[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4857458B2 - High voltage semiconductor device - Google Patents

High voltage semiconductor device Download PDF

Info

Publication number
JP4857458B2
JP4857458B2 JP2000170465A JP2000170465A JP4857458B2 JP 4857458 B2 JP4857458 B2 JP 4857458B2 JP 2000170465 A JP2000170465 A JP 2000170465A JP 2000170465 A JP2000170465 A JP 2000170465A JP 4857458 B2 JP4857458 B2 JP 4857458B2
Authority
JP
Japan
Prior art keywords
electrode
conductive film
plate electrode
semiconductor device
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000170465A
Other languages
Japanese (ja)
Other versions
JP2001352064A (en
Inventor
浩 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000170465A priority Critical patent/JP4857458B2/en
Publication of JP2001352064A publication Critical patent/JP2001352064A/en
Application granted granted Critical
Publication of JP4857458B2 publication Critical patent/JP4857458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プレーナ構造の高耐圧半導体装置で、主に、抵抗性フィールドプレート構造に関する。
【0002】
【従来の技術】
パワーMOSFETやIGBTあるいはダイオードなどのプレーナ型半導体素子の耐圧構造の一つに抵抗性フィールドプレートがある。この方法では一般的に耐圧構造部に位置する高抵抗導電膜は環状の単純パターンをしており、設計が容易であり、また、耐圧構造部の占有面積も小さくできるなどの利点がある。また、縦形素子のでも横形素子でも効果は同じである。特開平7−326775号公報では、単純パターンを改良した例である。単純パターンでは、高温環境下で、漏れ電流の増大が著しく、熱暴走を引き起こすおそれがあり、実用化を妨げると記している。そこで特開平7−326775号公報では、抵抗性フィールドプレートの抵抗値を増大させ漏れ電流を抑える為、抵抗性フィールドプレートとして帯状高抵抗導電膜73を渦巻き状にすることが開示されている(図6)。
【0003】
図7は、従来の半導体装置の耐圧構造の概略平面図である。p拡散層52とn- 層51で形成される露出するpn接合を覆うように耐圧構造60が設けられる。この耐圧構造60はn- 層51内に形成される空乏層を横方向に広げて、n- 層51内の電界強度を低下させる働きがある。
図8は、図7のE部の拡大詳細図で、同図(a)は平面図、同図(b)はA−A線およびB−B線で切断した断面図である。図8の構造は、抵抗性フィールドプレートの耐圧構造である。一方の半導体基板(n- 層51)の表面層にはp拡散層52と電気的に良好に接するフィールドプレート電極54が、また、それと一定の間隔を隔てて対向するエンドプレート電極55が配置されn- 層51と電気的に接している。p拡散層52上とn- 層51上にはフィールド酸化膜53が形成され、前記の電極54、55はこのフィールド酸化膜53上にはみ出すように形成される。両電極54、55と接してフィールド酸化膜53上に高抵抗導電膜56が形成される。同図(a)のa〜iの箇所は同図(b)のa〜iの箇所と一致する。aはフィールドプレート電極内端、bは高抵抗導電膜内端、cはフィールド酸化膜内端、dはpn接合部、eはフィールドプレート電極外端、fはエンドプレート電極内端、gはフィールド酸化膜外端、hは高抵抗導電膜外端、iはエンドプレート電極外端である。
【0004】
縦型MOSFETの場合、p拡散層52の図示しない別の領域にはソース電極やゲート電極が配置され、n- 層51の裏面には、つまり半導体基板の裏面には、図示しないドレイン電極が配置される。また、横型IGBTの場合では、エンドプレート電極55は、別に形成される図示しないp拡散層と接しコレクタ電極となる。
【0005】
フィールドプレート電極54とエンドプレート電極55間には微弱な電流を流すことができる高抵抗導電膜56があり、その下層にはフィールド酸化膜53が配置されている。オフ状態で、フィールドプレート電極54を基準にエンドプレート電極55の電位を高い電位すると、半導体基板中のp拡散層52とn- 層51の間に電圧がかかり、主にn- 層内に空乏層がひろがり、半導体基板内部に電位分布ができる。この電位分布は半導体基板表面の耐圧構造にも及び、高抵抗導電膜56と相互に影響し合い、結果的にフィールドプレート電極54とエンドプレート電極55間の高抵抗導電膜56に微弱な電流が流れて、電位分布を均一化して、耐圧を安定化させることができる。
【0006】
上記に示すように、抵抗性フィールドプレートである高抵抗導電膜56は、半絶縁性膜に微弱な電流を流すことで生じる電位分布が半導体基板表面部の電位と作用し、結果として耐圧構造に広がる電位分布を均一化(電界強度を均一化)する働きがある。この為、高抵抗導電膜56を採用することで、容易に、高耐圧の半導体装置を得ることが可能となる。
【0007】
【発明が解決しようとする課題】
しかし、従来の単純パターンの高抵抗導電膜を用いた耐圧構造では、湾曲部で電位分布が不均一となり、この電位分布の不均一により、漏れ電流の増大が著しくなり、熱暴走を引き起こすおそれがある。
図9は、従来の単純パターンの高抵抗導電膜で、フィールドプレート電極外端とエンドプレート電極内端の間の電位分布を計算した例である。III はフィールドプレート電極とエンドプレート電極の直線部(図8のA−A線)で、IIは湾曲部(図8のB−B線)である。直線部では電位分布は一定で理想的であるのに対し、湾曲部では、フィールドプレート電極よりの電位分布が急激に変化している。この為、半導体基板内部の電位分布を広げる働きは、その分弱められ、設計上のマージンが小さく、わずかな寸法の変動に対しても、耐圧に大きな変動を引き起こす。また、湾曲部の高抵抗導電膜は電流が集中する上に電圧降下も大きい為、比較的電力消費が多くなる。その結果として湾曲部が破壊しやすくなる。
【0008】
また、この弊害を防止した、特開平7−326775号公報で開示された帯状高抵抗導電膜を渦巻き状にしたパターンでは、耐圧構造の占有面積が多くなるという問題がある。
この発明の目的は、前記の課題を解決して、単純なパターンの抵抗性フィールドプレートの耐圧構造で、湾曲部での電位分布を均一化し、安定した耐圧を確保できる半導体装置を提供することにある。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、半導体基板の表面に形成される抵抗性フィールドプレートの耐圧構造で、pn接合上方に形成されるフィールドプレート電極である第1電極と、第1電極と対向して配置されるエンドプレート電極である第2電極と、該第1電極および該第2電極に接し、該第1電極と第2電極の間に形成される抵抗性導電膜とを有す高耐圧半導体装置において、
対向する前記第1電極端と第2電極端の周辺長さが異なる湾曲部で、周辺長が長い第2電極および該第2電極端と前記抵抗性導電膜とが選択的に接触しない箇所を設ける構成とする。
【0010】
また、前記第2電極および該第2電極端と、前記抵抗性導電膜との間に絶縁膜を備えることで前記接触しない箇所を設けるとよい。
また、前記第2電極上および該第2電極端上の前記抵抗性導電膜開口部を備えることで前記接触しない箇所を設けるとよい。
また、半導体基板の表面に形成される抵抗性フィールドプレートの耐圧構造で、pn接合上方に形成されるフィールドプレート電極である第1電極と、第1電極と対向して配置されるエンドプレート電極である第2電極と、該第1電極および該第2電極に接し、該第1電極と第2電極の間に形成される抵抗性導電膜とを有す高耐圧半導体装置において、
対向する前記第1電極と第2電極の周辺長さが異なる湾曲部で、前記第1電極と第2電極に挟まれた領域の前記抵抗性導電膜に複数の開口部を備える構成とするとよい。
【0011】
また、前記開口部で挟まれた前記抵抗性導電膜の幅が第1電極側と第2電極側で等しい構成とするとよい。
また、前記開口部が前記第2電極に達してもよい。
また、前記開口部が前記第1電極および第2電極に達してもよい。
また、前記開口部で挟まれた抵抗性導電膜の形状がストライプ状であると効果的である。
【0012】
前記のように、湾曲部の曲率半径の大きいエンドプレート電極と抵抗性導電膜との接触を妨げたり、抵抗性導電膜を一部除去することで、湾曲部での抵抗性導電膜を流れる電流の密度を、曲率の大きい側と曲率の小さい側で均一化を図り、電位勾配の一定化を図る。電流密度の均一化により、湾曲部での熱暴走を防止することができる。
【0013】
【発明の実施の形態】
図1は、この発明の第1実施例の高耐圧半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のA−A線で切断した要部断面図、同図(c)はB−B線で切断した要部断面図である。図8と異なる点は、エンドプレート電極5と高抵抗導電膜6の間に一部絶縁膜7が配置されていることである。
【0014】
図1において、n- 層1(半導体基板)の表面層にp拡散層2を形成し、p拡散層2上とn- 層1上にフィールド酸化膜3を形成する。p拡散層2上とフィールド酸化膜3上にフィールドプレート電極4を形成し、n- 層1上とフィールド酸化膜3上にエンドプレート電極5を形成する。フィールドプレート電極4とエンドプレート電極5とはそれぞれ対向し、その間隔は一定である。フィールドプレート電極4上とエンドプレート電極5上およびこれらの電極4、5に挟まれたフィールド酸化膜3上に高抵抗導電膜6を形成する。この高抵抗導電膜6の形成に当たっては、両電極4、5が湾曲する箇所(湾曲部D)では、エンドプレート電極5上と、フィールド酸化膜3上に選択的に絶縁膜7を形成し、この絶縁膜7を介して前記高抵抗導電膜6を形成する(同図(c))。尚、図中のa〜iは図8と同じである。また、jは扇状のエンドプレート電極内端f側の端部、kはエンドプレート電極外端h側の端部を示す。
【0015】
さらに詳細に説明する。湾曲部Dは、角度が90°(円の4分の1)で、フィールドプレート電極外端eの内径50μm、エンドプレート電極内端fの内径が110μmの曲率半径である。半導体基板(n- 層1)の不純物濃度は5×1016cm-3(比抵抗=60Ω・cm)である。耐圧構造のフィールド酸化膜3の厚さは、0.7μmである。フィールドプレート電極外端eと半導体基板内部のpn接合部分dの距離は、15μmである。フィールドプレート電極4とフィールド酸化膜3およびエンドプレート電極5を覆う様に絶縁膜であるSiN膜を0.3μmの厚さで成膜し、その後で、湾曲部Dに位置するエンドプレート電極5上の一部とその近傍のフィールド酸化膜3上にのみ絶縁膜7を残し、その他の箇所の絶縁膜は除去する。この絶縁膜7の形状は、エンドプレート電極内端fに沿った幅Wが12μmで、同電極5からフィールドプレート酸化膜3上にはみ出した長さL1は10μmであり、また、後工程で形成する高抵抗導電膜外周端hからのはみ出した長さL2も10μmである扇状をしている。この扇状の絶縁膜7はエンドプレート電極5を選択的に覆っている。また、ここでは絶縁膜7を3個均等に配置した。次に、図に示すように、これら電極4、5やフィールド酸化膜3および絶縁膜7を被うように、高抵抗導電膜6をa−SiをプラズマCVDで約0.06μm厚の膜で形成した。
【0016】
この実施例の場合では、湾曲部Dのフィールドプレート電極4と接する高抵抗導電膜内端bの長さを約78μmに対し、エンドプレート電極5と接する高抵抗導電膜外端hの長さを約121μmとした。これら長さにすることで、絶縁膜7が無い従来の場合と比べて、湾曲部Dでの電位分布が均一化される。尚、ここで示した絶縁膜7の形状、数、配置は変えても構わない。
【0017】
また、フィールドプレート電極4とエンドプレート電極5の間隔を従来素子と同じにした場合は、素子耐圧の最大値は650Vと従来素子耐圧と同じであったが、最小値が従来素子では550Vであったものが610Vに上昇し、その結果ばらつきが従来素子では約15%あったものが、6%に改善した。
また、信頼性試験として150℃下で500V印加して放置したところ、従来品は600時間までに50個中3個耐圧に異常が見られたが、本発明品では、1000時間経過しても問題の発生が無いことが分った。
【0018】
図2は、高抵抗導電膜の電位分布を計算した例である。I は本発明の場合の湾曲部Dでの計算結果である。エンドプレート電極5と直接接していないを為、IIの従来素子における湾曲部Dの電位分布に比べ、電位勾配が均一化されて、III のフィールドプレート電極4とエンドプレート電極5が直線部Cの電位分布に近づいている。これにより半導体基板(n- 層1)内の空乏層を広げる効果が高くなり、また、電流集中が緩和されることから電力消費も押さえられ、さらに、素子破壊も防止できる。
【0019】
図3は、この発明の第2実施例の高耐圧半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のA−A線で切断した要部断面図、同図(c)はB−B線で切断した要部断面図である。
図3において、n- 層1の表面層にp拡散層2を形成し、p拡散層2上とn- 層1上にフィールド酸化膜3を形成する。p拡散層2上とフィールド酸化膜3上にフィールドプレート電極4を形成し、n- 層1上とフィールド酸化膜3上にエンドプレート電極5を形成する。フィールドプレート電極4とエンドプレート電極5とはそれぞれ対向し、その間隔は一定である。フィールドプレート電極4上とエンドプレート電極5上およびこれらの電極4、5に挟まれたフィールド酸化膜3上に高抵抗導電膜6を形成する。この高抵抗導電膜6は、両電極4、5が湾曲する湾曲部Dでは、エンドプレート電極5上とフィールド酸化膜3上に選択的に開口部8が形成される(同図(c))。
【0020】
第1実施例では、エンドプレート電極5と高抵抗導電膜6の間に絶縁膜7がありこれを形成するために工数が増える。第2実施例では絶縁膜7にかえて同部分の高抵抗導電膜6に開口部8を形成して、選択的にエンドプレート電極5と高抵抗導電膜6が接しないようにする。開口部8の形状は、エンドプレート電極内端fに沿った長さが12μmで、同電極内端fからフィールドプレート酸化膜3上にはみ出した長さL1が10μmで、また、高抵抗導電膜外周端hから数μm内側にくるような扇状である。開口部8は3個均等に配置した。この開口部8は高抵抗導電膜6のパターニング工程およびエッチング工程で同時に形成できるので図1のように、工数を増やすことなく実施することができる。また、効果としては、第1実施例と同様である。尚、図中のmは扇状のエンドプレート電極内端f側の端部、nはエンドプレート電極外端h側の端部を示す。
【0021】
図4は、この発明の第3実施例の高耐圧半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のA−A線で切断した要部断面図、同図(c)はB−B線で切断した要部断面図である。この実施例は、耐圧構造の湾曲部Dの高抵抗導電膜6の一部を除去した構造で、第2実施例と違いは、エンドプレート電極5と接せず、この電極5近傍のフィールド酸化膜3に開口部9を設けた点である。この場合、フィールドプレート電極4とエンドプレート電極5の間隔が比較的離れている場合に効果的である。
【0022】
この第3実施例では、開口部9に挟まれた高抵抗導電膜6の幅Lが、フィールドプレート電極4側に向かってほぼ等しいために、この箇所を流れる電流の密度はエンドプレート電極5側とフィールドプレート電極4側とでほぼ等しくなり、湾曲部Dでの電位分布が均一化される。
また、図4では、湾曲部Dでのフィールドプレート電極4の長さよりエンドプレート電極5の長さが長い場合を示したが、逆にフィールドプレート電極の長さがエンドプレート電極の長さより長い場合、つまり、図4のフィールドプレート電極4とエンドプレート電極5が入れ代わった場合でも図4のように開口部9を設けると有効である。尚、その場合は、図4のフィールドプレート電極外端eの位置は、入れ代わった場合のエンドプレート電極外端の位置となり、また、図4のエンドプレート電極内端fの位置は、入れ代わった場合のフィールドプレート電極内端の位置となる。当然、pn接合は、入れ代わった場合のフィールドプレート電極下にくる。
【0023】
図5は、この発明の第4実施例の高耐圧半導体装置であり、同図(a)は要部平面図、同図(b)は同図(a)のA−A線で切断した要部断面図、同図(c)はB−B線で切断した要部断面図である。この実施例は、第3実施例の方法をさらに進めて、湾曲部Dでの高抵抗導電膜6の形状を多数のストライプ状にして、各ストライプ状の高抵抗導電膜6の幅wをエンドプレート電極5側と、フィールドプレート電極4側で等しくする。こうすることで、このストライプ状の高抵抗導電膜11を流れる電流の密度はエンドプレート電極5側からフィールドプレート電極4側に向かって一定となり、電位分布は直線部C並に均一化される。さらに、隣接するストライプ状の高抵抗導電膜11との電位分布の均一化を図るために、点線で示すように、隣同士のストライプ状の高抵抗導電膜11をブリッジ12(橋)で接続するとよい。
【0024】
また、フィールドプレート電極外端eと接触しないように開口部10を設けることで、この箇所でのn- 層1内に広がる空乏層の伸びをよくする。また、開口部10をフィールドプレート電極外端eと接触させる場合でも、できるだけ接触長さを短くするとよい(図では、矢印Fの先端で示すように、点線で示す三角形の頂点がフィールドプレート電極外端eと接している)。
【0025】
また、図5のフィールドプレート電極4とエンドプレート電極5が入れ代わった場合は、開口部10が、入れ代わった場合のフィールドプレート電極内端に接触しないようにするか、できるだけ接触長さを短くする。そうすることで、空乏層の伸びをよくする。
【0026】
【発明の効果】
この発明では、選択的にフィールドプレート電極と高抵抗導電膜の間に絶縁膜を挟む方法、高抵抗導電膜に開口部を設ける方法、湾曲部の高抵抗導電膜を多数のストライプ状の帯にする方法を用いることで、単純パターンで、湾曲部での抵抗性フィールドプレートを流れる電流密度を均一化し、この湾曲部での電位分布の均一化を図ることができる。その結果、高耐圧半導体装置の耐圧構造の占有面積を縮小化し、湾曲部での耐圧破壊を防止できる。また、耐圧特性の信頼性の向上することができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の高耐圧半導体装置であり、(a)は要部平面図、(b)は(a)のA−A線で切断した要部断面図、(c)はB−B線で切断した要部断面図
【図2】高抵抗導電膜の電位分布図
【図3】この発明の第2実施例の高耐圧半導体装置であり、(a)は要部平面図、同図(b)は(a)のA−A線で切断した要部断面図、(c)はB−B線で切断した要部断面図
【図4】この発明の第3実施例の高耐圧半導体装置であり、(a)は要部平面図、同図(b)は(a)のA−A線で切断した要部断面図、(c)はB−B線で切断した要部断面図
【図5】この発明の第4実施例の高耐圧半導体装置であり、(a)は要部平面図、(b)は(a)のA−A線で切断した要部断面図、(c)はB−B線で切断した要部断面図
【図6】従来の帯状高抵抗導電膜を有する耐圧構造を示す図
【図7】従来の半導体装置の耐圧構造の概略平面図
【図8】図7のE部の拡大詳細図で、(a)は平面図、(b)はA−A線およびB−B線で切断した断面図
【図9】従来の単純パターンの高抵抗導電膜で、フィールドプレート電極外端とエンドプレート電極内端の間の電位分布図
【符号の説明】
1 n-
2 p拡散層
3 フィールド酸化膜
4 フィールドプレート電極
5 エンドプレート電極
6 高抵抗導電膜
7 絶縁膜
8、9、10 開口部
11 ストライプ状の高抵抗導電膜
C 直線部
D 湾曲部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planar high-voltage semiconductor device and mainly relates to a resistive field plate structure.
[0002]
[Prior art]
A resistive field plate is one of the withstand voltage structures of planar semiconductor elements such as power MOSFETs, IGBTs, and diodes. In this method, the high-resistance conductive film generally located in the breakdown voltage structure has an annular simple pattern, which is easy to design and has the advantage that the area occupied by the breakdown voltage structure can be reduced. The effect is the same for both vertical and horizontal elements. Japanese Patent Laid-Open No. 7-326775 is an example in which a simple pattern is improved. The simple pattern states that the leakage current increases remarkably in a high-temperature environment, which may cause thermal runaway, hindering practical use. Japanese Patent Application Laid-Open No. 7-326775 discloses that the strip-shaped high-resistance conductive film 73 is spirally formed as a resistive field plate in order to increase the resistance value of the resistive field plate and suppress the leakage current (FIG. 6).
[0003]
FIG. 7 is a schematic plan view of a breakdown voltage structure of a conventional semiconductor device. A breakdown voltage structure 60 is provided so as to cover the exposed pn junction formed by p diffusion layer 52 and n layer 51. The breakdown voltage structure 60 has a function of expanding the depletion layer formed in the n layer 51 in the lateral direction and reducing the electric field strength in the n layer 51.
FIG. 8 is an enlarged detail view of an E portion in FIG. 7, in which FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view taken along lines AA and BB. The structure of FIG. 8 is a breakdown voltage structure of a resistive field plate. On the surface layer of one semiconductor substrate (n layer 51), a field plate electrode 54 that is in good electrical contact with the p diffusion layer 52 and an end plate electrode 55 that is opposed to the field plate electrode 55 with a certain distance are disposed. The n layer 51 is in electrical contact. A field oxide film 53 is formed on the p diffusion layer 52 and the n layer 51, and the electrodes 54 and 55 are formed so as to protrude from the field oxide film 53. A high resistance conductive film 56 is formed on field oxide film 53 in contact with both electrodes 54 and 55. The locations a to i in FIG. 10A match the locations a to i in FIG. a is the inner edge of the field plate electrode, b is the inner edge of the high-resistance conductive film, c is the inner edge of the field oxide film, d is the pn junction, e is the outer edge of the field plate electrode, f is the inner edge of the end plate electrode, and g is the field The outer end of the oxide film, h is the outer end of the high-resistance conductive film, and i is the outer end of the end plate electrode.
[0004]
In the case of the vertical MOSFET, a source electrode and a gate electrode are arranged in another region (not shown) of the p diffusion layer 52, and a drain electrode (not shown) is arranged on the back surface of the n layer 51, that is, on the back surface of the semiconductor substrate. Is done. In the case of a lateral IGBT, the end plate electrode 55 is in contact with a p diffusion layer (not shown) formed separately and serves as a collector electrode.
[0005]
Between the field plate electrode 54 and the end plate electrode 55 is a high resistance conductive film 56 capable of passing a weak current, and a field oxide film 53 is disposed below the high resistance conductive film 56. In the off state, when a potential higher the potential of the end plate electrode 55 relative to the field plate electrode 54, p diffusion layer 52 and n in the semiconductor substrate - a voltage is applied between the layers 51, mainly n - depletion in a layer The layer spreads and a potential distribution is created inside the semiconductor substrate. This potential distribution also affects the breakdown voltage structure on the surface of the semiconductor substrate and interacts with the high-resistance conductive film 56. As a result, a weak current is applied to the high-resistance conductive film 56 between the field plate electrode 54 and the end plate electrode 55. It is possible to stabilize the withstand voltage by flowing and making the potential distribution uniform.
[0006]
As described above, in the high resistance conductive film 56 which is a resistive field plate, the potential distribution generated by passing a weak current through the semi-insulating film acts on the potential of the semiconductor substrate surface portion, resulting in a breakdown voltage structure. It has the function of making the spread potential distribution uniform (homogenizing the electric field strength). Therefore, by adopting the high resistance conductive film 56, it becomes possible to easily obtain a high breakdown voltage semiconductor device.
[0007]
[Problems to be solved by the invention]
However, in a conventional withstand voltage structure using a high-resistance conductive film with a simple pattern, the potential distribution is non-uniform at the curved portion, and this non-uniform potential distribution causes a significant increase in leakage current and may cause thermal runaway. is there.
FIG. 9 shows an example in which the potential distribution between the outer end of the field plate electrode and the inner end of the end plate electrode is calculated using a conventional high-resistance conductive film having a simple pattern. III is a straight portion (A-A line in FIG. 8) of the field plate electrode and the end plate electrode, and II is a curved portion (BB line in FIG. 8). In the straight line portion, the potential distribution is constant and ideal, whereas in the curved portion, the potential distribution from the field plate electrode changes abruptly. For this reason, the function of expanding the potential distribution inside the semiconductor substrate is weakened by that amount, the design margin is small, and even a slight dimensional variation causes a large variation in breakdown voltage. In addition, the high resistance conductive film in the curved portion consumes a relatively large amount of power because current is concentrated and voltage drop is large. As a result, the curved portion is easily broken.
[0008]
Further, in the pattern in which the strip-like high resistance conductive film disclosed in Japanese Patent Application Laid-Open No. 7-326775 which is prevented from this harmful effect is spiral, there is a problem that the area occupied by the withstand voltage structure increases.
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that solves the above-mentioned problems and has a simple pattern of resistive field plate withstand voltage structure, uniformizing the potential distribution at the curved portion and ensuring stable withstand voltage. is there.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, a first field electrode, which is a field plate electrode formed above a pn junction, is opposed to the first electrode in a withstand voltage structure of a resistive field plate formed on the surface of a semiconductor substrate. A high-voltage semiconductor having a second electrode, which is an end plate electrode, and a resistive conductive film that is in contact with the first electrode and the second electrode and is formed between the first electrode and the second electrode In the device
A curved portion having a different peripheral length between the first electrode end and the second electrode end facing each other, a second electrode having a long peripheral length, and a portion where the second electrode end and the resistive conductive film are not selectively in contact with each other It is set as the structure to provide.
[0010]
Moreover, it is good to provide the said non-contact location by providing an insulating film between the said 2nd electrode and this 2nd electrode end, and the said resistive conductive film.
Further, it is preferable to provide a portion which is not the contact by providing an opening in the resistive electro-conductive film on the upper second electrode and the second electrode end.
In addition, a resistive field plate withstand voltage structure formed on the surface of the semiconductor substrate, a first electrode that is a field plate electrode formed above the pn junction, and an end plate electrode that is disposed to face the first electrode In a high withstand voltage semiconductor device having a certain second electrode and a resistive conductive film formed between the first electrode and the second electrode in contact with the first electrode and the second electrode,
In the different sweeps perimeter opposite the first electrode and the second electrode, when a configuration in which Ru with a plurality of openings in the first electrode and the resistive conductive film in the region sandwiched between the second electrode Good.
[0011]
The resistive conductive film sandwiched between the openings may have the same width on the first electrode side and the second electrode side.
The opening may reach the second electrode.
The opening may reach the first electrode and the second electrode.
In addition, it is effective that the resistive conductive film sandwiched between the openings has a stripe shape.
[0012]
As described above, the current flowing through the resistive conductive film at the curved portion by preventing the contact between the end plate electrode having a large curvature radius of the curved portion and the resistive conductive film or by partially removing the resistive conductive film. Is made uniform on the side with a large curvature and the side with a small curvature to make the potential gradient constant. By making the current density uniform, thermal runaway at the curved portion can be prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show a high voltage semiconductor device according to a first embodiment of the present invention. FIG. 1A is a plan view of an essential part, and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 2C is a partial cross-sectional view taken along the line BB. The difference from FIG. 8 is that a part of the insulating film 7 is disposed between the end plate electrode 5 and the high resistance conductive film 6.
[0014]
In FIG. 1, p diffusion layer 2 is formed on the surface layer of n layer 1 (semiconductor substrate), and field oxide film 3 is formed on p diffusion layer 2 and n layer 1. Field plate electrode 4 is formed on p diffusion layer 2 and field oxide film 3, and end plate electrode 5 is formed on n layer 1 and field oxide film 3. The field plate electrode 4 and the end plate electrode 5 face each other, and the distance between them is constant. A high resistance conductive film 6 is formed on the field plate electrode 4, the end plate electrode 5, and the field oxide film 3 sandwiched between the electrodes 4 and 5. In forming the high-resistance conductive film 6, an insulating film 7 is selectively formed on the end plate electrode 5 and the field oxide film 3 at a portion where the electrodes 4 and 5 are curved (curved portion D). The high resistance conductive film 6 is formed through the insulating film 7 (FIG. 3C). In addition, ai in a figure is the same as FIG. Further, j represents an end portion on the fan-shaped end plate electrode inner end f side, and k represents an end portion on the end plate electrode outer end h side.
[0015]
Further details will be described. The curved portion D has a radius of curvature of 90 ° (one quarter of a circle), an inner diameter of the field plate electrode outer end e of 50 μm, and an inner diameter of the end end of the electrode plate electrode f of 110 μm. The impurity concentration of the semiconductor substrate (n layer 1) is 5 × 10 16 cm −3 (specific resistance = 60 Ω · cm). The thickness of the field oxide film 3 having a breakdown voltage structure is 0.7 μm. The distance between the field plate electrode outer end e and the pn junction portion d inside the semiconductor substrate is 15 μm. An SiN film, which is an insulating film, is formed to a thickness of 0.3 μm so as to cover the field plate electrode 4, the field oxide film 3, and the end plate electrode 5, and then on the end plate electrode 5 located in the curved portion D The insulating film 7 is left only on a part of the insulating film 7 and the field oxide film 3 in the vicinity thereof, and the insulating film in other portions is removed. The shape of the insulating film 7 is such that the width W along the inner end f of the end plate electrode is 12 μm, the length L1 protruding from the electrode 5 on the field plate oxide film 3 is 10 μm, and is formed in a later process. The protruding length L2 from the outer peripheral edge h of the high-resistance conductive film has a fan shape of 10 μm. This fan-shaped insulating film 7 selectively covers the end plate electrode 5. Here, three insulating films 7 are equally arranged. Next, as shown in the figure, the high resistance conductive film 6 is formed by a-Si plasma CVD with a thickness of about 0.06 μm so as to cover the electrodes 4 and 5 and the field oxide film 3 and the insulating film 7. Formed.
[0016]
In the case of this embodiment, the length of the inner end b of the high resistance conductive film in contact with the field plate electrode 4 of the curved portion D is about 78 μm, whereas the length of the outer end h of the high resistance conductive film in contact with the end plate electrode 5 is set. The thickness was about 121 μm. By using these lengths, the potential distribution in the curved portion D is made uniform as compared with the conventional case without the insulating film 7. The shape, number, and arrangement of the insulating film 7 shown here may be changed.
[0017]
When the distance between the field plate electrode 4 and the end plate electrode 5 is the same as that of the conventional element, the maximum value of the element breakdown voltage is 650 V, which is the same as the conventional element breakdown voltage, but the minimum value is 550 V in the conventional element. As a result, the variation of about 15% in the conventional device was improved to 6%.
In addition, as a reliability test, when 500 V was applied at 150 ° C. and left as it was, the conventional product showed an abnormality in the breakdown voltage of 3 out of 50 pieces by 600 hours. I found that there was no problem.
[0018]
FIG. 2 is an example in which the potential distribution of the high resistance conductive film is calculated. I is the calculation result at the curved portion D in the present invention. Since it is not in direct contact with the end plate electrode 5, the potential gradient is made uniform compared to the potential distribution of the curved portion D in the conventional element II, so that the field plate electrode 4 and the end plate electrode 5 of the straight portion C The potential distribution is approaching. As a result, the effect of expanding the depletion layer in the semiconductor substrate (n layer 1) is enhanced, and since current concentration is relaxed, power consumption is suppressed, and further element breakdown can be prevented.
[0019]
3A and 3B show a high voltage semiconductor device according to a second embodiment of the present invention. FIG. 3A is a plan view of the main part, and FIG. 3B is a cross-sectional view taken along line AA in FIG. FIG. 2C is a partial cross-sectional view taken along the line BB.
In FIG. 3, n - p-diffusion layer 2 is formed on the surface layer of the layer 1, p diffusion layer 2 on and the n - to form a field oxide film 3 is formed on the layer 1. Field plate electrode 4 is formed on p diffusion layer 2 and field oxide film 3, and end plate electrode 5 is formed on n layer 1 and field oxide film 3. The field plate electrode 4 and the end plate electrode 5 face each other, and the distance between them is constant. A high resistance conductive film 6 is formed on the field plate electrode 4, the end plate electrode 5, and the field oxide film 3 sandwiched between the electrodes 4 and 5. In the high resistance conductive film 6, an opening 8 is selectively formed on the end plate electrode 5 and the field oxide film 3 in the curved portion D where both the electrodes 4 and 5 are curved ((c) in the figure). .
[0020]
In the first embodiment, there is an insulating film 7 between the end plate electrode 5 and the high-resistance conductive film 6, and the number of steps is increased to form this. In the second embodiment, an opening 8 is formed in the high resistance conductive film 6 in place of the insulating film 7 so that the end plate electrode 5 and the high resistance conductive film 6 are not selectively in contact with each other. The opening 8 has a length of 12 μm along the inner end f of the end plate electrode, a length L1 protruding from the inner end f of the electrode on the field plate oxide film 3 of 10 μm, and a high resistance conductive film. It has a fan-like shape that is several μm inside from the outer peripheral edge h. Three openings 8 were arranged uniformly. Since the opening 8 can be formed simultaneously in the patterning step and the etching step of the high resistance conductive film 6, it can be carried out without increasing the number of steps as shown in FIG. The effect is the same as that of the first embodiment. In the drawing, m represents an end portion on the fan-shaped end plate electrode inner end f side, and n represents an end portion on the end plate electrode outer end h side.
[0021]
4A and 4B show a high voltage semiconductor device according to a third embodiment of the present invention. FIG. 4A is a plan view of the main part, and FIG. 4B is a cross-sectional view taken along line AA in FIG. FIG. 2C is a partial cross-sectional view taken along the line BB. This embodiment has a structure in which a part of the high resistance conductive film 6 in the curved portion D of the withstand voltage structure is removed. Unlike the second embodiment, the end plate electrode 5 is not in contact with the field oxidation in the vicinity of the electrode 5. The opening 9 is provided in the film 3. This is effective when the distance between the field plate electrode 4 and the end plate electrode 5 is relatively long.
[0022]
In this third embodiment, since the width L of the high resistance conductive film 6 sandwiched between the openings 9 is substantially equal toward the field plate electrode 4 side, the density of the current flowing through this portion is the end plate electrode 5 side. And the field plate electrode 4 side are substantially equal, and the potential distribution at the curved portion D is made uniform.
4 shows the case where the length of the end plate electrode 5 is longer than the length of the field plate electrode 4 at the curved portion D, but conversely, the length of the field plate electrode is longer than the length of the end plate electrode. That is, even when the field plate electrode 4 and the end plate electrode 5 in FIG. 4 are interchanged, it is effective to provide the opening 9 as shown in FIG. In this case, the position of the outer end e of the field plate electrode in FIG. 4 is the position of the outer end of the end plate electrode in the case of replacement, and the position of the inner end f of the end plate electrode in FIG. The position of the inner end of the field plate electrode in this case. Naturally, the pn junction comes under the field plate electrode when it is replaced.
[0023]
5A and 5B show a high voltage semiconductor device according to a fourth embodiment of the present invention. FIG. 5A is a plan view of the main part, and FIG. 5B is a cross-sectional view taken along line AA in FIG. FIG. 2C is a partial cross-sectional view taken along the line BB. In this embodiment, the method of the third embodiment is further advanced so that the shape of the high-resistance conductive film 6 at the curved portion D is made into a large number of stripes, and the width w of each stripe-shaped high-resistance conductive film 6 is ended. The plate electrode 5 side and the field plate electrode 4 side are made equal. By doing so, the density of the current flowing through the striped high-resistance conductive film 11 becomes constant from the end plate electrode 5 side to the field plate electrode 4 side, and the potential distribution is made uniform along the straight line portion C. Further, in order to make the potential distribution uniform with the adjacent stripe-shaped high-resistance conductive film 11, when the adjacent stripe-shaped high-resistance conductive films 11 are connected by a bridge 12 (bridge) as shown by a dotted line. Good.
[0024]
Further, by providing the opening 10 so as not to come into contact with the outer end e of the field plate electrode, the depletion layer extending in the n layer 1 at this point can be elongated. Even when the opening 10 is brought into contact with the outer edge e of the field plate electrode, it is preferable to shorten the contact length as much as possible (in the figure, as indicated by the tip of the arrow F, the vertex of the triangle indicated by the dotted line is outside the field plate electrode. Touches end e).
[0025]
In addition, when the field plate electrode 4 and the end plate electrode 5 in FIG. 5 are interchanged, the opening 10 should not be in contact with the inner end of the field plate electrode when interchanged, or the contact length should be as short as possible. To do. Doing so improves the growth of the depletion layer.
[0026]
【Effect of the invention】
In this invention, a method of selectively sandwiching an insulating film between a field plate electrode and a high-resistance conductive film, a method of providing an opening in the high-resistance conductive film, and a high-resistance conductive film of a curved portion in a number of striped bands By using this method, the current density flowing through the resistive field plate at the curved portion can be made uniform with a simple pattern, and the potential distribution at the curved portion can be made uniform. As a result, the area occupied by the breakdown voltage structure of the high breakdown voltage semiconductor device can be reduced, and breakdown voltage breakdown at the curved portion can be prevented. In addition, the reliability of the breakdown voltage characteristic can be improved.
[Brief description of the drawings]
1A is a high voltage semiconductor device according to a first embodiment of the present invention; FIG. 1A is a plan view of a main part, FIG. 1B is a cross-sectional view of a main part taken along line AA in FIG. FIG. 2 is a potential distribution diagram of a high-resistance conductive film. FIG. 3 is a high voltage semiconductor device according to a second embodiment of the present invention, and FIG. FIG. 4B is a plan view of the main part cut along the line AA in FIG. 4A, and FIG. 4C is a cross-sectional view of the main part cut along the line BB in FIG. 1A is a plan view of a main part, FIG. 2B is a cross-sectional view of a main part cut along the line AA of FIG. 1A, and FIG. FIG. 5 is a high voltage semiconductor device according to a fourth embodiment of the present invention, wherein FIG. 5A is a plan view of the main part, and FIG. 5B is a main part cut along line AA in FIG. Cross-sectional view, (c) is a cross-sectional view of the main part cut along line BB. 6 is a diagram showing a breakdown voltage structure having a conventional belt-shaped high-resistance conductive film. FIG. 7 is a schematic plan view of a breakdown voltage structure of a conventional semiconductor device. FIG. 8 is an enlarged detail view of a portion E in FIG. FIG. 9B is a cross-sectional view taken along lines AA and BB. FIG. 9 is a conventional high-resistance conductive film having a simple pattern between the outer edge of the field plate electrode and the inner edge of the end plate electrode. Potential distribution chart [Explanation of symbols]
1 n layer 2 p diffusion layer 3 field oxide film 4 field plate electrode 5 end plate electrode 6 high resistance conductive film 7 insulating films 8, 9, 10 opening 11 striped high resistance conductive film C linear portion D curved portion

Claims (8)

半導体基板の表面に形成される抵抗性フィールドプレートの耐圧構造で、該半導体基板の表面と交わるpn接合の上方に形成されるフィールドプレート電極である第1電極と、第1電極と対向して配置されるエンドプレート電極である第2電極と、該第1電極および該第2電極に接し、該第1電極と第2電極の間にされる抵抗性導電膜とを有す高耐圧半導体装置において、
対向する前記第1電極端と第2電極端の周辺長さが異なる湾曲部で、周辺長が長い第2電極および該第2電極端と前記抵抗性導電膜とが選択的に接触しない箇所を設けることを特徴とする高耐圧半導体装置。
A resistive field plate withstand voltage structure formed on the surface of a semiconductor substrate, the first electrode being a field plate electrode formed above the pn junction intersecting the surface of the semiconductor substrate, and disposed opposite the first electrode A high-voltage semiconductor device having a second electrode, which is an end plate electrode, and a resistive conductive film in contact with the first electrode and the second electrode and between the first electrode and the second electrode ,
A curved portion having a different peripheral length between the first electrode end and the second electrode end facing each other, a second electrode having a long peripheral length, and a portion where the second electrode end and the resistive conductive film are not selectively in contact with each other A high withstand voltage semiconductor device characterized by being provided.
前記第2電極および該第2電極端と、前記抵抗性導電膜との間に絶縁膜を備えることで前記接触しない箇所を設けることを特徴とする請求項1に記載の高耐圧半導体装置。The high breakdown voltage semiconductor device according to claim 1, wherein the non-contact portion is provided by providing an insulating film between the second electrode and the end of the second electrode and the resistive conductive film. 前記第2電極上および該第2電極端上の前記抵抗性導電膜に開口部を備えることで前記接触しない箇所を設けることを特徴とする請求項1に記載の高耐圧半導体装置。The high breakdown voltage semiconductor device according to claim 1, wherein the non-contact portion is provided by providing an opening in the resistive conductive film on the second electrode and on the end of the second electrode. 半導体基板の表面に形成される抵抗性フィールドプレートの耐圧構造で、該半導体基板の表面と交わるpn接合の上方に形成されるフィールドプレート電極である第1電極と、第1電極と対向して配置されるエンドプレート電極である第2電極と、該第1電極および該第2電極に接し、該第1電極と第2電極の間に形成される抵抗性導電膜とを有す高耐圧半導体装置において、
対向する前記第1電極と第2電極の周辺長さが異なる湾曲部で、前記第1電極と第2電極に挟まれた領域の前記抵抗性導電膜に複数の開口部を備えたことを特徴とする高耐圧半導体装置。
A resistive field plate withstand voltage structure formed on the surface of a semiconductor substrate, the first electrode being a field plate electrode formed above the pn junction intersecting the surface of the semiconductor substrate, and disposed opposite the first electrode High-voltage semiconductor device having a second electrode, which is an end plate electrode, and a resistive conductive film formed between the first electrode and the second electrode in contact with the first electrode and the second electrode In
A plurality of openings are provided in the resistive conductive film in a region sandwiched between the first electrode and the second electrode in curved portions having different peripheral lengths between the first electrode and the second electrode facing each other. High breakdown voltage semiconductor device.
前記開口部で挟まれた前記抵抗性導電膜の幅が第1電極側と第2電極側で等しいことを特徴とする請求項4に記載の高耐圧半導体装置。5. The high voltage semiconductor device according to claim 4, wherein the width of the resistive conductive film sandwiched between the openings is equal on the first electrode side and the second electrode side. 前記開口部が前記第2電極に達することを特徴とする請求項4または5に記載の高耐圧半導体装置。The high withstand voltage semiconductor device according to claim 4, wherein the opening reaches the second electrode. 前記開口部が前記第1電極および第2電極に達することを特徴とする請求項4または5に記載の高耐圧半導体装置。The high breakdown voltage semiconductor device according to claim 4, wherein the opening reaches the first electrode and the second electrode. 前記開口部で挟まれた抵抗性導電膜の形状がストライプ状であることを特徴とする請求項4ないし7のいずれかに記載の高耐圧半導体装置。8. The high breakdown voltage semiconductor device according to claim 4, wherein a shape of the resistive conductive film sandwiched between the openings is a stripe shape.
JP2000170465A 2000-06-07 2000-06-07 High voltage semiconductor device Expired - Fee Related JP4857458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170465A JP4857458B2 (en) 2000-06-07 2000-06-07 High voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170465A JP4857458B2 (en) 2000-06-07 2000-06-07 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
JP2001352064A JP2001352064A (en) 2001-12-21
JP4857458B2 true JP4857458B2 (en) 2012-01-18

Family

ID=18673181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170465A Expired - Fee Related JP4857458B2 (en) 2000-06-07 2000-06-07 High voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP4857458B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183626B2 (en) 2004-11-17 2007-02-27 International Rectifier Corporation Passivation structure with voltage equalizing loops
JP4935192B2 (en) * 2006-05-31 2012-05-23 三菱電機株式会社 Semiconductor device
JP5748353B2 (en) * 2011-05-13 2015-07-15 株式会社豊田中央研究所 Horizontal semiconductor device
JP5321768B1 (en) * 2011-11-11 2013-10-23 富士電機株式会社 Semiconductor device
JP6344137B2 (en) * 2014-08-19 2018-06-20 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP7541898B2 (en) 2020-11-04 2024-08-29 ルネサスエレクトロニクス株式会社 Semiconductor Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160121A (en) * 1991-12-10 1993-06-25 Fuji Electric Co Ltd Planar-type semiconductor device
JP2870402B2 (en) * 1994-03-10 1999-03-17 株式会社デンソー Insulated gate field effect transistor
JPH08306937A (en) * 1995-04-28 1996-11-22 Fuji Electric Co Ltd High-breakdown strength semiconductor device
JP3456054B2 (en) * 1995-05-12 2003-10-14 富士電機株式会社 High breakdown voltage lateral semiconductor element
JP3331846B2 (en) * 1995-12-28 2002-10-07 株式会社日立製作所 Semiconductor device
JP2000082825A (en) * 1998-09-07 2000-03-21 Miyazaki Oki Electric Co Ltd Semiconductor element

Also Published As

Publication number Publication date
JP2001352064A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP2870402B2 (en) Insulated gate field effect transistor
JP5725083B2 (en) Semiconductor device
JP2597412B2 (en) Semiconductor device and manufacturing method thereof
US6870200B2 (en) Insulated gate type semiconductor device having a diffusion region contacting bottom and side portions of trenches
KR0175277B1 (en) Apparatus and method for manufacturing power semiconductor device with a folding fieldplate structure
JP3905981B2 (en) High voltage semiconductor device
JP2005005443A (en) High breakdown voltage semiconductor device
JP4017258B2 (en) Semiconductor device
KR100281251B1 (en) Horizontal Insulated Gate Bipolar Transistor
EP3686929B1 (en) Semiconductor die
EP3766101B1 (en) Bidirectional thyristor device
JP2004363327A (en) Semiconductor device
JPH0693510B2 (en) Insulated gate field effect transistor device
JP4894097B2 (en) Semiconductor device
JP3117023B2 (en) Planar type semiconductor device and manufacturing method thereof
JP4857458B2 (en) High voltage semiconductor device
JP2004119870A (en) Diode
JP3731523B2 (en) Semiconductor element
JP2006269633A (en) Semiconductor device for power
JP2940399B2 (en) Semiconductor device
JP4031371B2 (en) High voltage semiconductor element
JP3539368B2 (en) Semiconductor device
JP2000022176A (en) Semiconductor device for power
JP3474776B2 (en) Insulated gate field effect transistor
JP2004006602A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees