(0%、3%)の組み合わせの4種類のモルタルを準備した。尚、丸鋼は事前に重量を測定し表1の結果であった。測定対象電極を作製した。この概要図を図14に示す。この図の左は、測定対象電極を斜め上から見た鳥瞰図である。右に断面図を示す。
Example 1
A round steel having a length of 30 mm and a diameter of 5 mm was cut from the deformed reinforcing bar D13, and this surface was polished with No. 400 polishing paper. Eight of these were prepared, and a lead wire was soldered to the upper end. The distance between the two pairs of round steel bars was 5 mm, and the upper and lower portions were embedded and fixed in the
供試体にモルタルを充填後20日室内で乾燥させ、その後に大気中に120日間放置しその間、本発明である腐食速度測定用回路とアクティベータを用いて分極抵抗Rpをモニタリングした。この際、アクティベータとしてアールエフシステム社製のハンディリーダライタ(RX2100)を用いた。なお、駆動電磁波は125kHzで、測定で用いた高周波数は125kHzで、低周波数側は直流とした。 The specimen was dried in a room for 20 days after filling with mortar, and then allowed to stand in the atmosphere for 120 days. During that period, the polarization resistance Rp was monitored using the corrosion rate measuring circuit and activator of the present invention. At this time, a handy reader / writer (RX2100) manufactured by RF System was used as an activator. The driving electromagnetic wave was 125 kHz, the high frequency used in the measurement was 125 kHz, and the low frequency side was DC.
高周波側を駆動電磁波の周波数と同一の周波数とし、低周波側を直流とすることで、2つの発振回路を省略でき、腐食速度測定用回路の大きさを縦10cm×横7cm×高さ2cmと、コンパクト化することができた。尚、実施例1における電気化学抵抗測定回路は、印加された2種類の周波数の電圧をかけて、異なる2種類の電流を通すタイプを用いた。日々の測定結果を図15に示している。NaCl濃度が3%の分極抵抗は0%のもよりも常時小さな値となっており、腐食速度が速いことを示している。 By setting the high frequency side to the same frequency as that of the driving electromagnetic wave and the low frequency side to direct current, the two oscillation circuits can be omitted, and the size of the corrosion rate measuring circuit is 10 cm long × 7 cm wide × 2 cm high. It was possible to make it compact. In addition, the electrochemical resistance measurement circuit in Example 1 applied the voltage of the applied two types of frequency, and used the type which passes two different types of electric current. Daily measurement results are shown in FIG. When the NaCl concentration is 3%, the polarization resistance is always smaller than 0%, indicating that the corrosion rate is high.
試験後、供試体を破壊し、丸鋼を取り出し酸洗により錆を取り除き質量を測定し腐食減量を測定し単位面積あたりの腐食質量を求めた。一方、常時モニタリングして計測した分極抵抗Rpから腐食速度を式(3)により計算しさらに時間で積分して腐食減量の計算値を求めた。4つの供試体についてこれらの得られたデータを図16のようにプロットした。その結果、両者の間に十分な相関があった。このことは、本発明により腐食速度測定用センサにより測定した分極抵抗により算出した腐食速度は実現象を十分に捉えており、実環境下における金属の腐食速度を非接触で安定して測定できることを示している。 After the test, the specimen was broken, the round steel was taken out, rust was removed by pickling, the mass was measured, the corrosion weight loss was measured, and the corrosion mass per unit area was determined. On the other hand, the corrosion rate was calculated from the polarization resistance Rp that was constantly monitored and measured by the equation (3), and further integrated over time to obtain a calculated value of corrosion weight loss. These obtained data were plotted as shown in FIG. 16 for four specimens. As a result, there was a sufficient correlation between the two. This is because the corrosion rate calculated by the polarization resistance measured by the corrosion rate measuring sensor according to the present invention sufficiently captures the actual phenomenon, and the metal corrosion rate in the actual environment can be stably measured without contact. Show.
(実施例2)
JIS-SM400Bの板厚5mm鋼材から、外形20mmで内形17.3mmのリング状金属と、直径10mmの円盤状金属を切り出し、各々にリード線をハンダ付けしてエポキシ樹脂に埋め込んで、図8に示すような測定対象電極を1個作成した。この外表面は実施例1と同様に400番研磨紙で研磨した。この測定対象電極をバケット内に入れた人口海水中に3ヶ月間浸漬し腐食実験を行った。水温は40℃で一定とした。試験期間中は、実施例1と同様に本発明である腐食速度測定用回路とアクティベータを用いて1週間に1回、分極抵抗を測定した。この際、アクティベータとしてアールエフシステム社製のハンディリーダライタ(RX2100)を用いた。なお、駆動電磁波は125kHzで、測定で用いた高周波数は125kHzで、低周波数側は直流とした。
(Example 2)
From a JIS-SM400B steel plate with a thickness of 5 mm, a ring-shaped metal with an outer shape of 20 mm and an inner shape of 17.3 mm and a disk-shaped metal with a diameter of 10 mm are cut out, soldered with lead wires and embedded in epoxy resin, as shown in FIG. One measurement object electrode as shown was created. This outer surface was polished with No. 400 polishing paper as in Example 1. This measurement target electrode was immersed in artificial seawater in a bucket for 3 months to conduct a corrosion experiment. The water temperature was constant at 40 ° C. During the test period, the polarization resistance was measured once a week using the corrosion rate measuring circuit and activator according to the present invention as in Example 1. At this time, a handy reader / writer (RX2100) manufactured by RF System was used as an activator. The driving electromagnetic wave was 125 kHz, the high frequency used in the measurement was 125 kHz, and the low frequency side was DC.
高周波側を駆動電磁波の周波数と同一の周波数とし、低周波側を直流とすることで、2つの発振回路を省略でき、腐食速度測定用回路の大きさを縦10cm×横7cm×高さ2cmと、コンパクト化することができた。尚、実施例2における電気化学抵抗測定回路は、印加された2種類の周波数の電圧(一方は直流電圧)をかけて、異なる2種類の電流を通すタイプを用いた。 By setting the high frequency side to the same frequency as that of the driving electromagnetic wave and the low frequency side to direct current, the two oscillation circuits can be omitted, and the size of the corrosion rate measuring circuit is 10 cm long × 7 cm wide × 2 cm high. It was possible to make it compact. In addition, the electrochemical resistance measurement circuit in Example 2 used a type in which two different types of currents were passed by applying voltages of two kinds of applied frequencies (one is a DC voltage).
計測した分極抵抗Rpからは式(3)により腐食速度を計算し、さらに時間で積分して腐食減量の計算値を求めた。1ヶ月後、2ヶ月後、3ヶ月後の腐食減量の計算値は、それぞれ、11.3、22.3、23.6mg/cm2となった。 From the measured polarization resistance Rp, the corrosion rate was calculated by equation (3), and further integrated over time to obtain a calculated value of corrosion weight loss. The calculated values of corrosion weight loss after 1 month, 2 months, and 3 months were 11.3, 22.3, and 23.6 mg / cm 2 , respectively.
また、この実験では比較材として、別途、測定対象電極と同じロットから採取した鋼材から加工して、50mm×50mm×1.5tの腐食サンプルを3枚製作し、測定対象電極と同じバケット内に浸漬し同じく腐食実験を行った。この腐食サンプルは、1ヶ月後、2ヶ月後、3ヶ月後に各1枚を取り出し酸洗後、重量測定を行なった。各サンプルの表面積当たりの腐食減量は、 15.2、22.8、26.1mg/cm2であった。 In addition, in this experiment, as a comparative material, separately processed from a steel material taken from the same lot as the electrode to be measured, three 50mm x 50mm x 1.5t corrosion samples were produced and immersed in the same bucket as the electrode to be measured. Similarly, a corrosion experiment was conducted. This corrosion sample was taken out after 1 month, 2 months, and 3 months, and then pickled and weighed. The corrosion weight loss per surface area of each sample was 15.2, 22.8, 26.1 mg / cm 2 .
上記の3つの腐食サンプルについてこれらの得られたデータを図17のようにプロットした。その結果、両者の間に多少のバラツキはあるも十分な相関を示した。このことは、本発明による腐食速度測定用センサにより測定した分極抵抗により算出した腐食速度は実験値と良好な一致を示しており、実環境下における金属の腐食速度を非接触で安定して測定できることを示している。 These obtained data were plotted as shown in FIG. 17 for the above three corrosion samples. As a result, although there was some variation between the two, a sufficient correlation was shown. This indicates that the corrosion rate calculated by the polarization resistance measured by the corrosion rate measuring sensor according to the present invention is in good agreement with the experimental value, and the corrosion rate of metals in a real environment can be measured stably without contact. It shows what you can do.
本発明は、構造物の腐食劣化環境を評価する際に有用である。 The present invention is useful when evaluating the corrosion deterioration environment of a structure.
1 測定対象電極
2 電気化学抵抗測定回路
3 通信回路
4 送受信アンテナ
5 腐食速度測定用センサ
5' 腐食速度測定用回路
6 アクティベータ
7 送受信アンテナ
8 送受信回路
9 2周波印加回路
10 インピーダンス測定回路
11 棒状電極
12 電極保持材
13 リード線
14 構造部材
14' 皮膜付き構造部材
15 板状金属部材
16 リング状及び円盤状電極
17 対抗電極
18 電極カバー
19 電解液をしみ込ませ接触材
20 被膜
21 暴露金属部材
22 電気化学抵抗測定器
23 溶液
24 液抵抗素子
25 分極抵抗素子
26 コンデンサー素子
27 内部メモリ
28 内部メモリ
29 測定対象電極
30 マルチプレクサ
31 丸鋼
32 モルタル
33 アクティベータ
34 腐食速度センサ
35 部材内電流
36 エポキシ樹脂
M 腐食速度測定装置
DESCRIPTION OF
Claims (7)
前記電気化学抵抗測定回路は、前記一対の測定対象電極間にリード線を通して電圧又は電流を負荷することによる電気抵抗の測定、若しくは、当該電気抵抗の測定に加えて前記測定した電気抵抗からの分極抵抗の算出、又は、前記電気抵抗の測定及び前記分極抵抗の算出に加えて前記算出した分極抵抗からの腐食速度の算出を行うインピーダンス測定回路を有すると共に、前記インピーダンス測定回路に少なくとも2種類の周波数の電圧又は2種類の周波数の電流を印加することができる2周波印加回路を有し、 The electrochemical resistance measurement circuit measures electrical resistance by applying a voltage or current through a lead wire between the pair of electrodes to be measured, or polarization from the measured electrical resistance in addition to the measurement of the electrical resistance. In addition to the calculation of resistance or the measurement of the electrical resistance and the calculation of the polarization resistance, the impedance measurement circuit calculates the corrosion rate from the calculated polarization resistance, and the impedance measurement circuit has at least two types of frequencies. A two-frequency application circuit that can apply a voltage of 2 or a current of two types of frequencies,
前記2周波印加回路は、前記印加する少なくとも2種類の周波数の電圧のうちの1つを、又は前記印加する少なくとも2種類の周波数の電流のうちの1つを、前記アクティベータから送られる駆動電磁波の周波数と同一とし、若しくは前記アクティベータから送られる駆動電磁波から生成した直流電圧としているか、又は前記印加する少なくとも2種類の周波数の電流のうちの1つを、前記アクティベータから送られる駆動電磁波から生成した直流電流としていることを特徴とする腐食速度測定用センサ。 The two-frequency application circuit is a driving electromagnetic wave that is sent from the activator with one of the voltages having at least two types of frequencies to be applied or one of the current having at least two types of frequencies to be applied. Or a DC voltage generated from a driving electromagnetic wave sent from the activator, or one of the applied currents of at least two frequencies is generated from the driving electromagnetic wave sent from the activator. A sensor for measuring corrosion rate, characterized in that the generated direct current is used.
前記2種類の電圧値及び電流値に対応する前記測定対象電極間の電気抵抗を測定し、前記測定した電気抵抗から前記電気化学抵抗測定回路内で分極抵抗を算出するか、又は前記アクティベータへ前記電気抵抗の測定データを送信した後に前記測定対象電極間の分極抵抗を算出することで腐食速度を求めることを特徴とする腐食速度の測定方法。The electrical resistance between the electrodes to be measured corresponding to the two types of voltage value and current value is measured, and the polarization resistance is calculated in the electrochemical resistance measurement circuit from the measured electrical resistance, or to the activator A method of measuring a corrosion rate, wherein the corrosion rate is obtained by calculating a polarization resistance between the electrodes to be measured after transmitting measurement data of the electrical resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007100520A JP4886577B2 (en) | 2007-04-06 | 2007-04-06 | Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007100520A JP4886577B2 (en) | 2007-04-06 | 2007-04-06 | Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008256596A JP2008256596A (en) | 2008-10-23 |
JP4886577B2 true JP4886577B2 (en) | 2012-02-29 |
Family
ID=39980296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007100520A Active JP4886577B2 (en) | 2007-04-06 | 2007-04-06 | Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4886577B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403595A (en) * | 2015-12-22 | 2016-03-16 | 北京交通大学 | Tuber resistance imaging data acquisition system based on FPGA |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5204021B2 (en) * | 2009-03-31 | 2013-06-05 | 太平洋セメント株式会社 | Corrosion sensor unit and installation method of corrosion sensor |
JP5260388B2 (en) * | 2009-03-31 | 2013-08-14 | 太平洋セメント株式会社 | Corrosion sensor and installation method of corrosion sensor |
GB2470225A (en) * | 2009-05-15 | 2010-11-17 | Erasmus Technology Llp | Contactless microenvironment sensor |
KR101161626B1 (en) * | 2009-07-22 | 2012-07-04 | 경 연 김 | Apparatus and metohd of erosion measurement |
CN101846615B (en) * | 2010-05-17 | 2012-06-27 | 许丽涛 | Device and method for monitoring corrosion of buried steel pipelines |
JP2012193083A (en) * | 2011-03-17 | 2012-10-11 | Central Research Institute Of Electric Power Industry | Test sensor for crystal growth/dissolution rate test, method for producing the same, and in-situ crystal growth/dissolution rate measuring method using the sensor |
KR101293077B1 (en) | 2011-11-22 | 2013-08-05 | 주식회사 엘앤엘 | Corrosion sensor and method of sensing corrosion |
JP6251528B2 (en) * | 2013-09-20 | 2017-12-20 | 株式会社ダイヘン | Electrical equipment for power distribution |
JP6623329B2 (en) * | 2015-07-01 | 2019-12-25 | 株式会社三井E&Sマシナリー | Corrosion sensor |
JP6623326B2 (en) * | 2015-07-01 | 2019-12-25 | 株式会社三井E&Sマシナリー | Corrosion sensor |
JP6732236B2 (en) * | 2016-03-28 | 2020-07-29 | 中日本高速道路株式会社 | Method and system for measuring rebar corrosion environment in concrete |
CN105758787A (en) * | 2016-04-26 | 2016-07-13 | 南方电网科学研究院有限责任公司 | Corrosion rate measuring device and method |
JP6498147B2 (en) * | 2016-04-27 | 2019-04-10 | 日本電信電話株式会社 | Pipe corrosion estimation method and pipe corrosion estimation apparatus |
JP6944092B2 (en) * | 2016-08-25 | 2021-10-06 | 中日本高速道路株式会社 | Corrosion environment measurement method for structures, corrosion environment measurement system, repair plan formulation method and inspection plan formulation method using corrosion environment measurement results |
US10401319B2 (en) * | 2017-01-16 | 2019-09-03 | The Boeing Company | Structural health monitoring system |
DE102017105317B3 (en) * | 2017-03-14 | 2018-05-09 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | Device for characterizing the electrical resistance of a test object |
JP6833626B2 (en) * | 2017-06-08 | 2021-02-24 | 日本電信電話株式会社 | Measuring device and measuring method |
JP7079056B2 (en) * | 2018-03-28 | 2022-06-01 | 太平洋セメント株式会社 | Fixing jig and fixing method using this |
CN112666306B (en) * | 2019-10-16 | 2023-06-27 | 中国科学院大连化学物理研究所 | Porous electrode ionomer coverage calibration method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59155748A (en) * | 1983-02-25 | 1984-09-04 | Hitachi Ltd | Corrosion monitoring apparatus of tank main body having compensation electrode |
JPS62162949A (en) * | 1986-01-11 | 1987-07-18 | Nippon Steel Corp | Detecting method for corrosion speed of steel material |
US4843319A (en) * | 1987-12-17 | 1989-06-27 | Atlantic Richfield Company | Transient electromagnetic method for detecting corrosion on conductive containers having variations in jacket thickness |
US4929898A (en) * | 1987-12-17 | 1990-05-29 | Atlantic Richfield | Transient electromagnetic method for detecting irregularities on conductive containers |
US5448178A (en) * | 1993-11-05 | 1995-09-05 | Nalco Chemical Company | Transient technique to determine solution resistance for simple and accurate corrosion rate measurements |
JPH085598A (en) * | 1994-06-20 | 1996-01-12 | Yamatake Honeywell Co Ltd | Corrosion rate meter |
JPH1048173A (en) * | 1996-08-05 | 1998-02-20 | Mitsubishi Chem Corp | Apparatus for measuring corrosion of outer face of metallic piping |
US7034660B2 (en) * | 1999-02-26 | 2006-04-25 | Sri International | Sensor devices for structural health monitoring |
JP2000258381A (en) * | 1999-03-09 | 2000-09-22 | Central Res Inst Of Electric Power Ind | Method and device for measuring corrosion rate in thermal plant water-feeding system and water quality control method utilizing them |
JP2001221767A (en) * | 2000-02-10 | 2001-08-17 | Mitsubishi Chemicals Corp | Corrosion speed measuring method of metal and device therefor |
JP3416875B2 (en) * | 2000-07-24 | 2003-06-16 | 日本エルエスアイカード株式会社 | Civil engineering / construction structure condition inspection system and sensor-integrated device used therefor |
JP3678406B2 (en) * | 2000-08-31 | 2005-08-03 | 独立行政法人物質・材料研究機構 | In-situ measurement method for corrosion rate of steel structures. |
JP3883555B2 (en) * | 2005-02-15 | 2007-02-21 | 松下電器産業株式会社 | Pressure measurement system |
JP2006349535A (en) * | 2005-06-16 | 2006-12-28 | Taiheiyo Cement Corp | Composite sensor module and sensor device |
JP2007024872A (en) * | 2005-06-16 | 2007-02-01 | Taiheiyo Cement Corp | Compound sensor module, sheath pipe, and sheath pipe joint member |
JP4895886B2 (en) * | 2006-03-29 | 2012-03-14 | 新日本製鐵株式会社 | Corrosion measurement sensor |
-
2007
- 2007-04-06 JP JP2007100520A patent/JP4886577B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403595A (en) * | 2015-12-22 | 2016-03-16 | 北京交通大学 | Tuber resistance imaging data acquisition system based on FPGA |
Also Published As
Publication number | Publication date |
---|---|
JP2008256596A (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4886577B2 (en) | Corrosion rate measuring sensor, apparatus, and corrosion rate measuring method | |
US7148706B2 (en) | Embeddable corrosion rate meters for remote monitoring of structures susceptible to corrosion | |
Elsener et al. | Half-cell potential measurements—Potential mapping on reinforced concrete structures | |
JP4688080B2 (en) | Corrosion sensor, sheath tube, sheath tube joint member and corrosion sensor unit | |
US8111078B1 (en) | Oxidizing power sensor for corrosion monitoring | |
US9354157B2 (en) | Apparatus and method for assessing subgrade corrosion | |
Xia et al. | Electrochemical probes and sensors designed for time-dependent atmospheric corrosion monitoring: fundamentals, progress, and challenges | |
Nygaard et al. | Corrosion rate of steel in concrete: evaluation of confinement techniques for on-site corrosion rate measurements | |
CN109797399A (en) | The measuring device and method of steel gas pipe underground polarization potential | |
JP2007278843A (en) | Device and method for diagnosing corrosion in underground buried steel structure | |
US4051436A (en) | Apparatus for and method of measuring polarization potential of a metallic structure | |
JP2010266342A (en) | Metal corrosion diagnostic method | |
JPH09196876A (en) | Detecting method for corroded spot of steel material in concrete | |
Popov et al. | Cathodic protection of pipelines | |
GB2470225A (en) | Contactless microenvironment sensor | |
Poursaee | Corrosion sensing for assessing and monitoring civil infrastructures | |
CN205898650U (en) | Monitoring system for durability deterioration evolution of reinforced concrete structure | |
JP2002296213A (en) | Corrosion evaluation method and database | |
Malaekeh et al. | Detection of the Rebar Corrosion in Concrete Using a New IOT-Based Device Constructed by the Solid-Phase Electrodes and Pressure Sensors | |
CN210134166U (en) | Cathode protection device and storage tank | |
JP2018205224A (en) | Measuring device and measurement method | |
US6582587B1 (en) | Cathodic protection design method, current mapping and system | |
Bozzini et al. | An electrochemical investigation into the galvanic corrosion of carbon steel coupled to carbon fibres | |
Hossain | Development of Local and Global Corrosion Sensing Technique to Monitor Structural Behavior of Prestressed Concrete Structures | |
WO2003006958A1 (en) | Long-life conductivity sensor system and method for using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4886577 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |