[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4867081B2 - Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same - Google Patents

Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same Download PDF

Info

Publication number
JP4867081B2
JP4867081B2 JP2001147678A JP2001147678A JP4867081B2 JP 4867081 B2 JP4867081 B2 JP 4867081B2 JP 2001147678 A JP2001147678 A JP 2001147678A JP 2001147678 A JP2001147678 A JP 2001147678A JP 4867081 B2 JP4867081 B2 JP 4867081B2
Authority
JP
Japan
Prior art keywords
membrane
film
fuel cell
polymer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001147678A
Other languages
Japanese (ja)
Other versions
JP2002343380A (en
Inventor
了 本村
一郎 寺田
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001147678A priority Critical patent/JP4867081B2/en
Publication of JP2002343380A publication Critical patent/JP2002343380A/en
Application granted granted Critical
Publication of JP4867081B2 publication Critical patent/JP4867081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池、特に固体高分子型燃料電池用電解質膜に関する。
【0002】
【従来の技術】
水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への悪影響がほとんどない発電システムとして注目されている。固体高分子型燃料電池は、かつてジェミニ計画及びバイオサテライト計画で宇宙船に搭載されたが、当時の電池出力密度は低かった。その後、より高性能のアルカリ型燃料電池が開発され、現在のスペースシャトルに至るまで宇宙用にはアルカリ型燃料電池が採用されている。
【0003】
ところが、近年技術の進歩により固体高分子型燃料電池が再び注目されている。その理由として次の2点が挙げられる。(1)固体高分子電解質として高導電性の膜が開発された。(2)ガス拡散電極層に用いられる触媒をカーボンに担持し、これをイオン交換樹脂で被覆することにより、高い活性が得られるようになった。
【0004】
現在、一般的に固体高分子電解質として用いられる膜は、プロトン導電性が高いため、抵抗が低く高い電池性能を発現できる。一方、一般に抵抗が低い膜ほど含水率が高いため、含水時に膜の長さ方向に寸法が増大しやすく、様々な弊害を生じやすい。例えば、膜を一対の電極の間に挟んで接合した膜電極接合体を燃料電池セルに組込んで運転を行うと、反応により生成した水や燃料ガスとともに供給される水蒸気等により膜が膨潤し、膜の寸法が増大する。通常、膜と電極は接合しているので電極も膜の寸法変化に追従する。そして、膜電極接合体はガスの流路として溝が形成されたセパレータ等で拘束されているため、寸法の増大分は「しわ」となる。そして、そのしわがセパレータの溝を埋めてガスの流れを阻害することがある。
【0005】
したがって、固体高分子電解質膜としては、低抵抗でかつ含水時の寸法変化が少ないことが必要であり、電極を作製するための塗工液中の溶媒により膨潤しにくいことが好ましい。しかし、上述のように従来の技術では、これらの要件をすべて満たす膜を得ることは困難であった。
【0006】
上記の問題を解決する方法として、膜に補強材を複合し前記の特性を両立する手法が考えられる。具体的にはポリテトラフルオロエチレン(以下、PTFEという。)多孔膜にスルホン酸基を有するフッ素系イオン交換ポリマーを含浸する方法が提案されている(特公平5−75835)。しかし、PTFE多孔膜では、含水時にイオン交換膜が伸びる応力を抑えることはできない。
【0007】
また、フィブリル状、織布状、又は不織布状のパーフルオロカーボン重合体で補強された陽イオン交換膜が提案されている(特開平6−231779)。この膜は、含水時の寸法変化率を低減できるが、膜厚がせいぜい100〜200μmであり、充分な低抵抗を実現することはできない。
【0008】
また、膜の強度を向上させると同時に薄膜を得る手段として、電解質膜をガラス転移温度から融点までの温度範囲で2軸延伸する方法が提案されている(特開平11−354140)。この方法は、強度物性向上のためには有効であるが、上記温度範囲で延伸しても膜の含水時の寸法変化を抑制することはできない。
【0009】
【発明が解決しようとする課題】
そこで本発明は、低抵抗でありかつ含水時の寸法変化が少ない固体高分子型燃料電池用電解質膜の製造方法を提供し、安定して高出力が得られる固体高分子型燃料電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜の少なくとも片面に延伸補助フィルムを積層した後、延伸することを特徴とする固体高分子型燃料電池用電解質膜の製造方法を提供する。
【0011】
本発明において、電解質膜となる陽イオン交換膜を延伸処理する場合、当該陽イオン交換膜のみを延伸処理すると破れやすく均一に薄くすることが困難であるが、延伸補助フィルムを積層して延伸処理すると、電解質膜となるフィルムを均一に薄くできる。すなわち本発明における延伸補助フィルムは、電解質膜となるフィルムの延伸を補助するために積層されるフィルムである。
【0012】
上述の方法により延伸処理された膜は、均一で薄くできるだけでなく、含水時の寸法変化率を少なくすることができるので、膜を扱う雰囲気湿度によって膜の寸法はほとんど変化しないので取り扱いやすい。
【0013】
また、本発明は、比抵抗が20Ω・cm以下であり、含水時の寸法変化率が−5%〜+5%であり、かつ厚さが3〜90μmである陽イオン交換膜からなることを特徴とする固体高分子型燃料電池用電解質膜を提供する。
【0014】
ここで本明細書における膜の比抵抗とは、単位面積あたりの膜抵抗値を示し、具体的には80℃、95%湿度雰囲気において、4端子交流法により測定される単位面積あたりの膜抵抗値をいう。膜の比抵抗は、燃料電池の発電特性に直接的に影響を及ぼす因子であり、比抵抗は低いほど好ましい。比抵抗が20Ω・cmを超えると電池の抵抗損が大きくなり発電効率が低下する。電池性能向上のためには、10Ω・cm以下であるとより好ましい。
【0015】
また、本明細書における含水時の膜の寸法変化率とは、膜を25℃、湿度50%の雰囲気から25℃の水中に浸漬して60分以上保持した際の、膜の長さ方向の寸法変化割合を示す。なお、本発明において寸法変化率が−5%〜+5%であるというのは、膜のどの方向の長さをとっても寸法変化率が−5%〜+5%であることをいう。
【0016】
電解質膜の寸法変化率が−5%〜+5%の範囲外であると、膜を扱う雰囲気湿度により膜の寸法が変化し、膜のハンドリング性に問題を生じやすい。また、膜に電極を組み合わせた膜電極接合体を燃料電池セルに組み込んで運転を行うと、膜が膨潤して寸法が増大し膜と接合されている電極も膜の寸法変化に追従する。通常、接合体はセパレータ等で拘束されているためにそれが「しわ」となり、しわのセパレータの溝を埋めガスの流れを阻害するおそれがある。
【0017】
また、電解質膜の厚さが3μm未満であると、膜の強度が弱くハンドリング性が悪く、膜の両面に電極を配置し接合して固体高分子型燃料電池に組み込むための膜電極接合体を作製する際に膜が破けるおそれがある。一方、電解質膜の厚さが厚すぎると発電時に膜中の水の移動が阻害され発電特性が低下する。発電中は膜のアノード側とカソード側では含水率が異なり、厚さ方向に含水率の分布ができることになる。これが発電特性を低下させる原因の一つになっており、膜が厚いほどこの現象が顕著となる。
【0018】
本発明の製造方法によれば、電解質膜を均一に薄くすることができ、かつ含水時の寸法変化率を少なくすることができるため、比抵抗が20Ω・cm以下であり、含水時の寸法変化率が−5%〜+5%であり、かつ厚さが3〜90μmである陽イオン交換膜からなる電解質膜が得られる。
【0019】
【発明の実施の形態】
本発明の製造方法では、具体的に以下の手順で電解質膜を作製することが好ましい。
(1)スルホン酸基の前駆体基を有するパーフルオロカーボン重合体の2軸押出し成形による混練、ペレット化。
(2)上記ペレットを用いて1軸押出し成形によるフィルム化。
(3)加水分解、酸型化処理、洗浄、乾燥。
(4)延伸補助フィルムを積層後、2軸延伸。
【0020】
上記(1)〜(4)の工程をさらに具体的に説明する。
(1)の工程でスルホン酸基の前駆体基を有するパーフルオロカーボン重合体粉末を2軸押出し成形してペレット化する。ここで、スルホン酸基の前駆体基とは、加水分解等によりスルホン酸基となる基のことで、具体的には−SO2F基、−SO2Cl基等を示す。(1)の工程で得られたペレットは、(2)の工程で、好ましくは加熱下で1軸押出し成形されフィルム化される。また、(1)のペレット化する工程を経ずに直接1軸押出し成形し、この1軸押出し成形の工程でフィルム化してもよい。加熱下で1軸押出し成形する場合は、フィルムの温度が200〜270℃程度となるように成形することが好ましい。フィルム温度が200℃未満の場合は、吐出圧力が高くなりすぎ、生産性が低下するおそれがある。フィルム温度が270℃を超えると得られる膜の表面が荒れて膜の厚さが不均一になりやすい。
【0021】
次いで加水分解、酸型化処理、洗浄、乾燥を行い((3)の工程)、スルホン酸基の前駆体基をスルホン酸基に変換させ、陽イオン交換膜を得る。次に、上記陽イオン交換膜に延伸補助フィルムを例えば70〜100℃程度に加熱したロールプレスを用いて加熱積層し、延伸した後、延伸補助フィルムを剥がすことにより電解質膜を構成する陽イオン交換膜が得られる((4)の工程)。
【0022】
本発明では陽イオン交換膜となるフィルムを40〜200℃の温度範囲で延伸処理することが好ましく、延伸により膜面積を5〜200%増大させることが好ましい。延伸処理とは、陽イオン交換膜が保有する膜面積に対し、外力を加えることにより膜面積を増大させる加工のことである。延伸処理は、1軸又は2軸方向に処理されることが好ましいが、膜の面方向全体の寸法を安定させるには2軸方向の延伸処理が特に好ましい。
【0023】
含水時の寸法変化を抑えるためには陽イオン交換膜に長さ方向に収縮する残留応力を適度に残すことが必要である。陽イオン交換膜は、含水させると長さ方向に寸法を増大するが、その際に収縮する残量応力を解放させればその応力どうしを解消し寸法の増大を防ぐことができる。このため、適度な残留応力を残すためには延伸処理時の温度や延伸倍率を調整することが好ましい。延伸処理の温度が40℃未満では延伸処理を行うことが難しく、寸法変化を抑える効果を得にくい。また、200℃以上では陽イオン交換膜が分子運動による自由度を有するため、延伸処理で加えられる外力に対して追従して動くことになる。このため、膜内に長さ方向に収縮する残留応力を充分に残すことが難しい。
【0024】
また、延伸倍率は5〜200%であることが好ましい。5%未満では長さ方向に収縮する残留応力が小さすぎ寸法増大を抑える効果が充分でなく、逆に200%を超えるとその残留応力が大きすぎ寸法収縮を生じるおそれがある。上述のとおり、含水時に生じる寸法増大の応力を打ち消すためには、それに見合う残留応力を残すことが必要であり、そのためには、特に延伸温度は50〜120℃であることがことが好ましく、延伸倍率は10〜100%であることが好ましい。
【0025】
延伸補助フィルムは、延伸可能であれば特に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンフィルム、エチレン−α−オレフィン共重合体フィルム、エチレン−ビニルアルコール共重合体フィルム、エチレン−酢酸ビニル共重合体フィルム、エチレン−酢酸ビニル−塩化ビニル共重合体フィルム、エチレン−塩化ビニル共重合体フィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリアミドフィルム、ポリビニルアルコールフィルム等が挙げられる。なかでもポリエチレンテレフタレートフィルム又はポリプロピレンフィルムが好ましい。
【0026】
特にアモルファス状態のポリエチレンテレフタレートフィルム及びキャスト製膜したポリプロピレンフィルムは70〜110℃の温度範囲で延伸することができ、これらのフィルムを積層して延伸すると陽イオン交換膜に適度な残留応力を残すことができるので好ましい。
【0027】
本発明において電解質膜となる陽イオン交換膜としては、スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が好ましいが、寸法変化率が少なく低抵抗で薄膜化できる陽イオン交換膜であれば、炭化水素系重合体や部分フッ素化された炭化水素系重合体からなる陽イオン交換膜等も使用できる。上記陽イオン交換膜は単一のイオン交換樹脂からなってもよいし、2種以上のイオン交換樹脂を混合したものであってもよい。
【0028】
スルホン酸基を有するパーフルオロカーボン重合体としては、従来より公知の重合体が広く採用される。なかでも、一般式CF2=CF(OCF2CFX)m−Op−(CF2nSO3H(ここでXはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数であり、nは0〜12の整数であり、pは0又は1であり、n=0のときにはp=0である。)で表されるパーフルオロビニル化合物とパーフルオロオレフィン又はパーフルオロアルキルビニルエーテル等との共重合体が好ましい。パーフルオロビニル化合物の具体例としては式1〜4のいずれかで表される化合物が挙げられる。ただし、下式において、qは1〜9の整数であり、rは1〜8の整数であり、sは0〜8の整数であり、zは2又は3である。
【0029】
【化1】

Figure 0004867081
【0030】
スルホン酸基を有するパーフルオロビニル化合物に基づく重合単位を含む重合体は、通常−SO2F基を有するパーフルオロビニル化合物を用いて重合され、重合後に−SO2F基が−SO3H基に変換される。−SO2F基を有するパーフルオロビニル化合物は、単独重合も可能であるが、ラジカル重合反応性が小さいため、通常は上記のようにパーフルオロオレフィン又はパーフルオロ(アルキルビニルエーテル)等のコモノマーと共重合して用いられる。コモノマーとなるパーフルオロオレフィンとしては、テトラフルオロエチレン、ヘキサフルオロプロピレン等が挙げられるが、通常はテトラフルオロエチレンが好ましく採用される。
【0031】
コモノマーとなるパーフルオロ(アルキルビニルエーテル)としては、CF2=CF−(OCF2CFY)t−O−Rfで表される化合物が好ましい。ただし、ここで、Yはフッ素原子又はトリフルオロメチル基であり、tは0〜3の整数であり、Rfは直鎖又は分岐鎖のCu2u+1で表されるパーフルオロアルキル基(1≦u≦12)である。さらに具体的には、式5〜7のいずれかで表される化合物が挙げられる。ただし、下式中、vは1〜8の整数であり、wは1〜8の整数であり、xは2又は3である。
【0032】
【化2】
Figure 0004867081
【0033】
また、パーフルオロオレフィンやパーフルオロ(アルキルビニルエーテル)以外に、1,1,2,3,3,4,4−ヘプタフルオロ−4−[(トリフルオロエテニル)オキシ]−1−ブテン等の含フッ素モノマーもコモノマーとして−SO2F基を有するパーフルオロビニル化合物と共重合させてもよい。
【0034】
また、パーフルオロカーボン重合体以外の重合体で本発明の電解質膜を構成しうる重合体としては、例えば式8で表される重合単位と式9で表される重合単位とを含む重合体が挙げられる。ここで、P1はフェニルトリール基、ビフェニルトリール基、ナフタレントリール基、フェナントレントリール基、アントラセントリール基であり、P2はフェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、アントラシレン基であり、A2は−SO3M基(Mは水素原子又はアルカリ金属原子、以下同じ)、−COOM基又は加水分解によりこれらの基に転換する基であり、B1、B2はそれぞれ独立に酸素原子、イオウ原子、スルホニル基又はイソプロピリデン基である。P1及びP2の構造異性は特に限定されず、P1及びP2の水素原子の1個以上がフッ素原子、塩素原子、臭素原子又は炭素数1〜3のアルキル基に置換されていてもよい。
【0035】
【化3】
Figure 0004867081
【0036】
本発明において、電解質膜のイオン交換容量としては、0.5〜2.0ミリ当量/g乾燥樹脂、特に0.7〜1.6ミリ当量/g乾燥樹脂であることが好ましい。イオン交換容量が低すぎると抵抗が大きくなる。一方、イオン交換容量が高すぎると水に対する親和性が強すぎるため、発電時に膜が溶解するおそれがある。
【0037】
本発明の固体高分子型燃料電池は、通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒微粒子を担持させた導電性のカーボンブラック粉末とスルホン酸型パーフルオロカーボン重合体の溶液を混合し均一な分散液を得て、以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。膜は延伸処理を施したスルホン酸型パーフルオロカーボン重合体からなる陽イオン交換膜を用いる。
【0038】
第1の方法は、上記陽イオン交換膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が上記陽イオン交換膜と密着するように、上記陽イオン交換膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。
【0039】
得られた膜電極接合体は、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータの間に挟まれ、セルに組み込まれて固体高分子型燃料電池が得られる。ここでセパレータとしては、例えば導電性カーボン板からなるものが使用できる。
【0040】
上記のようにして得られる固体高分子型燃料電池では、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される。アノードにおいてはH2→2H++2e-の反応が起こり、カソードにおいては1/2O2+2H++2e-→H2Oの反応が起こり、化学エネルギが電気エネルギに変換される。
【0041】
【実施例】
[例1(実施例)]
テトラフルオロエチレンに基づく重合単位とCF2=CFOCF2CF(CF3)O(CF22SO2Fに基づく重合単位とからなる共重合体粉末(イオン交換容量1.1ミリ当量/グラム乾燥樹脂)を2軸押出し成形してペレットを得た。次にこのペレットを1軸押出し機によりフィルム化し、厚さ55μmのフィルムを作製し、ジメチルスルホキシドと水酸化カリウムとを含む水溶液を用いて加水分解し、塩酸で酸型化処理して−SO2F基を−SO3H基に変換した後、洗浄、乾燥して厚さ60μmの膜を得た。
【0042】
次に、延伸補助フィルムとして厚さ200μmのアモルファスポリエチレンテレフタレートフィルム2枚でこの膜を両面から挟み、80℃で加熱ロールプレスして延伸補助フィルムが両面に積層されたフィルムを作製した。この積層フィルムを各軸方向(1軸押出し機を通した方向(MD方向)及びMD方向に垂直な方向(TD方向))に対し90℃にてそれぞれ長さを40%増大させて面積増加率が96%となるように2軸延伸を行った。次いで延伸補助フィルムを剥がすことにより延伸膜を得た。得られた膜の厚さを5cm間隔で10点測定し、膜厚の平均値を算出した。延伸条件、延伸前後の膜厚の測定結果を表1に示す。
【0043】
[膜抵抗測定]
上記延伸膜から5mm幅の短冊状膜サンプルを作製し、その表面に白金線(直径:0.2mm)を幅方向と平行になるように5mm間隔で5本押し当て、80℃、相対湿度95%の恒温・恒湿装置中にサンプルを保持し、交流10kHzにおける白金線間の交流インピーダンスを測定することにより交流比抵抗を求めた。5mm間隔に白金線を5本押し当てているため、極間距離を5、10、15、20mmに変化させることができるので、各極間距離における交流抵抗を測定し、極間距離と抵抗の勾配から膜の比抵抗を算出することで白金線と膜との間の接触抵抗の影響を除外した。極間距離と抵抗測定値との間には良い直線関係が得られ、勾配と厚さから実行抵抗を算出した。結果を表2に示す。
【0044】
[含水時の寸法変化測定]
上記延伸膜から200mm角のサンプルを切り出し、温度25℃、湿度50%の雰囲気に16時間曝し、サンプルのMD方向、TD方向それぞれの長さを測定した。次に、25℃のイオン交換水にサンプルを1時間浸漬した後、同様にしてMD方向、TD方向それぞれの長さを測定した。このときのサンプルの伸びから寸法変化率を算出した。結果を表1に示す。
【0045】
[燃料電池の作製及び評価]
燃料電池セルは以下のようにして組み立てた。テトラフルオロエチレンに基づく重合単位とCF2=CF−OCF2CF(CF3)O(CF22SO3Hに基づく重合単位とからなる共重合体(イオン交換容量1.1ミリ当量/グラム乾燥樹脂)と白金担持カーボンとを1:3の質量比で含みエタノールを溶媒とする塗工液を、上記延伸膜の両面にダイコート法で塗工し、乾燥して厚さ10μm、白金担持量0.5mg/cm2の電極層を膜の形成した。さらにその両外側にカーボンクロスをガス拡散層として配置して膜電極接合体を作製した。この膜電極接合体の両外側にガス通路用の細溝をジグザグ状に切削加工したカーボン板製のセパレータ、さらにその外側にヒータを配置し、有効膜面積25cm2の固体高分子型燃料電池を組み立てた。
【0046】
燃料電池の温度を80℃に保ち、カソードに空気、アノードに水素をそれぞれ0.15MPaで供給した。電流密度0.1A/cm2、及び1A/cm2のときの端子電圧をそれぞれ測定した。結果を表2に示す。
【0047】
[例2]
2軸延伸の際の面積増加率を30%に変更した以外は、例1と同様にしてサンプルを作製し、例1と同様にして評価を行った。膜の物性及び作製条件を表1に、結果を表2に示す。
【0048】
[例3]
2軸延伸の雰囲気温度を110℃に変更した以外は、例1と同様にしてサンプルを作製し、例1と同様にして評価を行った。膜の物性及び作製条件を表1に、結果を表2に示す。
【0049】
[例4]
2軸延伸の雰囲気温度と面積増加率をそれぞれ75℃、15%に変更した以外は、例1と同様にしてサンプルを作製し、例1と同様にして評価を行った。膜の物性及び作製条件を表1に、結果を表2に示す。
【0050】
[例5、6]
膜としてイオン交換容量がそれぞれ0.91meq./g(例5)、及び1.33meq./g(例6)のものを用いた以外は、例3と同様にしてサンプルを作製し、例1と同様にして評価を行った。膜の物性及び作製条件を表1に、結果を表2に示す。
【0051】
[例7、8(比較例)]
膜としてイオン交換容量がそれぞれ1.1meq./g(例7)、及び0.91meq./g(例8)のものを用い、2軸延伸を行わず例1と同様に評価を行った。膜の物性を表1に、結果を表2に示す。なお、例7及び例8の膜は、膜電極接合体を得るために電極層形成用の塗工液を膜に塗工したところ膜が膨潤して変形し、均一な電極層を形成することができず、燃料電池セルとして組み立てて評価できる膜電極接合体は得られなかった。そのため、出力特性の評価はできなかった。
【0052】
【表1】
Figure 0004867081
【0053】
【表2】
Figure 0004867081
【0054】
【発明の効果】
本発明によれば、電気抵抗が低く、含水時の寸法変化が少ない陽イオン交換膜を得られるので、膜に電極を接合してなる膜電極接合体を組み込んだ固体高分子型燃料電池の運転を行う際に、膜電極接合体がセパレータ等で拘束されても‘しわ’が発生せず、セパレータの溝を膜電極接合体が埋めてガスの流れを阻害することがない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrolyte membrane for a polymer electrolyte fuel cell.
[0002]
[Prior art]
Hydrogen / oxygen fuel cells are attracting attention as a power generation system that has almost no adverse effect on the global environment because its reaction product is in principle only water. The polymer electrolyte fuel cell was once installed in a spacecraft under the Gemini and Biosatellite programs, but the battery power density at that time was low. Later, higher performance alkaline fuel cells were developed, and alkaline fuel cells have been adopted for space use up to the current space shuttle.
[0003]
However, in recent years, solid polymer fuel cells have attracted attention again due to technological advances. There are two reasons for this. (1) A highly conductive membrane has been developed as a solid polymer electrolyte. (2) A catalyst used for a gas diffusion electrode layer is supported on carbon and coated with an ion exchange resin, whereby high activity can be obtained.
[0004]
At present, a membrane generally used as a solid polymer electrolyte has high proton conductivity, and therefore can exhibit low battery resistance and high battery performance. On the other hand, a membrane having lower resistance generally has a higher moisture content, so that the size tends to increase in the length direction of the membrane when moisture is contained, and various adverse effects are likely to occur. For example, when a membrane electrode assembly, in which a membrane is sandwiched between a pair of electrodes, is assembled in a fuel cell and operated, the membrane swells due to water generated by the reaction or water vapor supplied with the fuel gas. , The dimensions of the membrane increase. Usually, since the membrane and the electrode are joined, the electrode follows the dimensional change of the membrane. And since the membrane electrode assembly is restrained by a separator or the like in which a groove is formed as a gas flow path, the increase in size becomes “wrinkles”. And the wrinkle may fill the groove of the separator and obstruct the gas flow.
[0005]
Therefore, the solid polymer electrolyte membrane needs to have low resistance and little dimensional change when containing water, and is preferably less likely to swell by a solvent in a coating solution for producing an electrode. However, as described above, it has been difficult to obtain a film that satisfies all of these requirements with the conventional technology.
[0006]
As a method for solving the above-described problem, a method in which a reinforcing material is combined with a film to achieve both of the above characteristics can be considered. Specifically, a method has been proposed in which a polytetrafluoroethylene (hereinafter referred to as PTFE) porous membrane is impregnated with a fluorinated ion exchange polymer having a sulfonic acid group (Japanese Patent Publication No. 5-75835). However, the PTFE porous membrane cannot suppress the stress that the ion exchange membrane stretches when it contains water.
[0007]
Further, a cation exchange membrane reinforced with a fibril-like, woven-like, or non-woven-like perfluorocarbon polymer has been proposed (Japanese Patent Laid-Open No. Hei 6-231779). This film can reduce the dimensional change rate when it contains water, but the film thickness is at most 100 to 200 μm, and a sufficient low resistance cannot be realized.
[0008]
Further, as a means for improving the strength of the film and simultaneously obtaining a thin film, a method of biaxially stretching the electrolyte film in a temperature range from the glass transition temperature to the melting point has been proposed (Japanese Patent Laid-Open No. 11-354140). This method is effective for improving the physical properties of the strength, but even if the film is stretched in the above temperature range, the dimensional change when the film is wet cannot be suppressed.
[0009]
[Problems to be solved by the invention]
Accordingly, the present invention provides a method for producing an electrolyte membrane for a polymer electrolyte fuel cell that has low resistance and little dimensional change when containing water, and provides a polymer electrolyte fuel cell that can stably obtain a high output. For the purpose.
[0010]
[Means for Solving the Problems]
The present invention relates to a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, characterized by laminating a stretching auxiliary film on at least one surface of a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, and then stretching. I will provide a.
[0011]
In the present invention, when a cation exchange membrane to be an electrolyte membrane is stretched, it is easy to break and it is difficult to make it thin uniformly if only the cation exchange membrane is stretched. Then, the film used as an electrolyte membrane can be uniformly thinned. That is, the stretching auxiliary film in the present invention is a film that is laminated in order to assist the stretching of the film that becomes the electrolyte membrane.
[0012]
The film stretched by the above-described method is not only uniform and thin, but also can reduce the dimensional change rate at the time of moisture content, so that the film size hardly changes depending on the atmospheric humidity in which the film is handled.
[0013]
In addition, the present invention is characterized by comprising a cation exchange membrane having a specific resistance of 20 Ω · cm or less, a dimensional change rate when containing water of −5% to + 5%, and a thickness of 3 to 90 μm. An electrolyte membrane for a polymer electrolyte fuel cell is provided.
[0014]
Here, the specific resistance of the film in the present specification indicates a film resistance value per unit area, specifically, a film resistance per unit area measured by a four-terminal AC method in an atmosphere of 80 ° C. and 95% humidity. Value. The specific resistance of the membrane is a factor that directly affects the power generation characteristics of the fuel cell, and the specific resistance is preferably as low as possible. When the specific resistance exceeds 20 Ω · cm, the resistance loss of the battery increases and the power generation efficiency decreases. In order to improve battery performance, it is more preferably 10 Ω · cm or less.
[0015]
In addition, the dimensional change rate of the membrane when it contains water in this specification is the length direction of the membrane when the membrane is immersed in water at 25 ° C. and in an atmosphere of 50% humidity and kept at 25 ° C. for 60 minutes or more. Indicates the dimensional change rate. In the present invention, the dimensional change rate of -5% to + 5% means that the dimensional change rate is -5% to + 5% regardless of the length of the film.
[0016]
When the dimensional change rate of the electrolyte membrane is out of the range of −5% to + 5%, the membrane size changes depending on the atmospheric humidity in which the membrane is handled, and a problem is likely to occur in the handling property of the membrane. Further, when a membrane electrode assembly in which an electrode is combined with a membrane is incorporated in a fuel cell, operation is performed. The membrane swells and increases in size, and the electrode joined to the membrane follows the dimensional change of the membrane. Usually, since the joined body is constrained by a separator or the like, it becomes “wrinkled”, which may fill the groove of the wrinkled separator and hinder the flow of gas.
[0017]
Further, when the thickness of the electrolyte membrane is less than 3 μm, the membrane strength is weak and the handling property is poor, and a membrane electrode assembly for arranging electrodes on both sides of the membrane and bonding them to be incorporated into the polymer electrolyte fuel cell is provided. There is a possibility that the film may be broken during production. On the other hand, when the thickness of the electrolyte membrane is too thick, the movement of water in the membrane is hindered during power generation and power generation characteristics deteriorate. During power generation, the moisture content is different between the anode side and the cathode side of the membrane, and the moisture content distribution is made in the thickness direction. This is one of the causes of deteriorating power generation characteristics, and this phenomenon becomes more prominent as the film becomes thicker.
[0018]
According to the production method of the present invention, the electrolyte membrane can be uniformly thinned and the dimensional change rate when containing water can be reduced. Therefore, the specific resistance is 20 Ω · cm or less, and the dimensional change when containing water. An electrolyte membrane made of a cation exchange membrane having a rate of −5% to + 5% and a thickness of 3 to 90 μm is obtained.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, it is preferable to specifically produce an electrolyte membrane by the following procedure.
(1) Kneading and pelletizing by biaxial extrusion molding of a perfluorocarbon polymer having a sulfonic acid group precursor group.
(2) Film formation by uniaxial extrusion using the pellets.
(3) Hydrolysis, acidification treatment, washing and drying.
(4) Biaxial stretching after laminating the stretching auxiliary film.
[0020]
The steps (1) to (4) will be described more specifically.
In the step (1), a perfluorocarbon polymer powder having a sulfonic acid group precursor group is biaxially extruded and pelletized. Here, the precursor group of a sulfonic acid group is a group that becomes a sulfonic acid group by hydrolysis or the like, and specifically represents a —SO 2 F group, a —SO 2 Cl group, or the like. In the step (2), the pellet obtained in the step (1) is preferably uniaxially extruded and formed into a film under heating. Further, it may be directly uniaxially extruded without going through the pelletizing step of (1) and formed into a film in this uniaxial extrusion forming step. In the case of uniaxial extrusion molding under heating, the film is preferably molded so that the temperature of the film is about 200 to 270 ° C. When the film temperature is less than 200 ° C., the discharge pressure becomes too high, and the productivity may decrease. When the film temperature exceeds 270 ° C., the surface of the obtained film is rough and the thickness of the film tends to be uneven.
[0021]
Next, hydrolysis, acidification treatment, washing, and drying are performed (step (3)) to convert the precursor group of the sulfonic acid group into a sulfonic acid group to obtain a cation exchange membrane. Next, the cation exchange membrane is heated and laminated using a roll press heated to, for example, about 70 to 100 ° C., stretched, and then stretched, and then the cation exchange constituting the electrolyte membrane is peeled off. A film is obtained (step (4)).
[0022]
In the present invention, the film to be a cation exchange membrane is preferably stretched in a temperature range of 40 to 200 ° C., and the membrane area is preferably increased by 5 to 200% by stretching. The stretching treatment is a process for increasing the membrane area by applying an external force to the membrane area possessed by the cation exchange membrane. The stretching process is preferably performed in a uniaxial or biaxial direction, but a biaxial stretching process is particularly preferable in order to stabilize the overall dimension of the film in the plane direction.
[0023]
In order to suppress the dimensional change when containing water, it is necessary to leave a residual stress that shrinks in the length direction in the cation exchange membrane. When the cation exchange membrane is hydrated, the size increases in the length direction, but if the residual stress that contracts at that time is released, the stress can be eliminated and the increase in size can be prevented. For this reason, in order to leave an appropriate residual stress, it is preferable to adjust the temperature and the draw ratio during the stretching treatment. When the temperature of the stretching process is less than 40 ° C., it is difficult to perform the stretching process and it is difficult to obtain the effect of suppressing the dimensional change. Further, at 200 ° C. or higher, the cation exchange membrane has a degree of freedom due to molecular motion, and therefore moves following the external force applied by the stretching process. For this reason, it is difficult to leave sufficient residual stress that shrinks in the length direction in the film.
[0024]
The draw ratio is preferably 5 to 200%. If it is less than 5%, the residual stress shrinking in the length direction is too small, and the effect of suppressing the increase in size is not sufficient. Conversely, if it exceeds 200%, the residual stress is too large, and there is a possibility of causing dimensional shrinkage. As described above, in order to cancel the stress of dimensional increase that occurs when water is contained, it is necessary to leave a residual stress commensurate with it, and for that purpose, the stretching temperature is preferably 50 to 120 ° C. The magnification is preferably 10 to 100%.
[0025]
The stretching auxiliary film is not particularly limited as long as it can be stretched. For example, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene film, ethylene-α-olefin copolymer film, ethylene-vinyl alcohol copolymer film, ethylene- Examples thereof include a vinyl acetate copolymer film, an ethylene-vinyl acetate-vinyl chloride copolymer film, an ethylene-vinyl chloride copolymer film, a polypropylene film, a polyvinyl chloride film, a polyamide film, and a polyvinyl alcohol film. Of these, a polyethylene terephthalate film or a polypropylene film is preferable.
[0026]
In particular, an amorphous polyethylene terephthalate film and a cast polypropylene film can be stretched in a temperature range of 70 to 110 ° C. When these films are laminated and stretched, an appropriate residual stress is left in the cation exchange membrane. Is preferable.
[0027]
In the present invention, the cation exchange membrane used as the electrolyte membrane is preferably a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, but may be a cation exchange membrane that has a low dimensional change rate and can be thinned with low resistance. For example, a cation exchange membrane made of a hydrocarbon polymer or a partially fluorinated hydrocarbon polymer can be used. The cation exchange membrane may be composed of a single ion exchange resin or a mixture of two or more ion exchange resins.
[0028]
As a perfluorocarbon polymer having a sulfonic acid group, conventionally known polymers are widely used. Among them, the general formula CF 2 = CF (OCF 2 CFX ) m -O p - (CF 2) n SO 3 H ( wherein X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3 And n is an integer of 0 to 12, p is 0 or 1, and when n = 0, p = 0, and a perfluoroolefin compound or perfluoroalkyl vinyl ether, etc. And a copolymer are preferred. Specific examples of the perfluorovinyl compound include compounds represented by any one of formulas 1 to 4. However, in the following formula, q is an integer of 1 to 9, r is an integer of 1 to 8, s is an integer of 0 to 8, and z is 2 or 3.
[0029]
[Chemical 1]
Figure 0004867081
[0030]
Polymers containing polymerized units based on a perfluorovinyl compound having a sulfonic acid group is polymerized using conventional perfluorovinyl compound having -SO 2 F group, -SO 2 F group is -SO 3 H group after polymerization Is converted to Although the perfluorovinyl compound having a —SO 2 F group can be homopolymerized, since it has low radical polymerization reactivity, it is usually co-polymerized with a comonomer such as perfluoroolefin or perfluoro (alkyl vinyl ether) as described above. Used after polymerization. Examples of the perfluoroolefin as a comonomer include tetrafluoroethylene, hexafluoropropylene, and the like. Usually, tetrafluoroethylene is preferably employed.
[0031]
As the perfluoro (alkyl vinyl ether) serving as a comonomer, a compound represented by CF 2 ═CF— (OCF 2 CFY) t —O—R f is preferable. Here, Y is a fluorine atom or a trifluoromethyl group, t is an integer of 0 to 3, and R f is a perfluoroalkyl group represented by linear or branched C u F 2u + 1. (1 ≦ u ≦ 12). More specifically, a compound represented by any one of formulas 5 to 7 is exemplified. However, in the following formula, v is an integer of 1 to 8, w is an integer of 1 to 8, and x is 2 or 3.
[0032]
[Chemical formula 2]
Figure 0004867081
[0033]
In addition to perfluoroolefin and perfluoro (alkyl vinyl ether), fluorine-containing compounds such as 1,1,2,3,3,4,4-heptafluoro-4-[(trifluoroethenyl) oxy] -1-butene A monomer may also be copolymerized with a perfluorovinyl compound having a —SO 2 F group as a comonomer.
[0034]
Moreover, as a polymer which can comprise the electrolyte membrane of this invention with polymers other than a perfluorocarbon polymer, the polymer containing the polymer unit represented by Formula 8 and the polymer unit represented by Formula 9, for example is mentioned. It is done. Here, P 1 is a phenyltolyl group, a biphenyltolyl group, a naphthalent reel group, a phenanthrene reel group, and an anthracylene group, P 2 is a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, and an anthracylene group, and A 2 is a —SO 3 M group (M is a hydrogen atom or an alkali metal atom, the same shall apply hereinafter), a —COOM group or a group which is converted to these groups by hydrolysis, and B 1 and B 2 are each independently an oxygen atom, A sulfur atom, a sulfonyl group, or an isopropylidene group. Structural isomers of P 1 and P 2 is not particularly limited, one or more fluorine atoms of the hydrogen atom of the P 1 and P 2, a chlorine atom, be substituted by a bromine atom or an alkyl group having 1 to 3 carbon atoms Good.
[0035]
[Chemical 3]
Figure 0004867081
[0036]
In the present invention, the ion exchange capacity of the electrolyte membrane is preferably 0.5 to 2.0 meq / g dry resin, particularly 0.7 to 1.6 meq / g dry resin. If the ion exchange capacity is too low, the resistance increases. On the other hand, if the ion exchange capacity is too high, the affinity for water is too strong and the membrane may be dissolved during power generation.
[0037]
The polymer electrolyte fuel cell of the present invention can be obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst fine particles and a sulfonic acid type perfluorocarbon polymer solution are mixed to obtain a uniform dispersion, and a gas diffusion electrode is formed by one of the following methods. A membrane electrode assembly is obtained. As the membrane, a cation exchange membrane made of a sulfonic acid type perfluorocarbon polymer subjected to stretching treatment is used.
[0038]
The first method is a method in which the dispersion is applied to both surfaces of the cation exchange membrane and dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is to apply the dispersion onto two carbon cloths or carbon paper, and then dry the two surfaces of the cation exchange membrane so that the surface on which the dispersion is applied is in close contact with the cation exchange membrane. It is the method of pinching from. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst.
[0039]
The obtained membrane electrode assembly is formed with a groove serving as a passage for fuel gas or oxidant gas, sandwiched between separators, and incorporated into a cell to obtain a polymer electrolyte fuel cell. Here, for example, a separator made of a conductive carbon plate can be used as the separator.
[0040]
In the polymer electrolyte fuel cell obtained as described above, hydrogen gas is supplied to the anode side, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
[0041]
【Example】
[Example 1 (Example)]
Polymerized units based on tetrafluoroethylene and CF 2 = CFOCF 2 CF (CF 3) O (CF 2) consisting of polymerized units based on 2 SO 2 F copolymer powder (ion exchange capacity: 1.1 meq / g dry Resin) was biaxially extruded to obtain pellets. Next, this pellet is formed into a film by a single screw extruder to produce a film having a thickness of 55 μm, hydrolyzed using an aqueous solution containing dimethyl sulfoxide and potassium hydroxide, and acidified with hydrochloric acid to form —SO 2. After converting the F group to -SO 3 H group, the film was washed and dried to obtain a film having a thickness of 60 μm.
[0042]
Next, the film was sandwiched from two surfaces by two 200 μm thick amorphous polyethylene terephthalate films as a stretching auxiliary film, and heated and pressed at 80 ° C. to produce a film in which the stretching assist film was laminated on both surfaces. Area increase rate by increasing the length of this laminated film by 40% at 90 ° C with respect to each axial direction (direction passing through a single-screw extruder (MD direction) and direction perpendicular to MD direction (TD direction)). Biaxial stretching was performed so that the ratio was 96%. Next, the stretched auxiliary film was peeled off to obtain a stretched film. The thickness of the obtained film was measured at 10 points at intervals of 5 cm, and the average value of the film thickness was calculated. Table 1 shows the stretching conditions and the measurement results of the film thickness before and after stretching.
[0043]
[Membrane resistance measurement]
A strip-shaped film sample having a width of 5 mm was prepared from the stretched film, and five platinum wires (diameter: 0.2 mm) were pressed on the surface at intervals of 5 mm so as to be parallel to the width direction. An AC specific resistance was obtained by measuring the AC impedance between platinum wires at 10 kHz AC while holding the sample in a constant temperature / humidity apparatus. Since five platinum wires are pressed at intervals of 5 mm, the distance between the electrodes can be changed to 5, 10, 15, and 20 mm. Therefore, the AC resistance at each distance between the electrodes is measured, and the distance between the electrodes and the resistance are The influence of contact resistance between the platinum wire and the film was excluded by calculating the specific resistance of the film from the gradient. A good linear relationship was obtained between the distance between the electrodes and the measured resistance value, and the effective resistance was calculated from the gradient and thickness. The results are shown in Table 2.
[0044]
[Measurement of dimensional change when containing water]
A 200 mm square sample was cut out from the stretched film and exposed to an atmosphere at a temperature of 25 ° C. and a humidity of 50% for 16 hours, and the lengths of the sample in the MD direction and the TD direction were measured. Next, after immersing the sample in ion exchange water at 25 ° C. for 1 hour, the lengths in the MD direction and the TD direction were measured in the same manner. The dimensional change rate was calculated from the elongation of the sample at this time. The results are shown in Table 1.
[0045]
[Production and evaluation of fuel cells]
The fuel cell was assembled as follows. Tetrafluoroethylene based polymer unit and CF 2 = CF-OCF 2 CF (CF 3) O (CF 2) 2 SO 3 consisting of polymerized units and based on H copolymer (ion exchange capacity 1.1 meq / gram A coating solution containing a dry resin) and platinum-supported carbon in a mass ratio of 1: 3 and using ethanol as a solvent is applied to both sides of the stretched film by a die coating method and dried to a thickness of 10 μm and a platinum-supported amount. A 0.5 mg / cm 2 electrode layer was formed into a film. Further, a carbon cloth was disposed on both outer sides as a gas diffusion layer to produce a membrane electrode assembly. A solid polymer fuel cell having an effective membrane area of 25 cm 2 is disposed on both outer sides of the membrane electrode assembly by a carbon plate separator in which gas channel narrow grooves are machined into a zigzag shape, and further on the outer side of the heater. Assembled.
[0046]
The temperature of the fuel cell was kept at 80 ° C., and air was supplied to the cathode and hydrogen was supplied to the anode at 0.15 MPa, respectively. Current density 0.1 A / cm 2, and the terminal voltage when the 1A / cm 2 were measured. The results are shown in Table 2.
[0047]
[Example 2]
A sample was prepared in the same manner as in Example 1 except that the area increase rate during biaxial stretching was changed to 30%, and evaluation was performed in the same manner as in Example 1. The physical properties and production conditions of the film are shown in Table 1, and the results are shown in Table 2.
[0048]
[Example 3]
Samples were prepared in the same manner as in Example 1 except that the ambient temperature for biaxial stretching was changed to 110 ° C., and evaluation was performed in the same manner as in Example 1. The physical properties and production conditions of the film are shown in Table 1, and the results are shown in Table 2.
[0049]
[Example 4]
A sample was prepared in the same manner as in Example 1 except that the ambient temperature and the area increase rate of biaxial stretching were changed to 75 ° C. and 15%, respectively, and evaluation was performed in the same manner as in Example 1. The physical properties and production conditions of the film are shown in Table 1, and the results are shown in Table 2.
[0050]
[Examples 5 and 6]
The membrane has an ion exchange capacity of 0.91 meq. / G (Example 5), and 1.33 meq. A sample was prepared in the same manner as in Example 3 except that the sample of / g (Example 6) was used, and evaluation was performed in the same manner as in Example 1. The physical properties and production conditions of the film are shown in Table 1, and the results are shown in Table 2.
[0051]
[Examples 7 and 8 (comparative examples)]
The membrane has an ion exchange capacity of 1.1 meq. / G (Example 7), and 0.91 meq. / G (Example 8) was used, and evaluation was performed in the same manner as in Example 1 without performing biaxial stretching. The physical properties of the membrane are shown in Table 1, and the results are shown in Table 2. The membranes of Example 7 and Example 8 were formed by applying a coating solution for forming an electrode layer to the membrane to obtain a membrane / electrode assembly, and the membrane swelled and deformed to form a uniform electrode layer. The membrane electrode assembly which can be assembled and evaluated as a fuel cell was not obtained. Therefore, the output characteristics could not be evaluated.
[0052]
[Table 1]
Figure 0004867081
[0053]
[Table 2]
Figure 0004867081
[0054]
【Effect of the invention】
According to the present invention, it is possible to obtain a cation exchange membrane having a low electrical resistance and a small dimensional change when containing water. Therefore, the operation of a polymer electrolyte fuel cell incorporating a membrane electrode assembly formed by joining an electrode to a membrane is performed. When the membrane electrode assembly is restrained by a separator or the like, no 'wrinkles' are generated, and the groove of the separator is filled with the membrane electrode assembly and the gas flow is not hindered.

Claims (7)

スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜の少なくとも片面に延伸補助フィルムを積層した後、延伸することを特徴とする固体高分子型燃料電池用電解質膜の製造方法。  A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising: laminating a stretching auxiliary film on at least one surface of a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, and then stretching. 40℃以上200℃未満の温度範囲で前記陽イオン交換膜を延伸し、膜面積を5〜200%増大させる請求項1に記載の固体高分子型燃料電池用電解質膜の製造方法。  The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the cation exchange membrane is stretched in a temperature range of 40 ° C or higher and lower than 200 ° C to increase the membrane area by 5 to 200%. 延伸することにより、前記陽イオン交換膜の厚さを3〜90μmとする請求項1又は2に記載の固体高分子型燃料電池用電解質膜の製造方法。  The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the cation exchange membrane has a thickness of 3 to 90 µm by stretching. 前記パーフルオロカーボン重合体は、CF=CFに基づく重合単位とCF=CF(OCFCFX)−O−(CFSOHに基づく重合単位(ここでXはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数であり、nは0〜12の整数であり、pは0又は1であり、n=0のときにはp=0である。)とからなる共重合体である請求項1〜3のいずれか一項に記載の固体高分子型燃料電池用電解質膜の製造方法。The perfluorocarbon polymer, CF 2 = CF 2 to based polymer unit and CF 2 = CF (OCF 2 CFX ) m -O p - (CF 2) n SO 3 H in based polymer units (wherein X is a fluorine atom Or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 0 to 12, p is 0 or 1, and when n = 0, p = 0. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the copolymer is a copolymer. 延伸後に前記陽イオン交換膜から前記延伸補助フィルムを剥がす、請求項1〜4のいずれか一項に記載の固体高分子型燃料電池用電解質膜の製造方法。  The manufacturing method of the electrolyte membrane for polymer electrolyte fuel cells as described in any one of Claims 1-4 which peels off the said extending | stretching auxiliary | assistant film from the said cation exchange membrane after extending | stretching. 請求項5に記載の方法により製造された固体高分子型燃料電池用電解質膜であって、
前記陽イオン交換膜の比抵抗が20Ω・cm以下であり、含水時の寸法変化率が−5%〜+5%であり、かつ厚さが3〜90μmである固体高分子型燃料電池用電解質膜。
An electrolyte membrane for a polymer electrolyte fuel cell produced by the method according to claim 5,
The specific resistance of the cation exchange membrane is not more than 20 [Omega · cm, a dimensional change rate of -5% to +5% during moisture and thickness Ru 3~90μm der solid high polymer type fuel cell electrolyte film.
請求項6に記載の電解質膜の両面にガス拡散電極が配置され、さらにその外側にガスの流路となる溝が表面に形成されたセパレータが配置されていることを特徴とする固体高分子型燃料電池。A solid polymer type, wherein a gas diffusion electrode is disposed on both surfaces of the electrolyte membrane according to claim 6, and a separator having a groove formed on its surface as a gas flow path is disposed outside thereof. Fuel cell.
JP2001147678A 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same Expired - Fee Related JP4867081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147678A JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147678A JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002343380A JP2002343380A (en) 2002-11-29
JP4867081B2 true JP4867081B2 (en) 2012-02-01

Family

ID=18993120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147678A Expired - Fee Related JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4867081B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003244123A1 (en) 2002-06-17 2004-03-11 Daikin Industries, Ltd. Fluoropolymer dispersion and process for producing fluoropolymer dispersion
JPWO2005091409A1 (en) * 2004-03-19 2008-02-07 東亞合成株式会社 Electrolyte membrane and fuel cell
JP2006131846A (en) * 2004-11-09 2006-05-25 Asahi Glass Co Ltd Method for producing electrolyte material, membrane for solid polymer-type fuel battery and method for producing electrode assembly
US7419732B2 (en) * 2005-02-11 2008-09-02 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
ITMI20050446A1 (en) * 2005-03-17 2006-09-18 Solvay Solexis Spa COMPOSITE CCM
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354140A (en) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc Thin film electrolyte having high strength
WO2001006586A1 (en) * 1999-07-21 2001-01-25 Asahi Glass Company, Limited Solid polymer electrolyte type fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP2002343380A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
EP1139472B1 (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
JP4613614B2 (en) POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
US20020064700A1 (en) Solid polymer electrolyte fuel cell and method of its production
US20030008198A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
EP1806371A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2009242688A (en) Polymer electrolyte membrane
JP5207582B2 (en) Manufacturing method of electrolyte membrane with little dimensional change
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2003051320A (en) Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP5044894B2 (en) Proton conducting electrolyte membrane for polymer electrolyte fuel cell, method for producing proton conducting electrolyte membrane, and polymer electrolyte fuel cell
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2006164777A (en) Membrane-electrode conjugate for direct methanol fuel cell and its manufacturing method
JPH06275301A (en) Fuel cell
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees