[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4857472B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4857472B2
JP4857472B2 JP2001035935A JP2001035935A JP4857472B2 JP 4857472 B2 JP4857472 B2 JP 4857472B2 JP 2001035935 A JP2001035935 A JP 2001035935A JP 2001035935 A JP2001035935 A JP 2001035935A JP 4857472 B2 JP4857472 B2 JP 4857472B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
path
hydrogen
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001035935A
Other languages
Japanese (ja)
Other versions
JP2002246054A (en
Inventor
朋範 今村
博邦 佐々木
晴彦 加藤
邦夫 岡本
直人 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001035935A priority Critical patent/JP4857472B2/en
Publication of JP2002246054A publication Critical patent/JP2002246054A/en
Application granted granted Critical
Publication of JP4857472B2 publication Critical patent/JP4857472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素と酸素との化学反応により電気エネルギーを発生させる燃料電池からなる燃料電池システムに関するもので、車両、船舶及びポータブル発電器等の移動体に適用して有効である。
【0002】
【従来の技術】
従来より、水素と酸素(空気)との電気化学反応を利用して発電を行う燃料電池を備えた燃料電池システムが知られている。例えば車両用等の駆動源として考えられている高分子電解質型燃料電池では、0℃以下の低温状態では、電極近傍に存在している水分が凍結して反応ガスの拡散を阻害したり、電解質膜の電気伝導率が低下するという問題がある。
【0003】
このような低温環境下で燃料電池を起動する際、凍結による反応ガス経路の目詰まりあるいは電解質膜への反応ガス(水素および空気)の進行・到達の阻害により、燃料ガスを供給しても電気化学反応が進行せず、燃料電池を起動できないという問題がある。さらに、反応ガス経路内で結露した水分の凍結によるガス経路の閉塞も生ずる。
【0004】
燃料電池内部での凍結を防止して低温起動性を向上させるためには、低温環境下に凍結する水分を予め燃料電池内部から除去しておくことが望まれる。このために、燃料電池内に空気を供給することで、空気流によって燃料電池内の水分を除去することが考えられる。
【0005】
【発明が解決しようとする課題】
ところが、空気流によって燃料電池内の水分を除去する場合には、水分蒸発の際に蒸発潜熱によって熱が奪われ、燃料電池内部の温度が低下してしまうこととなる。これにより、水分の蒸発量が低下して燃料電池内の水分除去に時間がかかるという問題がある。
【0006】
本発明は、上記問題点に鑑み、低温環境下で使用される燃料電池システムにおいて、運転停止の際、短時間で燃料電池内部の水分を除去できることが可能な燃料電池システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、水素と酸素とを電気化学反応させて電力を得る燃料電池(10)を備える燃料電池システムであって、燃料電池(10)に供給される酸素が通過する空気経路(20)と、燃料電池(10)に供給される水素が通過する水素経路(30)と、燃料電池(10)を加熱する加熱手段(44)と、燃料電池(10)の温度を検出する温度センサ(12)と、燃料電池(10)の水素極および酸素極の水分量を検出する水分センサ(24、34)と、空気経路(20)および水素経路(30)へのガス供給制御および加熱手段(44)による加熱制御を行う制御手段(50)とを備え、制御手段(50)は、燃料電池(10)の通常運転停止後、空気経路(20)および水素経路(30)に所定の乾燥ガスを供給し、水分センサによって検出した水分量が所定量より少なく凍結範囲を下回っているか否かを判定し、凍結範囲を超えていると判定された場合には、温度センサ(12)により検出した温度に基づいて加熱手段(44)によ燃料電池(10)加熱温度を制御することを特徴としている。
【0008】
このようにガス供給と同時に燃料電池(10)を加熱することで、水分除去運転時において、水分蒸発に伴い燃料電池温度が低下してしまうことを防止できる。これにより、燃料電池(10)内部の残留水分の蒸発を促進することができ、短時間で燃料電池(10)内部の水分除去を行い、燃料電池の凍結を回避して低温下での燃料電池(10)の起動性を向上させることができる。
また、温度センサ(12)により検出した温度に基づいて加熱手段(44)による燃料電池(10)の加熱温度を制御することで、燃料電池温度を燃料電池(10)の電解質膜等を破壊しない範囲で効率よく残留水を蒸発させることができる温度に保つことができる。
【0009】
また、請求項2に記載の発明では、乾燥ガスは空気であることを特徴としている。このように空気を用いることで、特別なガス供給装置を設けることなく水分除去を行うことができる。また、乾燥した空気は、通常運転時に行っている空気に対する加湿を行わないことにより提供することができる。
【0010】
また、請求項3に記載の発明では、燃料電池(10)に冷却水を循環させる冷却水経路(40)と、冷却水経路(40)に設けられ、燃料電池(10)の通常運転時に冷却水を冷却する冷却部(42、43)とを備え、加熱手段は、冷却水経路(40)において冷却部(42、43)と並列的あるいは直列的に設けられ、冷却水を加熱するように構成されており制御手段(50)によって、冷却水の流路は冷却部(42、43)側あるいは加熱手段(44)側に切り替え可能に構成されており、制御手段(50)は、燃料電池(10)の通常運転終了後、燃料電池(10)を加熱する際に、冷却水の流路を加熱手段(44)側に切り替えることを特徴としている。
【0011】
このような構成により、既存の燃料電池冷却システムを利用し、これに冷却水の加熱部(44)を追加するだけの簡易な構成で燃料電池(10)を加熱することができる。
【0013】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図1、図2に基づいて説明する。本実施形態は、燃料電池システムを燃料電池を電源として走行する電気自動車(燃料電池車両)に適用したものである。
【0015】
図1は、本実施形態の燃料電池システムの全体構成を示している。図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池(FCスタック)10を備えている。FCスタック10は、車両走行用の電動モータ(負荷)11や図示しない2次電池等の電気機器に電力を供給するように構成されている。
【0016】
FCスタック10では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。
(負極側)H2→2H++2e-
(正極側)2H++1/2O2 +2e-→H2
本実施形態ではFCスタック10として固体高分子電解質型燃料電池を用いており、基本単位となるセルが複数積層されて構成されている。各セルは、電解質膜が一対の電極で挟まれた構成となっている。また、FCスタック10には、FCスタック本体の温度を検出するための温度センサ12が設けられている。
【0017】
燃料電池システムには、FCスタック10の酸素極(正極)10a側に空気(酸素)を供給するための空気経路20と、FCスタック10の水素極(負極)10b側に水素を供給するための水素経路30が設けられている。空気経路20には空気供給用の空気圧送用の送風機(ガス圧縮機)21が設けられている。水素経路30には水素供給装置31より水素が供給される。
【0018】
発電時における電気化学反応のために、FCスタック10内の電解質膜を水分を含んだ湿潤状態にしておく必要がある。このため、通常運転時には、図示しない加湿装置により空気経路20の空気および水素経路30の水素に加湿が行われ、FCスタック10には加湿された空気および水素が供給される。これにより、FCスタック10内部は湿潤状態で作動することとなる。また、酸素極10a側では上記電気化学反応により水分が生成する。
【0019】
また、後述の水分除去運転時には、FCスタック10には、加湿されない乾燥空気と加湿されない乾燥水素が供給される。これらの乾燥ガスは、FCスタック10内に残留する水分を除去するために、できるだけ低湿度であることが望ましく、少なくともFCスタック10内の湿度より低湿度である必要がある。
【0020】
空気経路20における両端部には、空気経路20を遮断するためのシャットバルブ22、23が設けられている。これらのシャットバルブ22、23を閉じることで、FCスタック10内部および空気経路20内部を外気から遮断することができる。水素経路30の両端部にも、同様のシャットバルブ32、33が設けられている。
【0021】
また、空気経路20と水素経路30は、FCスタック10の上流側において接続されている。水素経路30における接続部には、水素経路切替弁35が設けられている。水素経路切替弁35を切り替えることにより、通常運転時には水素経路30に水素供給装置31からの水素を流し、水分除去運転時には水素経路30に空気経路20からの空気を流すことができる。
【0022】
FCスタック10には、FCスタック10内部の酸素極10aおよび水素極10bに存在する残留水分を検出するための水分センサ24、34が設けられている。本実施形態では、水分センサ24、34として湿度センサを用いている。湿度センサ24、34は、FCスタック10内部の湿度を適切に検出するために、酸素極10aおよび水素極10bにおけるFCスタック10出口付近に設けることが望ましい。
【0023】
FCスタック10は発電に伴い発熱を生じる。このため、燃料電池システムには、FCスタック10を冷却して作動温度が電気化学反応に適温(80℃程度)となるよう冷却システム40〜45が設けられている。
【0024】
冷却システムには、FCスタック10に冷却水(熱媒体)を循環させる冷却水経路40、冷却水を循環させるウォータポンプ41、ファン43を備えたラジエータ42が設けられている。ラジエータ42およびファン43で冷却部を構成している。
【0025】
FCスタック10で発生した熱は、冷却水を介してラジエータ42で系外に排出される。このような冷却系によって、ウォータポンプ41による流量制御、ラジエータ42およびファン43による風量制御でFCスタック10の冷却量制御を行うことができる。
【0026】
また、本実施形態の冷却システムには、冷却水を加熱するための加熱部(加熱手段)44がラジエータ43と並列的に設けられている。加熱部43としては、例えば電気式ヒータ、燃焼式ヒータ、触媒ヒータ等を用いることができる。このような構成により、加熱部44による冷却水の加熱量制御、ウォータポンプ41による流量制御によって、FCスタック10の加熱量制御を行うことができる。
【0027】
冷却水の流路は、冷却水切替弁45によってラジエータ43側と加熱部44側に切り替えられる。FCスタック10の通常運転時には、冷却水切替弁45はラジエータ43側に切り替えられ、FCスタック10は冷却される。一方、本実施形態におけるFCスタック10の水分除去運転時には、冷却水切替弁45は加熱部44側に切り替えられ、FCスタック10は加熱される。
【0028】
本実施形態の燃料電池システムには各種制御を行う制御部(ECU)50が設けられている。制御部50には、負荷11からの要求電力信号、温度センサ12からの温度信号、水分センサ24、34からの残留水分量信号等が入力される。また、制御部50は、2次電池、送風機21、ウォータポンプ41、ラジエータファン43、加熱部44、冷却水切替弁45等に制御信号を出力するように構成されている。
【0029】
次に、上記構成の燃料電池システムにおける水分除去制御を図2に基づいて説明する。図2は燃料電池システムの水分除去制御を示すフローチャートである。
【0030】
まず、通常運転停止後にFCスタック10内の水分除去(水分パージ)が必要か否かを判定する(ステップS10)。水分除去を行うか否かの判定は、運転停止時の環境温度(外気温)や季節情報等を考慮して行う。すなわち、環境温度が0℃以下であるか、あるいは冬季等であり気温の低下が予測されるいった条件に基づいて水分除去運転の必要性についての判定を行う。当然のことながら、夏場などの条件では凍結のおそれがないため、水分運転は必要とならない。
【0031】
また、FCスタック10の運転停止時に、運転者によるFCスタック10停止時間の予想時間を入力するように構成してもよい。これは、FCスタック10の停止時に環境温度が氷結点以下であったとしても、FCスタック10の予熱が十分あるため、瞬時にFCスタック10が氷結点以下とはならず、しばらくは高温が維持されるためである。従って、10時間程度(一昼夜)の停止時間内であれば、運転停止時の残留水除去を行う必要がない。
【0032】
上記ステップS10で水分除去運転が必要と判定された場合には、冷却水切替弁45を加熱部44側に切り替える(ステップS11)。これにより、冷却水が加熱部44により加熱されることとなる。なお、FCスタック10は既に発電を停止しているので、冷却水切替弁45等は2次電池からの電力供給により作動する。
【0033】
次に、水素経路切替弁35を空気経路20側に切り替え(ステップS12)、送風機21による送風制御を行う(ステップS13)。これにより、空気経路20および水素経路30に空気が供給される。このとき空気に加湿は行われず、FCスタック10の酸素極10aおよび水素極10bには乾燥空気が供給される。これにより、FCスタック10内に液滴として存在している水分は、空気流によってFCスタック10外に吹き飛ばされる。
【0034】
次に、水分センサ24、34にてFCスタック10内の残留水分量を検出し(ステップS14)、残留水分量が所定量より少なく凍結範囲を下回っているか否かを判定する(ステップS15)。
【0035】
FCスタック10内の残留水分量が凍結範囲を下回っている場合には、空気経路20および水素経路30の両端部に設けられたシャットバルブ22、23、32、33を閉じる(ステップS16)。これにより、FCスタック10内部、空気経路20内部、水素経路30内部が外気から遮断され、外部環境からの水分侵入を防ぐことができる。
【0036】
この結果、FCスタック10内の残留水分量が凍結範囲を超えている場合には、以下のステップS17〜S21のFCスタック温度制御を行い、FCスタック10を加熱して残留水分を蒸発除去する。
【0037】
まず、温度センサ12によりFCスタック10本体の温度Tを検出し(ステップS17)、FCスタック温度Tが目標温度Trを上回っているか否かを判定する(ステップS18)。目標温度Trは、FCスタック10内の水分を蒸発させるためにできるだけ高い方が好ましい。しかしながら、目標温度Trをあまり高温に設定すると加熱部44の体格増大を招くとともに、FCスタック10内部の電解質膜が破壊される。従ってこれらの不具合を防止するために、目標温度Trは80〜100℃に設定される。
【0038】
FCスタック温度Tが目標温度Trを上回っている場合には、加熱部44による冷却水加熱量をゼロに設定し(ステップS19)、FCスタック温度Tが目標温度を下回っている場合には、加熱部44による冷却水加熱量をK(Tr−T)[K:比例定数]に設定する(ステップS20)。次に、ウォータポンプ41により冷却水の循環量を制御する(ステップS21)。これにより、FCスタック温度Tが目標温度Trとなるように温度制御される。以上の温度制御の後、上記ステップS14に戻る。
【0039】
以上のステップS17〜S21のFCスタック温度制御を行うことにより、水分蒸発に伴って温度低下することなく、FCスタック10内部を高温に保つことができる。これにより、FCスタック10内部において残留水の蒸発が促進される。蒸発した残留水は、空気経路20および水素経路30より供給される空気に含まれた状態でFCスタック10の外部に排出される。このとき、空気経路20および水素経路30より乾燥空気を供給しているので、FCスタック10内を効率よく乾燥させることができる。
【0040】
(他の実施形態)
なお、上記実施形態では、FCスタック10内の残留水分量を検出する水分センサ24、34として湿度センサを用いたが、これに限らず、例えば水分センサとしてFCスタック10内部における電解質膜の電気抵抗の変化を測定することによっても、FCスタック10内部の残留水分量を検出することができる。
【0041】
また、FCスタック10を構成する個々のセルにおいて、少なくとも一部が水分除去されていればよい。セルの一部が乾燥していれば、その乾燥部分に水素および空気を供給することで発電を開始できる。セルの一部にて発電が開始されれば、発電に伴う発熱により他の部分を昇温させることができ、セル全体で発電を行うことができるようになる。
【0042】
また、上記実施形態では、水分除去運転時に空気経路20および水素経路30から乾燥空気を供給したが、これに限らず、例えば窒素といった任意のガスを供給するように構成してもよい。
【0043】
また、上記ステップS16で検出したFCスタック温度Tが電解質膜を破壊する温度(例えば150℃)以上である場合には、冷却水切替弁45をラジエータ側に切り替え、冷却水を積極的に冷却してFCスタック10を冷却するように構成してもよい。
【0044】
また、上記実施形態では、冷却水を加熱する加熱部44をラジエータ43と並列的に設けたが、これに限らず、冷却水経路40において加熱部44をラジエータ43と直列的に設けてもよい。この場合には、図1の燃料電池システムの構成において、加熱部44側とラジエータ側との分岐点の上流側であってウォータポンプ41の下流側に加熱部44を移動させればよい。このような構成の場合、加熱部44が設けられていた経路は、冷却水をラジエータ42をバイパスさせるためのバイパス経路となる。このような構成により、通常運転終了後の水分除去制御を行う際、加熱部44を通過して加熱された冷却水は、バイパス通路を通過してラジエータ42をバイパスする。
【図面の簡単な説明】
【図1】上記実施形態の燃料電池システムの概略構成を示す概念図である。
【図2】図1の燃料電池システムの水分除去制御を示すフローチャートである。
【符号の説明】
10…燃料電池(FCスタック)、10a…酸素極、10b…水素極、12…温度センサ、20…空気経路、22、23…シャットバルブ、30…水素経路、32、33…シャットバルブ、35…水素経路切替弁、42、43…冷却部、44…加熱部(加熱手段)、50…制御部(ECU)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell system including a fuel cell that generates electric energy by a chemical reaction between hydrogen and oxygen, and is effective when applied to a moving body such as a vehicle, a ship, and a portable generator.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a fuel cell system including a fuel cell that generates power using an electrochemical reaction between hydrogen and oxygen (air) is known. For example, in a polymer electrolyte fuel cell that is considered as a driving source for vehicles and the like, in a low temperature state of 0 ° C. or lower, moisture present in the vicinity of the electrode freezes and inhibits diffusion of reaction gas, There is a problem that the electrical conductivity of the film is lowered.
[0003]
When starting a fuel cell in such a low-temperature environment, the fuel gas may be supplied even if fuel gas is supplied due to clogging of the reaction gas path due to freezing or hindering the progress or arrival of the reaction gas (hydrogen and air) to the electrolyte membrane. There is a problem that the fuel cell cannot be started because the chemical reaction does not proceed. Furthermore, the gas path is also blocked due to the freezing of moisture condensed in the reaction gas path.
[0004]
In order to prevent freezing inside the fuel cell and improve low-temperature startability, it is desirable to previously remove moisture that freezes in a low-temperature environment from the inside of the fuel cell. For this reason, it is conceivable to remove moisture in the fuel cell by supplying air into the fuel cell by an air flow.
[0005]
[Problems to be solved by the invention]
However, when the moisture in the fuel cell is removed by the air flow, heat is taken away by the latent heat of vaporization when the moisture evaporates, and the temperature inside the fuel cell decreases. As a result, there is a problem that the amount of water evaporation decreases and it takes time to remove the water in the fuel cell.
[0006]
In view of the above problems, an object of the present invention is to provide a fuel cell system that can remove moisture inside the fuel cell in a short time when the operation is stopped in a fuel cell system used in a low temperature environment. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a fuel cell system including a fuel cell (10) that obtains electric power by electrochemically reacting hydrogen and oxygen, and supplies the fuel cell (10). An air path (20) through which oxygen is passed, a hydrogen path (30) through which hydrogen supplied to the fuel cell (10) passes, a heating means (44) for heating the fuel cell (10), and a fuel cell A temperature sensor (12) for detecting the temperature of (10), a moisture sensor (24, 34) for detecting the water content of the hydrogen electrode and oxygen electrode of the fuel cell (10), an air path (20) and a hydrogen path ( Control means (50) for performing gas supply control to 30) and heating control by the heating means (44) , the control means (50) after stopping the normal operation of the fuel cell (10), the air path (20) And in the hydrogen pathway (30) Supplying a drying gas, if the water content detected by the moisture sensor determines whether or not lower than the less freezing range than the predetermined amount, it is determined to exceed the freezing range, the temperature sensor (12) It is characterized by controlling the heating temperature of the fuel cell that by the heating means (44) based on the detected temperature (10) by.
[0008]
By heating the fuel cell (10) simultaneously with the gas supply in this way, it is possible to prevent the fuel cell temperature from being lowered due to moisture evaporation during the moisture removal operation. As a result, the evaporation of residual moisture inside the fuel cell (10) can be promoted, the moisture inside the fuel cell (10) is removed in a short time, and the fuel cell is prevented from freezing and the fuel cell at a low temperature. The startability of (10) can be improved.
Further, by controlling the heating temperature of the fuel cell (10) by the heating means (44) based on the temperature detected by the temperature sensor (12), the fuel cell temperature does not destroy the electrolyte membrane or the like of the fuel cell (10). It is possible to maintain the temperature at which the residual water can be efficiently evaporated within the range.
[0009]
The invention according to claim 2 is characterized in that the dry gas is air. By using air in this manner, moisture can be removed without providing a special gas supply device. Further, the dried air can be provided by not humidifying the air that is performed during normal operation.
[0010]
Further, in the invention according to claim 3, cooling Mizukei passage for circulating cooling water to the fuel cell (10) and (40), provided in the cooling water passage (40), during normal operation of the fuel cell (10) and a cooling unit for cooling the cooling water (42, 43), heating means, in parallel or serially disposed cooling section (42, 43) in the cooling water passage (40), so as to heat the cooling water is configured to, by the control means (50), the flow path of the cooling water is configured to be switched to the cooling section (42, 43) side or the heating means (44) side, the control means (50), When the fuel cell (10) is heated after the normal operation of the fuel cell (10) is finished, the flow path of the cooling water is switched to the heating means (44) side.
[0011]
With such a configuration, it is possible to heat the fuel cell (10) with a simple configuration using an existing fuel cell cooling system and adding a cooling water heating unit (44) thereto.
[0013]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. In the present embodiment, the fuel cell system is applied to an electric vehicle (fuel cell vehicle) that runs using the fuel cell as a power source.
[0015]
FIG. 1 shows the overall configuration of the fuel cell system of the present embodiment. As shown in FIG. 1, the fuel cell system of the present embodiment includes a fuel cell (FC stack) 10 that generates electric power by utilizing an electrochemical reaction between hydrogen and oxygen. The FC stack 10 is configured to supply electric power to an electric device (load) 11 for running the vehicle and an electric device such as a secondary battery (not shown).
[0016]
In the FC stack 10, the following electrochemical reaction between hydrogen and oxygen occurs to generate electric energy.
(Negative electrode side) H 2 → 2H + + 2e
(Positive electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O
In this embodiment, a solid polymer electrolyte fuel cell is used as the FC stack 10, and a plurality of cells serving as basic units are stacked. Each cell has a configuration in which an electrolyte membrane is sandwiched between a pair of electrodes. The FC stack 10 is provided with a temperature sensor 12 for detecting the temperature of the FC stack body.
[0017]
In the fuel cell system, an air path 20 for supplying air (oxygen) to the oxygen electrode (positive electrode) 10a side of the FC stack 10 and hydrogen for supplying hydrogen to the hydrogen electrode (negative electrode) 10b side of the FC stack 10 are provided. A hydrogen path 30 is provided. The air path 20 is provided with a blower (gas compressor) 21 for air supply for supplying air. Hydrogen is supplied to the hydrogen path 30 from a hydrogen supply device 31.
[0018]
For the electrochemical reaction during power generation, the electrolyte membrane in the FC stack 10 needs to be in a wet state containing moisture. Therefore, during normal operation, humidification is performed on the air in the air path 20 and the hydrogen in the hydrogen path 30 by a humidifier (not shown), and the humidified air and hydrogen are supplied to the FC stack 10. As a result, the inside of the FC stack 10 operates in a wet state. Further, moisture is generated by the electrochemical reaction on the oxygen electrode 10a side.
[0019]
In addition, during the moisture removal operation described later, dry air that is not humidified and dry hydrogen that is not humidified are supplied to the FC stack 10. In order to remove moisture remaining in the FC stack 10, it is desirable that these dry gases have as low a humidity as possible, and at least lower than the humidity in the FC stack 10.
[0020]
Shut valves 22 and 23 for blocking the air path 20 are provided at both ends of the air path 20. By closing these shut valves 22, 23, the inside of the FC stack 10 and the inside of the air path 20 can be shut off from the outside air. Similar shut valves 32 and 33 are provided at both ends of the hydrogen passage 30.
[0021]
The air path 20 and the hydrogen path 30 are connected on the upstream side of the FC stack 10. A hydrogen path switching valve 35 is provided at a connection portion in the hydrogen path 30. By switching the hydrogen path switching valve 35, hydrogen from the hydrogen supply device 31 can flow through the hydrogen path 30 during normal operation, and air from the air path 20 can flow through the hydrogen path 30 during moisture removal operation.
[0022]
The FC stack 10 is provided with moisture sensors 24 and 34 for detecting residual moisture present in the oxygen electrode 10a and the hydrogen electrode 10b inside the FC stack 10. In the present embodiment, humidity sensors are used as the moisture sensors 24 and 34. The humidity sensors 24 and 34 are desirably provided near the outlet of the FC stack 10 in the oxygen electrode 10a and the hydrogen electrode 10b in order to appropriately detect the humidity inside the FC stack 10.
[0023]
The FC stack 10 generates heat with power generation. For this reason, the fuel cell system is provided with cooling systems 40 to 45 so that the FC stack 10 is cooled and the operating temperature becomes an appropriate temperature (about 80 ° C.) for the electrochemical reaction.
[0024]
The cooling system is provided with a cooling water path 40 that circulates cooling water (heat medium) through the FC stack 10, a water pump 41 that circulates the cooling water, and a radiator 42 that includes a fan 43. The radiator 42 and the fan 43 constitute a cooling unit.
[0025]
The heat generated in the FC stack 10 is discharged out of the system by the radiator 42 through the cooling water. With such a cooling system, the cooling amount control of the FC stack 10 can be performed by the flow rate control by the water pump 41 and the air volume control by the radiator 42 and the fan 43.
[0026]
In the cooling system of the present embodiment, a heating unit (heating unit) 44 for heating the cooling water is provided in parallel with the radiator 43. As the heating unit 43, for example, an electric heater, a combustion heater, a catalyst heater, or the like can be used. With such a configuration, the heating amount control of the FC stack 10 can be performed by the heating amount control of the cooling water by the heating unit 44 and the flow rate control by the water pump 41.
[0027]
The flow path of the cooling water is switched to the radiator 43 side and the heating unit 44 side by the cooling water switching valve 45. During normal operation of the FC stack 10, the cooling water switching valve 45 is switched to the radiator 43 side, and the FC stack 10 is cooled. On the other hand, during the water removal operation of the FC stack 10 in the present embodiment, the cooling water switching valve 45 is switched to the heating unit 44 side, and the FC stack 10 is heated.
[0028]
The fuel cell system of this embodiment is provided with a control unit (ECU) 50 that performs various controls. The control unit 50 receives a required power signal from the load 11, a temperature signal from the temperature sensor 12, a residual moisture amount signal from the moisture sensors 24 and 34, and the like. The control unit 50 is configured to output control signals to the secondary battery, the blower 21, the water pump 41, the radiator fan 43, the heating unit 44, the cooling water switching valve 45, and the like.
[0029]
Next, moisture removal control in the fuel cell system having the above-described configuration will be described with reference to FIG. FIG. 2 is a flowchart showing water removal control of the fuel cell system.
[0030]
First, it is determined whether or not moisture removal (moisture purge) in the FC stack 10 is necessary after the normal operation is stopped (step S10). The determination of whether or not to remove moisture is performed in consideration of the environmental temperature (outside temperature) at the time of operation stop, seasonal information, and the like. That is, the necessity for the water removal operation is determined based on the condition that the environmental temperature is 0 ° C. or lower, or that the temperature is predicted to decrease in winter. Naturally, moisture operation is not necessary because there is no risk of freezing in conditions such as summer.
[0031]
Further, when the operation of the FC stack 10 is stopped, an expected time of the FC stack 10 stop time by the driver may be input. This is because even if the environmental temperature is below the freezing point when the FC stack 10 is stopped, the FC stack 10 does not immediately drop below the freezing point because the FC stack 10 is sufficiently preheated, and the high temperature is maintained for a while. It is to be done. Therefore, it is not necessary to remove the residual water when the operation is stopped within the stop time of about 10 hours (all day and night).
[0032]
When it is determined in step S10 that the water removal operation is necessary, the cooling water switching valve 45 is switched to the heating unit 44 side (step S11). As a result, the cooling water is heated by the heating unit 44. Since the FC stack 10 has already stopped generating power, the cooling water switching valve 45 and the like are operated by supplying power from the secondary battery.
[0033]
Next, the hydrogen path switching valve 35 is switched to the air path 20 side (step S12), and air blowing control by the blower 21 is performed (step S13). As a result, air is supplied to the air path 20 and the hydrogen path 30. At this time, the air is not humidified, and dry air is supplied to the oxygen electrode 10a and the hydrogen electrode 10b of the FC stack 10. As a result, moisture present as droplets in the FC stack 10 is blown out of the FC stack 10 by the air flow.
[0034]
Next, the moisture sensors 24 and 34 detect the residual moisture amount in the FC stack 10 (step S14), and determine whether the residual moisture amount is less than the predetermined amount and below the freezing range (step S15).
[0035]
If the residual water content in the FC stack 10 is below the freezing range, the shut valves 22, 23, 32, 33 provided at both ends of the air path 20 and the hydrogen path 30 are closed (step S16). As a result, the inside of the FC stack 10, the inside of the air path 20, and the inside of the hydrogen path 30 are blocked from the outside air, and moisture intrusion from the external environment can be prevented.
[0036]
As a result, when the residual moisture amount in the FC stack 10 exceeds the freezing range, the FC stack temperature control in the following steps S17 to S21 is performed, and the FC stack 10 is heated to evaporate and remove the residual moisture.
[0037]
First, the temperature sensor 12 detects the temperature T of the main body of the FC stack 10 (step S17), and determines whether or not the FC stack temperature T exceeds the target temperature Tr (step S18). The target temperature Tr is preferably as high as possible in order to evaporate the water in the FC stack 10. However, if the target temperature Tr is set too high, the size of the heating unit 44 is increased and the electrolyte membrane inside the FC stack 10 is destroyed. Therefore, in order to prevent these problems, the target temperature Tr is set to 80 to 100 ° C.
[0038]
When the FC stack temperature T is higher than the target temperature Tr, the cooling water heating amount by the heating unit 44 is set to zero (step S19), and when the FC stack temperature T is lower than the target temperature, heating is performed. The cooling water heating amount by the unit 44 is set to K (Tr-T) [K: proportionality constant] (step S20). Next, the circulating amount of the cooling water is controlled by the water pump 41 (step S21). Thereby, temperature control is performed so that the FC stack temperature T becomes the target temperature Tr. After the above temperature control, the process returns to step S14.
[0039]
By performing the FC stack temperature control in steps S17 to S21 described above, the inside of the FC stack 10 can be kept at a high temperature without decreasing the temperature due to moisture evaporation. Thereby, evaporation of residual water is promoted inside the FC stack 10. The evaporated residual water is discharged to the outside of the FC stack 10 while being contained in the air supplied from the air path 20 and the hydrogen path 30. At this time, since dry air is supplied from the air path 20 and the hydrogen path 30, the inside of the FC stack 10 can be efficiently dried.
[0040]
(Other embodiments)
In the above embodiment, the humidity sensors are used as the moisture sensors 24 and 34 for detecting the residual moisture amount in the FC stack 10. However, the present invention is not limited to this. For example, the electrical resistance of the electrolyte membrane in the FC stack 10 as a moisture sensor. The residual moisture content inside the FC stack 10 can also be detected by measuring this change.
[0041]
Further, it is sufficient that at least a part of the water is removed from each cell constituting the FC stack 10. If a part of the cell is dry, power generation can be started by supplying hydrogen and air to the dry part. If power generation is started in a part of the cell, the temperature of the other part can be raised by heat generated by the power generation, and power generation can be performed in the entire cell.
[0042]
Moreover, in the said embodiment, although dry air was supplied from the air path 20 and the hydrogen path | route 30 at the time of a water | moisture-content removal driving | operation, you may comprise not only this but arbitrary gas, such as nitrogen, for example.
[0043]
If the FC stack temperature T detected in step S16 is higher than the temperature at which the electrolyte membrane is destroyed (for example, 150 ° C.), the cooling water switching valve 45 is switched to the radiator side to actively cool the cooling water. The FC stack 10 may be cooled.
[0044]
Moreover, in the said embodiment, although the heating part 44 which heats cooling water was provided in parallel with the radiator 43, you may provide not only this but the heating part 44 in series with the radiator 43 in the cooling water path 40. . In this case, in the configuration of the fuel cell system of FIG. 1, the heating unit 44 may be moved to the upstream side of the branch point between the heating unit 44 side and the radiator side and to the downstream side of the water pump 41. In the case of such a configuration, the path where the heating unit 44 is provided is a bypass path for bypassing the cooling water to the radiator 42. With such a configuration, when performing moisture removal control after the end of normal operation, the cooling water heated through the heating unit 44 passes through the bypass passage and bypasses the radiator 42.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a schematic configuration of a fuel cell system according to the embodiment.
FIG. 2 is a flowchart showing water removal control of the fuel cell system of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Fuel cell (FC stack), 10a ... Oxygen electrode, 10b ... Hydrogen electrode, 12 ... Temperature sensor, 20 ... Air path, 22, 23 ... Shut valve, 30 ... Hydrogen path, 32, 33 ... Shut valve, 35 ... Hydrogen path switching valve, 42, 43 ... cooling unit, 44 ... heating unit (heating means), 50 ... control unit (ECU).

Claims (3)

水素と酸素とを電気化学反応させて電力を得る燃料電池(10)を備える燃料電池システムであって、
前記燃料電池(10)に供給される酸素が通過する空気経路(20)と、
前記燃料電池(10)に供給される水素が通過する水素経路(30)と、
前記燃料電池(10)を加熱する加熱手段(44)と
前記燃料電池(10)の温度を検出する温度センサ(12)と、
前記燃料電池(10)の水素極および酸素極の水分量を検出する水分センサ(24、34)と、
前記空気経路(20)および前記水素経路(30)へのガス供給制御および前記加熱手段(44)による加熱制御を行う制御手段(50)とを備え、
前記制御手段(50)は、前記燃料電池(10)の通常運転停止後、前記空気経路(20)および前記水素経路(30)に所定の乾燥ガスを供給し、前記水分センサによって検出した水分量が所定量より少なく凍結範囲を下回っているか否かを判定し、前記凍結範囲を超えていると判定された場合には、前記温度センサ(12)により検出した温度に基づいて前記加熱手段(44)によ前記燃料電池(10)加熱温度を制御することを特徴とする燃料電池システム。
A fuel cell system comprising a fuel cell (10) for obtaining electric power by electrochemical reaction of hydrogen and oxygen,
An air path (20) through which oxygen supplied to the fuel cell (10) passes;
A hydrogen path (30) through which hydrogen supplied to the fuel cell (10) passes;
Heating means (44) for heating the fuel cell (10) ;
A temperature sensor (12) for detecting the temperature of the fuel cell (10);
Moisture sensors (24, 34) for detecting the moisture content of the hydrogen electrode and oxygen electrode of the fuel cell (10);
Control means (50) for performing gas supply control to the air path (20) and the hydrogen path (30) and heating control by the heating means (44) ,
The control means (50) supplies a predetermined dry gas to the air path (20) and the hydrogen path (30) after the normal operation of the fuel cell (10) is stopped, and the amount of moisture detected by the moisture sensor. Is less than a predetermined amount and below the freezing range, and if it is determined that the freezing range is exceeded, the heating means (44 ) is based on the temperature detected by the temperature sensor (12). fuel cell system and controls the heating temperature of the fuel cell (10) that by the).
前記乾燥ガスは空気であることを特徴とする請求項1に記載の燃料電池システム。  The fuel cell system according to claim 1, wherein the dry gas is air. 前記燃料電池(10)に冷却水を循環させる冷却水経路(40)と、
前記冷却水経路(40)に設けられ、前記燃料電池(10)の通常運転時に前記冷却水を冷却する冷却部(42、43)とを備え、
前記加熱手段は、前記冷却水経路(40)において前記冷却部(42、43)と並列的あるいは直列的に設けられ、前記冷却水を加熱するように構成されており
前記冷却水の流路前記冷却部(42、43)側あるいは前記加熱手段(44)側に切り替える冷却水切替手段(45)を備え
前記制御手段(50)は、前記燃料電池(10)の通常運転終了後、前記燃料電池(10)を加熱する際に、前記冷却水切替手段(45)によって前記冷却水の流路を前記加熱手段(44)側に切り替えることを特徴とする請求項1または請求項2に記載の燃料電池システム。
The cooling Mizukei passage for circulating cooling water to the fuel cell (10) and (40),
A cooling section (42, 43) provided in the cooling water path (40), for cooling the cooling water during normal operation of the fuel cell (10),
The heating means is provided in parallel or in series with the cooling units (42, 43) in the cooling water path (40), and is configured to heat the cooling water,
Wherein with said cooling section the flow path of the cooling water (42, 43) side or the heating means (44) Ru switched to side cooling water switching means (45),
When the fuel cell (10) is heated after the normal operation of the fuel cell (10 ) is completed, the control means (50) heats the flow path of the cooling water by the cooling water switching means (45). 3. The fuel cell system according to claim 1, wherein the fuel cell system is switched to the means (44) side.
JP2001035935A 2001-02-13 2001-02-13 Fuel cell system Expired - Fee Related JP4857472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035935A JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035935A JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2002246054A JP2002246054A (en) 2002-08-30
JP4857472B2 true JP4857472B2 (en) 2012-01-18

Family

ID=18899298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035935A Expired - Fee Related JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4857472B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820992B2 (en) 2002-01-08 2006-09-13 日産自動車株式会社 Fuel cell system
JP4421178B2 (en) 2002-09-18 2010-02-24 本田技研工業株式会社 Fuel cell stack
JP4654569B2 (en) * 2003-06-23 2011-03-23 トヨタ自動車株式会社 Fuel cell system and control method thereof
US7670700B2 (en) 2003-09-05 2010-03-02 Denso Corporation Fuel cell system, related method and current measuring device for fuel cell system
JP4513308B2 (en) * 2003-11-04 2010-07-28 株式会社デンソー Fuel cell system
JP4831938B2 (en) * 2004-03-03 2011-12-07 株式会社日本自動車部品総合研究所 Fuel cell system
JP4993240B2 (en) 2004-03-17 2012-08-08 トヨタ自動車株式会社 Control device
JP4698965B2 (en) * 2004-03-29 2011-06-08 本田技研工業株式会社 Fuel cell system
JP4806913B2 (en) * 2004-09-16 2011-11-02 日産自動車株式会社 Fuel cell system
JP4699010B2 (en) 2004-11-09 2011-06-08 本田技研工業株式会社 Fuel cell system
JP2006156084A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Fuel cell system
JP4887619B2 (en) * 2004-11-29 2012-02-29 日産自動車株式会社 Fuel cell system
JP4725191B2 (en) * 2005-05-26 2011-07-13 トヨタ自動車株式会社 Fuel cell system
EP1902486B1 (en) * 2005-07-14 2011-10-19 Nissan Motor Company Limited Fuel cell power plant and control method thereof
JP4923458B2 (en) * 2005-07-15 2012-04-25 日産自動車株式会社 Fuel cell system
JP4786438B2 (en) * 2006-06-30 2011-10-05 本田技研工業株式会社 Fuel cell system
US8182952B2 (en) 2006-11-06 2012-05-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system capable of drying a fuel cell in a short time after a system stop instruction is used
JP5157163B2 (en) * 2006-12-27 2013-03-06 トヨタ自動車株式会社 FUEL CELL SYSTEM AND FUEL CELL SYSTEM MOUNTING BODY
JP2009212045A (en) * 2008-03-06 2009-09-17 Ebara Ballard Corp Fuel cell system and drainage method of fuel cell
JP5237778B2 (en) 2008-12-16 2013-07-17 本田技研工業株式会社 Fuel cell system
JP5397444B2 (en) * 2011-09-29 2014-01-22 日産自動車株式会社 Fuel cell system
FR2985611B1 (en) * 2012-01-11 2014-09-26 Air Liquide METHOD FOR INTERRUPTING THE OPERATION OF A FUEL CELL
JP7397610B2 (en) * 2019-09-25 2023-12-13 株式会社Subaru fuel cell system
CN113299946A (en) * 2021-05-17 2021-08-24 北京格睿能源科技有限公司 Thermal management method and device for shutdown condition of fuel cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JPH0244654A (en) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd Gas replacement method for fuel cell
JPH0393166A (en) * 1989-09-06 1991-04-18 Yamaha Motor Co Ltd Fuel cell system
JPH06251787A (en) * 1993-02-25 1994-09-09 Toshiba Corp Phosphoric acid type fuel cell power generation plant
JPH07169476A (en) * 1993-12-17 1995-07-04 Toshiba Corp Heat retaining method for fuel cell
JPH08190929A (en) * 1995-01-10 1996-07-23 Toshiba Corp Fuel cell power generating plant
JPH09312165A (en) * 1996-05-23 1997-12-02 Aqueous Res:Kk Fuel cell generating device and operating method thereof
US5798186A (en) * 1996-06-07 1998-08-25 Ballard Power Systems Inc. Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water
JP3580147B2 (en) * 1998-10-09 2004-10-20 松下電器産業株式会社 Polymer electrolyte fuel cell system
JP2000164233A (en) * 1998-11-26 2000-06-16 Toshiba Corp Power generating system for solid high molecular fuel cell
JP3950562B2 (en) * 1998-11-26 2007-08-01 株式会社東芝 Polymer electrolyte fuel cell system
EP1216489A1 (en) * 1999-04-23 2002-06-26 Teledyne Energy Systems, Inc. Freeze tolerant fuel cell system and method
JP4072707B2 (en) * 2000-05-24 2008-04-09 富士電機ホールディングス株式会社 Solid polymer electrolyte fuel cell power generator and its operation method
JP2002208429A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP4660927B2 (en) * 2001-01-09 2011-03-30 株式会社デンソー Fuel cell system

Also Published As

Publication number Publication date
JP2002246054A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP4857472B2 (en) Fuel cell system
JP4759815B2 (en) Fuel cell system
JP4660927B2 (en) Fuel cell system
JP4843147B2 (en) Fuel cell warm-up system
JP5184083B2 (en) Humidification control of polymer membrane of fuel cell
JP2002208422A (en) Fuel cell system
JP3537725B2 (en) Humidification system for fuel cells
US20100028728A1 (en) Humidification control during shutdown of a fuel cell system
JP2002208429A (en) Fuel cell system
US20180226667A1 (en) Method for operating a fuel cell system and adjusting a relative humidity of a cathode operating gas during a heating phase
JPH09312165A (en) Fuel cell generating device and operating method thereof
US8357473B2 (en) Fuel cell system
JP2005158282A (en) Fuel cell system
JP2006024559A (en) Method of generating electric power from fuel cell system having fuel cell stack divided into sub-track and fuel cell system
JP2003178778A (en) Fuel cell system
JP4288721B2 (en) Fuel cell system
JP2002313394A (en) Gas feeder of fuel cell
JP2006179199A (en) Fuel cell system
JP2002075421A (en) Humidifier for fuel cell
JP2005251517A (en) Fuel cell system
JP4698965B2 (en) Fuel cell system
JP2005050639A (en) Fuel cell system
JP2005259440A (en) Fuel cell system
JP2010129529A (en) Fuel cell system and method of controlling the same
JP2007042375A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees