[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4865101B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4865101B2
JP4865101B2 JP2011083916A JP2011083916A JP4865101B2 JP 4865101 B2 JP4865101 B2 JP 4865101B2 JP 2011083916 A JP2011083916 A JP 2011083916A JP 2011083916 A JP2011083916 A JP 2011083916A JP 4865101 B2 JP4865101 B2 JP 4865101B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
insulating film
light emitting
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011083916A
Other languages
Japanese (ja)
Other versions
JP2011155295A (en
Inventor
浩史 濱崎
吉昭 杉崎
章弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011083916A priority Critical patent/JP4865101B2/en
Publication of JP2011155295A publication Critical patent/JP2011155295A/en
Application granted granted Critical
Publication of JP4865101B2 publication Critical patent/JP4865101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明の実施形態は、半導体発光装置に関する。   Embodiments described herein relate generally to a semiconductor light emitting device.

青色や近紫外線LED(Light Emitting Diode)を光源とし蛍光体により白色光を発光する発光装置は、照明装置、画像表示装置のバックライト光源などに用途が拡大してきており、高効率化の要求が強まっている。従来、リードフレーム上に発光素子チップを実装し、樹脂成型を行った表面実装型発光装置が製品化されているが、さらに光の取り出し効率を向上させる目的で、発光層の支持基板をレーザーリフトオフ法により剥離する技術が提案されている(特許文献1)。   Light emitting devices that emit blue light using blue or near-ultraviolet LEDs (Light Emitting Diodes) as a light source have been used for backlighting light sources for lighting devices and image display devices, and there is a demand for higher efficiency. It is getting stronger. Conventionally, surface-mounted light-emitting devices in which a light-emitting element chip is mounted on a lead frame and resin-molded have been commercialized, but the support substrate of the light-emitting layer is laser lifted off for the purpose of further improving the light extraction efficiency. The technique which peels by a method is proposed (patent document 1).

レーザーリフトオフ法により基板を剥離する際には、発光層を含む半導体層における基板との界面に形成された部分が急激に低融点金属とガスに熱分解し、それにより生じる衝撃波によって半導体層や基板がダメージを受ける場合がある。   When the substrate is peeled off by the laser lift-off method, the portion formed at the interface with the substrate in the semiconductor layer including the light emitting layer is rapidly pyrolyzed into a low melting point metal and a gas, and the shock wave generated thereby causes the semiconductor layer and the substrate to be separated. May take damage.

米国特許第7241667号明細書US Pat. No. 7,241,667

半導体層に大きな応力が作用するのを防ぐことができる半導体発光装置を提供する。   Provided is a semiconductor light emitting device capable of preventing a large stress from acting on a semiconductor layer.

実施形態によれば、半導体発光装置は、半導体層と、p側電極及びn側電極と、絶縁膜と、p側コンタクト部と、n側コンタクト部と、p側配線層と、n側配線層と、p側金属ピラーと、n側金属ピラーと、を備えている。前記半導体層は、第1の面と、その反対側の第2の面と、発光層とを有する。前記p側電極は、前記半導体層における前記発光層が設けられた部分の前記第2の面に設けられている。前記n側電極は、前記半導体層における前記発光層が設けられていない部分の前記第2の面に設けられている。前記絶縁膜は、前記半導体層に比べて柔軟性があり、前記半導体層の前記第2の面及び前記第1の面から続く側面に設けられている前記絶縁膜は、前記p側電極に達する第1の開口と前記n側電極に達する第2の開口とを有する。前記絶縁膜は、前記p側金属ピラーと前記n側金属ピラーとの間に設けられている。前記p側コンタクト部は、前記第1の開口内に設けられ、前記p側電極に達する。前記n側コンタクト部は、前記第2の開口内に設けられ、前記n側電極に達する。前記p側配線層は、前記絶縁膜内に設けられ、前記p側コンタクト部を介して前記p側電極と接続されている。前記n側配線層は、前記絶縁膜内に設けられ、前記n側コンタクト部を介して前記n側電極と接続されている。前記p側金属ピラーは、前記p側配線層上に設けられている。前記n側金属ピラーは、前記n側配線層上に設けられている。 According to the embodiment, the semiconductor light emitting device includes a semiconductor layer, a p-side electrode and an n-side electrode, an insulating film, a p-side contact portion, an n-side contact portion, a p-side wiring layer, and an n-side wiring layer. And a p-side metal pillar and an n-side metal pillar. The semiconductor layer has a first surface, a second surface opposite to the first surface, and a light emitting layer. The p-side electrode is provided on the second surface of the semiconductor layer where the light emitting layer is provided. The n-side electrode is provided on the second surface of the semiconductor layer where the light emitting layer is not provided. The insulating film is more flexible than the semiconductor layer, and is provided on the second surface and the side surface continuing from the first surface of the semiconductor layer. The insulating film has a first opening reaching the p-side electrode and a second opening reaching the n-side electrode. The insulating film is provided between the p-side metal pillar and the n-side metal pillar. The p-side contact portion is provided in the first opening and reaches the p-side electrode. The n-side contact portion is provided in the second opening and reaches the n-side electrode. The p-side wiring layer is provided in the insulating film and is connected to the p-side electrode through the p-side contact portion. The n-side wiring layer is provided in the insulating film and is connected to the n-side electrode through the n-side contact portion. The p-side metal pillar is provided on the p-side wiring layer. The n-side metal pillar is provided on the n-side wiring layer.

半導体層に大きな応力が作用するのを防ぐことができる半導体発光装置が提供される。   A semiconductor light emitting device capable of preventing a large stress from acting on a semiconductor layer is provided.

本発明の実施形態に係る半導体発光装置の製造方法を示す模式断面図。1 is a schematic cross-sectional view showing a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention. 図1に続く工程を示す模式断面図。FIG. 2 is a schematic cross-sectional view showing a step following FIG. 1. 本発明の実施形態に係る半導体発光装置の製造方法における分離溝の平面レイアウト及びレーザ光の照射範囲を示す模式図。The schematic diagram which shows the planar layout of the separation groove | channel and the irradiation range of a laser beam in the manufacturing method of the semiconductor light-emitting device concerning embodiment of this invention. 本発明の他の実施形態に係る半導体発光装置の製造方法を示す模式断面図。FIG. 6 is a schematic cross-sectional view showing a method for manufacturing a semiconductor light emitting device according to another embodiment of the present invention. 本発明のさらに他の実施形態に係る半導体発光装置の製造方法を示す模式断面図。FIG. 10 is a schematic cross-sectional view showing a method for manufacturing a semiconductor light emitting device according to still another embodiment of the present invention. 本発明の他の実施形態に係る半導体発光装置の模式断面図。FIG. 6 is a schematic cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention.

以下、図面を参照し、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2(d)は、本発明の実施形態に係る半導体発光装置の模式断面図である。図2(d)には、ウェーハ状態から分離された例えば2つの半導体発光装置が示される。   FIG. 2D is a schematic cross-sectional view of the semiconductor light emitting device according to the embodiment of the present invention. FIG. 2D shows, for example, two semiconductor light emitting devices separated from the wafer state.

本実施形態に係る半導体発光装置は、発光素子12と配線部とを有する。発光素子12は、半導体層12aと半導体層12bとを有する。半導体層12bは、発光層をp型クラッド層とn型クラッド層とで挟んだ構造を有する。半導体層12aは、例えばn型であり、電流の横方向経路として機能する。但し、半導体層12aの導電型はn型に限らず、p型であってもよい。   The semiconductor light emitting device according to this embodiment includes a light emitting element 12 and a wiring portion. The light emitting element 12 includes a semiconductor layer 12a and a semiconductor layer 12b. The semiconductor layer 12b has a structure in which a light emitting layer is sandwiched between a p-type cladding layer and an n-type cladding layer. The semiconductor layer 12a is, for example, n-type and functions as a current horizontal path. However, the conductivity type of the semiconductor layer 12a is not limited to n-type and may be p-type.

半導体層12aの表面は光取り出し面60として機能する。半導体層12aにおける光取り出し面60の反対側の面の一部には半導体層12bが設けられていない。その部分にはn側電極13が形成されている。半導体層12bにおける半導体層12aが設けられた面の反対側の面にはp側電極14が形成されている。   The surface of the semiconductor layer 12 a functions as the light extraction surface 60. The semiconductor layer 12b is not provided on a part of the surface opposite to the light extraction surface 60 in the semiconductor layer 12a. An n-side electrode 13 is formed in that portion. A p-side electrode 14 is formed on the surface of the semiconductor layer 12b opposite to the surface on which the semiconductor layer 12a is provided.

半導体層12a及び半導体層12bにおける光取り出し面60の反対側は、絶縁膜15で覆われている。光取り出し面60は絶縁膜15から露出している。絶縁膜15における光取り出し面60の反対側の面には、n側配線層18とp側配線層19とが互いに分離して形成されている。   Opposite sides of the light extraction surface 60 in the semiconductor layer 12 a and the semiconductor layer 12 b are covered with the insulating film 15. The light extraction surface 60 is exposed from the insulating film 15. An n-side wiring layer 18 and a p-side wiring layer 19 are separately formed on the surface of the insulating film 15 opposite to the light extraction surface 60.

n側電極13とn側配線層18とは、n側コンタクト部16を介して電気的に接続されている。p側電極14とp側配線層19とは、p側コンタクト部17を介して電気的に接続されている。   The n-side electrode 13 and the n-side wiring layer 18 are electrically connected via the n-side contact portion 16. The p-side electrode 14 and the p-side wiring layer 19 are electrically connected via the p-side contact portion 17.

n側配線層18の下にはn側金属ピラー21が設けられている。p側配線層19の下にはp側金属ピラー22が設けられている。n側金属ピラー21の周囲、p側金属ピラー22の周囲、n側配線層18およびp側配線層19は、樹脂20で覆われている。   An n-side metal pillar 21 is provided under the n-side wiring layer 18. A p-side metal pillar 22 is provided under the p-side wiring layer 19. The periphery of the n-side metal pillar 21, the periphery of the p-side metal pillar 22, the n-side wiring layer 18 and the p-side wiring layer 19 are covered with a resin 20.

n側金属ピラー21及びp側金属ピラー22における樹脂20から露出する下端面には、はんだボール、金属バンプなどからなり、外部回路と接続される外部接続端子23が設けられている。   On the lower end surface exposed from the resin 20 in the n-side metal pillar 21 and the p-side metal pillar 22, an external connection terminal 23 made of a solder ball, a metal bump or the like and connected to an external circuit is provided.

半導体層12aは、n側電極13、n側コンタクト部16、n側配線層18およびn側金属ピラー21を介して、外部接続端子23と電気的に接続されている。半導体層12bは、p側電極14、p側コンタクト部17、p側配線層19およびp側金属ピラー22を介して、外部接続端子23と電気的に接続されている。   The semiconductor layer 12 a is electrically connected to the external connection terminal 23 through the n-side electrode 13, the n-side contact portion 16, the n-side wiring layer 18, and the n-side metal pillar 21. The semiconductor layer 12 b is electrically connected to the external connection terminal 23 through the p-side electrode 14, the p-side contact portion 17, the p-side wiring layer 19, and the p-side metal pillar 22.

半導体層12a、12bが薄くても、n側金属ピラー21、p側金属ピラー22および樹脂20を厚くすることで機械的強度を保つことが可能となる。また、外部接続端子23を介して各半導体発光装置を回路基板等に実装した場合に、外部接続端子23を介して発光素子12に加わる応力を、n側金属ピラー21とp側金属ピラー22が吸収することで緩和することができる。   Even if the semiconductor layers 12a and 12b are thin, the mechanical strength can be maintained by increasing the thickness of the n-side metal pillar 21, the p-side metal pillar 22 and the resin 20. Further, when each semiconductor light emitting device is mounted on a circuit board or the like via the external connection terminal 23, the stress applied to the light emitting element 12 via the external connection terminal 23 is caused by the n-side metal pillar 21 and the p-side metal pillar 22. It can be relaxed by absorption.

次に、図1〜3を参照して、本実施形態に係る半導体発光装置の製造方法について説明する。   Next, with reference to FIGS. 1-3, the manufacturing method of the semiconductor light-emitting device concerning this embodiment is demonstrated.

まず、図1(a)に示すように、基板1の主面上に半導体層12aと半導体層12bとの積層体を形成する。半導体層12bは半導体層12a上の全面に形成された後、図示しないレジストマスクを用いてパターニングされ複数に分離される。例えば、発光層が窒化物系半導体の場合、半導体層12a、12bはサファイアなどの基板1上に結晶させることができる。   First, as illustrated in FIG. 1A, a stacked body of a semiconductor layer 12 a and a semiconductor layer 12 b is formed on the main surface of the substrate 1. After the semiconductor layer 12b is formed on the entire surface of the semiconductor layer 12a, it is patterned into a plurality of parts using a resist mask (not shown). For example, when the light emitting layer is a nitride semiconductor, the semiconductor layers 12a and 12b can be crystallized on the substrate 1 such as sapphire.

次に、半導体層12aの一部をRIE(Reactive Ion Etching)やレーザーアブレーション等により除去し、図1(b)に示すように、分離溝31を形成する。この分離溝31により、半導体層12a及び半導体層12bは、基板1の主面上で複数の発光素子12に分離される。分離溝31は、例えば図3(a)に示すように格子状に形成される。各々の発光素子12の平面形状は略四角形状に形成され、その周囲を分離溝31が枠状に囲んでいる。   Next, a part of the semiconductor layer 12a is removed by RIE (Reactive Ion Etching), laser ablation, or the like to form the separation groove 31 as shown in FIG. The semiconductor layer 12 a and the semiconductor layer 12 b are separated into a plurality of light emitting elements 12 on the main surface of the substrate 1 by the separation groove 31. The separation grooves 31 are formed in a lattice shape as shown in FIG. The planar shape of each light emitting element 12 is formed in a substantially square shape, and a separation groove 31 surrounds the periphery thereof in a frame shape.

半導体層12bの表面には、p側電極14が形成される。半導体層12aの表面における半導体層12bで覆われていない部分には、n側電極13が形成される。   A p-side electrode 14 is formed on the surface of the semiconductor layer 12b. An n-side electrode 13 is formed on a portion of the surface of the semiconductor layer 12a that is not covered with the semiconductor layer 12b.

次に、図1(c)に示すように、基板1上に、半導体層12a及び半導体層12bを覆う絶縁膜15が形成される。絶縁膜15は、例えば感光性のポリイミドなどの有機材料からなる。これにより、分離溝31は、絶縁膜15により埋められる。   Next, as illustrated in FIG. 1C, an insulating film 15 that covers the semiconductor layer 12 a and the semiconductor layer 12 b is formed on the substrate 1. The insulating film 15 is made of an organic material such as photosensitive polyimide. Thereby, the isolation trench 31 is filled with the insulating film 15.

次に、絶縁膜15に、n側電極13に達する開口及びp側電極14に達する開口を形成した後、n側電極13に達する開口内にn側コンタクト部16を設け、p側電極14に達する開口内にp側コンタクト部17を設ける。さらに、絶縁膜15上に、n側コンタクト部16と接続するn側配線層18と、p側コンタクト部17と接続するp側配線層19を形成する。   Next, after an opening reaching the n-side electrode 13 and an opening reaching the p-side electrode 14 are formed in the insulating film 15, an n-side contact portion 16 is provided in the opening reaching the n-side electrode 13. A p-side contact portion 17 is provided in the reaching opening. Further, an n-side wiring layer 18 connected to the n-side contact portion 16 and a p-side wiring layer 19 connected to the p-side contact portion 17 are formed on the insulating film 15.

n側コンタクト部16、p側コンタクト部17、n側配線層18およびp側配線層19は、例えばめっき法で形成される。すなわち、絶縁膜15に形成した開口の内壁および絶縁膜15の表面上に図示しないシード金属を形成した後、金属の析出が行われる。   The n-side contact portion 16, the p-side contact portion 17, the n-side wiring layer 18 and the p-side wiring layer 19 are formed by, for example, a plating method. That is, after a seed metal (not shown) is formed on the inner wall of the opening formed in the insulating film 15 and the surface of the insulating film 15, the metal is deposited.

次に、図1(d)に示すように、n側配線層18上にn側金属ピラー21を設け、p側配線層19上にp側金属ピラー22を設ける。これらn側金属ピラー21及びp側金属ピラー22の周囲には、樹脂20が充填される。樹脂20は、n側配線層18、p側配線層19、n側金属ピラー21の周囲およびp側金属ピラー22の周囲を覆う。n側金属ピラー21及びp側金属ピラー22の上面は、樹脂20から露出される。樹脂20は、例えば、エポキシ樹脂、シリコーン樹脂、フッ素樹脂などにフィラーを混入させた構成を有する。分離溝31上の絶縁膜15上にも、樹脂20が設けられる。   Next, as shown in FIG. 1D, an n-side metal pillar 21 is provided on the n-side wiring layer 18, and a p-side metal pillar 22 is provided on the p-side wiring layer 19. A resin 20 is filled around the n-side metal pillar 21 and the p-side metal pillar 22. The resin 20 covers the periphery of the n-side wiring layer 18, the p-side wiring layer 19, the n-side metal pillar 21, and the p-side metal pillar 22. The upper surfaces of the n-side metal pillar 21 and the p-side metal pillar 22 are exposed from the resin 20. The resin 20 has a configuration in which, for example, a filler is mixed into an epoxy resin, a silicone resin, a fluororesin, or the like. The resin 20 is also provided on the insulating film 15 on the separation groove 31.

n側コンタクト部16、p側コンタクト部17、n側配線層18、p側配線層19、n側金属ピラー21、p側金属ピラー22の材料としては、銅、金、ニッケル、銀などを用いることができる。これらのうち、良好な熱伝導性、高いマイグレーション耐性及び絶縁膜15との優れた密着性を備えた銅がより好ましい。   As materials for the n-side contact portion 16, the p-side contact portion 17, the n-side wiring layer 18, the p-side wiring layer 19, the n-side metal pillar 21, and the p-side metal pillar 22, copper, gold, nickel, silver, or the like is used. be able to. Among these, copper having good thermal conductivity, high migration resistance, and excellent adhesion to the insulating film 15 is more preferable.

図1(d)の構造が得られた後、図2の工程が続けられる。なお、図2では、基板1と発光素子12との上下方向の位置関係を図1とは逆に図示している。   After the structure of FIG. 1 (d) is obtained, the process of FIG. 2 is continued. In FIG. 2, the positional relationship between the substrate 1 and the light emitting element 12 in the vertical direction is shown in the opposite direction to FIG. 1.

図2(a)は、レーザーリフトオフ法による基板1の剥離工程を示す。レーザ光Lは、基板1における発光素子12が形成された主面の反対面(裏面)側から半導体層12aに向けて照射される。レーザ光Lは、基板1に対しては透明であり(透過性を有し)、半導体層12aに対しては吸収領域となる波長を有する。   FIG. 2A shows a step of peeling the substrate 1 by a laser lift-off method. The laser beam L is irradiated toward the semiconductor layer 12a from the opposite surface (back surface) side of the main surface of the substrate 1 on which the light emitting element 12 is formed. The laser light L is transparent to the substrate 1 (has transparency) and has a wavelength that becomes an absorption region for the semiconductor layer 12a.

レーザ光Lが基板1と半導体層12aとの界面に到達すると、その界面付近の半導体層12aはレーザ光Lのエネルギーを吸収して熱分解する。例えば、半導体層12aがGaNの場合、Gaと窒素ガスに分解する。Gaは半導体層12a側に残る。この熱分解により、基板1と半導体層12aとの間に微小な隙間が形成され、基板1と半導体層12aとが分離する。   When the laser beam L reaches the interface between the substrate 1 and the semiconductor layer 12a, the semiconductor layer 12a near the interface absorbs the energy of the laser beam L and is thermally decomposed. For example, when the semiconductor layer 12a is GaN, it decomposes into Ga and nitrogen gas. Ga remains on the semiconductor layer 12a side. By this thermal decomposition, a minute gap is formed between the substrate 1 and the semiconductor layer 12a, and the substrate 1 and the semiconductor layer 12a are separated.

レーザ光Lは、例えば一つの発光素子12ごとに照射される。このとき、レーザ光Lの照射範囲の縁部が分離溝31に位置するようにする。図2(a)、図3(b)において、レーザ光Lの照射範囲の縁部50を破線で示す。その縁部50の内側の略四角い領域が、1ショットのレーザ光照射範囲である。   The laser beam L is irradiated, for example, for each light emitting element 12. At this time, the edge of the irradiation range of the laser beam L is positioned in the separation groove 31. In FIG. 2A and FIG. 3B, the edge 50 of the irradiation range of the laser light L is indicated by a broken line. A substantially square region inside the edge portion 50 is a one-shot laser beam irradiation range.

レーザ光Lの照射時、半導体層12aが急激に熱分解することで気化したガスが発生する。このとき、高い圧力のガスによって半導体層12a、12bが衝撃を受け、半導体層12a、12bにクラック、結晶転移、破砕などが生じてしまうことがある。半導体層12aの熱分解により発生したガスは、基板1と半導体層12aとの間に生じた隙間を介して面方向に拡散することができる。しかし、レーザ光Lの照射範囲の外側はレーザ加熱されずに固相の状態であるので、その固相部分によってガスの拡散が規制され、その縁部50でガス圧力が高くなりやすい。また、レーザ光Lの照射部と未照射部との間のエネルギー差、温度差、相の違いなどによって、レーザ光Lの照射範囲の縁部50には大きな応力が作用しやすい。したがって、特にレーザ光Lの照射範囲の縁部50で半導体層12a、12bにダメージが生じやすい。   During the irradiation with the laser beam L, vaporized gas is generated due to the rapid thermal decomposition of the semiconductor layer 12a. At this time, the semiconductor layers 12a and 12b may be impacted by a high-pressure gas, and cracks, crystal transition, crushing, and the like may occur in the semiconductor layers 12a and 12b. The gas generated by the thermal decomposition of the semiconductor layer 12a can be diffused in the surface direction through a gap generated between the substrate 1 and the semiconductor layer 12a. However, since the outside of the irradiation range of the laser beam L is in a solid state without being heated by the laser, gas diffusion is regulated by the solid phase portion, and the gas pressure tends to increase at the edge 50. Further, due to an energy difference, a temperature difference, a phase difference, and the like between the irradiated portion and the unirradiated portion of the laser light L, a large stress is likely to act on the edge portion 50 in the irradiation range of the laser light L. Therefore, the semiconductor layers 12a and 12b are likely to be damaged particularly at the edge 50 in the irradiation range of the laser beam L.

そこで、本実施形態では、分離溝31にレーザ光Lの照射範囲の縁部50を位置させてレーザ光Lの照射を行う。分離溝31には半導体層12a、12bが存在せず、よって、半導体層12a、12bにレーザ光Lの照射範囲の縁部50が位置しない。これにより、半導体層12a、12bがダメージを受けるのを防ぐことができる。   Therefore, in the present embodiment, the edge 50 of the irradiation range of the laser beam L is positioned in the separation groove 31 and the laser beam L is irradiated. The semiconductor layer 12a, 12b does not exist in the separation groove 31, and therefore the edge 50 of the irradiation range of the laser light L is not located in the semiconductor layer 12a, 12b. This can prevent the semiconductor layers 12a and 12b from being damaged.

また、分離溝31には、半導体層12a、12bに比べて柔軟性がある例えばポリイミド等の絶縁膜15が設けられ、その絶縁膜15が変形することで応力が緩和され、半導体層12a、12bに大きな応力が作用するのを防ぐことができる。また、絶縁膜15の変形により生じた、分離溝31における基板1と絶縁膜15との隙間を介して、ガスを逃がすことも可能である。   In addition, the isolation groove 31 is provided with an insulating film 15 such as polyimide, which is more flexible than the semiconductor layers 12a and 12b. The deformation of the insulating film 15 relieves stress, and the semiconductor layers 12a and 12b. It is possible to prevent a large stress from acting on the surface. Further, gas can be released through a gap between the substrate 1 and the insulating film 15 in the separation groove 31 caused by the deformation of the insulating film 15.

さらに、分離溝31が空洞であるときには、半導体層12aとの屈折率差が大きいため、分離溝31付近でのレーザ光Lの波面が大きく半導体層12a側に屈折することになり電界強度が大きく乱れる。したがって、半導体層12a端部付近でレーザ光Lの強度が乱れる原因となり、レーザーリフトオフ法による基板1の剥離条件が不安定になりやすいという問題が起こり得る。   Further, when the separation groove 31 is hollow, the difference in refractive index from the semiconductor layer 12a is large, so that the wavefront of the laser light L near the separation groove 31 is large and refracts toward the semiconductor layer 12a, resulting in a large electric field strength. Disturbed. Therefore, the intensity of the laser beam L is disturbed near the end of the semiconductor layer 12a, and the problem that the peeling condition of the substrate 1 by the laser lift-off method tends to become unstable may occur.

それに対して、本実施形態のように、絶縁膜15が分離溝31に充填されているときは、屈折率差が小さくなり、レーザ光Lの波面の屈曲は小さくなり、レーザ光Lの強度分布をより安定化することが可能となり、剥離条件が不安定化となることを防げる。
分離溝31には、絶縁膜15が充填されていることが好ましいが、充填されていなくとも、基板1の主面上で半導体層12aの周辺近傍に絶縁膜15が設けられていれば、上記の屈折率差によるレーザ光Lの波面屈曲は抑えられ、強度分布が安定化し剥離条件が安定化しやすいという効果を得られる。
On the other hand, when the insulating film 15 is filled in the separation groove 31 as in the present embodiment, the refractive index difference is small, the wavefront bending of the laser light L is small, and the intensity distribution of the laser light L is reduced. Can be further stabilized, and the peeling condition can be prevented from becoming unstable.
The isolation trench 31 is preferably filled with the insulating film 15, but if the insulating film 15 is provided in the vicinity of the periphery of the semiconductor layer 12 a on the main surface of the substrate 1 even if it is not filled, the above described. The wavefront bending of the laser beam L due to the difference in refractive index is suppressed, and the effect that the intensity distribution is stabilized and the peeling condition is easily stabilized can be obtained.

以上説明したように、本実施形態では、レーザ光Lの照射時における半導体層12a、12bのダメージを防ぐことができる。これにより、発光効率や光取り出し効率の低下、電流リークを防止することが可能となる。   As described above, in the present embodiment, damage to the semiconductor layers 12a and 12b at the time of irradiation with the laser light L can be prevented. As a result, it is possible to prevent a decrease in light emission efficiency and light extraction efficiency and current leakage.

他の発光素子12についても同様に、図2(b)に示すように、レーザ光Lの照射範囲の縁部50が分離溝31に位置するようにしてレーザ光Lの照射を行う。これにより、その発光素子12についても、半導体層12a、12bがダメージを受けることなく、基板1と半導体層12aとの分離を行うことができる。   Similarly, the other light emitting elements 12 are irradiated with the laser beam L so that the edge 50 in the irradiation range of the laser beam L is positioned in the separation groove 31 as shown in FIG. Thereby, also about the light emitting element 12, the board | substrate 1 and the semiconductor layer 12a can be isolate | separated, without the semiconductor layers 12a and 12b receiving damage.

以上説明したようなレーザ光Lの照射をウェーハの全発光素子12について行い、ウェーハ全体にわたって基板1と半導体層12a、12bとを分離させる。また、分離溝31にもレーザ光Lが照射されることで、その分離溝31に設けられた絶縁膜15と基板1との密着力が低減する。これにより、発光素子12上から基板1を剥離することが可能となる。分離溝31で絶縁膜15と基板1とが接している面積は、ウェーハ全体の面積に比べてごくわずかである。したがって、分離溝31における絶縁膜15と基板1とは完全に分離されなくても、その密着力を低減させるだけでも基板1を剥離することができる。   The irradiation of the laser beam L as described above is performed on all the light emitting elements 12 of the wafer, and the substrate 1 and the semiconductor layers 12a and 12b are separated over the entire wafer. Further, the laser beam L is also applied to the separation groove 31, whereby the adhesion between the insulating film 15 provided in the separation groove 31 and the substrate 1 is reduced. As a result, the substrate 1 can be peeled from the light emitting element 12. The area where the insulating film 15 and the substrate 1 are in contact with each other in the separation groove 31 is very small compared to the area of the entire wafer. Therefore, even if the insulating film 15 and the substrate 1 in the separation groove 31 are not completely separated, the substrate 1 can be peeled only by reducing the adhesion.

また、先にレーザ光Lの照射が行われた図2(a)に示すときのレーザ光Lの照射範囲と、これより後にレーザ光Lの照射が行われた図2(b)に示すときのレーザ光Lの照射範囲とが、分離溝31で若干重なるようにする。これにより、分離溝31に設けられた絶縁膜15にレーザ光Lの未照射部が生じることがなく、その絶縁膜15と基板1との密着力を確実に低減させ、基板1の剥離を容易にする。
このとき、重なったレーザ光Lの部分には、絶縁膜15が設けられているので、分離溝31が空洞になっているものに比べて、屈折率差によるレーザ光Lの波面屈曲は抑えられ、強度分布が安定化し剥離条件が安定化しやすいという効果が得られる。
Further, the irradiation range of the laser beam L shown in FIG. 2A where the laser beam L has been irradiated first and the irradiation range of the laser beam L after that shown in FIG. 2B. The irradiation range of the laser beam L is slightly overlapped with the separation groove 31. As a result, an unirradiated portion of the laser light L is not generated in the insulating film 15 provided in the separation groove 31, the adhesion force between the insulating film 15 and the substrate 1 is reliably reduced, and the substrate 1 can be easily peeled off. To.
At this time, since the insulating film 15 is provided in the overlapped portion of the laser light L, the wavefront bending of the laser light L due to the difference in refractive index can be suppressed as compared with the case where the separation groove 31 is hollow. The effect is that the strength distribution is stabilized and the peeling conditions are easily stabilized.

あるいは、隣接する照射範囲は分離溝31で重ならなくてもよい。この場合、分離溝31に設けられた絶縁膜15にレーザ光Lの未照射部が生じることになる。基板1の剥離に影響がない程度に、絶縁膜15に多少の未照射部が生じてもかまわない。   Alternatively, the adjacent irradiation ranges may not overlap with the separation groove 31. In this case, an unirradiated portion of the laser light L is generated in the insulating film 15 provided in the separation groove 31. Some unirradiated portions may be generated in the insulating film 15 to such an extent that the peeling of the substrate 1 is not affected.

また、ウェーハ外周側の発光素子12から先にレーザ光照射を行うことで、外周側の半導体層12aと基板1との間の隙間や、その半導体層12aの周囲の分離溝31の絶縁膜15と基板1との間の隙間を介して、ウェーハ内周側の発光素子12にレーザ光照射を行ったときに発生したガスをウェーハ外の空間へと逃がすことが可能となる。すなわち、ウェーハ外周側から先にレーザ光照射を行って、ウェーハ外へと通じるガスの逃げ道を内周側に順次つなげていくようにする。これにより、ウェーハ全体にわたって各発光素子12のダメージを防ぐことができる。   Further, by performing laser beam irradiation first from the light emitting element 12 on the outer peripheral side of the wafer, the insulating film 15 in the gap between the outer peripheral semiconductor layer 12a and the substrate 1 or in the separation groove 31 around the semiconductor layer 12a. Through the gap between the substrate 1 and the substrate 1, the gas generated when the light emitting element 12 on the inner peripheral side of the wafer is irradiated with laser light can be released to the space outside the wafer. That is, laser light irradiation is performed first from the outer peripheral side of the wafer, and gas escape paths leading to the outside of the wafer are sequentially connected to the inner peripheral side. Thereby, damage of each light emitting element 12 can be prevented over the whole wafer.

分離溝31が、絶縁膜15で充填されていたとしても、ガス圧が上昇したときに樹脂が変形あるいは基板1から微小に剥離することにより生じた隙間を通してガス圧を逃がすことが可能となり、半導体層12a、12bの損傷を低減することが可能という効果を得られる。   Even if the separation groove 31 is filled with the insulating film 15, it becomes possible to release the gas pressure through a gap generated by the resin being deformed or being peeled off from the substrate 1 when the gas pressure is increased. It is possible to obtain an effect that damage to the layers 12a and 12b can be reduced.

レーザ光Lの照射は、分離溝31によって分離された一つの発光素子12ごとに行うことに限らず、複数の発光素子12ごとに行ってもよい。図3(c)には、例えば4つの発光素子12に対して1ショットのレーザ光照射を行う例を示す。複数の発光素子12ごとに照射する場合も、レーザ光Lの照射範囲の縁部50が分離溝31に位置するようにする。   The irradiation with the laser light L is not limited to being performed for each light emitting element 12 separated by the separation groove 31, and may be performed for each of the plurality of light emitting elements 12. FIG. 3C shows an example in which one shot of laser light irradiation is performed on, for example, four light emitting elements 12. Also when irradiating each of the plurality of light emitting elements 12, the edge 50 of the irradiation range of the laser light L is positioned in the separation groove 31.

基板1の剥離後、図2(c)に示すように、n側金属ピラー21及びp側金属ピラー22の下端部に、外部接続端子23として機能するはんだボール、金属バンプなどを形成する。その後、分離溝31に沿ってダイシングし、図2(d)に示すように個片化する。個片化する単位は、一つの発光素子12ごとでもよいし、複数の発光素子12を一つのブロックとして個片化してもよい。   After the substrate 1 is peeled off, as shown in FIG. 2C, solder balls, metal bumps, and the like that function as the external connection terminals 23 are formed at the lower ends of the n-side metal pillar 21 and the p-side metal pillar 22. Thereafter, the wafer is diced along the separation groove 31 and separated into pieces as shown in FIG. The unit to be singulated may be one for each light emitting element 12, or a plurality of light emitting elements 12 may be singulated as one block.

ダイシングされるまでの前述した各工程は、ウェーハ状態で一括して行われるため、低コストでの生産が可能となる。また、ウェーハレベルで、保護樹脂、配線、電極等を含むパッケージ構造が形成されるため、半導体発光装置の平面サイズをベアチップ(発光素子12)の平面サイズに近くした小型化が容易になる。   Each process described above until dicing is performed in a lump in a wafer state, so that production at a low cost is possible. In addition, since a package structure including protective resin, wiring, electrodes, and the like is formed at the wafer level, it is easy to reduce the size of the semiconductor light emitting device so that the planar size of the semiconductor light emitting device is close to the planar size of the bare chip (light emitting element 12).

次に、図4(a)は、レーザ光Lの照射範囲の縁部50を、分離溝31に隣接する半導体層12aの縁部12eまたはその縁部12eよりも若干半導体層12a側の内側に位置させた形態を示す。   Next, FIG. 4A shows that the edge 50 of the irradiation range of the laser light L is slightly closer to the inside of the semiconductor layer 12a side than the edge 12e of the semiconductor layer 12a adjacent to the separation groove 31 or its edge 12e. The positioned form is shown.

レーザ光Lの照射時、エネルギー、温度、相などが大きく変化する境界で、半導体層12a、12bのダメージが生じやすい。レーザ照射条件や照射対象物によっては、エネルギー、温度、相などが大きく変化する境界が、必ずしも照射範囲の縁部50になるとは限らない。その縁部50よりも外側の部分にも若干レーザ光Lのエネルギーや熱がおよぶこともある。その場合、エネルギー、温度、相などが大きく変化する境界は、照射範囲の縁部50よりも外側ということになる。   When the laser beam L is irradiated, the semiconductor layers 12a and 12b are likely to be damaged at boundaries where energy, temperature, phase, and the like change greatly. Depending on the laser irradiation conditions and the irradiation object, the boundary where the energy, temperature, phase, etc. change greatly does not necessarily become the edge 50 of the irradiation range. The energy and heat of the laser beam L may be slightly applied to a portion outside the edge 50. In that case, the boundary where the energy, temperature, phase and the like greatly change is outside the edge 50 of the irradiation range.

そこで、図4(a)に示す形態では、レーザ光Lの照射範囲の縁部50を、半導体層12aの縁部12eまたはその縁部12eよりも若干半導体層12a側の内側に位置させることで、エネルギー、温度、相などが大きく変化する境界が分離溝31に位置するようにする。そして、エネルギー、温度、相などが大きく変化する境界が位置する分離溝31には半導体層12a、12bが存在しないので、半導体層12a、12bに対するダメージを防ぐことができる。   Therefore, in the embodiment shown in FIG. 4A, the edge portion 50 in the irradiation range of the laser light L is positioned slightly inside the semiconductor layer 12a side of the edge portion 12e of the semiconductor layer 12a or the edge portion 12e. The boundary where the energy, temperature, phase, etc. change greatly is positioned in the separation groove 31. Further, since the semiconductor layers 12a and 12b do not exist in the separation groove 31 where the boundary where energy, temperature, phase and the like change greatly is located, damage to the semiconductor layers 12a and 12b can be prevented.

また、分離溝31の絶縁膜15がレーザ光Lの照射範囲にかからないため、分離溝31の絶縁膜15に過大なエネルギーや熱が作用することを抑制できる。これにより、絶縁膜15にクラックが生じることによる信頼性の低下や、絶縁膜15が大きく変形し半導体層12a、12bに対して応力を与えてしまうといったことを防ぐことが可能となる。   Further, since the insulating film 15 in the separation groove 31 does not reach the irradiation range of the laser light L, it is possible to suppress excessive energy and heat from acting on the insulating film 15 in the separation groove 31. As a result, it is possible to prevent a decrease in reliability due to the occurrence of cracks in the insulating film 15 and a situation in which the insulating film 15 is greatly deformed and stress is applied to the semiconductor layers 12a and 12b.

次に、図4(b)は、基板1に溝32を形成した形態を示す。溝32は、基板1における分離溝31に対向する部分に形成される。溝32は、例えば図3(a)に示される分離溝31と同様にウェーハ全体にわたって格子状に形成される。溝32の幅は分離溝31の幅よりも小さく、半導体層12aの縁部は溝32にかかっていない。   Next, FIG. 4B shows a form in which the groove 32 is formed in the substrate 1. The groove 32 is formed in a portion of the substrate 1 that faces the separation groove 31. The grooves 32 are formed in a lattice shape over the entire wafer, for example, like the separation grooves 31 shown in FIG. The width of the groove 32 is smaller than the width of the separation groove 31, and the edge of the semiconductor layer 12 a does not cover the groove 32.

レーザ光Lの照射時、基板1と半導体層12aとの界面で発生したガスを、溝32を介してウェーハ外へと逃がすことが可能である。レーザ光Lの照射時、分離溝31における絶縁膜15は基板1との密着力が低下し、あるいは変形する。これにより、基板1と半導体層12aとの界面で発生したガスは、絶縁膜15と基板1との間を通りやすくなり、溝32に到達可能である。   During irradiation with the laser beam L, the gas generated at the interface between the substrate 1 and the semiconductor layer 12a can be released out of the wafer through the groove 32. At the time of irradiation with the laser beam L, the insulating film 15 in the separation groove 31 has a reduced adhesion or deformation with the substrate 1. As a result, the gas generated at the interface between the substrate 1 and the semiconductor layer 12 a can easily pass between the insulating film 15 and the substrate 1 and reach the groove 32.

溝32を形成することで、レーザ光Lの照射時に発生したガスを効果的に逃がすことができ、発光素子12付近でガス圧力が高まるのを防ぐことができる。この場合、ウェーハの外周側からレーザ光照射を行わなくても、ウェーハ全体にわたって既にガス抜きのための溝32が形成されているため、先にウェーハ内周側に対してレーザ光照射を行っても溝32を介して、発生したガスをウェーハ外に逃がすことができる。   By forming the groove 32, the gas generated when the laser beam L is irradiated can be effectively released, and the gas pressure can be prevented from increasing in the vicinity of the light emitting element 12. In this case, the groove 32 for degassing has already been formed over the entire wafer without irradiating the laser beam from the outer peripheral side of the wafer. In addition, the generated gas can escape to the outside of the wafer through the groove 32.

前述した図1(b)に示す工程で分離溝31を形成した後、その分離溝31に対向する部分に溝32は形成される。その後、基板1の主面上に絶縁膜15が形成される。絶縁膜15は液状もしくは粘性のある状態で基板1の主面上に供給された後硬化する。そこで、溝32の幅を例えば1μm以下と微細にし、絶縁膜15として比較的粘度の高い例えばポリイミドを用いることで、溝32が絶縁膜15で埋まらないようにできる。   After the separation groove 31 is formed in the process shown in FIG. 1B described above, the groove 32 is formed in a portion facing the separation groove 31. Thereafter, an insulating film 15 is formed on the main surface of the substrate 1. The insulating film 15 is supplied to the main surface of the substrate 1 in a liquid or viscous state and then cured. Therefore, by making the width of the groove 32 as fine as 1 μm or less and using, for example, polyimide having a relatively high viscosity as the insulating film 15, the groove 32 can be prevented from being filled with the insulating film 15.

また、図4(c)に示すように、絶縁膜15側に溝33を形成してもよい。溝33は、分離溝31に設けられた絶縁膜15中の空所として形成されている。溝33も、例えば図3(a)に示される分離溝31と同様にウェーハ全体にわたって格子状に形成される。溝33の幅は分離溝31の幅よりも小さく、半導体層12aの縁部は溝33にかかっていない。   Further, as shown in FIG. 4C, a groove 33 may be formed on the insulating film 15 side. The groove 33 is formed as a void in the insulating film 15 provided in the separation groove 31. The grooves 33 are also formed in a lattice shape over the entire wafer, like the separation grooves 31 shown in FIG. The width of the groove 33 is smaller than the width of the separation groove 31, and the edge of the semiconductor layer 12 a does not cover the groove 33.

この場合も、レーザ光Lの照射時、基板1と半導体層12aとの界面で発生したガスを、溝33を介してウェーハ外へと逃がすことが可能である。さらに、ウェーハの外周側からレーザ光照射を行わなくても、ウェーハ全体にわたって既にガス抜きのための溝33が形成されているため、先にウェーハ内周側に対してレーザ光照射を行っても溝33を介して、発生したガスをウェーハ外に逃がすことができる。   Also in this case, it is possible to release the gas generated at the interface between the substrate 1 and the semiconductor layer 12a to the outside of the wafer through the groove 33 when the laser beam L is irradiated. Further, even if the laser beam irradiation is not performed from the outer peripheral side of the wafer, since the groove 33 for degassing has already been formed over the entire wafer, even if the laser beam irradiation is first performed on the inner peripheral side of the wafer. The generated gas can be released out of the wafer through the groove 33.

図1(d)の工程の後、分離溝31に設けられた絶縁膜15に局所的に基板1の裏面側からレーザ光を照射するレーザーアブレーションを行うことで、絶縁膜15に空所を形成することができる。このときのレーザ光は、基板1剥離時のレーザ光Lよりも照射範囲が狭く、スポット状に絞り込まれている。このレーザーアブレーションにより、分離溝31に設けられた絶縁膜15の一部を気化させて溝33を形成することができる。したがって、少なくとも溝33を形成する部分は、レーザーアブレーションによって気化する例えば、ポリエステル、ポリカーボネート、ポリウレタンなどの樹脂にすることが望ましい。溝33はウェーハ全体にわたって形成されるため、気化した樹脂はその溝33を介してウェーハ外に抜ける。   After the step of FIG. 1D, a void is formed in the insulating film 15 by performing laser ablation in which the insulating film 15 provided in the separation groove 31 is locally irradiated with laser light from the back side of the substrate 1. can do. The laser beam at this time has a narrower irradiation range than the laser beam L when the substrate 1 is peeled off, and is narrowed down in a spot shape. By this laser ablation, the groove 33 can be formed by vaporizing a part of the insulating film 15 provided in the separation groove 31. Therefore, it is desirable that at least a portion where the groove 33 is formed is made of a resin such as polyester, polycarbonate, or polyurethane that is vaporized by laser ablation. Since the groove 33 is formed over the entire wafer, the vaporized resin escapes out of the wafer through the groove 33.

図5は、半導体層12aを分離する分離溝の他の形成方法を示す。   FIG. 5 shows another method of forming the separation groove for separating the semiconductor layer 12a.

この方法では、前述した図1(b)に示す段階で分離溝31の形成工程は行われずに、図1(d)の工程まで進められる。したがって、図5(a)に示すように、半導体層12aは分離されずつながったままである。   In this method, the process of forming the separation groove 31 is not performed at the stage shown in FIG. 1B, and the process proceeds to the process of FIG. Therefore, as shown in FIG. 5A, the semiconductor layer 12a remains connected without being separated.

そして、図5(b)に示すように、分離溝を形成する部分にのみ局所的に基板1の裏面側からレーザ光L’を照射するレーザーアブレーションを行う。このレーザ光L’は、基板剥離時のレーザ光Lよりも照射範囲が狭く、スポット状に絞り込まれている。このレーザーアブレーションにより、半導体層12aを気化させて除去する。これにより、半導体層12aを分離する分離溝34が形成される。この分離溝34内には絶縁膜15が設けられていないので、基板剥離時のレーザ光Lの照射により発生するガスの逃げ道としても機能する。分離溝34も、ウェーハ全体にわたって例えば格子状に形成される。   Then, as shown in FIG. 5B, laser ablation is performed in which the laser beam L ′ is irradiated locally from the back side of the substrate 1 only to the portion where the separation groove is formed. This laser beam L 'has a narrower irradiation range than the laser beam L when the substrate is peeled off, and is narrowed down in a spot shape. By this laser ablation, the semiconductor layer 12a is vaporized and removed. Thereby, a separation groove 34 for separating the semiconductor layer 12a is formed. Since the insulating film 15 is not provided in the separation groove 34, it also functions as an escape path for the gas generated by the irradiation of the laser light L when the substrate is peeled off. The separation groove 34 is also formed, for example, in a lattice shape over the entire wafer.

また、半導体層12aを確実に完全に分離させるために、分離溝34を形成する部分の半導体層12aに接する絶縁膜15の一部もレーザーアブレーションにより除去することが望ましい。したがって、その部分は、前述したポリエステル、ポリカーボネート、ポリウレタンなどの、レーザーアブレーションによって気化する材料にしておくのが望ましい。また、絶縁膜15の一部を除去することで、ガスを逃がすための経路の断面積を増大して、ガスを効率的に逃がすことも可能となる。   Further, in order to surely completely separate the semiconductor layer 12a, it is desirable to remove a part of the insulating film 15 in contact with the semiconductor layer 12a in a portion where the separation groove 34 is formed by laser ablation. Therefore, it is desirable that the portion is made of a material that can be vaporized by laser ablation, such as the polyester, polycarbonate, and polyurethane described above. Further, by removing a part of the insulating film 15, the cross-sectional area of the path for allowing the gas to escape can be increased, and the gas can be efficiently released.

基板剥離時には、図5(c)に示すように、レーザ光Lの照射範囲の縁部50が、発光素子12が存在しない分離溝34に位置するようにレーザ光Lを照射する。これにより、発光素子12のダメージを防ぐことができる。さらに、空所である分離溝34を介してガスを逃がすことができるので、発光素子12付近のガス圧力の高まりをより効果的に回避することができる。   When the substrate is peeled off, as shown in FIG. 5C, the laser beam L is irradiated so that the edge 50 in the irradiation range of the laser beam L is located in the separation groove 34 where the light emitting element 12 does not exist. Thereby, damage to the light emitting element 12 can be prevented. Furthermore, since the gas can escape through the separation groove 34 that is a void, an increase in gas pressure near the light emitting element 12 can be more effectively avoided.

図6(a)は、半導体層12a、12bの側面を、酸化珪素や窒化珪素などの誘電体等からなるパッシベーション膜70で覆った構造を示す。これにより、リーク電流を抑制し、また半導体層12a、12bの側面の酸化による信頼性低下を防止できる。パッシベーション膜70を分離溝31では分割することにより、レーザーリフトオフ法による基板1の剥離時の衝撃をパッシベーション膜70を介して隣接素子に伝播させないことが可能となる。   FIG. 6A shows a structure in which the side surfaces of the semiconductor layers 12a and 12b are covered with a passivation film 70 made of a dielectric material such as silicon oxide or silicon nitride. Thereby, it is possible to suppress the leakage current and to prevent a decrease in reliability due to oxidation of the side surfaces of the semiconductor layers 12a and 12b. By dividing the passivation film 70 in the separation groove 31, it is possible to prevent the impact when the substrate 1 is peeled off by the laser lift-off method from being propagated to the adjacent elements via the passivation film 70.

また、図6(b)に示すように、分離溝31の位置で、パッシベーション膜70下に空洞71を形成することで、レーザーリフトオフ時に発生するガスの逃げ道を積極的に確保可能となり、衝撃による半導体層12a、12bの破損を抑制可能となる。空洞71は、基板1上の分離溝31に犠牲層を形成し、その犠牲層をエッチングなどにより除去することで形成可能である。   Further, as shown in FIG. 6B, by forming the cavity 71 under the passivation film 70 at the position of the separation groove 31, it is possible to positively secure the escape path of the gas generated at the time of laser lift-off, due to the impact. Damage to the semiconductor layers 12a and 12b can be suppressed. The cavity 71 can be formed by forming a sacrificial layer in the separation groove 31 on the substrate 1 and removing the sacrificial layer by etching or the like.

以上、図面を参照し、本発明の実施の形態について説明した。しかしながら本発明はこれらに限定されない。基板、発光素子、電極、配線層、金属ピラー、絶縁膜、樹脂の材料、サイズ、形状、レイアウトなどに関して当業者が各種設計変更を行ったものであっても、本発明の主旨を逸脱しない限り本発明の範囲に包含される。   The embodiment of the present invention has been described above with reference to the drawings. However, the present invention is not limited to these. Even if those skilled in the art make various design changes with respect to the substrate, light emitting element, electrode, wiring layer, metal pillar, insulating film, resin material, size, shape, layout, etc., as long as they do not depart from the gist of the present invention. It is included in the scope of the present invention.

1…基板、12…発光素子、12a,12b…半導体層、13…n側電極、14…p側電極、15…絶縁膜、18…n側配線層、19…p側配線層、20…樹脂、21…n側金属ピラー、22…p側金属ピラー、31,34…分離溝、50…レーザ光の照射範囲の縁部   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 12 ... Light emitting element, 12a, 12b ... Semiconductor layer, 13 ... N side electrode, 14 ... P side electrode, 15 ... Insulating film, 18 ... N side wiring layer, 19 ... P side wiring layer, 20 ... Resin 21 ... n-side metal pillars, 22 ... p-side metal pillars, 31, 34 ... separation grooves, 50 ... edges of laser light irradiation range

Claims (8)

第1の面と、その反対側の第2の面と、発光層とを有する半導体層と、
前記半導体層における前記発光層が設けられた部分の前記第2の面に設けられたp側電極と、
前記半導体層における前記発光層が設けられていない部分の前記第2の面に設けられたn側電極と、
前記半導体層に比べて柔軟性があり、前記半導体層の前記第2の面及び前記第1の面から続く側面に設けられ、前記p側電極に達する第1の開口と前記n側電極に達する第2の開口とを有する絶縁膜と、
前記第1の開口内に設けられ、前記p側電極に達するp側コンタクト部と、
前記第2の開口内に設けられ、前記n側電極に達するn側コンタクト部と、
前記絶縁膜内に設けられ、前記p側コンタクト部を介して前記p側電極と接続されたp側配線層と、
前記絶縁膜内に設けられ、前記n側コンタクト部を介して前記n側電極と接続されたn側配線層と、
前記p側配線層上に設けられたp側金属ピラーと、
前記n側配線層上に設けられたn側金属ピラーと、
を備え、
前記絶縁膜は、前記p側金属ピラーと前記n側金属ピラーとの間に設けられていることを特徴とする半導体発光装置。
A semiconductor layer having a first surface, a second surface opposite to the first surface, and a light emitting layer;
A p-side electrode provided on the second surface of the portion of the semiconductor layer where the light emitting layer is provided;
An n-side electrode provided on the second surface of the semiconductor layer where the light emitting layer is not provided;
More flexible than the semiconductor layer, provided on the second surface and the side surface continuing from the first surface of the semiconductor layer, and reaching the first opening and the n-side electrode reaching the p-side electrode. An insulating film having a second opening ;
A p-side contact portion provided in the first opening and reaching the p-side electrode;
An n-side contact portion provided in the second opening and reaching the n-side electrode;
A p-side wiring layer provided in the insulating film and connected to the p-side electrode through the p-side contact portion;
An n-side wiring layer provided in the insulating film and connected to the n-side electrode through the n-side contact portion;
A p-side metal pillar provided on the p-side wiring layer;
An n-side metal pillar provided on the n-side wiring layer;
With
The semiconductor light emitting device, wherein the insulating film is provided between the p-side metal pillar and the n-side metal pillar.
前記絶縁膜は、
前記第2の面と前記p側配線層との間および前記第2の面と前記n側配線層との間に設けられた第1の絶縁膜と、
前記p側金属ピラーの周囲及び前記n側金属ピラーの周囲を覆う樹脂と、
を有することを特徴とする請求項1記載の半導体発光装置。
The insulating film is
A first insulating film provided between the second surface and the p-side wiring layer and between the second surface and the n-side wiring layer;
A resin covering the periphery of the p-side metal pillar and the periphery of the n-side metal pillar;
The semiconductor light emitting device according to claim 1, comprising:
前記第1の絶縁膜は、樹脂であることを特徴とする請求項2記載の半導体発光装置。   The semiconductor light emitting device according to claim 2, wherein the first insulating film is a resin. 前記樹脂は、エポキシ樹脂、シリコーン樹脂、フッ素樹脂のいずれかであることを特徴とする請求項2記載の半導体発光装置。   The semiconductor light emitting device according to claim 2, wherein the resin is one of an epoxy resin, a silicone resin, and a fluororesin. 前記絶縁膜は、前記p側金属ピラーと前記n側金属ピラーとの間に充填されていることを特徴とする請求項1〜4のいずれか1つに記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the insulating film is filled between the p-side metal pillar and the n-side metal pillar. 前記半導体層は窒化物系半導体であることを特徴とする請求項1〜5のいずれか1つに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the semiconductor layer is a nitride-based semiconductor. 前記半導体層の前記側面に設けられた前記絶縁膜の前記半導体層の前記第1の面側の端面は、前記半導体層の前記第1の面と同一平面上にあることを特徴とする請求項1〜6のいずれか1つに記載の半導体発光装置。   The end surface of the semiconductor layer on the first surface side of the insulating film provided on the side surface of the semiconductor layer is on the same plane as the first surface of the semiconductor layer. The semiconductor light emitting device according to any one of 1 to 6. 前記半導体層の平面形状は四角形であり、前記半導体層の前記側面を覆う前記絶縁膜は、前記半導体層を枠状に囲っていることを特徴とする請求項1〜7のいずれか1つに記載の半導体発光装置。   The planar shape of the semiconductor layer is a quadrangle, and the insulating film covering the side surface of the semiconductor layer surrounds the semiconductor layer in a frame shape. The semiconductor light-emitting device as described.
JP2011083916A 2011-04-05 2011-04-05 Semiconductor light emitting device Active JP4865101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083916A JP4865101B2 (en) 2011-04-05 2011-04-05 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083916A JP4865101B2 (en) 2011-04-05 2011-04-05 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011022801A Division JP4719323B2 (en) 2011-02-04 2011-02-04 Manufacturing method of semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011243112A Division JP5205502B2 (en) 2011-11-07 2011-11-07 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2011155295A JP2011155295A (en) 2011-08-11
JP4865101B2 true JP4865101B2 (en) 2012-02-01

Family

ID=44540994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083916A Active JP4865101B2 (en) 2011-04-05 2011-04-05 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4865101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079929A (en) 2013-09-11 2015-04-23 株式会社東芝 Semiconductor light-emitting device and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244012A (en) * 1998-12-22 2000-09-08 Toyoda Gosei Co Ltd Manufacture of group iii nitride compound semiconductor element
WO2006035664A1 (en) * 2004-09-27 2006-04-06 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, manufacturing method and mounting method of the same and light emitting device

Also Published As

Publication number Publication date
JP2011155295A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4686625B2 (en) Manufacturing method of semiconductor light emitting device
US8350285B2 (en) Semiconductor light-emitting device and method for manufacturing same
US8319246B2 (en) Semiconductor device and method for manufacturing same
US8987020B2 (en) Semiconductor light-emitting device and method for manufacturing same
US8367523B2 (en) Method for manufacturing semiconductor light-emitting device and semiconductor light emitting device
JP2012015486A (en) Method of manufacturing light-emitting device and light-emitting device
JP5982179B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6072192B2 (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and method for manufacturing light emitting device
JP2013042191A (en) Semiconductor light-emitting device
JP4865101B2 (en) Semiconductor light emitting device
JP5205502B2 (en) Semiconductor light emitting device
JP5834109B2 (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and method for manufacturing light emitting device
JP4719323B2 (en) Manufacturing method of semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4865101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250