[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4871189B2 - Axial blower - Google Patents

Axial blower Download PDF

Info

Publication number
JP4871189B2
JP4871189B2 JP2007097674A JP2007097674A JP4871189B2 JP 4871189 B2 JP4871189 B2 JP 4871189B2 JP 2007097674 A JP2007097674 A JP 2007097674A JP 2007097674 A JP2007097674 A JP 2007097674A JP 4871189 B2 JP4871189 B2 JP 4871189B2
Authority
JP
Japan
Prior art keywords
pair
center line
straight sides
virtual
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007097674A
Other languages
Japanese (ja)
Other versions
JP2007309313A5 (en
JP2007309313A (en
Inventor
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2007097674A priority Critical patent/JP4871189B2/en
Priority to CN2007100961992A priority patent/CN101059135B/en
Publication of JP2007309313A publication Critical patent/JP2007309313A/en
Priority to HK08104423.1A priority patent/HK1110103A1/en
Publication of JP2007309313A5 publication Critical patent/JP2007309313A5/ja
Application granted granted Critical
Publication of JP4871189B2 publication Critical patent/JP4871189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、電気部品等の冷却に使用する軸流送風機に関するものである。   The present invention relates to an axial blower used for cooling electrical components and the like.

特開平5−164089号公報[特許文献1]等には、図9に示すように、4本のウエブ101乃至104を備えた軸流送風機105の典型的な従来例の一例が示されている。4本のウエブ101乃至104の外側端部は、吐き出し口106側に設けられた風洞の環状のテーパ部107に固定されている。吐き出し口106は、90度間隔で並ぶ4つの直線辺108乃至111と二つの直線辺の間に位置する4つの円弧辺112乃至115とを有している。そして4本のウエブ101乃至104の外側端部は、それぞれ円弧辺112乃至115の端部に対応する位置において、テーパ部107に固定されている。ここで回転中心線Cpと直線辺108乃至111の中心とを通る仮想中心線CLを仮想し、ウエブ101乃至104の内側端部と外側端部を通る仮想線PLを仮想する。そして仮想中心線CLからインペラの回転方向に向かって仮想線PLまでの角度θを測定すると、従来の軸流送風機では、角度θが約65度に近い値になっている。
特開平5−164089号公報 図1
Japanese Patent Laid-Open No. 5-164089 [Patent Document 1] and the like show an example of a typical conventional example of an axial-flow fan 105 having four webs 101 to 104 as shown in FIG. . The outer end portions of the four webs 101 to 104 are fixed to an annular taper portion 107 of a wind tunnel provided on the discharge port 106 side. The discharge port 106 has four straight sides 108 to 111 arranged at intervals of 90 degrees and four arc sides 112 to 115 located between the two straight sides. The outer end portions of the four webs 101 to 104 are fixed to the tapered portion 107 at positions corresponding to the end portions of the arc sides 112 to 115, respectively. Here, a virtual center line CL passing through the rotation center line Cp and the centers of the straight sides 108 to 111 is assumed, and a virtual line PL passing through the inner end portion and the outer end portion of the webs 101 to 104 is assumed. When the angle θ from the virtual center line CL to the virtual line PL is measured in the direction of rotation of the impeller, the angle θ is a value close to about 65 degrees in the conventional axial fan.
Japanese Patent Laid-Open No. 5-164089 FIG.

しかしながら、従来の軸流送風機の構造では、騒音と振動を低下させることに限界があった。   However, the structure of the conventional axial fan has a limit in reducing noise and vibration.

本発明の目的は、4本のウエブを用いる場合において、従来よりも、騒音と振動を抑制することができる軸流送風機を提供することにある。   An object of the present invention is to provide an axial blower capable of suppressing noise and vibration as compared with the conventional case when four webs are used.

本発明の軸流送風機は、風洞を有するファンハウジングを有している。風洞は、中心に位置する円筒部と、円筒部の一端と吐き出し口との間に位置して円筒部の径方向外側に広がる環状の吐き出し口側テーパ部と、円筒部の他端と吸い込み口との間に位置して円筒部の径方向外側に広がる環状の吸い込み口側テーパ部とからなる。また軸流送風機は、風洞内に配置され且つ複数枚のブレードを有するインペラと、インペラが固定されたロータと、ロータに対応して設けられたステータと、モータケースとを有している。モータケースは、吐き出し口側に位置する底壁部とこの底壁部と連続して形成されて吸い込み口側に向かって延びる周壁部とを有しており、ステータは底壁部に固定される。さらに軸流送風機は、インペラの回転方向に間隔をあけて配置され且つ風洞内の吐き出し口内に位置して、モータケースとファンハウジングとを連結する4本のウエブとを具備している。4本のウエブは、風洞の吐き出し口側テーパ部に連結された外側端部と、モータケースの周壁部に連結された内側端部と、外側端部と内側端部との間に位置して両者間を直線的に延びる直線部とをそれぞれ有している。   The axial blower of the present invention has a fan housing having a wind tunnel. The wind tunnel includes a cylindrical portion located at the center, an annular discharge side taper portion that is located between one end of the cylindrical portion and the discharge port and extends radially outward of the cylindrical portion, and the other end of the cylindrical portion and the suction port And an annular suction port side taper portion which is located between and extends radially outward of the cylindrical portion. The axial blower has an impeller disposed in the wind tunnel and having a plurality of blades, a rotor to which the impeller is fixed, a stator provided corresponding to the rotor, and a motor case. The motor case has a bottom wall portion located on the discharge port side and a peripheral wall portion formed continuously with the bottom wall portion and extending toward the suction port side, and the stator is fixed to the bottom wall portion. . Further, the axial blower includes four webs that are arranged at intervals in the rotation direction of the impeller and are located in the discharge port in the wind tunnel, and connect the motor case and the fan housing. The four webs are located between the outer end connected to the outlet side taper of the wind tunnel, the inner end connected to the peripheral wall of the motor case, and the outer end and the inner end. Each has a linear portion extending linearly between the two.

本発明においては、吐き出し口が、ロータの回転中心線を中心にして対向し且つインペラの回転方向に順番に並ぶ第1乃至第4の一対の直線辺から構成された多角形形状を有している。そして吐き出し口の形状を特定するために、第1の一対の直線辺の中心と回転中心線とを通る第1の仮想中心線と、第2の一対の直線辺の中心と回転中心線とを通る第2の仮想中心線と、第3の一対の直線辺の中心と回転中心線とを通る第3の仮想中心線と、第4の一対の直線辺の中心と回転中心線とを通る第4の仮想中心線とを仮想する。この仮想の下で、第1乃至第4の仮想中心線の隣り合う2つの仮想中心線間の角度は45度である。また第1及び第3の一対の直線辺の長さを等しく、第2及び第4の一対の直線辺の長さは等しい。そして第1及び第3の仮想中心線と第1及び第3の一対の直線辺との交点と回転中心線との間の距離は、第2及び第4の仮想中心線と第2及び第4の一対の直線辺との交点と回転中心線との間の距離よりも短い
た4本のウエブについて特定するために、外側端部の中心及び内側端部の中心並びに直線部の中心を通る第1乃至第4の仮想直線を、インペラの回転方向に順番に並ぶように仮想する。このような仮想の下で、第1乃至第4の仮想直線の隣り合う2本の仮想直線間の角度は90度である。また第1の仮想中心線から見てインペラの回転方向側に位置する仮想直線と第1の仮想中心線との間の角度θ及び第3の仮想中心線から見てインペラの回転方向側に位置する仮想直線と第3の仮想中心線との間の角度θを、8度<θ<14度の範囲内の角度となるように、4本のウエブを配置する。
In the present invention, the discharge port has a polygonal shape composed of a first to a fourth pair of straight sides that face each other about the rotation center line of the rotor and are arranged in order in the rotation direction of the impeller. Yes. In order to specify the shape of the discharge port, the first virtual center line passing through the center of the first pair of straight sides and the rotation center line, and the center of the second pair of straight sides and the rotation center line are determined. A second virtual center line passing through, a third virtual center line passing through the center of the third pair of straight sides and the rotation center line, and a second passing through the center of the fourth pair of straight sides and the rotation center line. 4 virtual center lines are virtualized. Under this hypothesis, the angle between two adjacent virtual center lines of the first to fourth virtual center lines is 45 degrees. The lengths of the first and third pairs of straight sides are equal, and the lengths of the second and fourth pairs of straight sides are equal. The distance between the intersection of the first and third virtual center lines and the first and third pair of straight sides and the rotation center line is the second and fourth virtual center lines and the second and fourth distances. Shorter than the distance between the intersection of the pair of straight sides and the rotation center line .
To identify the or four webs, the first to fourth imaginary straight line passing through the center and center of the straight portion of the center and the inner end of the outer end portion, so as to line up in order in the rotational direction of the impeller Be virtual. Under such a hypothesis, the angle between two adjacent virtual straight lines of the first to fourth virtual straight lines is 90 degrees. Further, the angle θ between the virtual straight line positioned on the impeller rotation direction side as viewed from the first virtual center line and the first virtual center line, and the impeller rotation direction side viewed from the third virtual center line. The four webs are arranged so that the angle θ between the virtual straight line and the third virtual center line is an angle within a range of 8 degrees <θ <14 degrees.

上記のような構造を採用すると、ファンハウジングの外側で測定した騒音及びファンハウジングに発生する振動を、従来の構造と比べて大幅に低減することができる。低減効果の理論的な理由はまだ明確になっていないが、上記構成要件の組み合わせにより、格別の効果が発生していることは、試験により確認されている。   When the above structure is adopted, noise measured on the outside of the fan housing and vibration generated in the fan housing can be greatly reduced as compared with the conventional structure. Although the theoretical reason for the reduction effect has not yet been clarified, it has been confirmed by tests that a special effect is generated by the combination of the above-mentioned constituent requirements.

なお吸い込み口の形状は、回転中心線が延びる方向から見て、吐き出し口の形状と実質的に合同になるように定めるのが好ましい。   The shape of the suction port is preferably determined so as to be substantially congruent with the shape of the discharge port as seen from the direction in which the rotation center line extends.

また角度θを10度にした場合には、騒音及び振動の両方において大きな低減効果が得られる。   When the angle θ is 10 degrees, a great reduction effect can be obtained in both noise and vibration.

また吐き出し口側テーパ部上に、第2及び第4の仮想中心線に沿って第1のグループの4枚の静翼を設けてもよい。さらに吐き出し口側テーパ部上に、第1の一対の直線辺と第4の一対の直線辺との境界部及び第2の一対の直線辺と第3の一対の直線辺との境界部に隣接し且つ第1の一対の直線辺及び第3の一対の直線辺に対応する位置に第2のグループの4枚の静翼を設けてもよい。そして第2のグループの4枚の静翼は、インペラの回転方向に90度の角度間隔をあけて配置する。また第1及び第2のグループの8枚の静翼は、回転中心線に向かい且つ回転中心線に沿うように延びているのが好ましい。このようにすると、静翼を設けない場合と比べて、騒音を更に低減することができて、しかも風量を増大させることができる。   Moreover, you may provide the 4 stationary blades of a 1st group along the 2nd and 4th virtual centerline on a discharge outlet side taper part. Further, adjacent to the boundary between the first pair of straight sides and the fourth pair of straight sides and the boundary between the second pair of straight sides and the third pair of straight sides on the outlet side taper portion In addition, the four stationary blades of the second group may be provided at positions corresponding to the first pair of straight sides and the third pair of straight sides. The four stationary blades of the second group are arranged at an angular interval of 90 degrees in the rotation direction of the impeller. Further, the eight stationary blades of the first and second groups preferably extend toward the rotation center line and along the rotation center line. In this way, the noise can be further reduced and the air volume can be increased as compared with the case where no stationary blade is provided.

また4本のウエブのうち1本のウエブには、複数本の電線が収納される電線収納溝を形成してもよい。この場合には、この1本のウエブは、残りの3本のウエブよりも幅寸法を大きくする。そして4本のウエブのそれぞれの直線部における複数枚のブレードと対向する部分の横断面形状を、吸い込み口側の端部の幅寸法が吐き出し口側の端部の幅寸法よりも短くなるようにする。その上で、3本のウエブの横断面形状を、吸い込み口から見てインペラの回転方向側に位置する側面に傾斜面を有する形状とする。また1本のウエブの横断面形状は、吸い込み口から見てインペラの回転方向側及び該回転方向とは反対方向側に位置する両側面にそれぞれ傾斜面を有しているのが好ましい。このような横断面形状を有するウエブを用いると、騒音の低減効果をより確実なものとすることができる。   Moreover, you may form the electric wire accommodation groove | channel in which several electric wires are accommodated in one web among four webs. In this case, the width of the one web is larger than that of the remaining three webs. And the cross-sectional shape of the portion facing each of the plurality of blades in each linear portion of the four webs is such that the width dimension of the end portion on the suction port side is shorter than the width dimension of the end portion on the discharge port side. To do. In addition, the cross-sectional shape of the three webs is a shape having an inclined surface on the side surface located on the impeller rotation direction side when viewed from the suction port. Moreover, it is preferable that the cross-sectional shape of one web has inclined surfaces on both side surfaces located on the rotation direction side of the impeller and on the opposite side to the rotation direction as viewed from the suction port. When a web having such a cross-sectional shape is used, the noise reduction effect can be further ensured.

本発明によれば、ファンハウジングの外側で測定した騒音及びファンハウジングに発生する振動を、従来の構造と比べて大幅に低減することができる。   According to the present invention, the noise measured outside the fan housing and the vibration generated in the fan housing can be greatly reduced as compared with the conventional structure.

以下、図面を参照して本発明の軸流送風機の実施の形態の一例を詳細に説明する。図1(A)及び(B)は、本発明の実施の形態の一例の軸流送風機1をリード線を除いた状態で、正面右側斜め上方から見た斜視図及び背面左側斜め上方から見た斜視図である。また図2(A)及び(B)は、それぞれ図1の実施の形態の軸流送風機の正面図である。   Hereinafter, an example of an embodiment of an axial blower of the present invention will be described in detail with reference to the drawings. 1A and 1B are a perspective view of an axial blower 1 as an example of an embodiment of the present invention, seen from the front right side diagonally upward, and the rear left side diagonally upward, with the lead wires removed. It is a perspective view. 2 (A) and 2 (B) are front views of the axial-flow fan according to the embodiment shown in FIG.

これらの図において、軸流送風機1は、ファンハウジング3と、ファンハウジング3内に配置されて回転する7枚のブレード(回転ブレード5)を備えたインペラ7とを備えている。7枚の回転ブレード5は、カップ状の回転ブレード固定部材6に取り付けられている。図1及び図2に示すように、軸流送風機1は、更にインペラ7が装着される図示しないロータとステータを有するモータ9と、4本のウエブ11A乃至11Dと、8枚の静翼13A乃至13Hとを有している。この例では、ロータは図示しな回転軸に固定されたカップ状部材の周壁部の内面に複数の永久磁石が固定された構造を有している。そしてステータはステータコアに励磁巻線が装着された構造を有している。ステータは、モータケース10の底壁部10Aに固定されている。モータケース10内には、励磁巻線に励磁電流を供給するための回路を実装した回路基板も固定されている。モータケース10は、後述する吐き出し口19に側に位置する底壁部10Aとこの底壁部10Aと連続して形成されて後述する吸い込み口18側に向かって延びる周壁部10Bとを有している。   In these drawings, the axial blower 1 includes a fan housing 3 and an impeller 7 provided with seven blades (rotating blades 5) disposed in the fan housing 3 and rotating. Seven rotating blades 5 are attached to a cup-shaped rotating blade fixing member 6. As shown in FIGS. 1 and 2, the axial blower 1 further includes a motor 9 having a rotor and a stator (not shown) on which an impeller 7 is mounted, four webs 11A to 11D, and eight stationary blades 13A to 13A. 13H. In this example, the rotor has a structure in which a plurality of permanent magnets are fixed to the inner surface of the peripheral wall portion of a cup-shaped member fixed to a rotating shaft (not shown). The stator has a structure in which an excitation winding is mounted on the stator core. The stator is fixed to the bottom wall portion 10 </ b> A of the motor case 10. Also fixed in the motor case 10 is a circuit board on which a circuit for supplying an exciting current to the exciting winding is mounted. The motor case 10 has a bottom wall portion 10A located on the side of a discharge port 19 to be described later, and a peripheral wall portion 10B formed continuously with the bottom wall portion 10A and extending toward the suction port 18 side to be described later. Yes.

ファンハウジング3は、図示しない回転軸の軸線即ち回転中心線Cが延びる方向(軸線方向)の一方側(後述の吸い込み口18が設けられた側)に環状の吸い込み口側フランジ14を有し、軸線方向の他方側(後述の吐き出し口19が設けられた側)に環状の吐き出し口側フランジ15を有している。またファンハウジング3は、両フランジ14,15の間に筒部17を有している。吸い込み口側フランジ14及び吐き出し口側フランジ15は、それぞれほぼ正四角形の輪郭形状を有している。そしてこれらの4つの角部には、取付用螺子が貫通する貫通孔がそれぞれ形成されている。   The fan housing 3 has an annular suction port side flange 14 on one side (side where a suction port 18 described later) is provided in the direction (axial direction) in which the axis of the rotation shaft, that is, the rotation center line C extends (not shown). An annular discharge side flange 15 is provided on the other side in the axial direction (the side on which a discharge port 19 described later is provided). The fan housing 3 has a cylindrical portion 17 between both flanges 14 and 15. The suction port side flange 14 and the discharge port side flange 15 each have a substantially square contour shape. These four corners are respectively formed with through holes through which the mounting screws pass.

吸い込み口側フランジ14と吐き出し口側フランジ15と筒部17のそれぞれの内部空間により、両側に吸い込み口18と吐き出し口19とを有する風洞20が構成されている。風洞20は、中心に位置する円筒部21と、円筒部21の一端21aと吐き出し口19との間に位置して円筒部21の径方向外側に広がる環状の吐き出し口側テーパ部23と、円筒部21の他端21bと吸い込み口18との間に位置して円筒部21の径方向外側に広がる環状の吸い込み口側テーパ部25とから構成されている。   A wind tunnel 20 having a suction port 18 and a discharge port 19 on both sides is formed by the internal spaces of the suction port side flange 14, the discharge port side flange 15, and the cylindrical portion 17. The wind tunnel 20 includes a cylindrical portion 21 located at the center, an annular discharge port side taper portion 23 that is located between one end 21a of the cylindrical portion 21 and the discharge port 19 and extends radially outward of the cylindrical portion 21, and a cylindrical shape. It is comprised between the other end 21b of the part 21 and the suction port 18, and the cyclic | annular suction port side taper part 25 extended in the radial direction outer side of the cylindrical part 21 is comprised.

モータケース10とファンハウジング3とを連結する4本のウエブ11A乃至11Dは、風洞20の吐き出し口側テーパ部23に連結された外側端部11aと、モータケース10の周壁部に連結された内側端部11bと、外側端部11aと内側端部11bとの間に位置して両者間を直線的に延びる直線部11cとをそれぞれ有している。   The four webs 11 </ b> A to 11 </ b> D that connect the motor case 10 and the fan housing 3 are an outer end portion 11 a that is connected to the outlet side taper portion 23 of the wind tunnel 20, and an inner side that is connected to the peripheral wall portion of the motor case 10. Each has an end portion 11b, and a linear portion 11c that is located between the outer end portion 11a and the inner end portion 11b and linearly extends between the two.

図2(B)に示すように、吐き出し口19は、ロータの回転中心線Cを中心にして対向し且つインペラ7の回転方向(図2に矢印で示した方向)に順番に並ぶ第1乃至第4の一対の直線辺(31a,31b;31c,31d;31e,31f;31g,31h)から構成された多角形形状を有している。なお吸い込み口18の形状も、回転中心線Cが延びる方向から見て、吐き出し口19の形状と実質的に合同になるように、その形状が定められている。そして本願明細書では、吐き出し口19の形状を特定するために、第1の一対の直線辺31a,31bの中心と回転中心線Cとを通る第1の仮想中心線CL1と、第2の一対の直線辺31c,31dの中心と回転中心線Cとを通る第2の仮想中心線CL2と、第3の一対の直線辺31e,31fの中心と回転中心線Cとを通る第3の仮想中心線CL3と、第4の一対の直線辺31g,31hの中心と回転中心線Cとを通る第4の仮想中心線CL4とを仮想する。この仮想の下で、第1乃至第4の仮想中心線CL1乃至CL4の隣り合う2つの仮想中心線間の角度は45度である。また第1の一対の直線辺31a,31b及び第3の一対の直線辺31e,31fの長さは等しい。そして第2の一対の直線辺31c,31d及び第4の一対の直線辺31g,31hの長さは等しい。そして第1及び第3の仮想中心線CL1及びCL3と第1及び第3の一対の直線辺(31a,31b;31e,31f)との交点と回転中心線Cとの間の距離は、第2及び第4の仮想中心線CL2及びCL4と第2及び第4の一対の直線辺(31c,31d;31g,31h)との交点と回転中心線Cとの間の距離よりも短い。すなわち第1及び第3の一対の直線辺(31a,31b;31e,31f)の長さが、第2及び第4の一対の直線辺(31c,31d;31g,31h)の長さよりも長くなっている
た本願明細書では、4本のウエブ11A乃至11Dについて特定するために、外側端部11aの中心及び内側端部11bの中心並びに直線部11cの中心を通る第1乃至第4の仮想直線PL1乃至PL4を、インペラ7の回転方向に順番に並ぶように仮想する。仮想直線PL1と仮想直線PL3とは互いに平行に延びており、仮想直線PL2と仮想直線PL4とは互いに平行に延びている。このような仮想の下で、第1乃至第4の仮想直線PL1乃至PL4の隣り合う2本の仮想直線間の角度は90度である。また第1の仮想中心線CL1から見てインペラ7の回転方向側に位置する仮想直線PL1及びPL3と第1の仮想中心線CL1との間の角度θ及び第3の仮想中心線CL3から見てインペラ7の回転方向側に位置する仮想直線PL2及びPL4と第3の仮想中心線CL3との間の角度θを、8度<θ<14度の範囲内の角度となるように、4本のウエブ11A乃至11Dが配置されている。本実施例では、図2(A)に示すように、この角度θは10度に設定されている。このように4本のウエブ11A乃至11Dを配置すると、図2(B)に示すように、ファンハウジング3の各辺(S1,S2,S3及びS4)のに沿って延びる仮想延長線(EL1,EL2,EL3及びEL4)と、第2及び第4の仮想中心線CL2及びCL4との交点(P1,P2,P3及びP4)から、それぞれファンハウジング3の各辺(S1,S2,S3及びS4)と第1乃至第4の仮想直線PL1乃至PL4との交点(P5,P6,P7及びP8)までの距離をL1とし、交点(P5,P6,P7及びP8)からそれぞれ交点(P4,P1,P2及びP3)までの距離をL2とすると、L1とL2の距離比は、ファンハウジング3の一辺の長さを100%としたときに、L1:L2=34%:66%の関係になる。この関係は、本実施の形態において、最良の関係であると考えられている。
As shown in FIG. 2 (B), the discharge ports 19 are opposed to each other around the rotation center line C of the rotor and are arranged in order in the rotation direction of the impeller 7 (the direction indicated by the arrow in FIG. 2). It has a polygonal shape composed of a fourth pair of straight sides (31a, 31b; 31c, 31d; 31e, 31f; 31g, 31h). The shape of the suction port 18 is also determined so as to be substantially congruent with the shape of the discharge port 19 when viewed from the direction in which the rotation center line C extends. In the present specification, in order to specify the shape of the discharge port 19, the first virtual center line CL1 passing through the center of the first pair of straight sides 31a and 31b and the rotation center line C, and the second pair A second virtual center line CL2 passing through the center of the straight sides 31c, 31d and the rotation center line C, and a third virtual center passing through the center of the third pair of straight sides 31e, 31f and the rotation center line C. A line CL3 and a fourth virtual center line CL4 passing through the center of the fourth pair of straight sides 31g and 31h and the rotation center line C are hypothesized. Under this imagination, the angle between two adjacent virtual center lines of the first to fourth virtual center lines CL1 to CL4 is 45 degrees. The lengths of the first pair of straight sides 31a and 31b and the third pair of straight sides 31e and 31f are equal. The lengths of the second pair of straight sides 31c and 31d and the fourth pair of straight sides 31g and 31h are equal. The distance between the intersection of the first and third virtual center lines CL1 and CL3 and the first and third pair of straight sides (31a, 31b; 31e, 31f) and the rotation center line C is second. In addition, the distance between the intersection of the fourth virtual center line CL2 and CL4 and the second and fourth pair of straight sides (31c, 31d; 31g, 31h) and the rotation center line C is shorter. That is, the length of the first and third pair of straight sides (31a, 31b; 31e, 31f) is longer than the length of the second and fourth pair of straight sides (31c, 31d; 31g, 31h). It is .
In or herein, in order to identify the four webs 11A to 11D, first to fourth imaginary line PL1 passing through the center of the central and straight portion 11c of the center and the inner end portion 11b of the outer end 11a Through PL4 are assumed to be arranged in order in the rotation direction of the impeller 7. The virtual straight line PL1 and the virtual straight line PL3 extend in parallel with each other, and the virtual straight line PL2 and the virtual straight line PL4 extend in parallel with each other. Under such a hypothesis, the angle between two adjacent virtual straight lines of the first to fourth virtual straight lines PL1 to PL4 is 90 degrees. Further, the angle θ between the virtual lines PL1 and PL3 located on the rotation direction side of the impeller 7 as viewed from the first virtual center line CL1 and the first virtual center line CL1, and the third virtual center line CL3. The angle θ between the virtual straight lines PL2 and PL4 located on the rotation direction side of the impeller 7 and the third virtual center line CL3 is set to four angles so that the angle is in the range of 8 degrees <θ <14 degrees. Webs 11A to 11D are arranged. In this embodiment, as shown in FIG. 2A, the angle θ is set to 10 degrees. When the four webs 11A to 11D are arranged in this way, as shown in FIG. 2B, virtual extension lines (EL1, EL1) extending along the sides (S1, S2, S3, and S4) of the fan housing 3 are provided. EL2, EL3 and EL4) and the sides (S1, S2, S3 and S4) of the fan housing 3 from the intersections (P1, P2, P3 and P4) of the second and fourth virtual center lines CL2 and CL4, respectively. And the intersections (P4, P1, P2) from the intersections (P5, P6, P7 and P8), respectively, with the distance between the intersections (P5, P6, P7 and P8) of the first to fourth virtual straight lines PL1 to PL4 as L1. When the distance to P3) is L2, the distance ratio between L1 and L2 is L1: L2 = 34%: 66% when the length of one side of the fan housing 3 is 100%. This relationship is considered to be the best relationship in the present embodiment.

図3(A)は、電線(リード線)を除いた軸流送風機1を、吐き出し口19の近傍の位置で、軸線と直交する方向に切断したときの端面図を示している。図1及び図2並びに図3(A)に示すように、本実施の形態では、吐き出し口側テーパ部23上には、第2及び第4の仮想中心線CL2及びCL4に沿って第1のグループの4枚の静翼(13B,13D,13F,13H)が設けられている。さらに吐き出し口側テーパ部23上には、第1の一対の直線辺31a,31bと第4の一対の直線辺31g,31hとの境界部及び第2の一対の直線辺31c,31dと第3の一対の直線辺31e,31fとの境界部に隣接し且つ第1の一対の直線辺31a,31b及び第3の一対の直線辺31e,31fに対応する位置に、第2のグループの4枚の静翼(13A,13C,13E,13G)が設けられている。そして第2のグループの4枚の静翼(13A,13C,13E,13G)は、インペラ7の回転方向に90度の角度間隔をあけて配置されている。これら第1及び第2のグループの8枚の静翼13A乃至13Hは、回転中心線Cに向かい且つ回転中心線Cに沿うようにそれぞれ延びている。   FIG. 3A shows an end view of the axial blower 1 excluding the electric wires (lead wires) when cut in a direction perpendicular to the axis at a position near the outlet 19. As shown in FIGS. 1, 2, and 3 (A), in the present embodiment, the first taper 23 along the second and fourth virtual center lines CL <b> 2 and CL <b> 4 is disposed on the discharge-side taper portion 23. Four stationary blades (13B, 13D, 13F, 13H) of the group are provided. Further, on the discharge port side taper portion 23, a boundary portion between the first pair of straight sides 31a, 31b and the fourth pair of straight sides 31g, 31h and the second pair of straight sides 31c, 31d and the third pair 4 pieces of the second group at positions corresponding to the first pair of straight sides 31a and 31b and the third pair of straight sides 31e and 31f, adjacent to the boundary between the pair of straight sides 31e and 31f. Stationary blades (13A, 13C, 13E, 13G) are provided. The four stationary blades (13A, 13C, 13E, 13G) of the second group are arranged at an angular interval of 90 degrees in the rotation direction of the impeller 7. The eight stationary blades 13A to 13H of the first and second groups extend toward the rotation center line C and along the rotation center line C, respectively.

また4本のウエブ11A乃至11Dのうち1本のウエブ11Dには、複数本の電線が収納される電線収納溝11dが形成されている。本実施の形態では、図3(B)及び(C)に示すように、ウエブ11Dの幅寸法W1は、残りの3本のウエブ11A乃至11Cの幅寸法W2よりも大きい。そして4本のウエブ11A乃至11Dのそれぞれの直線部11cにおける複数枚のブレードと対向する部分の横断面形状は、吸い込み口18側の端部の幅寸法W3及びW4が吐き出し口19側の端部の幅寸法W1及びW2よりも短くなるように形状が定められている。また3本のウエブ11A乃至11Cの横断面形状は、吸い込み口18から見てインペラ7の回転方向側に位置する側面に傾斜面11eを有する形状になっている。またウエブ11Dの横断面形状は、吸い込み口18から見てインペラ7の回転方向側及びこの回転方向とは反対方向に位置する両側面にそれぞれ傾斜面11f及び11gを有している。このような横断面形状を有するウエブ11A乃至11Dを用いると、上記のウエブ11A乃至11Dの配置構造と相まって、騒音の低減効果をより確実なものとすることができる。   Further, one of the four webs 11A to 11D is formed with a wire housing groove 11d for housing a plurality of wires in one web 11D. In the present embodiment, as shown in FIGS. 3B and 3C, the width dimension W1 of the web 11D is larger than the width dimension W2 of the remaining three webs 11A to 11C. The cross-sectional shape of the portion of each of the four webs 11A to 11D facing the plurality of blades in the linear portion 11c is such that the width dimension W3 and W4 of the end portion on the suction port 18 side are the end portions on the discharge port 19 side. The shape is determined to be shorter than the width dimensions W1 and W2. Further, the cross-sectional shapes of the three webs 11A to 11C are shapes having an inclined surface 11e on the side surface located on the rotation direction side of the impeller 7 when viewed from the suction port 18. Further, the cross-sectional shape of the web 11D has inclined surfaces 11f and 11g on the side of the rotation direction of the impeller 7 as viewed from the suction port 18 and on both side surfaces located in the direction opposite to the rotation direction. When the webs 11A to 11D having such a cross-sectional shape are used, the noise reduction effect can be further ensured in combination with the arrangement structure of the webs 11A to 11D.

図4は、騒音試験において軸流送風機1に対してマイクロフォンA乃至Dを配置する際の、軸流送風機1とマイクロフォンA乃至Dとの位置関係を示している。図5は、ブレードの枚数、インペラの回転数を同じにした場合の図9に示した構造の従来の軸流送風機(従来品)と、本実施の形態の軸流送風機(本発明品)について、図4に示す4つのマイクロフォンA乃至Dを用いて、風量の変化に対する音圧レベルの変化を測定した結果を示している。図5に示した従来品の4本の線及び本発明品の4本の線は、4つのマイクロフォンの出力結果である。図5を見ると判るように、本発明の軸流送風機では、従来品と比べて約20%の音圧レベル(騒音)の低減効果が得られることが判る。また図6(A)及び(B)は、従来品と本発明品とについて、ファンハウジングの径方向に発生する振動と軸線方向に発生する振動とを測定した結果をそれぞれ示している。図6(A)及び(B)を見ると、径方向に発生する振動及び軸線方向に発生する振動のいずれにおいても、従来品に比べて本発明品の方が、振動が小さいことが判る。すなわち本発明の実施の形態の構造を採用することにより、振動の発生を低減できていることが判る。   FIG. 4 shows the positional relationship between the axial blower 1 and the microphones A to D when the microphones A to D are arranged with respect to the axial blower 1 in the noise test. FIG. 5 shows a conventional axial fan (conventional product) having the structure shown in FIG. 9 when the number of blades and the rotation speed of the impeller are the same, and an axial fan (present invention) of the present embodiment. 4 shows the result of measuring the change in sound pressure level with respect to the change in air volume using the four microphones A to D shown in FIG. The four lines of the conventional product and the four lines of the present invention shown in FIG. 5 are the output results of the four microphones. As can be seen from FIG. 5, it can be seen that the axial flow fan of the present invention can achieve a sound pressure level (noise) reduction effect of about 20% compared to the conventional product. FIGS. 6A and 6B show the results of measuring the vibration generated in the radial direction of the fan housing and the vibration generated in the axial direction for the conventional product and the product of the present invention, respectively. 6A and 6B, it can be seen that the vibration of the product of the present invention is smaller than that of the conventional product in both of the vibration generated in the radial direction and the vibration generated in the axial direction. That is, it can be seen that the occurrence of vibration can be reduced by employing the structure of the embodiment of the present invention.

図7(A)及び(B)は、ウエブ11A乃至11Dの外側端部の取り付け位置(第1乃至第4の仮想直線PL1乃至PL4の位置及び角度θ)を変えたときの、振動加速度の変化を測定した結果を示すグラフである。図7(A)の横軸は、上述した交点(P1,P2,P3及びP4)と交点(P5,P6,P7及びP8)との距離α(mm)を示しており、図2(B)のL1に対応している。図7(A)の縦軸は、振動加速度の変化率(%)を示している。また、図7(B)の横軸は、上述した図7(A)の横軸を示す距離αを角度θ(度)で表したものであり、図7(B)の縦軸は、図7(A)の縦軸と同様に振動加速度の変化率(%)を示している。なお、図7の各グラフは、従来品の振動加速度Lvを100%としたときの測定結果を示している。また、この実験で使用したファンハウジング3の一辺の長さ寸法は、60mmである。   7A and 7B show changes in vibration acceleration when the attachment positions of the outer end portions of the webs 11A to 11D (positions and angles θ of the first to fourth virtual straight lines PL1 to PL4) are changed. It is a graph which shows the result of having measured. The horizontal axis in FIG. 7A indicates the distance α (mm) between the intersection points (P1, P2, P3, and P4) and the intersection points (P5, P6, P7, and P8), and FIG. Corresponds to L1. The vertical axis in FIG. 7A indicates the change rate (%) of vibration acceleration. Further, the horizontal axis of FIG. 7B represents the distance α indicating the horizontal axis of FIG. 7A described above by an angle θ (degrees), and the vertical axis of FIG. The rate of change (%) in vibration acceleration is shown in the same manner as the vertical axis of FIG. In addition, each graph of FIG. 7 has shown the measurement result when the vibration acceleration Lv of a conventional product is 100%. The length of one side of the fan housing 3 used in this experiment is 60 mm.

また図8(A)及び(B)は、ウエブ11A乃至11Dの外側端部の取り付け位置(第1乃至第4の仮想直線PL1乃至PL4の位置及び角度θ)を変えたときの、音圧レベルの変化を測定した結果を示すグラフである。図8(A)の横軸は、上述した図7(A)及び(B)の横軸と同様に、図2(B)のL1に対応する距離α(mm)を示しており、図8(A)の縦軸は、図7(A)及び(B)の横軸と同様に、振動加速度の変化率(%)を示している。また、図8(B)の横軸は、上述した図7(A)及び(B)の横軸を示す距離αを角度θ(度)で表したものであり、図8(B)の縦軸は、図7(A)の縦軸と同様に振動加速度の変化率(%)を示している。なお、図8のグラフには、図4に示す4つのマイクロフォンの出力の平均値が測定結果として示されている。また図8の各グラフは、従来品の音圧レベルの平均値をLpとしたときの測定結果を示している。ちなみに図8の各縦軸における「Lp−4」は、Lpよりも4dB音圧が低いことを意味している。なお、この実験で使用したファンハウジング3の一辺の長さ寸法も、60mmである。   8A and 8B show sound pressure levels when the attachment positions of the outer ends of the webs 11A to 11D (positions and angles θ of the first to fourth virtual straight lines PL1 to PL4) are changed. It is a graph which shows the result of having measured the change of. The horizontal axis in FIG. 8A indicates the distance α (mm) corresponding to L1 in FIG. 2B, similarly to the horizontal axis in FIGS. 7A and 7B described above. The vertical axis of (A) indicates the change rate (%) of the vibration acceleration, similarly to the horizontal axis of FIGS. 7 (A) and 7 (B). Further, the horizontal axis of FIG. 8B represents the distance α indicating the horizontal axis of FIGS. 7A and 7B described above by an angle θ (degrees), and the vertical axis of FIG. The axis indicates the rate of change (%) in vibration acceleration as in the vertical axis of FIG. In the graph of FIG. 8, the average value of the outputs of the four microphones shown in FIG. 4 is shown as a measurement result. Moreover, each graph of FIG. 8 has shown the measurement result when the average value of the sound pressure level of a conventional product is set to Lp. Incidentally, “Lp-4” on each vertical axis in FIG. 8 means that the sound pressure is 4 dB lower than Lp. The length dimension of one side of the fan housing 3 used in this experiment is also 60 mm.

図7(A)を見ると判るように、本実施の形態では、振動の発生の点から見ると、取り付け位置(距離α)は22mmより小さい方が好ましい。これを角度θで表すと(距離αを角度θで表すと)、図7(B)に示すように、角度θは8度より大きい方が好ましい。また及び図8(A)を見ると判るように、本実施の形態では、騒音の発生の点から見ると、取り付け位置(距離α)は18mmより大きく29mmより小さい範囲が好ましい。これを角度θで表すと(距離αを角度θで表すと)、図8(B)に示すように、角度θは−7度より大きく14度より小さい範囲が好ましい。これらの結果から、ウエブの取り付け位置は、18mm<α<22mmの範囲が好ましいことが判る。これを角度θで表すと(距離αを角度θで表すと)、角度θは8度<θ<14度の範囲となる。   As can be seen from FIG. 7A, in the present embodiment, it is preferable that the attachment position (distance α) is smaller than 22 mm when viewed from the point of occurrence of vibration. When this is expressed by an angle θ (when the distance α is expressed by an angle θ), as shown in FIG. 7B, the angle θ is preferably larger than 8 degrees. In addition, as can be seen from FIG. 8A, in this embodiment, the mounting position (distance α) is preferably in a range larger than 18 mm and smaller than 29 mm from the viewpoint of noise generation. If this is represented by angle θ (distance α is represented by angle θ), as shown in FIG. 8B, angle θ is preferably in the range of greater than −7 degrees and smaller than 14 degrees. From these results, it can be seen that the web mounting position is preferably in the range of 18 mm <α <22 mm. If this is expressed by angle θ (distance α is expressed by angle θ), angle θ is in the range of 8 degrees <θ <14 degrees.

上記の測定結果は、本実施の形態の各部の形状から生じる総合的な結果である。   The above measurement result is a comprehensive result generated from the shape of each part of the present embodiment.

上記の実施の形態では、1つのウエブ11Dをリード線を収納する構造にしているが、リード線を単純にそのまま外部に引き出す構造を採用してもよいのは勿論である。   In the above embodiment, one web 11D has a structure for accommodating a lead wire, but it is needless to say that a structure in which the lead wire is simply pulled out as it is may be adopted.

(A)及び(B)は、本発明の実施の形態の一例の軸流送風機をリード線を除いた状態で、それぞれ正面右側斜め上方から見た斜視図及び背面左側斜め上方から見た斜視図である。(A) And (B) is the perspective view which looked at the axial flow fan of an example of an embodiment of the present invention from the front right side diagonally upper direction and the rear left side diagonally upper side, respectively, in a state excluding the lead wire. It is. (A)及び(B)は、それぞれ図1の軸流送風機の正面図である。(A) And (B) is a front view of the axial-flow fan of FIG. 1, respectively. (A)はリード線を除いた軸流送風機を、吐き出し口の近傍の位置で、軸線と直交する方向に切断したときの端面図、(B)及び(C)は図3(A)のB−B線断面図及びC−C線断面図である。(A) is an end view when the axial blower excluding the lead wire is cut in a direction perpendicular to the axis at a position near the discharge port, and (B) and (C) are B in FIG. -B line sectional drawing and CC line sectional drawing. 騒音試験の際における、本実施の形態の軸流送風機に対するマイクロフォンの位置を示す図である。It is a figure which shows the position of the microphone with respect to the axial-flow fan of this Embodiment in the case of a noise test. ブレードの枚数、インペラの回転数を同じにした図9に示した構造の従来の軸流送風機(従来品)と、本実施の形態の軸流送風機(本発明品)について、図4に示す4つのマイクロフォンを用いて、風量の変化に対する音圧レベルの変化を測定した結果を示す図である。FIG. 4 shows a conventional axial blower (conventional product) having the structure shown in FIG. 9 with the same number of blades and the same number of revolutions of the impeller, and an axial blower (present product) of the present embodiment. It is a figure which shows the result of having measured the change of the sound pressure level with respect to the change of an air volume using two microphones. (A)及び(B)は、従来品と本発明品とについて、ファンハウジングの径方向に発生する振動と軸線方向に発生する振動とを測定した結果をそれぞれ示す図である。(A) And (B) is a figure which respectively shows the result of having measured the vibration generate | occur | produced in the radial direction of a fan housing, and the vibration generate | occur | produced in an axial direction about a conventional product and this invention product. (A)及び(B)は、それぞれ、ウエブの外側端部の取り付け位置を変えたときの、振動加速度の変化を測定した結果を示す図である。(A) And (B) is a figure which shows the result of having measured the change of the vibration acceleration when changing the attachment position of the outer side edge part of a web, respectively. (A)及び(B)は、それぞれ、ウエブ外側端部の取り付け位置を変えたときの、音圧レベルの変化を測定した結果を示す図である。(A) And (B) is a figure which shows the result of having measured the change of the sound pressure level when changing the attachment position of a web outer side edge part, respectively. 従来の軸流送風機の構造を示す図である。It is a figure which shows the structure of the conventional axial blower.

1 軸流送風機
3 ファンハウジング
5 回転ブレード
7 インペラ
10 モータケース
10A 底壁部
11A乃至11D ウエブ
11a 外側端部
11b 内側端部
11c 直線部
13A乃至13H 静翼
15 吐き出し口側フランジ
C 回転中心線
CL1乃至CL4 第1乃至第4の仮想中心線
PL1乃至PL4 第1乃至第4の仮想直線
19 吐き出し口
21 円筒部
21a 円筒部の一端
21b 円筒部の他端
23 吐き出し口側テーパ部
31a乃至31h 直線辺
DESCRIPTION OF SYMBOLS 1 Axial flow fan 3 Fan housing 5 Rotating blade 7 Impeller 10 Motor case 10A Bottom wall part 11A thru | or 11D Web 11a Outer edge part 11b Inner edge part 11c Straight line part 13A thru | or 13H Stator blade 15 Outlet side flange C Rotation center line CL1 thru | or CL4 1st to 4th virtual center lines PL1 to PL4 1st to 4th virtual straight lines 19 Discharge port 21 Cylindrical portion 21a One end of the cylindrical portion 21b Other end of the cylindrical portion 23 Discharge port side taper portion 31a to 31h Straight side

Claims (5)

中心に位置する円筒部と、前記円筒部の一端と吐き出し口との間に位置して前記円筒部の径方向外側に広がる環状の吐き出し口側テーパ部と、前記円筒部の他端と吸い込み口との間に位置して前記円筒部の径方向外側に広がる環状の吸い込み口側テーパ部とからなる風洞を備えたファンハウジングと、
前記風洞内に配置され且つ複数枚のブレードを有するインペラと、
前記インペラが固定されたロータと、
前記ロータに対応して設けられたステータと、
前記吐き出し口側に位置する底壁部と前記底壁部と連続して形成されて前記吸い込み口側に向かって延びる周壁部とを有し、前記ステータが前記底壁部に固定されるモータケースと、
前記インペラの回転方向に間隔をあけて配置され且つ前記風洞の前記吐き出し口内に位置して、前記モータケースと前記ファンハウジングとを連結する4本のウエブとを具備し、
前記4本のウエブが、前記風洞の前記吐き出し口側テーパ部に連結された外側端部と、前記モータケースの前記周壁部に連結された内側端部と、前記外側端部と前記内側端部との間に位置して両者間を直線的に延びる直線部とをそれぞれ有している軸流送風機であって、
前記吐き出し口は、前記ロータの回転中心線を中心にして対向し且つ前記インペラの回転方向に順番に並ぶ第1乃至第4の一対の直線辺から構成された多角形形状を有しており、
前記第1の一対の直線辺の中心と前記回転中心線とを通る第1の仮想中心線と、前記第2の一対の直線辺の中心と前記回転中心線とを通る第2の仮想中心線と、前記第3の一対の直線辺の中心と前記回転中心線とを通る第3の仮想中心線と、前記第4の一対の直線辺の中心と前記回転中心線とを通る第4の仮想中心線とを仮想した場合に、前記第1乃至第4の仮想中心線の隣り合う2つの前記仮想中心線間の角度が45度であり、前記第1及び第3の一対の直線辺の長さが等しく、前記第2及び第4の一対の直線辺の長さが等しく、しかも前記第1及び第3の仮想中心線と前記第1及び第3の一対の直線辺との交点と前記回転中心線との間の距離が、前記第2及び第4の仮想中心線と前記第2及び第4の一対の直線辺との交点と前記回転中心線との間の距離よりも短く
記4本のウエブについて、前記外側端部の中心及び前記内側端部の中心並びに前記直線部の中心を通る第1乃至第4の仮想直線を、前記インペラの回転方向に順番に並ぶように仮想した場合に、前記第1乃至第4の仮想直線の隣り合う2本の前記仮想直線間の角度が90度となり、前記第1の仮想中心線から見て前記インペラの回転方向側に位置する前記仮想直線と前記第1の仮想中心線との間の角度θ及び前記第3の仮想中心線から見て前記インペラの回転方向側に位置する前記仮想直線と前記第3の仮想中心線との間の角度θが、8度<θ<14度の範囲内の角度となるように前記4本のウエブが配置されていることを特徴とする軸流送風機。
A cylindrical portion located in the center; an annular discharge-side taper portion extending between one end of the cylindrical portion and the discharge port and extending radially outward of the cylindrical portion; and the other end of the cylindrical portion and a suction port A fan housing including a wind tunnel including an annular suction port side taper portion which is located between and extending radially outward of the cylindrical portion;
An impeller disposed in the wind tunnel and having a plurality of blades;
A rotor to which the impeller is fixed;
A stator provided corresponding to the rotor;
A motor case having a bottom wall portion located on the discharge port side and a peripheral wall portion formed continuously with the bottom wall portion and extending toward the suction port side, wherein the stator is fixed to the bottom wall portion When,
Four webs arranged at intervals in the rotation direction of the impeller and positioned in the outlet of the wind tunnel to connect the motor case and the fan housing;
The four webs are an outer end connected to the outlet side taper portion of the wind tunnel, an inner end connected to the peripheral wall portion of the motor case, the outer end and the inner end. Are axial flow fans each having a linear portion that is positioned between and linearly extending between the two,
The discharge port has a polygonal shape composed of a first to a fourth pair of straight sides that face each other around the rotation center line of the rotor and are arranged in order in the rotation direction of the impeller.
A first virtual center line passing through the center of the first pair of straight sides and the rotation center line, and a second virtual center line passing through the center of the second pair of straight sides and the rotation center line A fourth virtual center line passing through the center of the third pair of straight sides and the rotation center line, and a fourth virtual center passing through the center of the fourth pair of straight sides and the rotation center line When a virtual center line is assumed, an angle between two adjacent virtual center lines of the first to fourth virtual center lines is 45 degrees, and the lengths of the first and third pair of straight sides are And the lengths of the second and fourth pair of straight sides are equal, and the intersection between the first and third virtual center lines and the first and third pair of straight sides and the rotation The distance between the center line is the intersection of the second and fourth virtual center lines and the second and fourth pair of straight sides and the center of rotation. Shorter than the distance between the,
For the previous SL four webs, the first to fourth imaginary straight line passing through the center and center of the straight portion of the center and the inner end of the outer end portion, so as to line up in order in the rotational direction of the impeller When hypothesized, the angle between two adjacent virtual straight lines of the first to fourth virtual straight lines is 90 degrees, and is located on the impeller rotation direction side when viewed from the first virtual center line. An angle θ between the imaginary straight line and the first imaginary center line, and the imaginary straight line and the third imaginary center line located on the impeller rotation direction side when viewed from the third imaginary center line. The axial flow fan, wherein the four webs are arranged such that the angle θ between them is an angle within a range of 8 degrees <θ <14 degrees.
前記吸い込み口の形状は、前記回転中心線が延びる方向から見て、前記吐き出し口の形状と実質的に合同になるように定められている請求項1に記載の軸流送風機。   The axial blower according to claim 1, wherein the shape of the suction port is determined so as to be substantially congruent with the shape of the discharge port as viewed from a direction in which the rotation center line extends. 前記角度θが10度である請求項1または2に記載の軸流送風機。   The axial-flow fan according to claim 1 or 2, wherein the angle θ is 10 degrees. 前記吐き出し口側テーパ部上には、前記第2及び第4の仮想中心線に沿って第1のグループの4枚の静翼が設けられ、
前記吐き出し口側テーパ部上には、前記第1の一対の直線辺と前記第4の一対の直線辺との境界部及び前記第2の一対の直線辺と前記第3の一対の直線辺との境界部に隣接し且つ前記第1の一対の直線辺及び前記第3の一対の直線辺に対応する位置に第2のグループの4枚の静翼が設けられており、
前記第2のグループの4枚の静翼は、前記インペラの回転方向に90度の角度間隔をあけて配置されており、
前記第1及び第2のグループの8枚の静翼は前記回転中心線に向かい且つ前記回転中心線に沿うように延びていることを特徴とする請求項1または2記載の軸流送風機。
On the discharge port side taper portion, four stationary blades of a first group are provided along the second and fourth virtual center lines,
On the outlet side taper portion, a boundary portion between the first pair of straight sides and the fourth pair of straight sides, the second pair of straight sides, and the third pair of straight sides The four stationary blades of the second group are provided at positions adjacent to the boundary portion and corresponding to the first pair of straight sides and the third pair of straight sides,
The four stationary blades of the second group are arranged at an angular interval of 90 degrees in the rotation direction of the impeller,
The axial flow fan according to claim 1 or 2, wherein the eight stationary blades of the first and second groups extend toward the rotation center line and along the rotation center line.
前記4本のウエブのうち1本の前記ウエブには、複数本の電線が収納される電線収納溝が形成されており、
前記1本のウエブは残りの3本のウエブよりも幅寸法が大きく、
前記4本のウエブのそれぞれの前記直線部における前記複数枚のブレードと対向する部分の横断面形状は、前記吸い込み口側の端部の幅寸法が前記吐き出し口側の端部の幅寸法よりも短く、
前記3本のウエブの前記横断面形状は、前記吸い込み口から見て前記インペラの回転方向側に位置する側面に傾斜面を有しており、
前記1本のウエブの前記横断面形状は、前記吸い込み口から見て前記インペラの回転方向側及び該回転方向とは反対方向側に位置する両側面にそれぞれ傾斜面を有している請求項4に記載の軸流送風機。
Of the four webs, one of the webs is formed with a wire storage groove for storing a plurality of wires,
The one web is larger in width than the remaining three webs,
The cross-sectional shape of the portion of each of the four webs facing the plurality of blades in the linear portion is such that the width of the end on the suction port side is larger than the width of the end on the discharge port side. Short,
The cross-sectional shape of the three webs has an inclined surface on a side surface located on the rotation direction side of the impeller as viewed from the suction port,
5. The cross-sectional shape of the one web has inclined surfaces on both side surfaces located on the rotation direction side and the rotation direction side of the impeller as viewed from the suction port. An axial flow blower described in 1.
JP2007097674A 2006-04-18 2007-04-03 Axial blower Active JP4871189B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007097674A JP4871189B2 (en) 2006-04-18 2007-04-03 Axial blower
CN2007100961992A CN101059135B (en) 2006-04-18 2007-04-18 Axial flow fan
HK08104423.1A HK1110103A1 (en) 2006-04-18 2008-04-21 Axial-flow fan

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006114963 2006-04-18
JP2006114963 2006-04-18
JP2007097674A JP4871189B2 (en) 2006-04-18 2007-04-03 Axial blower

Publications (3)

Publication Number Publication Date
JP2007309313A JP2007309313A (en) 2007-11-29
JP2007309313A5 JP2007309313A5 (en) 2010-02-25
JP4871189B2 true JP4871189B2 (en) 2012-02-08

Family

ID=38842389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097674A Active JP4871189B2 (en) 2006-04-18 2007-04-03 Axial blower

Country Status (3)

Country Link
JP (1) JP4871189B2 (en)
CN (1) CN101059135B (en)
HK (1) HK1110103A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452763B1 (en) * 2008-02-13 2014-10-21 엘지전자 주식회사 Fan-motor assembly and refrigerator having the same
JP5039673B2 (en) 2008-02-27 2012-10-03 三菱重工業株式会社 Strut structure of turbo compressor
JP5129667B2 (en) * 2008-06-26 2013-01-30 山洋電気株式会社 Axial blower
JP5211027B2 (en) * 2009-12-14 2013-06-12 国立大学法人 東京大学 Counter-rotating axial fan
JP6287141B2 (en) * 2013-12-06 2018-03-07 日本電産株式会社 Blower
US11835054B2 (en) * 2019-10-17 2023-12-05 Dassault Systemes Simulia Corp. Method for automatic detection of axial cooling fan rotation direction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677600A (en) * 1979-11-30 1981-06-25 Fujitsu Ltd Axial-flow blower
JPH10205497A (en) * 1996-11-21 1998-08-04 Zexel Corp Cooling air introducing/discharging device
JP3784178B2 (en) * 1998-10-07 2006-06-07 山洋電気株式会社 Axial blower
TW537549U (en) * 1999-10-28 2003-06-11 Delta Electronics Inc Terminal seat
JP3686005B2 (en) * 2001-03-30 2005-08-24 山洋電気株式会社 Cooling device with heat sink
CN1578614B (en) * 2003-06-30 2010-04-21 山洋电气株式会社 Axial-flow fan unit and heat-emitting element cooling apparatus
CN2641353Y (en) * 2003-09-10 2004-09-15 欣瑞联电子(深圳)有限公司 Heat radiation fan equipment with LED
JP4627409B2 (en) * 2004-04-20 2011-02-09 日本電産サーボ株式会社 Axial fan

Also Published As

Publication number Publication date
CN101059135A (en) 2007-10-24
CN101059135B (en) 2010-09-08
HK1110103A1 (en) 2008-07-04
JP2007309313A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4664196B2 (en) Axial blower
JP5244620B2 (en) Blower
JP4871189B2 (en) Axial blower
US7762767B2 (en) Axial-flow fan
JP5739200B2 (en) Blower
US9709073B2 (en) Centrifugal fan
JP2007309313A5 (en)
US10113551B2 (en) Axial flow fan
US20080170935A1 (en) Axial-flow fan
WO2006082877A1 (en) Axial flow blower
JP2015113781A (en) Axial fan and series axial fan
JP5705805B2 (en) Centrifugal fan
JP2008196480A (en) Axial-flow fan
WO2006082876A1 (en) Axial flow blower
WO2022054433A1 (en) Blower
EP4317703A1 (en) Electric blower
JP2008196504A (en) Axial-flow blower
JP2006220021A (en) Blast fan and electronic apparatus
JP2021021357A (en) Fan and electric blower

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4871189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250