JP4871791B2 - 光コヒーレンストモグラフィ装置 - Google Patents
光コヒーレンストモグラフィ装置 Download PDFInfo
- Publication number
- JP4871791B2 JP4871791B2 JP2007151644A JP2007151644A JP4871791B2 JP 4871791 B2 JP4871791 B2 JP 4871791B2 JP 2007151644 A JP2007151644 A JP 2007151644A JP 2007151644 A JP2007151644 A JP 2007151644A JP 4871791 B2 JP4871791 B2 JP 4871791B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical path
- semi
- path length
- coherence tomography
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
YはDC成分、Zは定数、νは光の周波数、cは光速を表す。従来のOCT装置では、(1)式で与えられる干渉強度を有する干渉縞のフォトダイオードによる実測波形から光路長FPの値を求め、試料の表面形状を算出していた。しかし光路長FPが長くなると干渉縞のピークとピークの間隔が狭くなり、干渉縞から光路長FPの値を求めるのが困難であった。そのため光路長FPの値を高い分解能で得るために、OCT装置の波長分解能を高めることが検討された。波長分解能を高めるには、例えば一波長成分に割り当てるフォトダイオードの数を増やす、フォトダイオードの素子サイズを小さくする、ビーム径を広げる、あるいは絞りを大きくする等の手段がある。しかし波長分解能を高める手段を採用すると、一つのフォトダイオードからの光出力電圧が低くなるため、暗電流等のノイズに対するSN比が低くなるという問題があった。
第1の実施の形態に係る光コヒーレンストモグラフィ装置は、図1に示すように、照射光を発する光源114、照射光を第1参照光と検査光に分割し、試料190の断層面195に向けて検査光を透過させる第1半透鏡41、照射光を第2参照光と基準光に分割する第2半透鏡42、第2半透鏡42に対向して配置された、基準光を反射する基準用反射鏡43、及び第1参照光と試料190の断層面195に照射されて測定光路長を進んだ検査光との第1干渉縞と、第2参照光と基準用反射鏡43で反射され基準光路長を進んだ基準光との第2干渉縞との合成干渉縞を検出する干渉縞検出素子153を備える。また光コヒーレンストモグラフィ装置は、試料190が配置され水平方向に移動可能なステージ400を備える。
S0(λ) = D×exp{-(λ-λCS / ΔλS)2} …(2)
(2)式においてDは定数を表し、λCSは光源114から照射される照射光の照射光中心波長を表し、ΔλSは光源114の発光帯域幅を表す。
(3)式においてcは光速を表す。照射光のコヒーレンス長LCは、下記(4)式で与えられる。
LC = c / Δν …(4)
図1に示す波長可変フィルタ23の下方には、照射光を2方向に分割するスプリッタ21がコリメートレンズ44の光軸上に配置されている。スプリッタ21には、ハーフミラー等が使用可能である。スプリッタ21によって、照射光はコリメートレンズ44の光軸方向と、光軸方向に対して垂直な方向に分割される。
第1半透鏡41の下方には、集光レンズ45がコリメートレンズ44の光軸上に配置されている。集光レンズ45は、第1半透鏡41を透過した検査光を集光して検査光の密度を高め、焦点に結ぶ。集光レンズ45の表面には、例えば反射防止処理がされている。
F1 = 2LT1 …(6)
2LT1 < LC …(7)
第1半透鏡41に戻った検査光の一部は第1半透鏡41を透過し、スプリッタ21に向かって進行する。他に、第1半透鏡41に戻った検査光の一部は第1半透鏡41で反射され、再び試料190の内部の断層面195に向かって進行する。このとき、試料190の内部の断層面195から第1半透鏡41に進行する検査光の波長成分と、第1半透鏡41から試料190の内部の断層面195に進行する検査光の波長成分との位相が揃う場合、波長成分の光強度は減衰しない。しかし、 試料190の内部の断層面195から第1半透鏡41に進行する検査光の波長成分と、第1半透鏡41から試料190の内部の断層面195に進行する検査光の波長成分との位相が揃わない場合、波長成分の光強度は減衰する。したがって検査光において、第1半透鏡41と試料190の内部の断層面195との間の多重反射の時に位相が揃わない波長帯域の光強度は減衰する。
RS1={R1Ra+ηaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa}/{1+ηaR1RaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa} …(8)
ここで、R1Raは第1半透鏡41の反射率、R2Raは試料190の内部の断層面195の反射率を表す。ηaは第1半透鏡41と試料190の内部の断層面195の間での光損失を表し、下記(9)式で与えられる。またφaは位相を表し、下記(10)式で与えられる。(9)式においてqは照射光のビーム径を表す。:
ηa= 1 / {1 + (λ×F1) / (2πq2)}2 …(9)
φa= πF1 / λ …(10)
以下において簡略化のため、Aを第1半透鏡41と試料190の内部の断層面195との間の可干渉度を表す定数として、第1の光強度比RS1を下記(11)式で与える。
第1参照光及び検査光は、第2半透鏡42が配置された方向と反対の方向に向けてスプリッタ21によって反射される。
F2 = 2LT2 …(12)
2LT2 < LC …(13)
基準光路長F2に相当する光路差によって、第2半透鏡42で反射された第2参照光は、基準用反射鏡43で反射され再び第2半透鏡42を透過した基準光と干渉する。第2半透鏡42に向かって進行する照射光の光強度に対する、スプリッタ21に向かって進行する第2参照光と基準光の干渉強度の比である第2の光強度比RS2は、下記(14)式で与えられる。:
RS2={R1Rb+ηbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb}/{1+ηbR1RbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb} …(14)
ここでR1Rbは第2半透鏡42の反射率、R2Rbは基準用反射鏡43の反射率を表す。ηbは第2半透鏡42と基準用反射鏡43の間での光損失を表し、下記(15)式で与えられる。またφbは位相を表し、下記(16)式で与えられる。:
ηb= 1 / {1 + (λ×F2) / (2πq2)}2 …(15)
φb= πF2 / λ …(16)
以下において簡略化のため、Bを第2半透鏡42と基準用反射鏡43との間の可干渉度を表す定数として、第2の光強度比RS2を下記(17)式で与える。
第2参照光及び基準光は、スプリッタ21を透過する。スプリッタ21を挟んで、第2半透鏡42と対向して干渉縞検出素子153が配置されている。第1参照光、検査光、第2参照光、及び基準光は、干渉縞検出素子153に向かって進行する。
またスプリッタ21と第1半透鏡41との間の光路長LR1の2倍及び測定光路長F1の和と、スプリッタ21と第2半透鏡42との間の光路長LR2の2倍との差の絶対値は、下記(19)式に示すようにコヒーレンス長LCよりも長くなるよう設定される。したがって、検査光と第2参照光は干渉しない。
またスプリッタ21と第1半透鏡41との間の光路長LR1の2倍と、スプリッタ21と第2半透鏡42との間の光路長LR2の2倍及び基準光路長F2の和との差の絶対値は、下記(20)式に示すようにコヒーレンス長LCよりも長くなるよう設定される。したがって、第1参照光と基準光は干渉しない。
干渉縞検出素子153は、第1参照光、検査光、第2参照光、及び基準光を受光する。干渉縞検出素子153には、エリアイメージセンサ等のCCDイメージセンサが使用可能であり、複数のフォトダイオードを備える。ここで、干渉縞検出素子153が受光する第1参照光及び検査光が形成する第1干渉縞の光強度である検査光強度S1(λ)は下記(21)式で与えられる。
(21)式において照射光強度S0(λ)に係る1/4は、照射光がスプリッタ21を合計2回経由することによる光強度の損失を示している。TL1(λ)は、照射光、第1参照光及び検査光が干渉縞検出素子153に到着するまでに経由する光路の透過率を示している。
(22)式においてTL2(λ)は、照射光、第2参照光及び基準光が干渉縞検出素子153に到着するまでに経由する光路の透過率を示している。(21)式及び(22)式より、第1干渉縞と第2干渉縞の合成干渉縞の光強度である出力光強度SOUT(λ)は、下記(23)式で与えられる。図3は、中心波長λCSが880nm、波長分解能ΔλRが3.6nm、迂回光路長LFが7.2m、コヒーレンス長LCが200μmの場合の出力光強度SOUT(λ)のスペクトルの一例である。
= (1/4) × S0(λ) ×{TL1(λ) ×RS1 + TL2(λ) ×RS2}
= (1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+TL1(λ)×A cos{2π×F1 /λ}
+ TL2(λ)×B cos {2π×F2 /λ}] …(23)
ここで下記(24)式及び(25)式で与えられる変数α, βを定義すると、(23)式で与えられた出力光強度SOUT(λ)は下記(26)式に変形される。
β= TL2(λ)×B …(25)
SOUT(λ)=(1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+
2αcos{(π/λ)(F1 - F2)}cos{(π/λ)(F1+F2)}
+(β-α)cos{(2π/λ)×F2}] …(26)
(26)式の第2項のcos{(π/λ)(F1 - F2)}は、出力光強度SOUT(λ)のスペクトルの低周波成分として現れる。低周波成分は、図4に示すように、出力光強度SOUT(λ)のスペクトルの包絡線で表現される。ここで低周波成分の極大点又は極小点は2πの周期ごとに現れる。そこでnを2以上の整数として、n番目の極大点を与える波長をλnとし、n-1番目の極大点を与える波長をλn-1とすると、下記(27)式が成立する。
(27)式より、出力光強度SOUT(λ)の低周波成分の極大点どうしの間隔、又は極小点どうしの間隔であるピーク間隔Pは下記(28)式で与えられる。
= 2 / (F1 - F2) …(28)
第1半透鏡41、第2半透鏡42、及び基準用反射鏡43の位置が固定されていれば、試料190の内部の断層面195の高さのみに依存して、測定光路長と基準光路長との光路差(F1 - F2)は変動し、結果として合成干渉縞の低周波成分のピーク間隔Pが変動する。なお低周波成分のピーク間隔Pの変動は、検査光の光強度と基準光の光強度との差に影響されない。
= (1/4)[{TL1(λ)+TL2(λ)}+
2αcos{(π/λ)(F1 - F2)}cos{(π/λ)(F1 + F2)}
+(β-α)cos{(2π/λ)×F2}] …(29)
ここで光の周波数νと、光速cと、波長λの関係は、下記(30)式で与えられる。
図1に示す変換モジュール307は(30)式を用いて、波長λの関数である(29)式を図7に示す周波数νの関数に変換する。周波数νの関数で表される補正された出力光強度SOUT_C(ν)は、下記(31)式で与えられる。
2αcos{(πν/ c)(F1 - F2)}cos{(πν/ c)(F1 + F2)}
+(β-α)cos{(2πν/ c)×F2}] …(31)
(31)式で与えられる出力光強度SOUT_C(ν)の低周波成分のn番目の極大点を与える周波数をνnとし、n-1番目の極大点を与える波長をνn-1とすると、下記(32)式が成立する。
(32)式より、出力光強度SOUT_C(ν)の低周波成分のピーク間隔Pは下記(33)式で与えられる。
= 2 / (F1 - F2) …(33)
よって出力光強度SOUT_C(ν)の低周波成分のピーク間隔Pも、測定光路長と基準光路長との光路差(F1 - F2)のみに依存して変動する。例えば図8は、測定光路長と基準光路長との光路差(F1 - F2)の初期からの増加量Δ(F1 - F2)が0μm、9.12μm、15.78μm、22.08μmの時の出力光強度SOUT_C(ν)のスペクトルである。測定光路長と基準光路長との光路差(F1 - F2)が大きくなるにつれて、合成干渉縞の低周波成分のピーク間隔Pが狭くなる。図1に示す抽出モジュール310は出力光強度SOUT_C(ν)から、低周波成分のピーク間隔Pを抽出する。
(第1の実施の形態の第1の変形例)
上記(26)式の第2項に含まれるcos{(π/λ)(F1 - F2)}に着目すると、出力光強度SOUT(λ)のスペクトルの低周波成分の任意の第1の波長λ1における第1の周期G1は下記(34)式で与えられ、第1の波長λ1と異なる第2の波長λ2における低周波成分の第2の周期G2は下記(35)式で与えられる。また第1の周期G1と第2の周期G2との差は、下記(36)式で与えられる。さらに(36)式から、測定光路長F1と基準光路長F2との差(F1 - F2)は下記(37)式で与えられる。
G2 = (F1 - F2) / (2×λ2) …(35)
G1 - G2 = (F1 - F2)×{(1 / (2×λ1)) - (1 / (2×λ2))} …(36)
F1 - F2 = (G1 - G2) / {(1 / (2×λ1)) - (1 / (2×λ2))} …(37)
ここで、第1の周期G1と第2の周期G2との差(G1 - G2)は、第1の波長λ1から第2の波長λ2までの間の低周波成分の干渉縞の数を表す。したがって第1の波長λ1から第2の波長λ2までの間における出力光強度SOUT(λ)のスペクトルの低周波成分による干渉縞の数が分かれば、上記(37)式から、測定光路長F1と基準光路長F2との差(F1 - F2)を算出可能である。
(第1の実施の形態の第2の変形例)
図11に示す第1の実施の形態の第2の変形例に係る光コヒーレンストモグラフィ装置においては、光源114と波長可変フィルタ23の間に光導波路29が配置されている。光導波路29は光源114から照射された照射光を波長可変フィルタ23に伝搬する。波長可変フィルタ23と光ファイバカプラ等のスプリッタ121の間には、波長可変フィルタ23を透過した照射光を伝搬する光導波路30が配置されている。
(第2の実施の形態)
図1に示す光コヒーレンストモグラフィ装置においては、光源114とスプリッタ21の間に、コリメートレンズ44及び波長可変フィルタ23が配置されている。これに対し第2の実施の形態に係る光コヒーレンストモグラフィ装置においては、図12に示すように、光源114とスプリッタ21の間には、コリメートレンズ44のみが配置されている。但しスプリッタ21と干渉縞検出素子153の間に、分光器93が配置されている。分光器93は例えば図13に示すように、回折格子54を備える。回折格子54は、検査光、第1参照光、基準光、及び第2参照光を干渉縞検出素子153に向けて反射する。ここで回折格子54は、検査光、第1参照光、基準光、及び第2参照光のそれぞれの波長成分を、波長毎に異なる方角に反射する。そのため干渉縞検出素子153の複数のフォトダイオードのそれぞれに、異なる波長成分が入射される。第2の実施の形態に係る光コヒーレンストモグラフィ装置のその他の構成要素は、図1と同様であるので説明は省略する。
(第2の実施の形態の変形例)
図15に示す第2の実施の形態に係る光コヒーレンストモグラフィ装置においては、光源114とスプリッタ121の間に、光源114から照射された照射光を伝搬する光導波路34が配置されている。またコリメートレンズ48に対向して、回折格子54が配置されている。図11に示す光コヒーレンストモグラフィ装置のその他の構成要素は、図11と同様であるので、説明は省略する。
(第3の実施の形態)
第3の実施の形態に係る光コヒーレンストモグラフィ装置は図1に示す光コヒーレンストモグラフィ装置と異なり、図16に示す変調駆動回路115を備える。変調駆動回路115は、図17に示すように、時間tに応じて変動する駆動電流を図16に示す光源114に供給する。時間tに応じて変動する駆動電流が供給されることにより、半導体レーザ共振器等の光源114は、図2に示すように時間tに応じて照射光の波長を変化させる。光源114が照射光の波長を変化させるため、図16に示す光コヒーレンストモグラフィ装置は分光器が不要である。図16に示す光コヒーレンストモグラフィ装置のその他の構成要素は、図1に示す光コヒーレンストモグラフィ装置と同様であるので説明は省略する。
(第4の実施の形態)
第4の実施の形態に係る光コヒーレンストモグラフィ装置は、図11に示す光コヒーレンストモグラフィ装置と異なり、図19に示すように光源114に光導波路34aが接続され、光導波路34aにスプリッタ20が接続されている。スプリッタ20には、照射光導波路80aと光導波路34bとが接続されている。照射光導波路80aには波長フィルタ85が接続されている。波長フィルタ85は、照射光導波路80aで伝搬された照射光の一部の波長成分を選択的に透過させる。波長フィルタ85は、多層膜干渉フィルタ、ファブリペロフィルタ、あるいはファイバブラッググレーティング等が使用可能である。波長フィルタ85には、波長フィルタ85を透過した照射光を伝搬する照射光導波路80bが接続されている。照射光導波路80bには、照射光を受光する照射光受光素子154が接続されている。波長フィルタ85が配置されているため、光源114から発せられた照射光の波長が波長フィルタ85の透過波長帯域の中心と一致した場合に、照射光受光素子154は最も強い光強度で照射光を受光する。以下、照射光の波長が透過波長帯域の中心と一致するときの駆動電流を、設定駆動電流と呼ぶことにする。
(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図1に示す干渉縞検出素子153がリニアイメージセンサである場合、ステージ400を駆動モジュール305で移動させながら測定距離LT1を算出することにより、試料190の断層面195の2次元画像を生成してもよい。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
20, 21, 121…スプリッタ
23…波長可変フィルタ
24…発振器
29, 30, 31, 32, 33, 34, 34a, 34b…光導波路
41…第1半透鏡
42…第2半透鏡
43…基準用反射鏡
44, 46, 47, 48…コリメートレンズ
45…集光レンズ
54…回折格子
80a, 80b…照射光導波路
85…波長フィルタ
114…光源
115…変調駆動回路
116…フィードバック回路
153…干渉縞検出素子
154…照射光受光素子
190…試料
195…断層面
200…データ記憶装置
201…干渉縞成分記憶モジュール
202…関係記憶モジュール
203…結果記憶モジュール
300…CPU
305…駆動モジュール
306…補正モジュール
307…変換モジュール
310…抽出モジュール
330…算出モジュール
331…画像生成モジュール
400…ステージ
Claims (10)
- 照射光を発する光源と、
前記照射光を第1参照光と検査光に分割し、試料の断層面に向けて前記検査光を透過させる第1半透鏡と、
前記照射光を第2参照光と基準光に分割する第2半透鏡と、
前記第2半透鏡に対向して配置された、前記基準光を反射する基準用反射鏡と、
前記第1参照光と前記試料の断層面に照射されて測定光路長を進んだ前記検査光との第1干渉縞と、前記第2参照光と前記基準用反射鏡で反射され基準光路長を進んだ前記基準光との第2干渉縞との合成干渉縞を検出する干渉縞検出素子と、
前記合成干渉縞から、前記測定光路長と前記基準光路長との光路差に応じて変動する干渉縞成分を抽出する抽出モジュールと、
前記干渉縞成分及び前記基準光路長の値に基づいて前記測定光路長の値を算出し、前記第1半透鏡に対する前記試料の断層面の位置を算出する算出モジュール
とを備えることを特徴とする光コヒーレンストモグラフィ装置。
- 前記第1半透鏡が、前記試料の断層面に対して前記照射光のコヒーレンス長の半分よりも短い測定距離をおいて配置されることを特徴とする請求項1に記載の光コヒーレンストモグラフィ装置。
- 前記基準用反射鏡が、前記第2半透鏡に対して前記照射光のコヒーレンス長の半分よりも短い基準距離をおいて配置されていることを特徴とする請求項1又は2に記載の光コヒーレンストモグラフィ装置。
- 前記第1半透鏡及び第2半透鏡は、前記検査光と前記基準光の干渉、前記検査光と前記第2参照光の干渉、前記第1参照光と前記基準光の干渉、及び前記第1参照光と前記第2参照光の干渉を妨げる位置に配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の光コヒーレンストモグラフィ装置。
- 前記抽出モジュールが、前記合成干渉縞のスペクトルの包絡線を算出することを特徴とする請求項1乃至4のいずれか1項に記載の光コヒーレンストモグラフィ装置。
- 前記抽出モジュールが、前記包絡線の極値点の間隔を抽出することを特徴とする請求項5に記載の光コヒーレンストモグラフィ装置。
- 前記照射光の波長成分を選択的に透過させる分光器を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の光コヒーレンストモグラフィ装置。
- 前記検査光、前記第1参照光、前記基準光、及び前記第2参照光のそれぞれの波長成分を選択的に透過させる分光器を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の光コヒーレンストモグラフィ装置。
- 前記光源が、前記照射光の波長を変化させることを特徴とする請求項1乃至6のいずれか1項に記載の光コヒーレンストモグラフィ装置。
- 前記合成干渉縞のスペクトル分布から前記照射光のスペクトル分布を除去する補正モジュールを更に備えることを特徴とする請求項1乃至9のいずれか1項に記載の光コヒーレンストモグラフィ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151644A JP4871791B2 (ja) | 2007-06-07 | 2007-06-07 | 光コヒーレンストモグラフィ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151644A JP4871791B2 (ja) | 2007-06-07 | 2007-06-07 | 光コヒーレンストモグラフィ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008304314A JP2008304314A (ja) | 2008-12-18 |
JP4871791B2 true JP4871791B2 (ja) | 2012-02-08 |
Family
ID=40233171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007151644A Expired - Fee Related JP4871791B2 (ja) | 2007-06-07 | 2007-06-07 | 光コヒーレンストモグラフィ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4871791B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5306041B2 (ja) * | 2008-05-08 | 2013-10-02 | キヤノン株式会社 | 撮像装置及びその方法 |
JP5540017B2 (ja) * | 2009-01-17 | 2014-07-02 | ルナ イノベーションズ インコーポレイテッド | 光デバイス検査のための光イメージング |
JP2011158395A (ja) * | 2010-02-02 | 2011-08-18 | Glory Ltd | 紙葉類の断面構造情報の検出方法および検出装置 |
US10215551B2 (en) | 2012-07-27 | 2019-02-26 | Praevium Research, Inc. | Agile imaging system |
JP6599876B2 (ja) * | 2014-08-28 | 2019-10-30 | 興和株式会社 | 断層像撮影装置 |
EP3213690B1 (en) * | 2014-10-27 | 2020-02-26 | FUJIFILM Corporation | Light penetration depth evaluation method, performance test method using evaluation method, and optical tomography apparatus |
ES2865119T3 (es) * | 2015-10-01 | 2021-10-15 | Nanotemper Tech Gmbh | Sistema y método para la medición óptica de la estabilidad y la agregación de partículas |
JP6835919B2 (ja) * | 2019-08-08 | 2021-02-24 | 株式会社日立製作所 | 距離計測システム、及び距離計測方法 |
-
2007
- 2007-06-07 JP JP2007151644A patent/JP4871791B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008304314A (ja) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4871791B2 (ja) | 光コヒーレンストモグラフィ装置 | |
US7557931B2 (en) | Optical coherence tomography method | |
US7570364B2 (en) | Optical tomographic imaging apparatus | |
US7633623B2 (en) | Optical tomography system | |
JPH05113316A (ja) | 3波長光学測定装置及び方法 | |
JP4892401B2 (ja) | 光干渉式測定装置 | |
CN104204775A (zh) | 光学相干层析成像设备以及光学相干层析成像方法 | |
JP2008292487A (ja) | 光学位置測定装置 | |
CN109324333B (zh) | 用于干涉式距离测量的装置 | |
WO2013115018A9 (ja) | 光干渉断層撮像装置及び光干渉断層撮像方法 | |
US20130088722A1 (en) | Measurement apparatus | |
JP2014195645A (ja) | 音響信号受信装置、光音響イメージング装置 | |
KR101770779B1 (ko) | 모드 잠금 발진되는 출력광 세기의 시간 변화를 이용한 측정 기기 | |
JP3663903B2 (ja) | 波長検出装置 | |
CN111227797A (zh) | 一种非线性效应增强的扫频光源 | |
US20130169973A1 (en) | Optical coherence tomography apparatus and method | |
JP4895255B2 (ja) | 共焦点顕微鏡装置 | |
JP6503618B2 (ja) | 距離測定装置及びその方法 | |
JP4804977B2 (ja) | 波長可変レーザ装置および光断層画像化装置 | |
WO2019189559A1 (ja) | 光干渉断層撮像器、光干渉断層撮像方法及びプログラム | |
EP1690254B1 (en) | Measurement device | |
JP4934354B2 (ja) | 差圧測定システム及び差圧測定方法 | |
WO2024209789A1 (ja) | 距離測定装置 | |
JP2007121232A (ja) | 波長モニタ | |
WO2022195765A1 (ja) | 推定装置、推定システム、推定方法、及び記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |