JP4857747B2 - AC motor inverter device - Google Patents
AC motor inverter device Download PDFInfo
- Publication number
- JP4857747B2 JP4857747B2 JP2005353715A JP2005353715A JP4857747B2 JP 4857747 B2 JP4857747 B2 JP 4857747B2 JP 2005353715 A JP2005353715 A JP 2005353715A JP 2005353715 A JP2005353715 A JP 2005353715A JP 4857747 B2 JP4857747 B2 JP 4857747B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- motor
- current
- inverter
- power semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本発明は、交流電動機のインバータ装置に関する。 The present invention relates to an inverter device for an AC motor.
従来、交流電動機を制御する技術として、可変電圧可変周波数による速度制御が知られている。交流電動機をより高精度に制御するためには、交流電動機の電流情報や電圧情報が必要である。通常インバータ装置には、電流検出器が設けられ、電流情報は十分な精度で得られるが、電圧検出器が設けられていないインバータ装置では、電圧情報は十分な精度で得ることができない。
このため、一般には交流電動機に電力を供給するパワー半導体素子のオン電圧の値は、一定値として、あるいは、インバータ出力電流に対して直線で近似できるとして補償されたり、外乱オブザーバを用いて電圧誤差を外乱として求め補償されたりして、交流電動機の電圧情報を精度よく得ようとしている。図10に、従来装置で用いるパワー半導体素子のオン電圧降下特性図の例を示す。外乱オブザーバを用いて電圧誤差を外乱として求め補償する方法が知られている(例えば、特許文献1参照)。
また、インバータ装置においてはP側及びN側パワー素子を交互に導通させ出力電圧を制御するが、パワー半導体素子にターンオフ時間によるスイッチング遅れがあるため、P側及びN側が同時にオンしないように、両素子ともにオフする期間(いわゆるオンディレイ)を設ける必要がある。
このオンディレイによって出力電圧の歪みが生じ、従来、インバータ出力電流の極性に応じてオンディレイの影響による不足電圧を補償する方法が知られている(例えば、特許文献2参照)。
For this reason, in general, the value of the on-state voltage of the power semiconductor element that supplies power to the AC motor is compensated as a constant value or can be approximated by a straight line with respect to the inverter output current, or a voltage error using a disturbance observer As a disturbance, the voltage information of the AC motor is obtained with high accuracy. FIG. 10 shows an example of an on-voltage drop characteristic diagram of a power semiconductor element used in a conventional apparatus. A method for obtaining and compensating for a voltage error as a disturbance using a disturbance observer is known (see, for example, Patent Document 1).
In the inverter device, the P-side and N-side power elements are alternately conducted to control the output voltage. However, since the power semiconductor element has a switching delay due to the turn-off time, both P-side and N-side are not turned on at the same time. It is necessary to provide a period during which both elements are turned off (so-called on-delay).
A method of compensating for an insufficient voltage due to the influence of the on delay according to the polarity of the inverter output current is conventionally known (for example, see Patent Document 2).
ところが、パワー半導体素子のオン電圧降下特性の実際は、インバータ出力電流に対して非線形関数になっているため、一定値として補償したり、あるいは、図10に示すようなインバータ出力電流に対して直線近似した値で補償した場合は、種々の動作点で十分な精度でオン電圧降下量を補償することはできない。また、外乱オブザーバを用いる場合は、正確な交流電動機の電気特性が必要となり、電気特性が不明な場合には使用できない。
一方、オンディレイの補償に関しても、パワー素子、制御回路等のハードウエア個々の特性によりオンディレイ時間にバラツキがあるため十分な精度で補償を行う事は出来ず、正確な補償を行うためには、インバータ装置一台毎個別に補償量を調整する必要があった。
そこで、本発明は、交流電動機の電気特性を用いずに、パワー半導体素子のオン電圧降下特性を精度良く補償し、更に、適切なオンディレイ補償量を自動的に調整して、非常に精度よい電圧情報を得ることのできるインバータ装置を提供することを目的としている。
However, since the on-state voltage drop characteristic of the power semiconductor element is actually a non-linear function with respect to the inverter output current, it can be compensated as a constant value or linearly approximated with respect to the inverter output current as shown in FIG. When the compensation is performed with the above values, the on-voltage drop amount cannot be compensated with sufficient accuracy at various operating points. Moreover, when using a disturbance observer, accurate electrical characteristics of the AC motor are required, and cannot be used when the electrical characteristics are unknown.
On the other hand, on-delay compensation cannot be performed with sufficient accuracy due to variations in the on-delay time due to the characteristics of the hardware such as power elements and control circuits. Therefore, it was necessary to individually adjust the compensation amount for each inverter device.
Therefore, the present invention compensates for the on-voltage drop characteristics of the power semiconductor element with high accuracy without using the electrical characteristics of the AC motor, and further automatically adjusts the appropriate on-delay compensation amount to provide very high accuracy. It aims at providing the inverter apparatus which can obtain voltage information.
上記問題を解決するため、請求項1記載の発明は、交流電動機のインバータ装置に係り、直流電圧を交流に変換し、該交流を交流電動機へ供給するためのパワー半導体素子を備えたインバータと、該インバータの出力電圧の大きさと周波数を制御する制御部と、を備えた交流電動機のインバータ装置であって、前記制御部は、前記パワー半導体素子のオン電圧降下特性式を前記インバータの出力電流の対数関数として内蔵し、前記交流電動機を駆動した時の電圧指令値と、その際の電流検出値又は電流指令値と、前記オン電圧降下特性式を用いて、前記パワー半導体素子のオン電圧降下量を求めるオン電圧演算部と、前記パワー半導体素子のオン電圧降下量を前記電圧指令値に補償する加算部を、備えることを特徴とするものである。
また、請求項2記載の発明は、請求項1記載の交流電動機のインバータ装置において、前記制御部が、前記交流電動機を駆動した時の電圧指令値と、その際の電流検出値又は電流指令値と、前記交流電動機の抵抗値に基づき前記パワー半導体素子のスイッチング遅れによるオンディレイの補償量を演算するオンディレイ補償量演算部と、前記オンディレイの補償量を前記電圧指令値に補償する加算部を、さらに備えることを特徴としている。
また、請求項3記載の発明は、請求項2記載の交流電動機のインバータ装置において、前記制御部が、前記パワー半導体素子のスイッチング周波数を、第1のスイッチング周波数と第2のスイッチング周波数の少なくとも2つの異なる大きさのスイッチング周波数に設定可能なスイッチング周波数設定器をさらに備え、前記第1のスイッチング周波数で前記交流電動機を駆動し、その際の電流検出値又は電流指令値のいずれかと電圧指令値とを用いて、前記オン電圧降下特性式の係数を求め、前記第2のスイッチング周波数で前記交流電動機を駆動し、その際の電流検出値又は電流指令値のいずれかと電圧指令値と前記交流電動機の抵抗値に基づき前記オンディレイの補償量を求めることを特徴としている。
また、請求項4記載の発明は、請求項1記載の交流電動機のインバータ装置において、前記オン電圧降下特性式が自然対数または常用対数であることを特徴としている。
また、請求項5記載の発明は、請求項3記載の交流電動機のインバータ装置において、前記第1のスイッチング周波数が前記第2のスイッチング周波数より小さいことを特徴としている。
In order to solve the above problem, an invention according to
According to a second aspect of the present invention, in the inverter apparatus for an AC motor according to the first aspect, a voltage command value when the control unit drives the AC motor, and a current detection value or a current command value at that time An on-delay compensation amount calculation unit that calculates an on-delay compensation amount due to a switching delay of the power semiconductor element based on a resistance value of the AC motor, and an addition unit that compensates the on-delay compensation amount to the voltage command value Is further provided .
According to a third aspect of the present invention, in the inverter apparatus for an AC motor according to the second aspect, the control unit sets the switching frequency of the power semiconductor element to at least two of the first switching frequency and the second switching frequency. A switching frequency setter that can be set to two different switching frequencies, and driving the AC motor at the first switching frequency, wherein either the current detection value or the current command value and the voltage command value are Is used to determine the coefficient of the on-voltage drop characteristic equation, and the AC motor is driven at the second switching frequency. At that time, either the current detection value or the current command value, the voltage command value, and the AC motor The on-delay compensation amount is obtained based on the resistance value .
According to a fourth aspect of the present invention, in the inverter apparatus for an AC motor according to the first aspect, the on-voltage drop characteristic equation is a natural logarithm or a common logarithm .
According to a fifth aspect of the present invention, in the inverter apparatus for an AC motor according to the third aspect, the first switching frequency is smaller than the second switching frequency .
本発明によれば、交流電動機の電流検出値又は電流指令値の対数関数を用いて近似した特性式としてパワー半導体素子のオン電圧降下特性を内蔵し、パワー半導体素子のオン電圧降下量を精度良く演算して補正するので、非常に精度良い電圧情報を得ることができるようになり、交流電動機をより高精度に、特にトルクや速度にリップルの少ない制御が実現できるという効果がある。
また、電圧指令値と電流検出値又は電流指令値から、パワー半導体素子のオン電圧降下特性式の係数を求めることができるので、パワー半導体のカタログ特性を用いる必要が無くなり、さらに、オンディレイ補償値も調整することができるので、非常に良い電圧精度を得ることができるという効果もある。
According to the present invention, the on-state voltage drop characteristic of the power semiconductor element is built in as a characteristic equation approximated using a logarithmic function of the current detection value or current command value of the AC motor, and the on-state voltage drop amount of the power semiconductor element is accurately determined. Since it is calculated and corrected, it is possible to obtain voltage information with very high accuracy, and there is an effect that the AC motor can be controlled with higher accuracy, particularly with less ripple in torque and speed.
Moreover, since the coefficient of the on-voltage drop characteristic equation of the power semiconductor element can be obtained from the voltage command value and the current detection value or the current command value, it is not necessary to use the catalog characteristic of the power semiconductor, and the on-delay compensation value Therefore, it is possible to obtain a very good voltage accuracy.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の実施例1に係る交流電動機のインバータ装置の全体構成を示すブロック図である。
図2は図1に示すPWM制御部におけるEXPテーブルを示す図である。
図3は図1に示すパワー半導体素子のオン電圧降下量の特性近似例を示す図である。
図4は図1に示すパワー半導体素子のオン電圧降下特性図の例を示す図である。
先ず、最初に対象となる、内蔵する交流電動機の電流検出値又は電流指令値の対数関数で近似したパワー半導体素子のオン電圧降下特性について説明する。
FIG. 1 is a block diagram showing the overall configuration of an inverter device for an AC motor according to
FIG. 2 is a diagram showing an EXP table in the PWM control unit shown in FIG.
FIG. 3 is a diagram showing an example of characteristic approximation of the on-voltage drop amount of the power semiconductor element shown in FIG.
FIG. 4 is a diagram showing an example of an on-voltage drop characteristic diagram of the power semiconductor element shown in FIG.
First, an on-voltage drop characteristic of a power semiconductor element approximated by a logarithmic function of a current detection value or a current command value of a built-in AC motor will be described.
パワー半導体素子のオン電圧降下量特性(カタログ値)を図4に示す。図4のように、パワー半導体素子に流れる電流が非常に小さいところでは、オン電圧降下量は急激に変化する。
事前試験やカタログ記載の特性データに基づき、インバータ出力電流値Iに対する対数関数を用いて近似式を、例えば式(1)のように2次式で求める。なお、オン電圧降下特性は、パワー半導体素子の特性を示すものであるので、対数関数に用いるインバータ出力電流値Iはパワー半導体素子の定格電流基準の電流値[%]で示す。
FIG. 4 shows the on-voltage drop characteristic (catalog value) of the power semiconductor element. As shown in FIG. 4, when the current flowing through the power semiconductor element is very small, the on-voltage drop amount changes abruptly.
Based on the preliminary test and the characteristic data described in the catalog, an approximate expression is obtained by a quadratic expression such as Expression (1) using a logarithmic function for the inverter output current value I. Since the on-voltage drop characteristic indicates the characteristic of the power semiconductor element, the inverter output current value I used for the logarithmic function is indicated by the current value [%] based on the rated current of the power semiconductor element.
図3は、式(1)で近似したパワー半導体素子のオン電圧降下量の特性を横軸に図3(a)ではインバータ出力電流値I、図3(b)ではLN(I)にそれぞれ取って示したものである。比較のため図4に示したカタログ特性を点線で併せて示しているが、非常によく近似できていることがわかる。
次に、パワー半導体素子のオン電圧降下量特性を1次式で近似した例を式(2)に示す。
FIG. 3 shows the characteristics of the on-state voltage drop of the power semiconductor element approximated by equation (1) on the horizontal axis in FIG. 3 (a) as the inverter output current value I and in FIG. 3 (b) as LN (I). It is shown. For comparison, the catalog characteristics shown in FIG. 4 are also shown by dotted lines, and it can be seen that they can be approximated very well.
Next, an example in which the on-state voltage drop characteristic of the power semiconductor element is approximated by a linear expression is shown in Expression (2).
以上の原理的な解析に基づいて、実際の処理について図1を参照して説明する。
交流電動機を駆動するインバータ装置は、PWMインバータ1、交流電動機2、インバータ制御部10を有する。なお、速度検出器9が交流電動機2に連結されている。
PWMインバータ1には、コンバータ3、平滑コンデンサ4、逆変換回路5、電流検出器6A、6B、6C、PWM制御部7が、インバータ制御部10には、励磁電流制御部8A、トルク電流制御部8B、座標変換器11A,11B、加算器12A〜12D、速度制御器13、励磁電流設定器14、滑り周波数指令演算器15、積分器16、オン電圧特性演算部20A,20B、20Cが含まれている。
コンバータ3は、3相の交流電源(R,S,T)に接続されており、その出力を整流する。平滑コンデンサ4は、コンバータ3に接続されており、その出力を平滑する。逆変換回路5は、例えば、PWM制御部7の出力によりベース電流を制御されるパワー半導体素子により構成されている。これにより、平滑コンデンサ4の両端の直流電圧がPWM制御部7の出力により制御された3相の交流電圧に変換され、交流電動機2に供給される。電流検出器6AはU相の電流Iuを、電流検出器6BはV相の電流Ivを、電流検出器6CはW相の電流Iwをそれぞれ検出する。
Based on the above principle analysis, actual processing will be described with reference to FIG.
The inverter device that drives the AC motor includes a
The
The
電流検出器6A,6B、6Cで検出された各相の検出電流Iu,Iv,Iwは座標変換器11Aに供給される。座標変換器11Aは、3相の検出電流Iu,Iv,Iwを座標系(a−b軸)上のIa、Ibに変換し、更に回転座標系における励磁電流フィードバック信号Idとトルク電流フィードバック信号Iqに変換し、それぞれ、励磁電流制御部8A、トルク電流制御部8Bへ送る。
励磁電流設定器14は、所定の励磁電流値が設定されており、その設定値を励磁電流指令信号Id*として励磁電流制御部8Aに、インバータ制御部10の外部から入力された速度指令値ωr*と交流電動機2に連結した速度検出器9からの速度情報により求められた速度検出値ωrは速度制御器13に送られ、速度制御器13は、ωr*とωrが一致するようにトルク電流指令信号Iq*を求めトルク電流制御部8Bに送られる。
The detected currents Iu, Iv, Iw of each phase detected by the
The excitation
励磁電流制御部8A、トルク電流制御部8Bは、Id*とId、Iq*とIqが一致するように、電圧指令信号Vd*、Vq*を求め、座標変換器11Bは、電圧指令信号Vd*、Vq*を位相θで(a−b軸)上のVaref、Vbrefに変換し、更に交流電動機2の固定座標系における3相交流出力電圧指令信号Vu*、Vv*、Vw*に変換し、加算器12A、12B、12Cにそれぞれ送る。加算器12A、12B、12Cは、3相交流出力電圧指令信号Vu*、Vv*、Vw*と後述するオン電圧特性演算部20A、20B、20Cの出力値であるVonu、Vonv、Vonwとそれぞれ加算し、改めて3相交流出力電圧指令信号Vu*、Vv*、Vw*として修正し、PWM制御部7に送る。なお、図示していないが電流検出器6A,6B、6Cで検出された各相の検出電流Iu,Iv,Iwの極性に基づき、パワー半導体素子の同時点弧による短絡防止のために設けられたオンディレイの電圧補償も3相交流出力電圧指令信号Vu*、Vv*、Vw*に加えられる。
The excitation
滑り周波数指令演算器15は、励磁電流指令Id*、トルク電流指令Iq*と2次抵抗R2(図示せず)から滑り周波数指令ωs*を求める。加算器12Dは、速度検出器9からの速度情報により求められた速度検出値ωrと滑り周波数指令ωs*を加算して、1次周波数指令信号ω1*を求める。積分器16は、1次周波数指令信号ω1*を積分し位相θを求め、座標変換器11A、11Bに送る。
PWM制御部7は、これら3相交流出力電圧指令Vu*、Vv*、Vw*をスイッチング周波数fcの搬送波信号と比較してパルス幅変調信号に変換する。このパルス幅変調信号はパルス増幅器(図示せず)を介して点弧信号となり、トランジスタのベース電流として逆変換回路5をスイッチング制御する。これにより、平滑コンデンサ4の両端の直流電圧が3相の交流電圧に変換される。
なお、図1から判るように、前述の「交流電動機の電流検出値」は「インバータ出力電流値」と同じ値である。
The slip
The
As can be seen from FIG. 1, the “current detection value of the AC motor” described above is the same value as the “inverter output current value”.
次にオン電圧特性演算部20の動作について説明する。
オン電圧特性演算部20Aでは、U相の電流Iuが入力されると、各相毎にパワー半導体素子定格電流基準で何[%]であるかを演算し、上記式(1)、あるいは式(2)、(3)に基づいて各相毎のオン電圧降下量Vonuを求める。オン電圧特性演算部20B、20Cについても、V相の電流Iv、W相の電流Iwが入力されると、それぞれ、20Aと同様に、V相、W相毎にパワー半導体素子定格電流基準で何[%]であるかを演算し、上記式(1)、あるいは(2)、(3)に基づいて各相毎のオン電圧降下量Vonv、Vonwを求める。
以上のようにして、本発明の実施例1は実施される。
Next, the operation of the on-voltage
When the U-phase current Iu is input, the on-voltage
As described above, the first embodiment of the present invention is implemented.
上記説明では自然対数LNでの説明としたが、常用対数LOGを用いても、上記式(1)、あるいは(2)、(3)式での係数を適当に選ぶことで、同様に実現できる。
また、オン電圧降下量特性演算の際に用いるLN関数は、使用するCPUに準備されていない場合は、図2に示すEXPテーブルを記憶しておき、この間を直線近似することでLN関数を演算することができる。
LN関数の計算方法を、インバータ出力電流値Iがパワー半導体素子の定格の8.5%電流を例にして説明する。8.5は、図2より7.39と9.03の間であるので、この2点を用いて式(4)にしたがい直線近似し、2.1354を求める。なお、電卓で計算したLN(8.5)は、2.140である。
In the above description, the natural logarithm LN has been described. However, even if the common logarithm LOG is used, it can be similarly realized by appropriately selecting the coefficient in the above formula (1), (2), or (3). .
Further, when the CPU to be used is not prepared for the LN function used for calculating the on-voltage drop characteristic, the EXP table shown in FIG. 2 is stored, and the LN function is calculated by linearly approximating the EXP table. can do.
A method for calculating the LN function will be described by taking an example in which the inverter output current value I is 8.5% of the rated power semiconductor element current. Since 8.5 is between 7.39 and 9.03 from FIG. 2, a straight line approximation is performed using these two points in accordance with Equation (4) to obtain 2.1354. The LN (8.5) calculated by the calculator is 2.140.
以上のようにして、本発明は実施でき、パワー半導体素子のオン電圧降下特性を精度よく補償し、非常に精度よい電圧情報を得ることのできるインバータ装置を得ることができる。
As described above, the present invention can be implemented, and an inverter device that can accurately compensate the on-voltage drop characteristic of the power semiconductor element and obtain very accurate voltage information can be obtained.
上記説明では、インバータ制御部の例として誘導電動機を用いて説明したが、同期電動機を用いても本発明は同様に実施できる。また、速度検出器を持たない速度センサレスベクトル制御や、V/f一定制御方式にも、全く同様に適用できることは言うまでもない。 In the above description, the induction motor is used as an example of the inverter control unit. However, the present invention can be similarly implemented using a synchronous motor. Needless to say, the present invention can also be applied to speed sensorless vector control without a speed detector and a constant V / f control method.
次に、本発明の実施例2を図に基づいて説明する。
図5は本発明の実施例2に係る交流電動機のインバータ装置のブロック図である。
図6は図5に示すインバータ装置のチューニング選択部のブロック図である。
図7は図5に示すインバータ装置のオン電圧およびオンディレイ補償関数演算部のブロック図である。
図8は図6に示すチューニング選択部でオン電圧補償処理を選択した際のフローチャートである。
図9は図6に示すチューニング選択部でオンディレイ補償処理を選択した際のフローチャートである。
なお、図5において、図1中の構成要素と同一の構成要素には同一の符号を付け、重複説明は省略し、図1とは異なる構成について説明する。
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a block diagram of an inverter device for an AC motor according to
6 is a block diagram of a tuning selection unit of the inverter device shown in FIG.
FIG. 7 is a block diagram of an on-voltage and on-delay compensation function calculation unit of the inverter device shown in FIG.
FIG. 8 is a flowchart when the on-voltage compensation process is selected by the tuning selection unit shown in FIG.
FIG. 9 is a flowchart when the on-delay compensation process is selected by the tuning selection unit shown in FIG.
In FIG. 5, the same components as those in FIG. 1 are denoted by the same reference numerals, overlapping description will be omitted, and a configuration different from that in FIG. 1 will be described.
図5の構成は図1の構成に、逆変換回路5へのスイッチング周波数fcを設定するスイッチング周波数設定器27と、オン電圧特性演算部20に新たにオンディレイ補償量演算部24を加えた補償関数演算部28と、チューニングの際に切替信号CSWとスイッチング周波数設定信号Setを出力してオン電圧補償量とオンディレイ補償量のチューニング切替えを行うチューニング選択部29と、チューニング選択部29からの切替信号CSWにより回路を切替えるスイッチ回路21A〜21Gと、が新たに加えられた構成である。
The configuration of FIG. 5 is the same as the configuration of FIG. 1 except that a switching
更に、チューニング選択部29の詳細は、図6を参照すると、スイッチ回路26A〜Bを切り替える事により、オン電圧補償関数のチューニング処理部22とオンディレイ補償量のチューニング処理部23のどちらが働くかを選択され、オン電圧補償関数の係数チューニング処理部22とオンディレイ補償量のチューニング処理部23はそれぞれスイッチ回路21A〜Gの切り替え信号CSWの出力、励磁電流指令Id*と位相θと逆変換回路5を構成するパワー素子のスイッチング周波数fcの設定(Set)を行う。
また、チューニング時には、図5に示すスイッチ回路21Aによりトルク電流指令値Iq*は0に、スイッチ回路21B,21C,21Dにより励磁電流指令値Id*、位相θ、スイッチング周波数fcはそれぞれチューニング処理部22と23からの指示値に変更される。
Further, for details of the
In tuning, the torque current command value Iq * is set to 0 by the
また、補償関数演算部28の詳細は、図7を参照すると、オンディレイ補償回路24A〜24Cと、加算器25A〜25Cが付加されて、切替え信号CSWによりスイッチ21E〜21Gで加算器25の端子a、b、cが切替えられ補償出力が切替わる。
For details of the compensation
次に、本実施例のチューニング選択部29で、チューニング処理部22が選択された際の動作について図8のフローチャートを用いて説明する。
スイッチ回路21Bはb側にして、チューニングの際に流す直流電流の大きさIdが、相基準で逆変換器5を構成するパワー半導体素子の定格電流の0.5%値になるようにIdと積分器6出力である位相θをθ1に設定する。具体的には、Id=k×0.5%(k=√3/2)であり、θ1は1相分の電流が0で他の2相分電流の絶対値が等しくなる位相とする(ブロック22a)。
次に、図7に示したスイッチ回路21E、21F、21Gはb側にして、各相のオン電圧補償量が電圧指令に加算されないようにして、オンディレイ補償量が電圧指令に加算されるようにする。スイッチ回路21Dはb側にして、オンディレイの影響による電圧誤差が少なくなるようになるべく低い周波数にfcを設定する。(ブロック22b)。
Next, the operation when the
The switch circuit 21B is set to the b side, and Id and the integrator so that the magnitude Id of the direct current flowing during tuning is 0.5% of the rated current of the power semiconductor element constituting the
Next, the
次に、スイッチ回路21Cはb側にして、位相θを固定値θ1に設定してインバータを駆動し、このときの一次電流値I1,一次電圧指令値V1*を、
さらに、Id=k×5%、k×30%を設定した場合についても、上記ブロック(22b〜22c)の処理を実行し、その時の一次電流値I2、I3と一次電圧指令値Vref2、Vref3を記憶する。
Next, the
Further, even when Id = k × 5% and k × 30% are set, the processing of the blocks (22b to 22c) is executed, and the primary current values I2, I3 and the primary voltage command values Vref2, Vref3 at that time are obtained. Remember.
次に測定した一次電流値I1、I2、I3と一次電圧指令値Vref1(式5のV1)、Vref2、Vref3から下記の式(6)、(7)に基づいて、オン電圧特性式、式(2)の係数a1,b1,a2,b2,Von0を求める。
次に、選択部29のチューニング処理部23の動作について図9のフローチャートを用いて説明する。
スイッチ回路21Bはc側にして、チューニングの際に流す直流電流の大きさをPWMインバータ1と交流電動機2の定格電流を基にIdと決める。(ブロック23a)。
次に、図7に示すスイッチ回路21E、21F、21Gはc側にして各相のオン電圧補償量が電圧指令に加算されるようにし、オンディレイ補償量は電圧指令に加算されないようにする。スイッチ回路21Dはc側にして、オンディレイの影響による電圧誤差が大きくでるように、なるべく高い周波数にfcを設定する。なお、このときにオン電圧補償関数の係数は、オン電圧関数の係数チューニング処理部22により求めたものを用いてもよい。(ブロック23b)。
次に、スイッチ回路21Cはc側にし、位相θを固定値θ1に設定してインバータを駆動し、このときの一次電流値I4と一次電圧指令値Vref4を記憶する。(ブロック23c)。
Next, the operation of the
The switch circuit 21B is set to the c side, and the magnitude of the direct current that flows during tuning is determined as Id based on the rated currents of the
Next, the
Next, the
次に、記憶した一次電流値I4と一次電圧指令値Vref4と交流電動機2の電機子抵抗R1から、下記の式(8)に基づいてオンディレイの影響による電圧誤差分Eを求める。
パワー素子などの電気的特性がカタログ記載通りであれば、オンディレイ補償量tdはオンディレイ時間と等しくなり、カタログ値からずれた分、両者は異なる値となる。そこで、求められたtdを用いてオンディレイ補償することでパワー素子などの電気的特性のバラツキを考慮した、より正確なオンディレイ補償を行う事が出来る。(ブロック23d)。
このように、オン電圧とオンディレイの補償が精度良く実施できる。
以上、パワー半導体素子のオン電圧降下特性を求める電流情報を交流電動機の電流検出値を用いるように説明したが、電流制御等のように電流指令値と電流検出値が一致するように制御されていれば、電流検出値の替わりに電流指令値を用いて全く同様に実現できることは言うまでもない。
Next, from the stored primary current value I4, primary voltage command value Vref4, and armature resistance R1 of the
If the electrical characteristics of the power element and the like are as described in the catalog, the on-delay compensation amount td is equal to the on-delay time, and the two values differ from each other by a deviation from the catalog value. Therefore, by performing on-delay compensation using the obtained td, more accurate on-delay compensation can be performed in consideration of variations in electrical characteristics of the power element and the like. (
Thus, the ON voltage and the ON delay can be compensated with high accuracy.
As described above, the current information for obtaining the on-voltage drop characteristic of the power semiconductor element has been described so as to use the current detection value of the AC motor. However, the current command value and the current detection value are controlled to match each other as in current control or the like. Needless to say, the current command value can be used in place of the current detection value to achieve the same effect.
以上のように、チューニングによってパワー半導体素子のオン電圧降下特性、オンディレイ補正を精度良く補償できるので、誘導電動機および、同期電動機等のインバータ装置に用いて好適である。 As described above, since the on-voltage drop characteristic and the on-delay correction of the power semiconductor element can be accurately compensated by tuning, it is suitable for use in inverter devices such as induction motors and synchronous motors.
1 PWMインバータ
2 交流電動機
3 コンバータ
4 平滑コンデンサ
5 逆変換回路
6 電流検出器
7 PWM制御部
8A 励磁電流制御部
8B トルク電流制御部
9 速度検出器
10 インバータ制御部
11 座標変換器
12 加算器
13 速度制御器
14 励磁電流設定器
15 滑り周波数指令演算器
16 積分器
20 オン電圧演算部
21 スイッチ回路
22 オン電圧補償チューニング部
23 オンディレイ補償チューニング部
24 オンディレイ補償回路
25 加算回路
26 スイッチ回路
27 スイッチング周波数設定器
28 オン電圧及びオンディレイ補償関数演算器
29 チューニング選択部
DESCRIPTION OF
Claims (5)
前記制御部は、前記パワー半導体素子のオン電圧降下特性式を前記インバータの出力電流の対数関数として内蔵し、前記交流電動機を駆動した時の電圧指令値と、その際の電流検出値又は電流指令値と、前記オン電圧降下特性式を用いて、前記パワー半導体素子のオン電圧降下量を求めるオン電圧演算部と、
前記パワー半導体素子のオン電圧降下量を前記電圧指令値に補償する加算部を、備えることを特徴とする交流電動機のインバータ装置。 An inverter for an AC motor comprising: an inverter provided with a power semiconductor element for converting a DC voltage into an AC and supplying the AC to an AC motor ; and a control unit for controlling the magnitude and frequency of the output voltage of the inverter. A device ,
The control unit incorporates an on-voltage drop characteristic formula of the power semiconductor element as a logarithmic function of the output current of the inverter, a voltage command value when the AC motor is driven, a current detection value or a current command at that time An on-voltage calculator that calculates the on-voltage drop amount of the power semiconductor element using the value and the on-voltage drop characteristic equation;
An inverter device for an AC motor , comprising: an adder that compensates an on-voltage drop amount of the power semiconductor element with the voltage command value .
前記オンディレイの補償量を前記電圧指令値に補償する加算部を、
さらに備えることを特徴とする請求項1に記載の交流電動機のインバータ装置。 The control unit compensates for an on-delay caused by a switching delay of the power semiconductor element based on a voltage command value when the AC motor is driven, a current detection value or a current command value at that time, and a resistance value of the AC motor. An on-delay compensation amount calculation unit for calculating the amount;
An adder for compensating the on-delay compensation amount to the voltage command value;
The inverter device for an AC motor according to claim 1, further comprising:
前記第1のスイッチング周波数で前記交流電動機を駆動し、その際の電流検出値又は電流指令値のいずれかと電圧指令値とを用いて、前記オン電圧降下特性式の係数を求め、
前記第2のスイッチング周波数で前記交流電動機を駆動し、その際の電流検出値又は電流指令値のいずれかと電圧指令値と前記交流電動機の抵抗値に基づき前記オンディレイの補償量を求めることを特徴とする請求項2に記載の交流電動機のインバータ装置。 The control unit further includes a switching frequency setting unit capable of setting the switching frequency of the power semiconductor element to at least two different switching frequencies of a first switching frequency and a second switching frequency,
Driving the AC motor at the first switching frequency, using either the current detection value or the current command value and the voltage command value at that time, obtain the coefficient of the on-voltage drop characteristic equation,
The AC motor is driven at the second switching frequency, and the on-delay compensation amount is obtained based on either the current detection value or the current command value, the voltage command value, and the resistance value of the AC motor. The inverter device for an AC motor according to claim 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005353715A JP4857747B2 (en) | 2005-12-07 | 2005-12-07 | AC motor inverter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005353715A JP4857747B2 (en) | 2005-12-07 | 2005-12-07 | AC motor inverter device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007159317A JP2007159317A (en) | 2007-06-21 |
JP4857747B2 true JP4857747B2 (en) | 2012-01-18 |
Family
ID=38242951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005353715A Expired - Fee Related JP4857747B2 (en) | 2005-12-07 | 2005-12-07 | AC motor inverter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4857747B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4744505B2 (en) * | 2007-12-19 | 2011-08-10 | 三菱電機株式会社 | Motor drive control device, motor drive control method and coordinate conversion method, ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner, and refrigerator |
WO2013171866A1 (en) * | 2012-05-16 | 2013-11-21 | 三菱電機株式会社 | Ac motor control device and on voltage correction method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3978694B2 (en) * | 1998-02-18 | 2007-09-19 | 株式会社安川電機 | Electric motor control device |
JP4242569B2 (en) * | 2001-01-05 | 2009-03-25 | 三星電子株式会社 | Motor dead time compensator and dead time compensation method |
JP4803413B2 (en) * | 2001-09-06 | 2011-10-26 | 株式会社安川電機 | AC motor inverter device |
JP3771239B2 (en) * | 2004-01-19 | 2006-04-26 | 三菱電機株式会社 | Induction motor controller |
-
2005
- 2005-12-07 JP JP2005353715A patent/JP4857747B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007159317A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4749874B2 (en) | Power conversion device and motor drive device using the same | |
US9294019B2 (en) | Method and apparatus for controlling power converter with inverter output filter | |
US8878477B2 (en) | Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit | |
JP6369423B2 (en) | Power conversion device, control device, and control method | |
US20140197774A1 (en) | Method and apparatus for controlling power converter with inverter output filter | |
US20110074324A1 (en) | Control Device for Synchronous Motor | |
JP4650518B2 (en) | Motor control device | |
EP3070836B1 (en) | Methods of auto tuning machine parameters and systems thereof | |
JP4529113B2 (en) | Voltage source inverter and control method thereof | |
US9641120B2 (en) | Motor control apparatus and method for controlling motor | |
JP4760118B2 (en) | Electric motor control device | |
US20150115865A1 (en) | Motor control apparatus and method for controlling motor | |
RU2664591C1 (en) | Method of electric power control and electric power control device | |
JP6080996B1 (en) | Electric motor drive system | |
EP2618480A2 (en) | Motor control device and air conditioner | |
US9800189B2 (en) | Apparatus for controlling inverter | |
JP2020048249A (en) | Steering device | |
JP4857747B2 (en) | AC motor inverter device | |
JP2017205017A (en) | Motor control device of air conditioner, and air conditioner | |
WO2014167719A1 (en) | Power convertor, motor driver equipped with power convertor, blower and compressor equipped with motor driver, and air conditioner, refrigerator, and freezer equipped with blower and compressor | |
EP3474438A1 (en) | Motor control device and control method | |
JP6340840B2 (en) | Motor control device | |
JP2006033937A (en) | Controller of ac motor | |
JP4682521B2 (en) | Variable speed control device for induction motor | |
JP7376765B2 (en) | Synchronous motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |