[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4859277B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4859277B2
JP4859277B2 JP2001093708A JP2001093708A JP4859277B2 JP 4859277 B2 JP4859277 B2 JP 4859277B2 JP 2001093708 A JP2001093708 A JP 2001093708A JP 2001093708 A JP2001093708 A JP 2001093708A JP 4859277 B2 JP4859277 B2 JP 4859277B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
container
less
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001093708A
Other languages
Japanese (ja)
Other versions
JP2002298794A (en
Inventor
史朗 加藤
肇 木下
静邦 矢田
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2001093708A priority Critical patent/JP4859277B2/en
Publication of JP2002298794A publication Critical patent/JP2002298794A/en
Application granted granted Critical
Publication of JP4859277B2 publication Critical patent/JP4859277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池に関し、特に、蓄電システム用非水系二次電池に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
しかし、これら大型リチウムイオン電池は、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のバラツキを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のバラツキが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等による寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0007】
上記問題を解決する目的でW099/60652号公報には、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が開示されている。該電池は独特の電池形状(扁平形状)により、実用化の障壁となる上記蓄熱に起因する信頼性、安全性の問題点を解決する事を提案している。
【0008】
【発明が解決しようとする課題】
ところで、厚さが12mm未満の扁平形状の非水系二次電池は、主に蓄電システム用大型電池の分野に応用されるが、実用化には安全性の確保に加え、製造コストを低減する事が重要なポイントとなる。これら電池の一製造例として、図5に示される様に、上蓋とフランジ部を有する底容器を同図に示すA点で、レーザー溶接により落とし込み溶接される。フランジ部を有する底容器は、絞り加工で製造する事が可能であるが、同一の外周形状及び厚さで最大の電池有効内容積を確保するために、底容器の側板部と底板部のなす角度θを90°とするには、複数の金型で被成型品を徐々に絞って加工するトランスファー成形等の工夫が必要となる為、製造コストが高くなる問題点を有していた。
【0009】
本発明の目的は、厚さが12mm未満の扁平形状である非水系二次電池において低コストで成形可能な絞り加工によっても、同一の外周形状及び厚さで可能な最大の電池有効内容積に近い電池有効内容積を確保できる非水系二次電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池であって、前記電池容器は、蓋とプレス加工により成形された底容器とを備え、前記電池容器の板厚は、0.2mm以上1mm以下であり、前記底容器の側板部と底板部のなす角度は、90.5°を超え95°未満になるように設定されていることを特徴とする非水系二次電池を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態の非水系二次電池について図面を参照しながら説明する。図1は、本発明の一実施形態の扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示し、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【0012】
図1及び図2に示すように、本実施の形態の非水系二次電池は、端子が取りつけられた蓋1及び底容器2からなる電池容器と、該電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施の形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0013】
各正極101aの正極集電体105aは、正極端子3に電気的に接続され、同様に、各負極101b、101cの負極集電体105bは、負極端子4に電気的に接続されている。正極端子3及び負極端子4は、電池容器すなわち蓋1と絶縁された状態で取り付けられている。
【0014】
蓋1及び底容器2は、図1中の拡大図に示したA点、つまり蓋1の周縁部を溶かし込んで底容器2と溶接している。蓋1には、電解液の注液口5が開けられており、電解液注液後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。最終封口工程は、少なくとも一回の充電操作の後に行うことが好ましい。封口フィルム6による最終封口工程後の電池容器内の圧力は、大気圧未満であることが好ましく、更に好ましくは8.66×104Pa(650Torr)以下、特に好ましくは7.33×104Pa(550Torr)以下である。すなわち、内圧が大気圧以上の場合、電池が設計厚みより大きくなり易く、又は、電池の厚みのバラツキが大きくなり易く、更には電池の内部抵抗及び容量がばらつきやすくなるからである。この圧力は、使用するセパレータ、電解液の種類、電池容器の材質及び厚み、電池の形状等を加味して決定されるものである。
【0015】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、大型リチウム系二次電池の実用化において最重点課題である安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウムを量論比よりも過剰にしたLi1+xMn2-y4が挙げられる。特に、本発明は上記マンガン酸化物を主体とする正極を用いる場合、その効果が大きい。
【0016】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。
【0017】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、この場合、サイクル特性が向上する。また、セパレータ104の材質も、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料等が挙げられ、電池の耐熱性、安全性設計に応じ適宜決定される。
【0018】
本実施形態の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0019】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0020】
本実施の形態の非水系二次電池は、扁平形状をしており、その厚さは12mm未満、より好ましくは10mm未満である。厚さの下限については蓋1に端子を取りつける必要がある為、5mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のバラツキが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0021】
また、本実施形態の非水系二次電池の形状としては、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。
【0022】
電池容器となる蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等が一般的であり、コストの観点からも実用的である。また、電池容器の板厚も電池の用途、形状或いは電池底容器の材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の板厚(電池容器を構成する一番面積が広い部分の板厚)が0.2mm以上である。上記板厚が0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の板厚は、1mm以下であることが望ましい。この板厚が1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0023】
本発明において、電池容器の側面と底面のなす角度が90°を超え100°未満である。上述の製造例の場合、電池容器の側面と底面のなす角度は底容器2により決まり、図3中、線αと線βがなす角度である。
【0024】
電池容器の側面と底面のなす角度は、電池容器のサイズ、材質の硬さ及びヤング率等により適宜決定されるが、上限を超える場合、電池有効内容積(図3中斜線部)が低下し、電池の容量が低下する。また、90°とする場合、トランスファー成形(複数の金型で徐々に絞る加工)等の工夫が必要となる為、製造コストが高くなる。
【0025】
本発明においては、電池容器の側板部2aと底板部2bのなす角度θは、90°を超え100°未満となるように設定されている。これにより、同一金型を用いて、一回あるいは数回の絞り加工で底容器2を得ることが可能となっている。また、本発明の非水系二次電池は厚さ12mm以下の扁平形状である事から、電池容器の側板部2aと底板部2bのなす角度θが90°を超え100°未満であれば、電池有効内容積(図3中の2点鎖線で囲まれる部分)は、所定の外周形状及び厚さで可能な最大の電池有効内容積に近いものになる。これらの観点から電池容器の側板部2aと底板部2bのなす角度θは、90.5°から95°とするのがより望ましく、91°から92°とするのがさらに望ましい。また、絞り加工は、1回で行なうのが、加工の手間及びコストの面から望ましいが、2回以上で行なうのが加工精度及び強度の点から望ましく、この観点からは3回以上で行なうのがさらに望ましい。
【0026】
電池容器の板厚は、電池の用途或いは電池底容器の材質により適宜決定され、特に限定されるものではないが、好ましくは、その電池表面積の80%以上の部分の板厚(電池容器を構成する一番面積が広い部分の板厚)が0.2mm以上である。上記板厚が0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上であり、更に、好ましくは0.4mm以上である。同部分の板厚は、1mm以下であることが望ましい。この板厚が1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0027】
上記のように、非水系二次電池の厚さを12mm未満に設計することにより、例えば、該電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合、高率充放電が行われたときであっても、電池温度の上昇が小さく、優れた放熱特性を実現できる。従って、内部発熱による電池の蓄熱が低減され、その結果、電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができる。
【0028】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
【0029】
(1)LiMn24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図4の(a)は正極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、277.5×202mm2であり、20μmの集電体の両面に110μmの厚さで塗布されている。その結果、電極厚さtは240μmとなっている。また、電極の短辺側には電極が塗布されていない正極集電片106aが設けられ、その中央にφ3の穴が開けられている。
【0030】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図4の(b)は負極の説明図である。負極101bの塗布面積(W1×W2)は、282×205mm2であり、14μmの集電体の両面に90μmの厚さで塗布されている。
その結果、電極厚さtは194μmとなっている。また、電極の短辺側には電極が塗布されていない負極集電片106bが設けられ、その中央に3mmの穴が開けられている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ104μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図2中101c)。
【0031】
(3)図2に示すように、上記(1)項で得られた正極8枚、負極9枚(内片面2枚)をセパレータA(レーヨン系、目付12.6g/m2)とセパレータB(ポリエチレン製微孔膜;目付13.3g/m2)とを合わせたセパレータ104を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cの更に外側にセパレーターBを配置し、電極積層体を作成した。なお、セパレータ104は、セパレータA104aが正極側に、セパレータB104bが負極側になるように配置した。
【0032】
(4)図3に示すように、厚さ0.5mmのSUS304薄板で、底容器2を作成し、蓋1も厚さ0.5mmのSUS304薄板で作成した。底容器2においては、1種類の金型を使用し3回にわけて絞り加工を行ない、底板部2bと側板部2aのなす角度θは92°であった。次に、図3に示すように、蓋1に、アルミニウム製の正極端子3及び銅製の負極端子4を取り付けた。正極及び負極端子3、4は、ポリプロピレン製ガスケット1a,1bで蓋1と絶縁固定した。
【0033】
(5)上記(3)項で作成した電極積層体の各正極集電片106aを正極端子3に、各負極集電片106bを負極端子4に接続した。この電極積層体を、底容器2に挿入した後、図1のAに示す位置を全周に亘りレーザー溶接した。その後、注液口5から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。次に、大気圧下で、仮止め用のボルトを用いて注液口5を一旦封口した。
【0034】
(6)この電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電した。
【0035】
(7)電池に取り付けられた仮止め用ボルトを取り外す、再度、4.00×104Pa(300Torr)の減圧下で、12mmφに打ち抜いた厚さ0.08mmのアルミ箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力98.1〜294kPa(1〜3kg/cm2)、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口し、厚さ6mmの扁平形状のノート型電池を得た。
【0036】
該電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電し、容量を確認した。放電容量は29.5Ahであった。(容量:109Wh,体積エネルギー密度:288Wh/l)
【0037】
【比較例】
実施例1において、底容器2の底板部2bと側板部2aのなす角度を90°とする加工を一種類の金型を使用し、数回の絞り加工を試みたが、該角度が90.5°以下となる場合には、図3中B点で底容器2に微細なクラックが生じた。これにより、絞り加工で前記角度を90°にしようとすれば、不良品が発生するのが判明した。
【0038】
【発明の効果】
本発明の非水系二次電池によれば、電池容器の底容器の側板部と底板部のなす角度は、90°を超え100°未満になるように設定されているので、同一の外周形状及び厚さで可能な最大の電池有効内容積に近い電池有効内容積を確保でき、充分の電池容量を確保できる。また、側板部と底板部のなす角度を90°とする必要がないので、製造コストが安くなる加工方法を採用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図3】図1に示す電池の上蓋及び底容器を分離した状態で示す断面図である。
【図4】図2に示す積層体を構成する正極、負極、及びセパレータの平面図である。
【図5】従来の蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【符号の説明】
1 上蓋
2 底容器
2a 底容器の側板部
2b 底容器の底板部
θ 底容器の側板部と底板部のなす角度
3 正極外部端子
4 負極外部端子
5 注液口
6 封口フィルム
7,8 ガスケット
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104 セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電片
106b 負極集電片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
However, although these large lithium ion batteries provide high energy density, the battery design is an extension of the small battery for portable devices, so that the diameter or thickness of the large lithium ion batteries is more than three times that of the small batteries for portable devices. The battery has a square shape. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0007]
In order to solve the above problem, W099 / 60652 discloses a flat non-aqueous secondary battery in which a non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is contained in a battery container, An aqueous secondary battery has a flat shape with a thickness of less than 12 mm, a non-aqueous secondary battery having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more is disclosed. The battery proposes to solve the problems of reliability and safety caused by the heat storage, which is a barrier to practical use, due to the unique battery shape (flat shape).
[0008]
[Problems to be solved by the invention]
By the way, flat non-aqueous secondary batteries having a thickness of less than 12 mm are mainly applied to the field of large batteries for power storage systems. However, in practical use, in addition to ensuring safety, manufacturing costs can be reduced. Is an important point. As an example of manufacturing these batteries, as shown in FIG. 5, a bottom container having an upper lid and a flange portion is dropped and welded by laser welding at a point A shown in FIG. A bottom container having a flange portion can be manufactured by drawing, but in order to ensure the maximum effective battery capacity with the same outer peripheral shape and thickness, the bottom container has a side plate portion and a bottom plate portion. In order to set the angle θ to 90 °, it is necessary to devise such as transfer molding in which a plurality of molds are used to gradually squeeze the processed product, and thus there is a problem in that the manufacturing cost increases.
[0009]
The object of the present invention is to achieve the maximum battery effective internal volume possible with the same outer peripheral shape and thickness even by drawing processing that can be molded at low cost in a non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm. An object of the present invention is to provide a non-aqueous secondary battery capable of securing a near effective battery capacity.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention accommodates a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more and A nonaqueous secondary battery having a volumetric energy density of 180 Wh / l or more, wherein the battery container includes a lid and a bottom container formed by press working, and the thickness of the battery container is 0.2 mm or more and 1 mm. The non-aqueous secondary battery is characterized in that the angle formed by the side plate portion and the bottom plate portion of the bottom container is set to be more than 90.5 ° and less than 95 °. is there.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a nonaqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for an electricity storage system according to an embodiment of the present invention, and FIG. 2 is housed inside the battery shown in FIG. It is a side view which shows the structure of an electrode laminated body.
[0012]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment includes a battery container including a lid 1 and a bottom container 2 to which terminals are attached, and a plurality of batteries accommodated in the battery container. Electrode laminate including the positive electrode 101 a, the negative electrodes 101 b and 101 c, and the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) have separators 104, for example, as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of layers and the like can be variously changed according to the required capacity and the like. The shape of the non-aqueous secondary battery shown in FIG. 1 is, for example, 300 mm long × 210 mm wide × 6 mm thick. The lithium secondary battery uses LiMn 2 O 4 for the positive electrode 101a and a carbon material for the negative electrodes 101b and 101c. In this case, for example, it can be used for a power storage system.
[0013]
The positive electrode current collector 105 a of each positive electrode 101 a is electrically connected to the positive electrode terminal 3. Similarly, the negative electrode current collector 105 b of each negative electrode 101 b, 101 c is electrically connected to the negative electrode terminal 4. The positive electrode terminal 3 and the negative electrode terminal 4 are attached in a state insulated from the battery container, that is, the lid 1.
[0014]
The lid 1 and the bottom container 2 are welded to the bottom container 2 by melting the point A shown in the enlarged view in FIG. The lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, the lid 1 is sealed using, for example, a sealing film 6 made of an aluminum-modified polypropylene laminate film. The final sealing step is preferably performed after at least one charging operation. The pressure in the battery container after the final sealing step with the sealing film 6 is preferably less than atmospheric pressure, more preferably 8.66 × 10 4 Pa (650 Torr) or less, and particularly preferably 7.33 × 10 4 Pa. (550 Torr) or less. That is, when the internal pressure is equal to or higher than the atmospheric pressure, the battery is likely to be larger than the designed thickness, or the variation in the battery thickness is likely to increase, and further, the internal resistance and capacity of the battery are likely to vary. This pressure is determined in consideration of the separator to be used, the type of electrolytic solution, the material and thickness of the battery container, the shape of the battery, and the like.
[0015]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, in the case of emphasizing safety, which is the highest priority issue in practical use of a large lithium secondary battery, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, a lithium composite manganese oxide typified by LiMn 2 O 4 , a system in which one or more different metal elements are added to these composite oxides, and a lithium in which lithium is made in excess of the stoichiometric ratio 1 + x Mn 2-y O 4 and the like. In particular, the present invention has a great effect when a positive electrode mainly composed of the manganese oxide is used.
[0016]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors.
[0017]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a nonwoven fabric. In this case, cycle characteristics are improved. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamides, kraft paper, glass, cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is determined appropriately.
[0018]
As the electrolyte of the non-aqueous secondary battery of this embodiment, a non-aqueous electrolyte containing a known lithium salt can be used, which is appropriately determined according to the use conditions such as the positive electrode material, the negative electrode material, and the charging voltage, and more specifically. Includes lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or two or more of these And those dissolved in an organic solvent such as a mixed solvent. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0019]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. It can have an energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0020]
The nonaqueous secondary battery of the present embodiment has a flat shape, and the thickness thereof is less than 12 mm, more preferably less than 10 mm. As for the lower limit of the thickness, since it is necessary to attach a terminal to the lid 1, 5 mm or more is practical. When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. The variation in the amount of charge and voltage in the battery increases. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0021]
In addition, as the shape of the non-aqueous secondary battery of the present embodiment, for example, the flat front and back surfaces can be various shapes such as a square, a circle, an oval, and the rectangular shape is generally rectangular. However, it may be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here.
[0022]
The material used for the lid 1 and the bottom container 2 serving as the battery container is appropriately selected depending on the use and shape of the battery, and is not particularly limited, and iron, stainless steel, aluminum, etc. are generally used, and from the viewpoint of cost. Is also practical. Moreover, the plate | board thickness of a battery container is also determined suitably by the use of a battery, a shape, or the material of a battery bottom container, and is not specifically limited. Preferably, the thickness of 80% or more portions of the cell surface area (thickness of the top wide area portion constituting the battery container) is 0.2mm or more. If the plate thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The plate thickness of the same part is desirably 1 mm or less. When the plate thickness exceeds 1 mm, the force for pressing the electrode surface increases, but it is not desirable because the internal capacity of the battery is reduced and sufficient capacity cannot be obtained, or the weight is increased. Preferably it is 0.7 mm or less.
[0023]
In the present invention, the angle formed between the side surface and the bottom surface of the battery container is more than 90 ° and less than 100 °. In the case of the manufacturing example described above, the angle formed by the side surface and the bottom surface of the battery container is determined by the bottom container 2, and is the angle formed by the line α and the line β in FIG.
[0024]
The angle between the side surface and the bottom surface of the battery case is appropriately determined depending on the size of the battery case, the hardness of the material, the Young's modulus, and the like. , Battery capacity decreases. In addition, when the angle is 90 °, it is necessary to devise transfer molding (processing that gradually narrows down with a plurality of molds) and the like, which increases the manufacturing cost.
[0025]
In the present invention, the angle θ formed by the side plate portion 2a and the bottom plate portion 2b of the battery container is set to be more than 90 ° and less than 100 °. Thereby, it is possible to obtain the bottom container 2 by one or several drawing processes using the same mold. In addition, since the non-aqueous secondary battery of the present invention has a flat shape with a thickness of 12 mm or less, if the angle θ formed between the side plate portion 2a and the bottom plate portion 2b of the battery container is more than 90 ° and less than 100 °, the battery The effective internal volume (portion surrounded by a two-dot chain line in FIG. 3) is close to the maximum battery effective internal volume possible with a predetermined outer peripheral shape and thickness. From these viewpoints, the angle θ formed between the side plate portion 2a and the bottom plate portion 2b of the battery container is more preferably 90.5 ° to 95 °, and further preferably 91 ° to 92 °. The drawing process is preferably performed once from the viewpoint of the labor and cost of processing, but it is preferable to perform the drawing process twice or more from the viewpoint of processing accuracy and strength. From this viewpoint, it is performed three times or more. Is more desirable.
[0026]
The plate thickness of the battery container is appropriately determined depending on the use of the battery or the material of the battery bottom container, and is not particularly limited. However, preferably, the plate thickness of the portion of the battery surface area of 80% or more (constituting the battery container) The plate thickness of the widest area) is 0.2 mm or more. If the plate thickness is less than 0.2 mm, the strength required for battery production is not obtained, which is not desirable. From this viewpoint, it is more preferably 0.3 mm or more, and further preferably 0.4 mm or more. . The plate thickness of the same part is desirably 1 mm or less. When the plate thickness exceeds 1 mm, the force for pressing the electrode surface increases, but it is not desirable because the internal capacity of the battery is reduced and sufficient capacity cannot be obtained, or the weight is increased. Preferably it is 0.7 mm or less.
[0027]
As described above, by designing the thickness of the non-aqueous secondary battery to be less than 12 mm, for example, when the battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge / discharge is performed. Even when broken, the battery temperature rise is small and excellent heat dissipation characteristics can be realized. Accordingly, the heat storage of the battery due to internal heat generation is reduced, and as a result, thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0029]
(1) 100 parts by weight of LiMn 2 O 4 , 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. (A) of FIG. 4 is explanatory drawing of a positive electrode. In this example, the application area (W1 × W2) of the positive electrode 101a is 277.5 × 202 mm 2 , and is applied to both surfaces of a 20 μm current collector with a thickness of 110 μm. As a result, the electrode thickness t is 240 μm. Moreover, the positive electrode current collection piece 106a with which the electrode is not apply | coated is provided in the short side of an electrode, and the hole of (phi) 3 is made in the center.
[0030]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. FIG. 4B is an explanatory diagram of the negative electrode. The application area (W1 × W2) of the negative electrode 101b is 282 × 205 mm 2 , and is applied to both surfaces of a 14 μm current collector with a thickness of 90 μm.
As a result, the electrode thickness t is 194 μm. Further, a negative electrode current collecting piece 106b to which no electrode is applied is provided on the short side of the electrode, and a 3 mm hole is formed in the center thereof. Further, a single-sided electrode having a thickness of 104 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is arranged on the outer side in the electrode laminate of item (3) (101c in FIG. 2).
[0031]
(3) As shown in FIG. 2, 8 sheets of positive electrodes and 9 sheets of negative electrodes (2 sheets on the inner side) obtained in the above item (1) were combined with separator A (rayon system, basis weight 12.6 g / m 2 ) and separator B. (Polyethylene microporous membrane; weight per unit area: 13.3 g / m 2 ) are laminated alternately via separators 104, and further, separator B is provided on the outer side of outer negative electrode 101c for insulation from the battery container. Arranged to create an electrode stack. The separator 104 was arranged so that the separator A104a was on the positive electrode side and the separator B104b was on the negative electrode side.
[0032]
(4) As shown in FIG. 3, the bottom container 2 was made of a SUS304 thin plate having a thickness of 0.5 mm, and the lid 1 was made of a SUS304 thin plate having a thickness of 0.5 mm. In the bottom container 2, drawing was performed in three times using one type of mold, and the angle θ formed by the bottom plate portion 2 b and the side plate portion 2 a was 92 °. Next, as shown in FIG. 3, the positive electrode terminal 3 made of aluminum and the negative electrode terminal 4 made of copper were attached to the lid 1. The positive and negative terminals 3 and 4 were insulated and fixed to the lid 1 with polypropylene gaskets 1a and 1b.
[0033]
(5) Each positive electrode current collecting piece 106 a and each negative electrode current collecting piece 106 b of the electrode laminate prepared in the above item (3) were connected to the negative electrode terminal 4. After inserting this electrode laminated body into the bottom container 2, the position shown to A of FIG. 1 was laser-welded over the perimeter. Thereafter, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was poured into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a 1: 1 weight ratio as an electrolytic solution from the pouring port 5. Next, under the atmospheric pressure, the liquid injection port 5 was once sealed using a temporary fixing bolt.
[0034]
(6) This battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours to apply a constant voltage of 4.2 V, and then discharged to 2.5 V with a constant current of 5 A. did.
[0035]
(7) Remove the temporary fixing bolt attached to the battery, and again from a 0.08 mm thick aluminum foil-modified polypropylene laminate film punched to 12 mmφ under reduced pressure of 4.00 × 10 4 Pa (300 Torr) The sealing film 6 is thermally fused under the conditions of a temperature of 250 to 350 ° C., a pressure of 98.1 to 294 kPa (1 to 3 kg / cm 2 ), and a pressurization time of 5 to 10 seconds, whereby the liquid inlet 5 is finally formed. Sealing was performed to obtain a flat notebook battery having a thickness of 6 mm.
[0036]
The battery is charged to 4.2V with a current of 5A, and then a constant current / constant voltage charge is applied for 12 hours by applying a constant voltage of 4.2V, followed by discharging to 2.5V with a constant current of 5A. It was confirmed. The discharge capacity was 29.5 Ah. (Capacity: 109 Wh, volumetric energy density: 288 Wh / l)
[0037]
[Comparative example]
In Example 1, using one type of mold to make the angle formed by the bottom plate portion 2b and the side plate portion 2a of the bottom container 2 to 90 °, several times of drawing processing were attempted, but the angle was 90. In the case of 5 ° or less, fine cracks were generated in the bottom container 2 at the point B in FIG. As a result, it was found that defective products would occur if the angle was set to 90 ° by drawing.
[0038]
【Effect of the invention】
According to the non-aqueous secondary battery of the present invention, the angle formed between the side plate portion and the bottom plate portion of the bottom container of the battery container is set to be more than 90 ° and less than 100 °. A battery effective internal volume close to the maximum battery effective internal volume possible by the thickness can be secured, and a sufficient battery capacity can be secured. Moreover, since it is not necessary to make the angle which a side plate part and a baseplate part make into 90 degrees, the processing method which manufacture cost becomes cheap can be employ | adopted.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
FIG. 3 is a cross-sectional view showing a state in which a top cover and a bottom container of the battery shown in FIG. 1 are separated.
4 is a plan view of a positive electrode, a negative electrode, and a separator that constitute the laminate shown in FIG. 2. FIG.
5A and 5B are a plan view and a side view of a conventional non-aqueous secondary battery for a power storage system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top lid 2 Bottom container 2a Side plate part 2b of bottom container Bottom plate part θ of bottom container 3 Angle formed by side plate part and bottom plate part of bottom container 3 Positive electrode external terminal 4 Negative electrode external terminal 5 Injection port 6 Sealing films 7, 8 Gasket 101a Positive electrode (Both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104 Separator 105a Positive electrode current collector 105b Negative electrode current collector 106a Positive electrode current collector piece 106b Negative electrode current collector piece

Claims (8)

正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池であって、
前記電池容器は、蓋とプレス加工により成形された底容器とを備え、前記電池容器の板厚は、0.2mm以上1mm以下であり、前記底容器の側板部と底板部のなす角度は、90.5°を超え95°未満になるように設定されていることを特徴とする非水系二次電池。
A non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh / l or more. A secondary battery,
The battery container includes a lid and a bottom container formed by pressing, and the plate thickness of the battery container is 0.2 mm or more and 1 mm or less, and the angle formed between the side plate portion and the bottom plate portion of the bottom container is: It is set so that it may exceed 90.5 degrees and may be less than 95 degrees, The non-aqueous secondary battery characterized by the above-mentioned.
前記電池容器は扁平直方体であり、該電容器の厚さは12mm未満であることを特徴とする請求項1に記載の非水系二次電池。The battery case is flat rectangular, nonaqueous secondary battery according to claim 1, wherein the thickness of the battery container is less than 12 mm. 前記電池容器内の圧力は大気圧未満にされることを特徴とする請求項1又は2に非水系二次電池。  3. The non-aqueous secondary battery according to claim 1, wherein the pressure in the battery container is less than atmospheric pressure. 少なくとも1回充電した後、前記電池容器内の圧力を大気圧未満にした状態で前記電池容器の蓋に設けられた電解液の注液口を封口するときの前記電池容器の圧力を、大気圧未満に設定したことを特徴とする請求項1から3のいずれかに非水系二次電池。  After charging at least once, the pressure of the battery container when sealing the electrolyte injection port provided on the lid of the battery container in a state where the pressure in the battery container is less than atmospheric pressure is the atmospheric pressure. The non-aqueous secondary battery according to any one of claims 1 to 3, wherein the non-aqueous secondary battery is set to be lower than the lower limit. 前記電池容器内の圧力は、650Torr以下であることを特徴とする請求項請求項1から4のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to any one of claims 1 to 4, wherein the pressure in the battery container is 650 Torr or less. 前記負極は、リチウムをドープ及び脱ドープ可能な物質を含むことを特徴とする請求項1から5のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to claim 1, wherein the negative electrode includes a material capable of doping and dedoping lithium. 前記正極は、マンガン酸化物を含むことを特徴とする請求項1から請求項6のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to claim 1, wherein the positive electrode contains a manganese oxide. 前記電池容器の表裏両面の形状は、矩形であることを特徴とする請求項1から7のいずれかに記載の非水系二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 7, wherein a shape of both front and back surfaces of the battery container is a rectangle.
JP2001093708A 2001-03-28 2001-03-28 Non-aqueous secondary battery Expired - Fee Related JP4859277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093708A JP4859277B2 (en) 2001-03-28 2001-03-28 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093708A JP4859277B2 (en) 2001-03-28 2001-03-28 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2002298794A JP2002298794A (en) 2002-10-11
JP4859277B2 true JP4859277B2 (en) 2012-01-25

Family

ID=18948011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093708A Expired - Fee Related JP4859277B2 (en) 2001-03-28 2001-03-28 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4859277B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638748B2 (en) * 2008-09-18 2014-12-10 日立マクセル株式会社 Flat battery
US20100068614A1 (en) 2008-09-18 2010-03-18 Koji Yamaguchi Flat battery
JP6109058B2 (en) * 2013-12-17 2017-04-05 新日鉄住金マテリアルズ株式会社 Seal case and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144352A (en) * 1996-11-08 1998-05-29 Sony Corp Non-aqueous electrolyte battery
JP3787942B2 (en) * 1997-03-21 2006-06-21 株式会社ジーエス・ユアサコーポレーション Method for producing non-aqueous electrolyte secondary battery
AU3850199A (en) * 1998-05-20 1999-12-06 Osaka Gas Co., Ltd. Nonaqueous secondary cell and method for controlling the same
JP4009802B2 (en) * 1999-02-26 2007-11-21 大阪瓦斯株式会社 Non-aqueous secondary battery and manufacturing method thereof
JP3997369B2 (en) * 1999-03-01 2007-10-24 大阪瓦斯株式会社 Manufacturing method of non-aqueous secondary battery
JP4119612B2 (en) * 1999-05-07 2008-07-16 松下電器産業株式会社 Square battery can and manufacturing method thereof
JP2001052658A (en) * 1999-08-04 2001-02-23 Sony Corp Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2002298794A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
JP3799463B2 (en) Battery module
JP4173674B2 (en) Electrochemical device module
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP4053802B2 (en) Electrochemical devices
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4092543B2 (en) Non-aqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4859277B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4594478B2 (en) Non-aqueous secondary battery
JP2004296325A (en) Nonaqueous secondary battery
JP4688305B2 (en) Non-aqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP2002245991A (en) Non-aqueous secondary battery
JP4168263B2 (en) Non-aqueous secondary battery
JP4594540B2 (en) Non-aqueous secondary battery charge / discharge method
JP2001266848A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees