JP4872407B2 - Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel - Google Patents
Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel Download PDFInfo
- Publication number
- JP4872407B2 JP4872407B2 JP2006093149A JP2006093149A JP4872407B2 JP 4872407 B2 JP4872407 B2 JP 4872407B2 JP 2006093149 A JP2006093149 A JP 2006093149A JP 2006093149 A JP2006093149 A JP 2006093149A JP 4872407 B2 JP4872407 B2 JP 4872407B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- galvanizing
- steel
- hydrogen embrittlement
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、建築・土木や産業機械、タンク、ラインパイプ、自動車用ドアの補強材、高力ボルト、橋梁用ケーブル、ワイヤ、PC鋼棒等に用いられる高強度鋼材の水素脆化感受性を評価する際、評価するのに先立って水素封入のために鋼材(試験片)に施す亜鉛めっきに用いる亜鉛めっき液および亜鉛めっき方法、ならびに、その方法で亜鉛めっきを施した試験片を用いた水素脆化感受性評価方法に関するものである。 The present invention evaluates the hydrogen embrittlement susceptibility of high-strength steel materials used for construction, civil engineering, industrial machinery, tanks, line pipes, automotive door reinforcements, high strength bolts, bridge cables, wires, PC steel bars, etc. Before the evaluation, the hydrogen embrittlement using the galvanizing solution and galvanizing method used for the galvanizing applied to the steel material (test piece) for hydrogen filling, and the test piece galvanized by the method. The present invention relates to a chemical susceptibility evaluation method.
鋼構造物の大型化や軽量化のニーズを背景として、構造部材に用いられる鋼材の高強度化が指向されている。しかし、鋼材は、一般に、高強度化に伴って、鋼中に侵入した水素、特に、室温において鋼中を拡散できる拡散性水素によって脆化が起こり易くなる(水素脆化感受性が高くなる)傾向がある。そのため、例えば、高力ボルトの分野では、JIS B1186(2004年)において、F11T級ボルト(引張強さ1100〜1300N/mm2)には「なるべく使用しない」との註が付けられているように、高強度鋼の使用は限定的である。 With the background of the need to increase the size and weight of steel structures, the strength of steel materials used for structural members has been increasing. However, in general, steel materials tend to be more susceptible to embrittlement (higher hydrogen embrittlement susceptibility) due to hydrogen that has penetrated into steel, particularly diffusible hydrogen that can diffuse in steel at room temperature, as strength increases. There is. Therefore, for example, in the field of high-strength bolts, in JIS B1186 (2004), F11T class bolts (tensile strength 1100 to 1300 N / mm 2 ) are marked as “not used as much as possible”. The use of high-strength steel is limited.
鋼材の水素脆化に起因する割れは、材料の使用開始から数十年の歳月を経て発生する場合もあることから「遅れ破壊」とも呼ばれている。耐水素脆化特性の評価は、通常、促進試験によって行われている。上記促進試験による鋼材の水素脆化感受性の評価方法については、今日までに種々の提案がなされているが、中でも限界拡散性水素量や水素脆化危険度指数を用いた評価方法は、水素脆化感受性の評価方法として有効であることが知られており、例えば、特許文献1〜3に記載されているように、耐水素脆化特性に優れた材料を開発する上での評価指針として用いられている。
Cracks caused by hydrogen embrittlement of steel materials are sometimes called “delayed fracture” because they may occur after decades of use from the start of material use. The evaluation of the hydrogen embrittlement resistance is usually performed by an accelerated test. Various proposals have been made to date for the evaluation method of steel material hydrogen embrittlement susceptibility by the above-mentioned accelerated test. Among them, the evaluation method using the critical diffusible hydrogen content and the hydrogen embrittlement risk index is the hydrogen embrittlement. It is known to be effective as an evaluation method for susceptibility to hydrogenation. For example, as described in
上記の限界拡散性水素量や水素脆化危険度指数は、試験片の内部に水素を導入した後、その水素の放出を防止するめっき処理を施してから、低歪速度引張試験や定荷重試験等の機械的試験法によって求められる。めっき処理を行うのは、機械的試験中に材料から水素が放出されてしまうと、正確な限界拡散牲水素量や水素脆化危険度指数を求めることができなくなるからである。 The above critical diffusible hydrogen content and hydrogen embrittlement risk index are determined by introducing low-strain-rate tensile tests and constant load tests after introducing hydrogen into the specimen and then performing plating treatment to prevent the release of the hydrogen. It is calculated | required by mechanical test methods, such as. The reason why the plating process is performed is that if hydrogen is released from the material during the mechanical test, it becomes impossible to obtain an accurate limit diffusion hydrogen amount and a hydrogen embrittlement risk index.
水素の放出を防止する方法としては、上記特許文献1には、試験片の表面にカドミウムめっきを施す方法が開示されている。しかし、カドミウムめっきは、環境に多大な負荷を与える他、人体に対する悪影響が大きいため、カドミウムを取り扱うための特殊な施設や、特別なノウハウを持った機関でのみしか実施ができないという問題がある。
As a method for preventing the release of hydrogen,
そこで、この問題に対処するため、特許文献2および3には、カドミウムめっきの代替として、試験片の表面に亜鉛めっきを施す方法が提案されている。しかし、上記特許文献2には、亜鉛めっきを施す際のめっき液組成やめっき条件についての開示が無いため、実施することが難しいという問題がある。
Therefore, in order to cope with this problem,
一方、特許文献3には、めっき液組成やめっき条件についての開示はあるものの、その方法で試験片中に封入可能な拡散性水素量は、最大でも4.8massppmでしかない。しかし、溶接部等を想定した場合には、4.8massppmよりも多くの拡散性水素が材料に侵入する場合も十分に有り得ることである。したがって、鋼材の耐水素脆化特性を正確に評価するためには、4.8massppmより多い量の拡散性水素を封入した評価試験をも実施できることが必要である。
On the other hand, although
さらに、鋼材の水素脆化感受性を評価するためには、促進試験とは言え、150時間以上を要する場合があり、この試験期間中に試験片から水素が放出してしまうと、水素量と水素脆化感受性との関係を正確に把握することができなくなる。したがって、封入できる水素量が多いだけでなく、促進試験中、長時間に亘って封入した水素を保持できるめっき方法が必要とされる。
上述したように、従来の技術では、限界拡散性水素量や耐水素脆化安全度指数の測定に必要不可欠な、4.8massppmを超える拡散性水素を試験片中に長時間に亘って封入する技術が確立していないため、多量の拡散性水素を含む鋼材の水素脆化感受性を精度よく評価することができなかった。 As described above, in the conventional technology, diffusible hydrogen exceeding 4.8 mass ppm, which is indispensable for measuring the limit diffusible hydrogen amount and the hydrogen embrittlement safety index, is sealed in the test piece for a long time. Since the technology has not been established, the hydrogen embrittlement susceptibility of steel materials containing a large amount of diffusible hydrogen could not be accurately evaluated.
本発明は、上記実情に鑑みなされたものであり、その目的とするところは、環境および人体への悪影響が軽減でき、しかも、従来法に比べてより多くの拡散性水素を長時間に亘って封入可能な亜鉛めっきに用いる亜鉛めっき液およびその亜鉛めっき方法と、その方法で低濃度から高濃度に亘る拡散性水素を封入した試験片を用いて行う水素脆化感受性評価方法を提案することにある。 The present invention has been made in view of the above circumstances, and its object is to reduce adverse effects on the environment and the human body, and more diffusible hydrogen can be produced over a long period of time compared to conventional methods. To propose a galvanizing solution used for encapsulating galvanizing, its galvanizing method, and a hydrogen embrittlement susceptibility evaluation method using a test piece encapsulating diffusible hydrogen ranging from low to high concentration. is there.
発明者らは、従来技術が抱える上記問題点を解決すべく、めっき液組成およびめっき条件に関して詳細な検討を行った。その結果、主として塩化亜鉛と塩化アンモニウムからなるめっき液中に添加する各種添加剤の組成および添加量を適正化することによって、従来の亜鉛めっきやカドミウムめっきに比べてより多くの拡散性水素を長時間に亘って鋼中に封入することができることを見出し、本発明を完成するに至った。 In order to solve the above-described problems of the prior art, the inventors have conducted a detailed study on the plating solution composition and plating conditions. As a result, by optimizing the composition and amount of various additives added to the plating solution mainly composed of zinc chloride and ammonium chloride, more diffusible hydrogen can be produced compared to conventional zinc plating and cadmium plating. It has been found that it can be encapsulated in steel over time, and the present invention has been completed.
すなわち、本発明は、水素脆化感受性を評価する鋼材表面に施す亜鉛めっきに用いる亜鉛めっき液であって、その亜鉛めっき液は、塩化亜鉛:20〜70g/l、塩化アンモニウム:140〜230g/l、ホウ酸:1〜100g/l、芳香族カルボン酸および芳香族カルボン酸の塩から選ばれる1種以上の減極剤:0.1〜20g/l、芳香族アルデヒド、芳香族ケトン、ナフタリンスルホン酸ソーダ、2エチルへキシル硫酸ソーダおよびフェニルチオ尿素から選ばれる1種以上の光沢剤:0.001〜20g/l、ポリエチレングリコール、ジカルボン酸およびジアミンから選ばれる1種以上の平滑化剤:0.01〜50g/lを含有することを特徴とする亜鉛めっき液である。 That is, the present invention is a galvanizing solution used for galvanizing applied to the surface of a steel material to be evaluated for hydrogen embrittlement susceptibility, and the galvanizing solution contains zinc chloride: 20 to 70 g / l, ammonium chloride: 140 to 230 g / l, boric acid: 1-100 g / l, one or more depolarizers selected from aromatic carboxylic acids and salts of aromatic carboxylic acids: 0.1-20 g / l, aromatic aldehydes, aromatic ketones, naphthalene One or more brighteners selected from sodium sulfonate, 2 ethylhexyl sulfate and phenylthiourea: 0.001 to 20 g / l, one or more smoothing agents selected from polyethylene glycol, dicarboxylic acid and diamine: 0 The zinc plating solution is characterized by containing 0.01 to 50 g / l.
また、本発明は、水素脆化感受性を評価する鋼材表面に亜鉛めっきを施す方法であって、その亜鉛めっき方法は、上記の亜鉛めっき液のpHを5.0〜6.5、温度を10〜45℃として、陰極電流密度:0.3〜6A/dm2で1分以上行うことを特徴とする亜鉛めっき方法である。 Further, the present invention is a method of galvanizing the surface of a steel material to be evaluated for hydrogen embrittlement sensitivity. The galvanizing method has a pH of 5.0 to 6.5 and a temperature of 10 above. It is a galvanizing method characterized in that it is carried out at a cathode current density of 0.3 to 6 A / dm 2 for 1 minute or more at ˜45 ° C.
また、本発明は、鋼材に水素を含有させてから上記の方法で亜鉛めっきを施し、その後、1×10−3/秒以下の低歪速度引張試験、または定荷重引張試験を行い、限界拡散性水素量を求めることを特徴とする鋼材の水素脆化感受性評価方法である。 In the present invention, the steel material is made to contain hydrogen and then galvanized by the above method, and then a low strain rate tensile test or a constant load tensile test of 1 × 10 −3 / sec or less is performed, and the critical diffusion is performed. This is a method for evaluating the susceptibility to hydrogen embrittlement of steel, characterized by determining the amount of reactive hydrogen.
また、本発明は、鋼材に水素を含有させてから上記の方法で亜鉛めっきを施し、その後、1×10−3/秒以下の低歪速度引張試験を行い、下記式;
耐水素脆化安全度指数(%)=100×(X1/X0)
ここで、X0:実質的に拡散性水素を含まない試験片の絞り
X1:拡散性水素を含む試験片の絞り
より耐水素脆化安全度指数を求めることを特徴とする鋼材の水素脆化感受性評価方法である。
Moreover, this invention makes steel material contain hydrogen, then galvanizes by the above-mentioned method, and then performs a low strain rate tensile test of 1 × 10 −3 / sec or less.
Hydrogen embrittlement safety index (%) = 100 × (X 1 / X 0 )
Here, X 0 : Diaphragm restriction of test piece substantially not containing diffusible hydrogen
X 1 : A hydrogen embrittlement susceptibility evaluation method for steel, characterized in that a hydrogen embrittlement safety index is obtained from a drawing of a test piece containing diffusible hydrogen.
本発明によれば、従来法と比べて、環境および人体への悪影響が軽減され、かつ、より多くの拡散性水素を材料中に長時間封入することが可能となるため、従来よりも多量の拡散性水素を含有する鋼材の水素脆化感受性を高い精度で評価することが可能になる。 According to the present invention, as compared with the conventional method, adverse effects on the environment and the human body are reduced, and more diffusible hydrogen can be encapsulated in the material for a long time. It becomes possible to evaluate the hydrogen embrittlement susceptibility of steel materials containing diffusible hydrogen with high accuracy.
本発明に係る水素脆化感受性評価方法は、鋼材(試験片)に、種々の量の拡散性水素を含有させてから、試験中に試験片から水素が抜け出るのを防止するため亜鉛めっきを施し、その後、1×10−3/秒以下の低歪速度引張試験、または定荷重引張試験を行い、限界拡散性水素量あるいは耐水素脆化安全度指数を求めることによって鋼材の水素脆化感受性を評価する方法において、本発明の亜鉛めっき液およびめっき方法によって、従来の技術では実現できなかった高い濃度の拡散性水素を長時間に亘って試験片中に封入することを可能とし、もって、高い濃度の拡散性水素を含有する試験片の水素脆化感受性の評価を可能としたところに特徴がある。 In the hydrogen embrittlement susceptibility evaluation method according to the present invention, a steel material (test piece) is made to contain various amounts of diffusible hydrogen, and then zinc plating is applied to prevent hydrogen from escaping from the test piece during the test. Thereafter, a low strain rate tensile test or a constant load tensile test of 1 × 10 −3 / sec or less is performed, and the critical diffusible hydrogen amount or the hydrogen embrittlement resistance safety index is obtained, thereby making the steel material susceptible to hydrogen embrittlement. In the evaluation method, the zinc plating solution and the plating method of the present invention enable high concentration diffusible hydrogen, which could not be realized by the conventional technique, to be sealed in the test piece over a long period of time. It is characterized in that it makes it possible to evaluate the hydrogen embrittlement susceptibility of a test piece containing a concentration of diffusible hydrogen.
先ず、本発明の特徴である、高濃度の水素を封入可能なめっきを形成するのに不可欠な亜鉛めっき液の成分組成について説明する。
塩化亜鉛:20〜70g/l
塩化亜鉛は、亜鉛めっきの金属亜鉛源として添加するが、20g/l未満では、陰極電流効率が低下し、鋼材の全面に緻密な亜鉛めっき層が形成されず、鋼中水素の封入能力が低下する。一方、70g/lを超えると、めっき層の均一電着性が低下し、鋼材全面に緻密なめっき層を形成することができなくなり、鋼中水素の封入能力を失う。よって、本発明では、塩化亜鉛の含有量を20〜70g/lの範囲とするのが好ましい。より好ましくは、30〜60g/lの範囲である。
First, the component composition of the zinc plating solution, which is a feature of the present invention and is indispensable for forming a plating capable of enclosing a high concentration of hydrogen, will be described.
Zinc chloride: 20-70 g / l
Zinc chloride is added as a metal zinc source for galvanization, but if it is less than 20 g / l, the cathode current efficiency is reduced, a dense galvanized layer is not formed on the entire surface of the steel material, and the ability to enclose hydrogen in steel is reduced. To do. On the other hand, when it exceeds 70 g / l, the throwing power of the plating layer is lowered, and it becomes impossible to form a dense plating layer on the entire surface of the steel material, so that the ability to enclose hydrogen in steel is lost. Therefore, in this invention, it is preferable to make content of zinc chloride into the range of 20-70 g / l. More preferably, it is the range of 30-60 g / l.
塩化アンモニウム:140〜230g/l
塩化アンモニウムは、陰極電流効率を適正化する効果があり、均一電着性と、鋼材全面に緻密なめっき層を形成するために添加する。塩化アンモニウムの含有量が140g/l未満では、めっき層が緻密にならず、鋼中水素の封入能力を失う。一方、230g/lを超えると、陰極電流効率が低下し、めっき層が緻密とならないため、鋼中水素の封入能力を失う。よって、本発明では、塩化アンモニウムの添加量を140〜230g/lの範囲内とするのが好ましい。より好ましくは150〜220g/lの範囲である。
Ammonium chloride: 140-230 g / l
Ammonium chloride has the effect of optimizing the cathode current efficiency, and is added to form uniform electrodeposition and to form a dense plating layer on the entire surface of the steel material. When the content of ammonium chloride is less than 140 g / l, the plating layer does not become dense and loses the ability to enclose hydrogen in steel. On the other hand, when it exceeds 230 g / l, the cathode current efficiency is lowered and the plating layer is not dense, so that the ability to enclose hydrogen in steel is lost. Therefore, in this invention, it is preferable to make the addition amount of ammonium chloride into the range of 140-230 g / l. More preferably, it is the range of 150-220 g / l.
ホウ酸:1〜100g/l
ホウ酸は、pHを安定させるためのpH緩衝剤として添加する。ホウ酸の含有量が1g/l未満ではその効果が不十分であり、安定して緻密なめっき層を形成することができないため、鋼中水素の封入能力を失う。逆に、100g/lを超えて添加しても、その効果が飽和するだけである。よって、ホウ酸は1〜100g/lの範囲で添加するのが好ましい。より好ましくは、5〜50g/lの範囲である。
Boric acid: 1-100 g / l
Boric acid is added as a pH buffer to stabilize the pH. If the boric acid content is less than 1 g / l, the effect is insufficient, and a stable and dense plating layer cannot be formed. Conversely, adding more than 100 g / l only saturates the effect. Therefore, it is preferable to add boric acid in the range of 1 to 100 g / l. More preferably, it is the range of 5-50 g / l.
減極剤:0.1〜20g/l
減極剤は、電極に停滞して電極反応の進行を妨げる放電生成物を取り除くために添加するもので、芳香族カルボン酸およびその塩を好適に用いることができる。これらの減極剤の含有量が、芳香族カルボン酸およびその塩の合計で0.1g/l未満では、めっき層にクモリが発生して、鋼中水素の封入能力を失う。一方、20g/lを超えると、めっき層にピットが発生し、鋼中水素の封入能力を失う。従って、減極剤は0.1〜20g/lの範囲で添加するのが好ましい。より好ましくは、1〜10g/lの範囲である。なお、減極剤としては、上記の芳香族カルボン酸およびその塩の他に、安息香酸、フタル酸、サリチル酸およびそれらのナトリウム塩、カリウム塩なども用いることができる。
Depolarizer: 0.1-20 g / l
The depolarizer is added in order to remove discharge products that stagnate in the electrode and hinder the progress of the electrode reaction, and aromatic carboxylic acids and salts thereof can be suitably used. When the content of these depolarizers is less than 0.1 g / l in total of the aromatic carboxylic acid and its salt, spider is generated in the plating layer, and the ability to enclose hydrogen in steel is lost. On the other hand, when it exceeds 20 g / l, pits are generated in the plating layer, and the ability to enclose hydrogen in steel is lost. Therefore, the depolarizer is preferably added in the range of 0.1 to 20 g / l. More preferably, it is the range of 1-10 g / l. In addition to the above aromatic carboxylic acids and salts thereof, benzoic acid, phthalic acid, salicylic acid, and sodium salts and potassium salts thereof can also be used as the depolarizer.
光沢剤:0.001〜20g/l
光沢剤は、均一電着性やめっき表面の平滑化および密着性を改善するために添加する。この光沢剤としては、芳香族アルデヒド、芳香族ケトン、ナフタリンスルホン酸ソーダ、2エチルへキシル硫酸ソーダ、フェニルチオ尿素から選ばれる1種または2種以上を好適に用いることができる。なお、芳香族アルデヒドや芳香族ケトンとしては、ベンズアルデヒド、アセトフェノン、ベンザルアセトン等を好ましく用いることができる。光沢剤の含有量は、0.001g/l未満では、めっき層にクモリが発生して鋼中水素の封入能力を失う。一方、20g/lを超えると、めっき層にピットが発生し、鋼中水素の封入能力を失う。よって、本発明では、光沢剤は0.001〜20g/lの範囲で含有するのが好ましい。より好適には0.005〜10g/lの範囲である。
Brightener: 0.001 to 20 g / l
The brightener is added in order to improve the throwing power and the smoothness and adhesion of the plating surface. As the brightener, one or more selected from aromatic aldehydes, aromatic ketones, sodium naphthalene sulfonate, 2-ethylhexyl sulfate, and phenylthiourea can be suitably used. As the aromatic aldehyde or aromatic ketone, benzaldehyde, acetophenone, benzalacetone, or the like can be preferably used. If the content of the brightening agent is less than 0.001 g / l, spider is generated in the plating layer, and the ability to enclose hydrogen in steel is lost. On the other hand, when it exceeds 20 g / l, pits are generated in the plating layer, and the ability to enclose hydrogen in steel is lost. Therefore, in the present invention, the brightener is preferably contained in the range of 0.001 to 20 g / l. More preferably, it is in the range of 0.005 to 10 g / l.
平滑化剤:0.01〜50g/l
平滑化剤は、主に、めっき表面を平滑化するために添加する。このような効果を有するものとしては、ポリエチレングリコール、ジカルボン酸、ジアミン等が挙げられる。なお、ジカルボン酸やジアミンとしては、ポリエチレンオキシジカルボン酸(MW4000)、ポリエチレンオキシジカルボン酸(MW6000)、ポリエチレンオキシジアミン(MW6000)等を好適に用いることができる。平滑化剤の含有量は、ポリエチレングリコール、ジカルボン酸、ジアミンから選ばれる1種以上を0.01g/l以上とするのが好ましい。0.01g/l未満では、平滑化作用が不十分なため、めっき表面が粗くなり、鋼中水素の封入能力を失う。一方、50g/lを超えて添加しても、平滑化効果は飽和してしまう。よって、本発明では、上記平滑化剤は、0.01〜50g/lの範囲で含有するのが好ましい。より好適には、0.5〜30g/lである。
Smoothing agent: 0.01 to 50 g / l
The smoothing agent is added mainly for smoothing the plating surface. Examples of such an effect include polyethylene glycol, dicarboxylic acid, and diamine. As the dicarboxylic acid or diamine, polyethyleneoxydicarboxylic acid (MW4000), polyethyleneoxydicarboxylic acid (MW6000), polyethyleneoxydiamine (MW6000), or the like can be suitably used. The content of the smoothing agent is preferably 0.01 g / l or more selected from one or more selected from polyethylene glycol, dicarboxylic acid, and diamine. If it is less than 0.01 g / l, since the smoothing action is insufficient, the plating surface becomes rough, and the ability to enclose hydrogen in steel is lost. On the other hand, even if added over 50 g / l, the smoothing effect is saturated. Therefore, in this invention, it is preferable to contain the said smoothing agent in 0.01-50 g / l. More preferably, it is 0.5-30 g / l.
次に、上記亜鉛めっき液を用いて亜鉛めっきを行う際のめっき条件について説明する。
液温:10〜45℃
亜鉛めっき液の温度(浴温)は、緻密な亜鉛めっきを得るために管理する。10℃未満では、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。一方、45℃を超えた場合も、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。よって、液温は10〜45℃の範囲とするのが好ましい。より好適には、20〜35℃の範囲である。
Next, the plating conditions when performing zinc plating using the above zinc plating solution will be described.
Liquid temperature: 10-45 degreeC
The temperature (bath temperature) of the galvanizing solution is controlled in order to obtain a dense galvanizing. If it is less than 10 degreeC, a pit will generate | occur | produce during galvanization and it will lose the enclosure capability of hydrogen in steel. On the other hand, even when the temperature exceeds 45 ° C., pits are generated during galvanization, and the ability to enclose hydrogen in steel is lost. Therefore, the liquid temperature is preferably in the range of 10 to 45 ° C. More preferably, it is the range of 20-35 degreeC.
pH:5.0〜6.5
pHは、緻密な亜鉛めっきを得るために管理する。pHが、5.0未満では、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。一方、6.5を超えた場合も、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。よって、pHは5.0〜6.5の範囲内とするのが好ましい。より好適には、5.5〜6.2の範囲である。
pH: 5.0-6.5
The pH is controlled to obtain a dense galvanizing. When the pH is less than 5.0, pits are generated during galvanization, and the ability to enclose hydrogen in steel is lost. On the other hand, when it exceeds 6.5, pits are generated during galvanization, and the ability to enclose hydrogen in steel is lost. Therefore, the pH is preferably in the range of 5.0 to 6.5. More preferably, it is in the range of 5.5 to 6.2.
陰極電流密度:0.3〜6A/dm2
陰極電流密度は、緻密な亜鉛めっきを得るために管理する。0.3A/dm2未満の場合は、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。一方、6A/dm2を超えた場合も、亜鉛めっき中にピットが発生し、鋼中水素の封入能力を失う。よって、めっき時の陰極電流密度は0.3〜6A/dm2の範囲とするのが好ましい。より好適には、0.5〜5A/dm2の範囲である。
Cathode current density: 0.3 to 6 A / dm 2
The cathode current density is managed to obtain a dense galvanizing. In the case of less than 0.3 A / dm 2 , pits are generated during galvanization, and the ability to enclose hydrogen in steel is lost. On the other hand, when it exceeds 6 A / dm 2 , pits are generated during galvanization, and the ability to enclose hydrogen in steel is lost. Therefore, the cathode current density during plating is preferably in the range of 0.3~6A / dm 2. More preferably, in the range of 0.5~5A / dm 2.
めっき時間:1分以上
めっき時間は、高い濃度の水素を長時間封入するために必要な厚さのめっき層を得るために管理するが、1分未満ではめっき層の厚さが薄いため、充分な量の水素を十分な時間封入することができない。従って、めっき時間は1分以上とするのが好ましい。より好ましくは、2分以上である。なお、上限は特に規定しないが、試験片の内部に水素を導入してから低歪速度引張試験や定荷重引張試験を開始するまでの時間によって、適宜定めればよい。
Plating time: 1 min or longer Plating time is managed to obtain a plating layer with a thickness necessary for enclosing high concentration hydrogen for a long time. A sufficient amount of hydrogen cannot be encapsulated for a sufficient time. Therefore, the plating time is preferably 1 minute or longer. More preferably, it is 2 minutes or more. The upper limit is not particularly defined, but may be appropriately determined depending on the time from the introduction of hydrogen into the test piece until the start of the low strain rate tensile test or the constant load tensile test.
上記めっき液組成およびめっき条件で亜鉛めっきを施すことにより、緻密で均一なめっき層の被膜を試験片の表面に付与することができる。また、上記範囲であれば、めっき密着性も格段と向上するので、従来法に比べてより多くの拡散性水素を封入でき、めっき直後から150時間経過後でも、めっき直後の拡散性水素の90%以上を維持することが可能である。 By applying galvanization with the above plating solution composition and plating conditions, a dense and uniform coating layer of the plating layer can be applied to the surface of the test piece. Also, within the above range, the plating adhesion is remarkably improved, so that more diffusible hydrogen can be encapsulated as compared with the conventional method. Even after 150 hours have elapsed immediately after plating, 90% of the diffusible hydrogen immediately after plating is obtained. % Or more can be maintained.
次に、本発明の水素脆化感受性評価方法における、限界拡散性水素量を求めるための低歪速度引張試験と定荷重引張試験について説明する。
低歪速度引張試験と限界拡散性水素量の測定
低歪速度引張試験とは、試験片に対して、低歪速度で荷重を負荷する引張試験のことである。鋼材の水素脆化は、応力集中部に拡散性水素が集積することによって生じる現象であるが、応力集中部に拡散性水素が集積するには時間が必要であるため、正確な水素脆化感受性の評価を行うためには、歪速度を1×10−3/秒以下とするのが好ましい。1×10−3/秒より大きくなると、応力集中部に拡散性水素が集積する前に破断に至ってしまうため、正確な水素脆化感受性が評価できない。より好適には、1×10−4/秒以下である。ここで、上記歪速度は、試験片の平行部における歪速度である。なお、この試験で用いる試験片の形状は、棒状、板状、コニカル状等いずれでも良く、切り欠きについてもその有無は問わない。
Next, the low strain rate tensile test and the constant load tensile test for obtaining the critical diffusible hydrogen content in the hydrogen embrittlement sensitivity evaluation method of the present invention will be described.
Low strain rate tensile test and measurement of critical diffusible hydrogen content The low strain rate tensile test is a tensile test in which a load is applied to a test piece at a low strain rate. Steel hydrogen embrittlement is a phenomenon caused by the accumulation of diffusible hydrogen in the stress-concentrated part, but it takes time to accumulate diffusible hydrogen in the stress-concentrated part. In order to perform the evaluation, it is preferable to set the strain rate to 1 × 10 −3 / sec or less. If it is greater than 1 × 10 −3 / sec, rupture occurs before diffusible hydrogen accumulates in the stress-concentrated portion, and thus accurate hydrogen embrittlement susceptibility cannot be evaluated. More preferably, it is 1 × 10 −4 / sec or less. Here, the strain rate is a strain rate at the parallel portion of the test piece. In addition, the shape of the test piece used in this test may be any of a rod shape, a plate shape, a conical shape, etc., and the presence or absence of the notch is not questioned.
限界拡散性水素量は、拡散性水素をX(massppm)含有している試験片に対して、1×10−3/秒以下の低歪速度引張試験を行い、破断強度がY(N/mm2)であった場合に、その拡散性水素量Xを、破断強度Yに対応する「限界拡散性水素量」と定義したものである。ただし、限界拡散性水素量は、上記引張試験における応力−歪曲線で最大応力を示す前に破断した場合にのみ定義することができ、最大応力を示した後に破断した場合には、限界拡散性水素量とは言わない。 The amount of critical diffusible hydrogen was determined by conducting a low strain rate tensile test of 1 × 10 −3 / sec or less on a test piece containing diffusible hydrogen X (mass ppm), and the breaking strength was Y (N / mm 2 ), the diffusible hydrogen amount X is defined as the “limit diffusible hydrogen amount” corresponding to the breaking strength Y. However, the amount of critical diffusible hydrogen can be defined only when it breaks before showing the maximum stress in the stress-strain curve in the above tensile test. It is not called the amount of hydrogen.
定荷重引張試験による限界拡散性水素量の測定
定荷重引張試験とは、試験片に対して一定の荷重を負荷する引張試験のことである。図1は、定荷重引張試験から得られる拡散性水素量と破断時間の関係を例示したものである。試験片中に含まれる拡散性水素量が多ければ多いほど早く破壊が起こり、少なければ少ないほど破壊が起こるまでの時間が長くなるが、拡散性水素量がある値以下では遅れ破壊が起こらなくなる。そして、この遅れ破壊が起こらなくなる上限の拡散性水素量を「限界拡散性水素量」と定義する。この試験で用いる試験片の形状も、棒状、板状、コニカル状等いずれでも良く、切り欠きについてもその有無は問わない。
Measurement of critical diffusible hydrogen content by constant load tensile test The constant load tensile test is a tensile test in which a constant load is applied to a test piece. FIG. 1 illustrates the relationship between the amount of diffusible hydrogen obtained from a constant load tensile test and the fracture time. The larger the amount of diffusible hydrogen contained in the test piece, the faster the destruction occurs, and the smaller the amount, the longer the time until destruction occurs, but the delayed fracture does not occur when the amount of diffusible hydrogen is below a certain value. The upper limit diffusible hydrogen amount at which this delayed fracture does not occur is defined as “limit diffusible hydrogen amount”. The shape of the test piece used in this test may be any of a rod shape, a plate shape, a conical shape, etc., and the presence or absence of the notch is not questioned.
なお、低歪速度引張試験で得られたある破断強度に対応する限界拡散性水素量は、上記破断強度と同じ応力を負荷した定荷重引張試験から得られる限界拡散性水素量と一致する。 The critical diffusible hydrogen amount corresponding to a certain breaking strength obtained in the low strain rate tensile test coincides with the critical diffusible hydrogen amount obtained from a constant load tensile test loaded with the same stress as the breaking strength.
上記限界拡散性水素量は、その値が高い程、水素脆化感受性が低い、即ち、水素脆化し難いことを意味する。そして、一般には、限界拡散性水素量が0.05massppm未満の鋼材は、水素脆化感受性が高く、構造部材として用いることが危険であると評価することができる。より安全性を求めるのであれば、限界拡散性水素量は0.1massppm以上であることが好ましい。 The above limit diffusible hydrogen amount means that the higher the value, the lower the hydrogen embrittlement sensitivity, that is, the less hydrogen embrittlement is. In general, a steel material having a limit diffusible hydrogen content of less than 0.05 mass ppm is highly susceptible to hydrogen embrittlement and can be evaluated as dangerous to use as a structural member. If more safety is required, the critical diffusible hydrogen amount is preferably 0.1 mass ppm or more.
耐水素脆化安全度指数
水素脆性感受性を示す指標として、上記限界拡散性水素量の他に、耐水素脆化安全度指数を用いてもよい。この耐水素脆化安全度指数は、実質的に拡散性水素を含まない試験片を引張試験したときの絞りX0と、ある量の拡散性水素を含む試験片を引張試験したときの絞りX1の比であり、下記式;
耐水素脆化安全度指数(%)=100×(X1/X0)
(X0およびX1:JIS Z2241(2004年)に準拠して求めた絞り)
で定義される。なお、材料の延性の度合いを示す指標としては、伸びや絞りなどがあるが、伸びは、平滑試験片の場合、破断位置の影響を受け易く、一方、絞りはその影響が小さいため、本発明では絞りを用いる。一般に、この耐水素脆化安全度指数が75%を下回る鋼材は、水素脆化感受性が高く、構造部材として用いることが危険である。したがって、構造部材としては、耐水素脆化安全度指数が75%以上の鋼材を用いることが好ましい。より好ましくは、80%以上である。なお、上記絞りに代えて、引張強さ、あるいは、延性破面率を用いてもよい。
Hydrogen embrittlement safety index In addition to the above limit diffusible hydrogen amount, a hydrogen embrittlement safety index may be used as an index indicating hydrogen embrittlement sensitivity. The resistance to hydrogen embrittlement safety index is substantially the diaphragm X 0 when the specimen containing no diffusible hydrogen was tensile tested, the diaphragm when the tensile test a test piece containing a diffusible hydrogen in a quantity X A ratio of 1 ;
Hydrogen embrittlement safety index (%) = 100 × (X 1 / X 0 )
(X 0 and X 1 : Aperture determined according to JIS Z2241 (2004))
Defined by In addition, as an index indicating the degree of ductility of the material, there are elongation and drawing, etc., but in the case of a smooth test piece, the elongation is easily affected by the breaking position, whereas the drawing is less affected by the present invention. Then, use the aperture. In general, a steel material having a hydrogen embrittlement resistance safety index lower than 75% is highly susceptible to hydrogen embrittlement and is dangerous to be used as a structural member. Therefore, it is preferable to use a steel material having a hydrogen embrittlement safety degree index of 75% or more as the structural member. More preferably, it is 80% or more. In addition, it may replace with the said aperture_diaphragm | restriction and may use tensile strength or a ductile fracture surface rate.
ところで、鋼材(試験片)に、拡散性水素を導入する方法としては、陰極水素チャージ法や酸浸漬法等が好適である。また、試験片中に導入した拡散性水素の量の測定は、試験片を室温から300℃までを昇温速度50〜12000℃/hrで昇温し、昇温する間に放出される水素の量を、ガスクロマトグラフや質量分析計等で求め、図2に示したような水素放出曲線を得、この曲線から、例えば、室温〜300℃までの間で放出された水素量を積分することにより求めることができる。もちろん、従来法のグリセリン法を用いても良い。 By the way, as a method for introducing diffusible hydrogen into a steel material (test piece), a cathodic hydrogen charging method, an acid immersion method, or the like is preferable. In addition, the amount of diffusible hydrogen introduced into the test piece is measured by raising the temperature of the test piece from room temperature to 300 ° C. at a heating rate of 50 to 12000 ° C./hr, The amount is obtained by a gas chromatograph, a mass spectrometer or the like, and a hydrogen release curve as shown in FIG. 2 is obtained. From this curve, for example, the amount of hydrogen released between room temperature and 300 ° C. is integrated. Can be sought. Of course, a conventional glycerin method may be used.
引張強さが500〜1800N/mm2級の調質鋼材から丸棒平滑試験片および平板試験片(板厚t:0.5mm)を採取し、陰極水素チャージ法によって各試験片に異なる量の拡散性水素を導入後、表1−1および表1−2に示した組成のめつき液およびめっき条件で各試験片に亜鉛めっきを施し、その後、下記の試験に供した。
<拡散性水素量の測定>
丸棒平滑試験片中に含まれる、めっき直後の拡散性水素量と、めっき終了から150時間経過後、アノード電解によってめっき層を完全に溶解除去した後の拡散性水素量を求めた。拡散性水素量の測定は、ガスクロマトグラフ式の昇温脱離式水素分析試験法を用いて、室温から620℃までの温度範囲を200℃/hで昇温して図2に示したような水素放出曲線を得、この曲線から、室温〜300℃までの間で放出された水素量を求めて、拡散性水素量とした。
<水素封入能力の評価>
上記拡散性水素量の測定の結果、めっき直後の水素量に対して、めっき終了から150時間経過後の水素量が90%以上である場合を合格と評価した。なお、めっき直後の丸棒引張試験片に、引張強さの90%の定荷重をかけた状態で150h保持した試験片についても、拡散性水素量の測定を行ったが、荷重負荷の有無によって水素量に差はないことを確認している。
<めっき密着性の評価>
めっき密着性の評価は、0t曲げ試験およびテープ剥離試験を用いて行った。ここで、0t曲げ試験とは、亜鉛めっきを施した平板試験片を、評価面が外側となるようにして、180°折り曲げて隙間なく密着させる、いわゆる、密着曲げ試験のことであり、また、テープ剥離試験とは、該折り曲げた評価面に粘着性のあるテープを貼り付け、これを急速かつ強く引き剥がして、引き剥がしたテープに付着した亜鉛めっきの面積から、下記式;
テープテスト黒化度(%)=100×(試験後のテープ表面に付着している亜鉛めっきの面積)/(試験後のテープの折り曲げ部に相当する面積)
で定義されるテープテスト黒化度を求めて密着性を評価する試験である。
なお、本実施例では、密着性を、黒化度が0以上10未満の場合を密着性良(◎)、10以上20未満の場合を密着性やや良(○)、20以上30未満の場合を密着性劣(△)、30以上の場合を密着性悪(×)と評価し、◎および○を合格、△および×を不合格と評価した。
Round bar smooth specimens and flat specimens (thickness t: 0.5 mm) were sampled from tempered steel materials having a tensile strength of 500 to 1800 N / mm grade 2, and different amounts were applied to each specimen by the cathodic hydrogen charging method. After introducing diffusible hydrogen, each test piece was galvanized with the plating solution and the plating conditions shown in Table 1-1 and Table 1-2, and then subjected to the following tests.
<Measurement of diffusible hydrogen content>
The amount of diffusible hydrogen immediately after plating and the amount of diffusible hydrogen after the plating layer was completely dissolved and removed by anodic electrolysis after the completion of plating were obtained, which were contained in the round bar smooth test piece. The amount of diffusible hydrogen was measured using a gas chromatographic temperature-programmed desorption-type hydrogen analysis test method as shown in FIG. 2 by raising the temperature range from room temperature to 620 ° C. at 200 ° C./h. A hydrogen release curve was obtained, and from this curve, the amount of hydrogen released between room temperature and 300 ° C. was determined to obtain the amount of diffusible hydrogen.
<Evaluation of hydrogen filling capacity>
As a result of the measurement of the amount of diffusible hydrogen, a case where the hydrogen amount after 150 hours from the end of plating was 90% or more with respect to the hydrogen amount immediately after plating was evaluated as acceptable. The amount of diffusible hydrogen was also measured for a test piece held for 150 hours in a state where a constant load of 90% of the tensile strength was applied to a round bar tensile test piece immediately after plating. It has been confirmed that there is no difference in the amount of hydrogen.
<Evaluation of plating adhesion>
The plating adhesion was evaluated using a 0t bending test and a tape peeling test. Here, the 0t bending test is a so-called adhesion bending test in which a galvanized flat plate test piece is bent 180 ° so that the evaluation surface is on the outside and closely adhered without any gap. The tape peeling test is a method in which an adhesive tape is applied to the folded evaluation surface, and this is rapidly and strongly peeled off, and from the area of galvanizing attached to the peeled tape, the following formula:
Tape test blackening degree (%) = 100 × (Area of galvanization adhered to the tape surface after the test) / (Area corresponding to the bent portion of the tape after the test)
This is a test for evaluating adhesion by obtaining the degree of blackening of the tape test defined in (1).
In this example, the adhesion is good when the degree of blackening is 0 or more and less than 10 ()), when the degree of blackness is 10 or more and less than 20, and when the adhesion is slightly good (◯), when it is 20 or more and less than 30 Was evaluated as poor adhesion (Δ), and a case of 30 or more was evaluated as poor adhesion (×), ◎ and ○ were evaluated as acceptable, and Δ and × were evaluated as unacceptable.
上記測定の結果を表2に示した。表2から、本発明に適合する条件で亜鉛めっきを施した発明例No.1〜19の試験片は何れも、4.8massppm以下は勿論、4.8massppmを上回る拡散性水素量においても、めっき終了後から150h経過後でも、めっき直後の90%以上の拡散性水素が保持されており、封入能力に優れていることがわかる。また、本発明例の亜鉛めっきの密着性も良好であった。これに対して、本発明に適合していない条件で亜鉛めっきを施した比較例No.20〜38は、何れも、水素の封入能力が90%未満と低く、めっき密着性も劣っており、水素脆化感受性の評価試験には用いることができないことがわかる。
The measurement results are shown in Table 2. From Table 2, Invention Example No. in which galvanization was performed under conditions suitable for the present invention. All
陰極水素チャージによって拡散性水素を導入後、亜鉛めっきを施して水素を封入した表1−1のNo.1〜19に示した引張試験片を用いて、下記の要領で低歪速度引張試験と定荷重引張試験の両試験を行い、限界拡散性水素量を同定した。
<低歪速度引張試験>
亜鉛めっき後の丸棒引張試験片を、室温に24時間保持して試験片内の水素濃度を均一化してから、歪速度1×10−6/秒の低歪速度で引張試験を行い、破断強度を求めた。一方、試験片中の拡散性水素の量は、同じく、亜鉛めっき後、室温で24時間保持してから、亜鉛めっきをアノード電解によって完全に溶解除去し、その後直ちに、実施例1と同様にしてガスクロマトグラフ式の昇温脱離式水素分析試験を行い、測定した。そして、限界拡散性水素量は、拡散性水素量がX(massppm)で、破断強度がY(N/mm2)の場合に、応力Yに対応する限界拡散性水素量をXと定義した。ただし、限界拡散性水素量は、応力−歪曲線で最大応力を示す前に破断した場合にのみ定義し、最大応力を示した後で破断した場合には、限界拡散性水素量とは定義しなかった。
<定荷重引張試験>
定荷重引張試験は、供試材から環状切り欠き付き丸棒引張試験片を採取し、この試験片に、陰極水素チャージ法によって種々のレベルの拡散性水素を導入後、表1−1のNo.1〜19の試験片と同じ条件で、亜鉛めっきを施し、試験片内の水素濃度を均一化させる目的で室温にて24時間保持し、その後、引張強さの90%の応力を負荷して、荷重から破断までの時間を測定し、図1に例示したような拡散性水素量と破断時間との関係を求め、荷重負荷開始から100時間以上経過しても破断(遅れ破壊)を生じない上限の拡散性水素量を、限界拡散性水素量として求めた。なお、拡散性水素量は、低歪速度引張試験の場合と同様にして測定した。
In Table 1-1, diffusible hydrogen was introduced by cathodic hydrogen charging, and then zinc plating was performed to enclose hydrogen. Using the tensile test pieces shown in 1 to 19, both the low strain rate tensile test and the constant load tensile test were conducted in the following manner, and the critical diffusible hydrogen amount was identified.
<Low strain rate tensile test>
After the galvanized round bar tensile test piece was kept at room temperature for 24 hours to make the hydrogen concentration in the test piece uniform, a tensile test was conducted at a low strain rate of 1 × 10 −6 / sec. The strength was determined. On the other hand, the amount of diffusible hydrogen in the test piece was also kept at room temperature for 24 hours after galvanization, and the zinc plating was completely dissolved and removed by anodic electrolysis. A gas chromatographic thermal desorption hydrogen analysis test was conducted and measured. The critical diffusible hydrogen amount was defined as X when the diffusible hydrogen amount was X (mass ppm) and the breaking strength was Y (N / mm 2 ). However, the critical diffusible hydrogen amount is defined only when the fracture occurs before showing the maximum stress in the stress-strain curve, and the critical diffusible hydrogen amount is defined when the fracture occurs after showing the maximum stress. There wasn't.
<Constant load tensile test>
In the constant load tensile test, a round bar tensile test piece with an annular notch was sampled from the test material, and various levels of diffusible hydrogen were introduced into the test piece by the cathodic hydrogen charging method. . Under the same conditions as the
上記測定の結果を、表2に併記して示した。なお、No.2および4の鋼材は、低歪速度引張試験では、最大応力を示した後で破断したため、限界拡散性水素量は定義されなかった。この結果から、本発明によれば、4.8massppmを超える拡散性水素を含有している鋼材でも、限界拡散性水素量を測定できることがわかる。また、No.8,10,11,13および19からわかるように、低歪速度引張試験から求めた限界拡散性水素量と、定荷重引張試験から求めた限界拡散性水素量は、低歪速度引張試験の破断強度と定荷重引張試験の負荷応力が同じ場合には、同じ値を示しており、いずれの方法で同定される限界拡散性水素量も、両者の荷重が同じ場合には一致することが確認された。 The measurement results are shown in Table 2 together. In addition, No. In the low strain rate tensile test, steel materials 2 and 4 broke after exhibiting the maximum stress, so the critical diffusible hydrogen content was not defined. From this result, it can be seen that according to the present invention, the amount of critical diffusible hydrogen can be measured even with a steel material containing diffusible hydrogen exceeding 4.8 massppm. No. As can be seen from 8, 10, 11, 13, and 19, the critical diffusible hydrogen amount obtained from the low strain rate tensile test and the critical diffusible hydrogen amount obtained from the constant load tensile test are the breakage of the low strain rate tensile test. When the strength and the load stress in the constant load tensile test are the same, the same value is shown, and it was confirmed that the amount of critical diffusible hydrogen identified by either method is the same when both loads are the same. It was.
実施例2の低歪速度引張試験と同じ条件の陰極水素チャージおよび亜鉛めっきを施した試験片を用いて、実施例2と同条件で低歪速度引張試験を行い、破断後の試験片からJIS Z2241に準拠して絞りX1を測定した。また、水素チャージ無しの拡散性水素を実質的に含まない丸棒試験片を用意し、この試験片についても実施例2と同条件で低歪速度引張試験を行い、破断後の試験片から絞りX0を測定した。そして、耐水素脆化安全度指数を下記式;
耐水素脆化安全度指数(%)=100×(X1/X0)
から求めた。なお、拡散性水素量の測定は、実施例2と同様にして行った。
Using a specimen subjected to cathodic hydrogen charging and galvanization under the same conditions as in the low strain rate tensile test of Example 2, a low strain rate tensile test was performed under the same conditions as in Example 2, and JIS It was measured throttle X 1 in compliance with the Z2241. In addition, a round bar test piece substantially free of diffusible hydrogen without hydrogen charge was prepared, and this test piece was subjected to a low strain rate tensile test under the same conditions as in Example 2 and squeezed from the test piece after fracture. the X 0 was measured. And the hydrogen embrittlement safety index is given by
Hydrogen embrittlement safety index (%) = 100 × (X 1 / X 0 )
I asked for it. The amount of diffusible hydrogen was measured in the same manner as in Example 2.
上記耐水素脆化安全度指数の測定結果を、表2中に併記して示した。この結果から、No.1〜19の鋼材は、いずれも、耐水素脆化安全度指数が75%以上を示しており、構造用材料として水素脆性を起こすことなく安全に用いることができるものであることがわかる。
The measurement results of the hydrogen embrittlement safety degree index are shown together in Table 2. From this result, no. All of the
Claims (4)
記
耐水素脆化安全度指数(%)=100×(X1/X0)
ここで、X0:実質的に拡散性水素を含まない試験片の絞り
X1:拡散性水素を含む試験片の絞り After steel is made to contain hydrogen, galvanizing is performed by the method according to claim 2, and then a low strain rate tensile test of 1 × 10 −3 / sec or less is performed. A method for evaluating the susceptibility to hydrogen embrittlement of a steel material.
Hydrogen embrittlement safety index (%) = 100 × (X 1 / X 0 )
Here, X 0 : Diaphragm restriction of test piece substantially not containing diffusible hydrogen
X 1 : squeezing of a specimen containing diffusible hydrogen
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093149A JP4872407B2 (en) | 2006-03-30 | 2006-03-30 | Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093149A JP4872407B2 (en) | 2006-03-30 | 2006-03-30 | Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262557A JP2007262557A (en) | 2007-10-11 |
JP4872407B2 true JP4872407B2 (en) | 2012-02-08 |
Family
ID=38635813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006093149A Expired - Fee Related JP4872407B2 (en) | 2006-03-30 | 2006-03-30 | Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4872407B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5079375B2 (en) * | 2007-04-12 | 2012-11-21 | 新日本製鐵株式会社 | Surface treatment method for hydrogen embrittlement resistance evaluation test piece |
JP5551629B2 (en) * | 2011-02-03 | 2014-07-16 | 日本電信電話株式会社 | Hydrogen embrittlement prediction method |
JP5821586B2 (en) * | 2011-12-05 | 2015-11-24 | 新日鐵住金株式会社 | Evaluation method of delayed fracture characteristics of high strength steel sheet |
CN110552041B (en) * | 2019-09-16 | 2021-02-19 | 歌尔股份有限公司 | Surface treatment method for metal material |
CN114398790A (en) * | 2022-01-19 | 2022-04-26 | 西南石油大学 | Calculation method for reduction of area of steel for hydrogen-doped natural gas pipeline |
CN117026124B (en) * | 2023-08-22 | 2024-01-30 | 山东省博兴县双鑫新板材有限公司 | Galvanized sheet preparation facilities and anticorrosive galvanized sheet thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089755A (en) * | 1977-07-11 | 1978-05-16 | The Richardson Company | Acid bright zinc plating |
JPS58136793A (en) * | 1982-02-10 | 1983-08-13 | Nippon Mining Co Ltd | Acidic zinc plating solution |
US4515663A (en) * | 1984-01-09 | 1985-05-07 | Omi International Corporation | Acid zinc and zinc alloy electroplating solution and process |
JPS619593A (en) * | 1984-06-25 | 1986-01-17 | Nippon Kagaku Sangyo Kk | Acidic electrolytic zinc plating bath |
DE3722778A1 (en) * | 1987-07-09 | 1989-03-09 | Raschig Ag | POLYALKYLENE GLYCOL NAPHTHYL-3-SULPHOPROPYL DIETHERS AND THEIR SALTS, PROCESS FOR PREPARING THESE COMPOUNDS AND THEIR USE AS A NETWORK IN GALVANO TECHNOLOGY |
JPH06101087A (en) * | 1992-09-22 | 1994-04-12 | Showa Denko Kk | Brightener for acidic galvanization bath and acidic galvanization bath using this brightener |
JP3631090B2 (en) * | 2000-03-23 | 2005-03-23 | 株式会社神戸製鋼所 | Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance |
JP4028461B2 (en) * | 2003-08-22 | 2007-12-26 | Jfeスチール株式会社 | Method for evaluating delayed fracture characteristics and plating method performed at that time |
-
2006
- 2006-03-30 JP JP2006093149A patent/JP4872407B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007262557A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4872407B2 (en) | Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel | |
Verbruggen et al. | Inhibitor evaluation in different simulated concrete pore solution for the protection of steel rebars | |
Morshed et al. | Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme disease spirochete, Borrelia burgdorferi, from the avian tick, Ixodes auritulus | |
Recio et al. | Hydrogen embrittlement risk of high strength galvanized steel in contact with alkaline media | |
JP2008051632A (en) | Test method of stress corrosion crack development and testing equipment therefor | |
JP2009069008A (en) | Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method | |
JP2013044715A (en) | Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body | |
JP3631090B2 (en) | Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance | |
Wu et al. | Galvanic corrosion behavior at the Cu-Al ball bond interface: Influence of Pd addition and chloride concentration | |
Joseline et al. | Initiation of stress corrosion cracking in cold-drawn prestressing steel in hardened cement mortar exposed to chlorides | |
JP6128102B2 (en) | Method for evaluating delayed fracture characteristics of metal material and metal material | |
JP2008292408A (en) | Temporal evaluation method for crevice corrosion initiation | |
Carpio et al. | Environmental factors in failure during structural steel hot-dip galvanizing | |
JP2017219532A (en) | Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size | |
JP6973193B2 (en) | Hydrogen embrittlement resistance evaluation method | |
JP5079375B2 (en) | Surface treatment method for hydrogen embrittlement resistance evaluation test piece | |
Hu et al. | Analysis of hydrogen embrittlement and applied potential of 1670, 1770, and 1860 MPa ultrahigh-strength steel wire for impressed current cathodic protection on cables and hangers | |
Samples et al. | Methods of Corrosion Protection and Durability of Concrete Bridge Decks Reinforced with Epoxy-coated Bars-Phase I | |
Carpio et al. | Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths | |
JP2008203218A (en) | Method for evaluating delayed fracture resistance of high-strength molten zinc plated steel plate | |
JP5821586B2 (en) | Evaluation method of delayed fracture characteristics of high strength steel sheet | |
JP4028461B2 (en) | Method for evaluating delayed fracture characteristics and plating method performed at that time | |
JP2006234421A (en) | Accelerated test method of stress corrosion cracking | |
JP2019174282A (en) | Evaluation method for delayed fracture of metallic material | |
González | 2007 FN Speller Award Lecture: Prediction of reinforced concrete structure durability by electrochemical techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |