[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4854208B2 - Sealed battery and manufacturing method thereof - Google Patents

Sealed battery and manufacturing method thereof Download PDF

Info

Publication number
JP4854208B2
JP4854208B2 JP2005065182A JP2005065182A JP4854208B2 JP 4854208 B2 JP4854208 B2 JP 4854208B2 JP 2005065182 A JP2005065182 A JP 2005065182A JP 2005065182 A JP2005065182 A JP 2005065182A JP 4854208 B2 JP4854208 B2 JP 4854208B2
Authority
JP
Japan
Prior art keywords
valve cap
battery
sealing body
gasket
caulking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005065182A
Other languages
Japanese (ja)
Other versions
JP2006252848A (en
Inventor
修一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005065182A priority Critical patent/JP4854208B2/en
Publication of JP2006252848A publication Critical patent/JP2006252848A/en
Application granted granted Critical
Publication of JP4854208B2 publication Critical patent/JP4854208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は金属外装缶の開口部に封口体を備えた密閉型電池に係わり、特に、過充電時の過充電電流や短絡時の短絡電流を遮断させることのできる安全機構を有する封口体を備えた密閉型電池およびその製造方法に関する。   The present invention relates to a sealed battery having a sealing body at the opening of a metal outer can, and in particular, includes a sealing body having a safety mechanism capable of interrupting an overcharge current during overcharge or a short circuit current during short circuit. The present invention relates to a sealed battery and a method for manufacturing the same.

一般に、リチウムイオン電池などの非水電解質二次電池では、充電器を含む機器の故障や過充電あるいは誤使用などが生じた場合、電池内部の電解液や活物質などの発電要素が化学変化を起こす。例えば、過充電や短絡などによる異常反応により電解液や活物質が分解して、電池内部に異常にガスが発生して電池内圧が過大となる。そのような場合には、電池が破裂したり、使用機器に損傷を与えるなどの恐れがあるため、この種の電池には安全機構が従来から付加されている。このような安全機構が付加された電池としては、例えば、特許文献1(特開2000−36293号公報)が知られている。   Generally, in non-aqueous electrolyte secondary batteries such as lithium-ion batteries, when a device including a charger fails or is overcharged or misused, the power generation elements such as the electrolyte and active material inside the battery undergo chemical changes. Wake up. For example, the electrolyte solution or the active material is decomposed by an abnormal reaction due to overcharge or short circuit, and abnormally gas is generated inside the battery, so that the battery internal pressure becomes excessive. In such a case, there is a risk of the battery exploding or damaging the equipment used, so a safety mechanism has been conventionally added to this type of battery. As a battery to which such a safety mechanism is added, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-36293) is known.

この特許文献1にて提案された非水電解質電池は、図3(a)に示すように、キャップ状に形成されたステンレス製の第1弁キャップ31と、皿状に形成されたステンレス製の第2弁キャップ32とから構成される封口体30を備えている。第1弁キャップ31は、電池外部に向けて膨出する凸部31aと、この凸部31aの底辺部を構成する平板状のフランジ部31bとからなり、凸部31aの角部には複数のガス抜き孔31cを設けている。一方、第2弁キャップ32は、電池内部に向けて膨出する凹部32aと、この凹部32aの底辺部を構成する平板状のフランジ部32bとからなる。凹部32aの角部にはガス抜き孔32cが設けられている。   As shown in FIG. 3A, the nonaqueous electrolyte battery proposed in Patent Document 1 includes a stainless steel first valve cap 31 formed in a cap shape and a stainless steel plate formed in a dish shape. The sealing body 30 comprised from the 2nd valve cap 32 is provided. The 1st valve cap 31 consists of the convex part 31a which bulges toward the battery exterior, and the flat flange part 31b which comprises the base part of this convex part 31a, and there are several in the corner | angular part of the convex part 31a. A gas vent hole 31c is provided. On the other hand, the 2nd valve cap 32 consists of the recessed part 32a which bulges toward the inside of a battery, and the flat flange part 32b which comprises the bottom part of this recessed part 32a. Degassing holes 32c are provided at the corners of the recesses 32a.

これらの第1弁キャップ31と第2弁キャップ32との内部には、電池内部のガス圧が上昇して所定の圧力以上になると変形する導電性弾性変形板33が収容されている。この導電性弾性変形板33は弁部材となるものであって、凹部33aとフランジ部33bとからなる。凹部33aの最低部は第2弁キャップ32の凹部32aの上表面に超音波溶着またはレーザ溶接等により固着して配設されており、フランジ部33bは第1弁キャップ31のフランジ部31bと第2弁キャップ32のフランジ部32bとの間に狭持されている。   Inside these first valve cap 31 and second valve cap 32, there is housed a conductive elastic deformation plate 33 that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure. The conductive elastic deformation plate 33 serves as a valve member, and includes a concave portion 33a and a flange portion 33b. The lowest portion of the recess 33a is fixedly disposed on the upper surface of the recess 32a of the second valve cap 32 by ultrasonic welding or laser welding, and the flange portion 33b is connected to the flange portion 31b of the first valve cap 31 and the second portion. The two valve caps 32 are sandwiched between the flange portions 32b.

フランジ部32bの上部の一部には、リング状のPTC(Positive Temperature Coefficient)サーミスタ素子34が配設され、電池内に過電流が流れて異常な発熱現象を生じると、このPTCサーミスタ素子34の抵抗値が増大して過電流を減少させる。そして、電池内部のガス圧が上昇して所定の圧力以上になると導電性弾性変形板33の凹部33aは変形するため、導電性弾性変形板33と第2弁キャップ32の凹部32aとの接触が遮断されて過電流あるいは短絡電流が遮断されるようになる。また、過電流あるいは短絡電流が遮断された後、さらに電池内部のガス圧が上昇すると導電性弾性変形板33に形成されているノッチ部33cが開裂して、ガスがガス抜き孔31cから放出されるようになっている。   A ring-shaped PTC (Positive Temperature Coefficient) thermistor element 34 is disposed at a part of the upper portion of the flange portion 32b. When an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the PTC thermistor element 34 The resistance value increases to reduce the overcurrent. When the gas pressure inside the battery rises and exceeds a predetermined pressure, the concave portion 33a of the conductive elastic deformation plate 33 is deformed, so that the contact between the conductive elastic deformation plate 33 and the concave portion 32a of the second valve cap 32 is prevented. As a result, the overcurrent or short circuit current is cut off. Further, when the gas pressure inside the battery further rises after the overcurrent or short circuit current is cut off, the notch portion 33c formed in the conductive elastic deformation plate 33 is cleaved and the gas is released from the gas vent hole 31c. It has become so.

この場合、第2弁キャップ32のフランジ部32bの上にポリプロピレン(PP)製の封口体用ガスケット35を載置するとともに、この封口体用ガスケット35の上に導電性弾性変形板33のフランジ部33bおよびPTCサーミスタ素子34を載置する。この後、第2弁キャップ32のフランジ部32bの端部を内方にかしめ加工することにより、第1弁キャップ31は封口体用ガスケット35により気密状態で第2弁キャップ32に保持された封口体30が形成される。そして、外装缶20の開口部にポリプロピレン(PP)製の外装缶用ガスケット36とともに封口体30を載置し、図示しない発電要素が収容された外装缶20の上端部(かしめ部)21を内方にかしめることにより封口して電池が作製される。   In this case, a sealing member gasket 35 made of polypropylene (PP) is placed on the flange portion 32 b of the second valve cap 32, and the flange portion of the conductive elastic deformation plate 33 is placed on the sealing member gasket 35. 33b and the PTC thermistor element 34 are mounted. Thereafter, the end portion of the flange portion 32b of the second valve cap 32 is caulked inward, whereby the first valve cap 31 is sealed by the sealing member gasket 35 and held by the second valve cap 32 in an airtight state. A body 30 is formed. Then, the sealing body 30 is placed in the opening of the outer can 20 together with the gasket 36 for the outer can made of polypropylene (PP), and the upper end portion (caulking portion) 21 of the outer can 20 in which the power generation element (not shown) is accommodated is placed inside. The battery is manufactured by sealing by caulking.

ところで、上述した封口体30を備えた電池においては、電池の内部圧力が所定の圧力以上に上昇すると導電性弾性変形板33が変形して、導電性弾性変形板33と第2弁キャップ32の凹部32aとの接触が遮断され、電池に過電流や短絡電流が流れるのを防止している。このため、電池の内部圧力を導電性弾性変形板33に伝達させるために、第2弁キャップ32の凹部32aの角部にはガス抜き孔32cが設けられている。   By the way, in the battery provided with the sealing body 30 described above, when the internal pressure of the battery rises above a predetermined pressure, the conductive elastic deformation plate 33 is deformed, and the conductive elastic deformation plate 33 and the second valve cap 32 Contact with the recess 32a is blocked, preventing overcurrent and short-circuit current from flowing through the battery. For this reason, in order to transmit the internal pressure of the battery to the conductive elastic deformation plate 33, gas vent holes 32 c are provided at the corners of the recesses 32 a of the second valve cap 32.

しかしながら、この封口体30を備えた電池が落下などの衝撃を受けた場合、封口体30の密閉性が壊れて、ガス抜き孔32cを通して、主に、図3(b)に矢印で示す3〜6の経路を経て、電解液が電池外部にリークするという問題が生じた。一方、外装缶20のかしめ部21と封口体30との間は肉厚が厚いポリプロピレン(PP)製の外装缶用ガスケット36が介在しているため、これらの間(図3(b)に矢印で示す1、2の経路)を通して電解液が電池外部にリークすることは殆どない。 However, when the battery provided with the sealing body 30 is subjected to an impact such as dropping, the sealing property of the sealing body 30 is broken, and mainly through the gas vent hole 32c , indicated by the arrow 3 in FIG. There was a problem that the electrolyte leaked to the outside of the battery through the route 6. On the other hand, since the gasket 36 for exterior cans made of polypropylene (PP) having a large thickness is interposed between the caulked portion 21 of the exterior can 20 and the sealing body 30, an arrow (FIG. 3B) The electrolyte solution hardly leaks outside the battery through the paths 1 and 2 shown in FIG.

ところが、第1弁キャップ31のフランジ部31bと第2弁キャップ32のフランジ部32bとの間に配設された封口体用ガスケット35の肉厚は薄く形成されているため、落下などの衝撃を受けて封口体30が変形すると、第2弁キャップ32のフランジ部32bと封口体用ガスケット35の間の経路(図3(b)に矢印で示す3)および封口体用ガスケット35と導電性弾性変形板33のフランジ部33bの間の経路(図3(b)に矢印で示す4)を通して電解液が電池外部にリークする。   However, since the sealing member gasket 35 disposed between the flange portion 31b of the first valve cap 31 and the flange portion 32b of the second valve cap 32 is formed thin, it does not cause an impact such as dropping. When the sealing body 30 is deformed in response, the path between the flange portion 32b of the second valve cap 32 and the sealing body gasket 35 (indicated by an arrow 3 in FIG. 3B), and the sealing body gasket 35 and the conductive elasticity. The electrolyte leaks to the outside of the battery through a path (4 indicated by an arrow in FIG. 3B) between the flange portions 33b of the deformation plate 33.

また、第1弁キャップ31のフランジ部31bとPTCサーミスタ素子34との間およびPTCサーミスタ素子34と導電性弾性変形板33のフランジ部33bとの間は、金属部品同士が直接接触しているため、十分な密閉性が得られず、落下などの衝撃を受けて封口体30が変形すると、第1弁キャップ31のフランジ部31bとPTCサーミスタ素子34との間の経路(図3(b)に矢印で示す5)およびPTCサーミスタ素子34と導電性弾性変形板33のフランジ部33bとの間の経路(図3(b)に矢印で示す6)を通して電解液が電池外部にリークする。   Further, metal parts are in direct contact between the flange portion 31b of the first valve cap 31 and the PTC thermistor element 34 and between the PTC thermistor element 34 and the flange portion 33b of the conductive elastic deformation plate 33. When the sealing body 30 is deformed due to an impact such as a drop due to insufficient sealing performance, the path between the flange portion 31b of the first valve cap 31 and the PTC thermistor element 34 (see FIG. 3B). The electrolyte leaks to the outside of the battery through 5) indicated by an arrow and a path (6 indicated by an arrow in FIG. 3B) between the PTC thermistor element 34 and the flange portion 33b of the conductive elastic deformation plate 33.

このため、シール性を向上させるために、シール材、ガスケット材料、ガスケット形状、かしめ形状などについて種々検討したが、電池変形時においては、封口体用ガスケット部分でのシール性および金属部品同士の接触部分でのシール性を確保することは困難であった。   For this reason, in order to improve the sealing performance, various studies were made on the sealing material, gasket material, gasket shape, caulking shape, etc., but when the battery was deformed, the sealing performance at the gasket portion for the sealing body and the contact between the metal parts It was difficult to ensure the sealability at the part.

そこで、本発明者らは、特許文献2(特開2004−139809号公報)にて、安全機構を維持しつつシール性能を向上させた密閉型電池を提案した。この特許文献2にて提案した密閉型電池においては、図2に示すように、外部端子となる第1弁キャップ11と該第1弁キャップを絶縁状態で保持するとともに電池内の一方の電極に導電接続された第2弁キャップ12とからなる封口体10が発電要素を収容した金属製外装缶20の開口部に配設されている。そして、電池内圧が第1の設定圧力に上昇すると弾性変形して第2弁キャップとの電気的接続状態を遮断する導電性弾性変形板14を第1弁キャップ11と第2弁キャップ12との間にこれらと導電接続状態で備えている。そして、電池内圧が第1の設定圧力よりも低い第2の設定圧力に達すると破断するノッチ部13aを第2弁キャップ12の一部に一体的に形成された肉薄部13に備えるようにしている。   In view of this, the inventors of the present invention have proposed a sealed battery having improved sealing performance while maintaining a safety mechanism in Japanese Patent Application Laid-Open No. 2004-139809. In the sealed battery proposed in Patent Document 2, as shown in FIG. 2, the first valve cap 11 serving as an external terminal and the first valve cap are held in an insulated state, and one electrode in the battery is connected. A sealing body 10 composed of a conductively connected second valve cap 12 is disposed in an opening of a metal outer can 20 containing a power generation element. Then, when the battery internal pressure rises to the first set pressure, the conductive elastic deformation plate 14 that is elastically deformed and interrupts the electrical connection state with the second valve cap is provided between the first valve cap 11 and the second valve cap 12. These are provided in conductive connection with these. The thin portion 13 formed integrally with a part of the second valve cap 12 is provided with a notch portion 13a that breaks when the battery internal pressure reaches a second set pressure lower than the first set pressure. Yes.

これにより、電池内圧が第2の設定圧力に達するまでは第2弁キャップ12により電池内が密閉状態が保持されるので、落下などの衝撃を受けて封口体が変形しても封口体10の密閉性を維持することができ、電解液が電池外部にリークすることを未然に防止することが可能となる。そして、電池内圧が第2の設定圧力に達すると、第2弁キャップ12の一部に一体的に形成されたノッチ部13aが破断するので、第1の設定圧力に達するまでは導電性弾性変形板14により電池内が密閉状態保持される。この後、電池内圧が第1の設定圧力に達すると導電性弾性変形板14が変形して該導電性弾性変形板14と第2弁キャップ12との電気的接続状態が遮断されるようになる。
特開2000−36293号公報 特開2004−139809号公報
As a result, since the inside of the battery is kept sealed by the second valve cap 12 until the battery internal pressure reaches the second set pressure, even if the sealing body is deformed due to an impact such as dropping, the sealing body 10 The sealing property can be maintained, and the electrolyte can be prevented from leaking outside the battery. When the battery internal pressure reaches the second set pressure, the notch portion 13a formed integrally with a part of the second valve cap 12 is broken, so that the conductive elastic deformation until the first set pressure is reached. by a plate 14 in the battery is kept in a sealed state. Thereafter, when the battery internal pressure reaches the first set pressure, the conductive elastic deformation plate 14 is deformed, and the electrically connected state between the conductive elastic deformation plate 14 and the second valve cap 12 is cut off. .
JP 2000-36293 A JP 2004-139809 A

しかしながら、上述した特許文献2にて提案した密閉型電池であっても、図2の矢印で示す経路1および経路2の漏液経路が残存することとなる。このため、落下などの衝撃により電池の封口部に変形を生じたり、あるいは過充電状態などにより電池温度が上昇してガスケット(主に、外装缶用ガスケット18)が軟化すると、図2の矢印で示す経路1あるいは経路2を通して漏液が発生するという問題を生じた。
そこで、本発明は上述の如き問題点を解消するためになされたものであって、落下などの衝撃により電池の封口部に変形を生じたり、あるいは過充電状態などにより電池温度が上昇してガスケットが軟化しても、漏液が生じにくくして、密閉性に優れた密閉型電池を提供できるようにすることを目的とする。
However, even in the sealed battery proposed in Patent Document 2 described above, the leakage paths of the path 1 and the path 2 indicated by the arrows in FIG. 2 remain. Therefore, when the battery sealing portion is deformed by an impact such as dropping or the battery temperature rises due to an overcharged state or the like, and the gasket (mainly, the outer can gasket 18) is softened, the arrow in FIG. There was a problem that leakage occurred through the route 1 or the route 2 shown.
Therefore, the present invention has been made to solve the above-described problems, and the gasket is deformed in the sealing portion of the battery due to an impact such as dropping, or the battery temperature rises due to an overcharged state, etc. It is an object of the present invention to provide a sealed battery that is less likely to leak even when softened and has excellent sealing properties.

本発明の密閉型電池は、外部端子となる第1弁キャップと、該第1弁キャップを封口体用ガスケットおよび導電性弾性変形板を介して保持するとともに電池内の一方の電極に導電接続された第2弁キャップとを備えた封口体が外装缶用ガスケットを介して発電要素を収容した金属製外装缶の開口部に配設されて該開口部が密封されている。そして、上記目的を達成するため、第1弁キャップは、第2弁キャップのフランジ部の端部を内方にかしめ加工することにより、当該第2弁キャップのフランジ部により保持されているとともに、封口体用ガスケットの第2弁キャップのかしめ部の端部からはみ出た部分と、外装缶用ガスケットの外装缶のかしめ部の端部からはみ出た部分とが溶着されている。 The sealed battery of the present invention includes a first valve cap serving as an external terminal, the first valve cap being held via a gasket for sealing body and a conductive elastic deformation plate, and electrically connected to one electrode in the battery. A sealing body including the second valve cap is disposed in the opening of the metal outer can containing the power generation element via the outer can gasket, and the opening is sealed. In order to achieve the above object, the first valve cap is held by the flange portion of the second valve cap by caulking the end of the flange portion of the second valve cap inward, A portion protruding from the end of the caulking portion of the second valve cap of the gasket for sealing body and a portion protruding from the end of the caulking portion of the outer can of the gasket for outer can are welded.

このように、封口体用ガスケットの第2弁キャップのかしめ部の端部からはみ出た部分と、外装缶用ガスケットの外装缶のかしめ部の端部からはみ出た部分とが溶着されていると、落下などの衝撃により電池の封口部に変形を生じたり、あるいは過充電状態などにより電池温度が上昇して封口体用ガスケットあるいは外装缶用ガスケットが軟化しても、図2の矢印で示す経路2が遮断されるようになる。このため、当該経路2を通して電解液が漏液するという問題を防止できるようになる。 Thus, when the portion protruding from the end of the caulking portion of the second valve cap of the gasket for sealing body and the portion protruding from the end of the caulking portion of the outer can of the outer can gasket are welded, Even if the sealing portion of the battery is deformed due to an impact such as dropping, or the battery temperature rises due to an overcharged state or the like and the gasket for the sealing body or the gasket for the outer can is softened, the path 2 indicated by the arrow in FIG. Will be blocked. For this reason, the problem that the electrolyte solution leaks through the path 2 can be prevented.

この場合、導電性弾性変形板は第2弁キャップと導電接続状態で配設されていて、電池内圧が第1の設定圧力に上昇すると弾性変形して当該第2弁キャップとの電気的接続状態が遮断されるようになされており、第2弁キャップの一部には電池内圧が第1の設定圧力よりも低い第2の設定圧力に達すると破断するノッチ部が配設されているのが望ましい。   In this case, the conductive elastic deformation plate is disposed in conductive connection with the second valve cap, and is elastically deformed when the battery internal pressure rises to the first set pressure, and is electrically connected to the second valve cap. Is cut off, and a part of the second valve cap is provided with a notch portion that breaks when the battery internal pressure reaches a second set pressure lower than the first set pressure. desirable.

なお、このような密閉型電池を製造するには、第2弁キャップのフランジ部の端部を内方にかしめ加工して、当該第2弁キャップのフランジ部により第1弁キャップを保持させて封口体を形成する封口体形成工程と、上述した封口体を外装缶用ガスケットを介して発電要素を収容した金属製外装缶の開口部に配置する封口体配置工程と、封口体が配置された外装缶の開口部の先端部を当該封口体側にかしめ付ける第1かしめ工程と、封口体用ガスケットの第2弁キャップの端部らからはみ出た部分と、外装缶用ガスケットの外装缶のかしめ部の端部からはみ出た部分とを溶着する溶着工程と、再度、外装缶の開口部の先端部を当該封口体側にかしめ付ける第2かしめ工程とを備えるようにすればよい。 In order to manufacture such a sealed battery, the end of the flange portion of the second valve cap is caulked inward, and the first valve cap is held by the flange portion of the second valve cap. A sealing body forming step for forming a sealing body , a sealing body arranging step for arranging the sealing body described above at an opening of a metal outer can containing a power generation element via a gasket for an outer can, and a sealing body are arranged. A first caulking step for caulking the tip of the opening of the outer can to the sealing body side, a portion protruding from the end of the second valve cap of the gasket for the sealing body, and an caulking portion for the outer can of the gasket for the outer can What is necessary is just to provide the welding process which welds the part which protruded from the edge part of this, and the 2nd crimping process which crimps the front-end | tip part of the opening part of an exterior can again to the said sealing body side.

以下に、本発明の密閉型電池をリチウムイオン電池に適用した場合の好ましい実施の形態を図に基づいて説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は本発明の実施例の封口体をリチウムイオン電池の外装缶の開口部に取り付けた状態の要部を示す断面図である。また、図2は本発明の比較例(従来例)1の封口体をリチウムイオン電池の外装缶の開口部に取り付けた状態の要部を示す断面図である。さらに、図3は本発明の比較例(従来例)2の封口体をリチウムイオン電池の外装缶の開口部に取り付けた状態の要部を示す断面図である。   Hereinafter, a preferred embodiment when the sealed battery of the present invention is applied to a lithium ion battery will be described with reference to the drawings. However, the present invention is not limited to this embodiment, and the present invention is not limited to this embodiment. It is possible to carry out by appropriately changing without changing the purpose. FIG. 1 is a cross-sectional view showing the main part in a state where the sealing body of the embodiment of the present invention is attached to the opening of the outer can of the lithium ion battery. FIG. 2 is a cross-sectional view showing the main part of the comparative example (conventional example) 1 of the present invention attached to the opening of the outer can of the lithium ion battery. FIG. 3 is a cross-sectional view showing the main part in a state where the sealing body of Comparative Example 2 (conventional example) of the present invention is attached to the opening of the outer can of the lithium ion battery.

1.封口体
本発明の封口体10は、キャップ状に形成された正極キャップとなる第1弁キャップ11と、皿状に形成された底蓋となる第2弁キャップ12とを備えている。第1弁キャップ11は、ステンレスにより形成されていて電池外部に向けて膨出する凸部11aと、この凸部11aの底辺部を構成する平板状のフランジ部11bとからなり、凸部11aの角部には複数のガス抜き孔11cが設けられている。一方、第2弁キャップ12はステンレスにより形成されていて電池内部に向けて膨出する凹部12aと、この凹部12aの底辺部を構成する平板状のフランジ部12bとからなる。そして、この凹部12bの一部には肉薄部13が設けられており、この肉薄部13には電池内部の圧力が第2の設定圧力(例えば0.78〜1.08MPa)に達すると破断して、第2弁キャップ12の内外を連通する後述するノッチ部13aが形成されている。
1. Sealing Body The sealing body 10 of the present invention includes a first valve cap 11 serving as a positive electrode cap formed in a cap shape, and a second valve cap 12 serving as a bottom lid formed in a dish shape. The first valve cap 11 is made of stainless steel, and includes a convex portion 11a that bulges toward the outside of the battery, and a flat flange portion 11b that forms the bottom of the convex portion 11a. A plurality of vent holes 11c are provided at the corners. On the other hand, the second valve cap 12 is made of stainless steel, and includes a recess 12a that bulges toward the inside of the battery, and a flat flange portion 12b that constitutes the bottom of the recess 12a. A thin portion 13 is provided in a part of the recess 12b, and the thin portion 13 is broken when the internal pressure of the battery reaches a second set pressure (for example, 0.78 to 1.08 MPa). Thus, a later-described notch portion 13a that communicates the inside and outside of the second valve cap 12 is formed.

これらの第1弁キャップ11と第2弁キャップ12との内部には、電池内部のガス圧が上昇して第1の設定圧力(例えば14MPa)に達すると変形する導電性弾性変形板14が収容されている。この導電性弾性変形板14は弁部材となるものであって、凹部14aとフランジ部14bとからなり、例えば、厚みが0.2mmで表面の凹凸が0.005mmのアルミニウム箔から構成されている。凹部14aの最低部は第2弁キャップ12の凹部12aの上表面に超音波溶着またはレーザ溶接等により固着して配設されており、フランジ部14bは第1弁キャップ11のフランジ部11bと第2弁キャップ12のフランジ部12bとの間に狭持されている。   Inside these first valve cap 11 and second valve cap 12, there is housed a conductive elastic deformation plate 14 which deforms when the gas pressure inside the battery rises and reaches a first set pressure (for example, 14 MPa). Has been. The conductive elastic deformation plate 14 serves as a valve member, and includes a concave portion 14a and a flange portion 14b. For example, the conductive elastic deformation plate 14 is formed of an aluminum foil having a thickness of 0.2 mm and a surface irregularity of 0.005 mm. . The lowest part of the recessed part 14a is fixedly disposed on the upper surface of the recessed part 12a of the second valve cap 12 by ultrasonic welding or laser welding, and the flange part 14b is connected to the flange part 11b of the first valve cap 11 and the second part. The two-valve cap 12 is sandwiched between the flange portion 12b.

フランジ部14bの上部の一部には、リング状のPTC(Positive Temperature Coefficient)サーミスタ素子15が配設され、電池内に過電流が流れて異常な発熱現象を生じると、このPTCサーミスタ素子15の抵抗値が増大して過電流を減少させる。そして、電池内部のガス圧が上昇して第1の設定圧力(例えば14MPa)以上になると導電性弾性変形板14の凹部14aは変形する。このため、超音波溶着またはレーザ溶接等により固着された部分が剥がれて、導電性弾性変形板14と第2弁キャップ12の凹部12aとの接触が遮断され、過電流あるいは短絡電流が遮断されるようになる。また、過電流あるいは短絡電流が遮断された後、さらに電池内部のガス圧が上昇すると導電性弾性変形板14に形成されているノッチ部14cが開裂して、ガスがガス抜き孔11cから放出されるようになっている。   A ring-shaped PTC (Positive Temperature Coefficient) thermistor element 15 is disposed at a part of the upper portion of the flange portion 14b. When an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the PTC thermistor element 15 The resistance value increases to reduce the overcurrent. And if the gas pressure inside a battery rises and becomes more than 1st setting pressure (for example, 14 Mpa), the recessed part 14a of the electroconductive elastic deformation board 14 will deform | transform. For this reason, the part fixed by ultrasonic welding or laser welding is peeled off, the contact between the conductive elastic deformation plate 14 and the recess 12a of the second valve cap 12 is cut off, and the overcurrent or short circuit current is cut off. It becomes like this. Further, when the gas pressure inside the battery further increases after the overcurrent or the short-circuit current is cut off, the notch portion 14c formed in the conductive elastic deformation plate 14 is cleaved, and the gas is released from the gas vent hole 11c. It has become so.

そして、第2弁キャップ12のフランジ部12aの上に、断面形状がL字状で厚みが0.25mmでポリプロピレン(PP)製のリング状封口体用ガスケット16を載置するとともに、この封口体用ガスケット16の上に導電性弾性変形板14のフランジ部14bおよびPTCサーミスタ素子15を載置した。ついで、封口体用絶縁ガスケット16の下面と第2弁キャップ12のフランジ部12bの上面との接触部を熱溶着あるいは接着剤による接着により密着一体化させた。この後、第2弁キャップ12のフランジ部12bの端部を内方にかしめ加工することにより、第1弁キャップ11は封口体用ガスケット16を介して第2弁キャップ12のフランジ部12bにより保持され、封口体10が形成されることとなる。   Then, on the flange portion 12a of the second valve cap 12, a ring-shaped sealing body gasket 16 made of polypropylene (PP) having an L-shaped cross section and a thickness of 0.25 mm is placed. The flange portion 14 b of the conductive elastic deformation plate 14 and the PTC thermistor element 15 were placed on the gasket 16 for use. Next, the contact portion between the lower surface of the sealing insulating gasket 16 and the upper surface of the flange portion 12b of the second valve cap 12 was closely integrated by heat welding or bonding with an adhesive. Thereafter, the first valve cap 11 is held by the flange portion 12b of the second valve cap 12 via the sealing member gasket 16 by crimping the end portion of the flange portion 12b of the second valve cap 12 inward. Thus, the sealing body 10 is formed.

2.リチウムイオン電池
ついで、上述したように構成した封口体10を用いた実施例のリチウムイオン電池A、封口体10を用いた比較例1のリチウムイオン電池X、および図3に示すように、肉薄部がなく凹部32aの角部にガス抜き孔32cが設けられた封口体30を用いた比較例2のリチウムイオン電池Yの作製法について以下に説明する。
2. Next, the lithium ion battery A of the example using the sealing body 10 configured as described above, the lithium ion battery X of the comparative example 1 using the sealing body 10, and the thin portion as shown in FIG. A method for manufacturing the lithium ion battery Y of Comparative Example 2 using the sealing body 30 provided with the vent holes 32c at the corners of the recesses 32a will be described below.

まず、天然黒鉛よりなる負極活物質とポリビニリデンフルオライト(PVDF)よりなる結着剤等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとした。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により金属芯体(例えば、銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成した。この後、活物質層を塗布した負極板を乾燥機中を通過させて、スラリーあるいはペースト作製に必要であった有機溶剤を除去して乾燥させた。この乾燥負極板をロールプレス機により圧延した後、所定の形状に切断して負極板とした。   First, a negative electrode active material made of natural graphite and a binder made of polyvinylidene fluoride (PVDF) dissolved in an organic solvent made of N-methylpyrrolidone were mixed to obtain a slurry or paste. Apply these slurries or pastes uniformly in the case of a slurry using a die coater, a doctor blade, etc., and in the case of a paste, the entire surface of both sides of a metal core (for example, copper foil) by a roller coating method, A negative electrode plate coated with an active material layer was formed. Thereafter, the negative electrode plate coated with the active material layer was passed through a drier to remove the organic solvent necessary for slurry or paste preparation and dried. The dried negative electrode plate was rolled with a roll press and then cut into a predetermined shape to obtain a negative electrode plate.

一方、LiCoO2からなる正極活物質と、アセチレンブラック、グラファイト等の炭素系導電剤と、ポリビニリデンフルオライト(PVDF)よりなる結着剤等とを、N−メチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとした。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により金属芯体(例えば、アルミニウム箔)の両面に均一に塗布して、活物質層を塗布した正極板を形成した。この後、活物質層を塗布した正極板を乾燥機中を通過させて、スラリーあるいはペースト作製に必要であった有機溶剤を除去して乾燥させた後、この乾燥正極板をロールプレス機により圧延し、所定の形状に切断して正極板とした。 On the other hand, a positive electrode active material made of LiCoO 2 , a carbon conductive agent such as acetylene black or graphite, and a binder made of polyvinylidene fluoride (PVDF) are dissolved in an organic solvent made of N-methylpyrrolidone. These were mixed to form a slurry or paste. Apply these slurries or pastes uniformly on both sides of a metal core (for example, aluminum foil) by using a die coater, doctor blade, etc. in the case of a slurry, or a roller coating method in the case of a paste. A positive electrode plate coated with the layer was formed. Thereafter, the positive electrode plate coated with the active material layer is passed through a dryer to remove the organic solvent necessary for slurry or paste preparation and dried, and then the dried positive plate is rolled by a roll press. Then, it was cut into a predetermined shape to obtain a positive electrode plate.

上述のようにして作製した負極板と正極板とを、有機溶媒との反応性が低く、かつ安価なポリオレフィン系樹脂からなる微多孔膜、好適にはポリエチレン製微多孔膜からなるセパレータを間にして重ね合わせ、巻き取り機により卷回した。この後、最外周をテープ止めして渦巻状電極体とした。ついで、ステンレス製の負極端子を兼ねる有底筒状の円筒形外装缶20の開口部21より、上述のようにして作製した渦巻状電極体の上下にそれぞれ絶縁板を配置した後、この渦巻状電極体を外装缶20内に挿入した。このとき、渦巻状電極体の負極板より延出する負極導電タブを外装缶に溶接した。   The negative electrode plate and the positive electrode plate produced as described above are sandwiched between a microporous membrane made of a polyolefin resin, preferably a polyethylene microporous membrane, which has low reactivity with an organic solvent and is inexpensive. And then wound with a winder. Thereafter, the outermost periphery was taped to form a spiral electrode body. Next, after the insulating plates are arranged above and below the spiral electrode body produced as described above from the opening 21 of the bottomed cylindrical outer can 20 that also serves as a stainless steel negative electrode terminal, this spiral shape is arranged. The electrode body was inserted into the outer can 20. At this time, the negative electrode conductive tab extending from the negative electrode plate of the spiral electrode body was welded to the outer can.

この後、各外装缶20の上部に溝入れ加工を施して環状溝20aを形成した後、この環状溝20a上に外装缶用ガスケット18(36)を装着した。その後、渦巻状電極体の正極板より延出する正極導電タブを封口体10(30)の第2弁キャップ12(32)の凹部12a(32a)の下面に溶接した。ついで、外装缶20の開口部に非水電解液(エチレンカーボネート(EC)とジエチルカーボネート(DEC)を等体積比で混合した溶媒に、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解した溶液)をそれぞれ注入した。この後、外装缶20の開口部に外装缶用ガスケット18(36)を介して封口体10(30)を載置し、外装缶20の開口部の上端部(かしめ部)21を封口体10(30)側にかしめて液密に封口した。これにより、図2に示すような比較例1のリチウムイオン電池Xを作製するとともに、図3に示すような比較例2のリチウムイオン電池Yを作製した。ここで、封口体10を用いて作製したものを比較例1のリチウムイオン電池Xとし、封口体30を用いて作製したものを比較例2のリチウムイオン電池Yとした。 Thereafter, the upper portion of each outer can 20 was grooved to form an annular groove 20a, and then the outer can gasket 18 (36) was mounted on the annular groove 20a. Then, the positive electrode conductive tab extended from the positive electrode plate of a spiral electrode body was welded to the lower surface of the recessed part 12a (32a) of the 2nd valve cap 12 (32) of the sealing body 10 (30). Next, a non-aqueous electrolyte (ethylene carbonate (EC) and diethyl carbonate (DEC) mixed in an equal volume ratio to the opening of the outer can 20 is mixed with 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ). Each dissolved solution was injected. Thereafter, the sealing body 10 (30) is placed in the opening of the outer can 20 via the outer can gasket 18 (36), and the upper end (caulking portion) 21 of the opening of the outer can 20 is sealed. It was caulked to the (30) side and sealed in a liquid-tight manner. Thus, a lithium ion battery X of Comparative Example 1 as shown in FIG. 2 was produced, and a lithium ion battery Y of Comparative Example 2 as shown in FIG. 3 was produced. Here, the lithium ion battery X of Comparative Example 1 was prepared using the sealing body 10, and the lithium ion battery Y of Comparative Example 2 was manufactured using the sealing body 30.

次いで、比較例1のリチウムイオン電池Xを用いて、封口体用ガスケット16が第2弁キャップ12のかしめ部の端部からはみ出た部分16aと、外装缶用ガスケット18の外装缶20のかしめ部21からはみ出た部分18aとを溶着した。この場合、図1(b)に示すように、外装缶用ガスケット18の外装缶20のかしめ部21からはみ出た部分18aに、約210℃に加熱された熱溶着リング19を10秒間押当てて、該部分18aを封口体用ガスケット16が第2弁キャップ12のかしめ部の端部からはみ出た部分16aに熱溶着するようにした。この後、外装缶20のかしめ部21を再度かしめて液密に封口した。これにより、図1(a)に示すような実施例のリチウムイオン電池Aを作製した。 Next, using the lithium ion battery X of Comparative Example 1, the sealing member gasket 16 protrudes from the end of the caulking portion of the second valve cap 12 and the caulking portion of the outer can 20 of the outer can gasket 18. The portion 18a protruding from 21 was welded. In this case, as shown in FIG. 1B, the heat welding ring 19 heated to about 210 ° C. is pressed for 10 seconds to the portion 18a of the outer can gasket 18 protruding from the caulking portion 21 of the outer can 20. The portion 18a is thermally welded to the portion 16a where the sealing member gasket 16 protrudes from the end portion of the caulking portion of the second valve cap 12. Thereafter, the caulking portion 21 of the outer can 20 was caulked again and sealed in a liquid-tight manner. Thereby, the lithium ion battery A of an Example as shown to Fig.1 (a) was produced.

3.漏液試験
(1)落下実験
ついで、上述のように作製したリチウムイオン電池A,X,Yをそれぞれ10個ずつ用意して、これらの各10個ずつのリチウムイオン電池A,X,Yをコンクリート上に1.5mの高さから落下させたときに、漏液(リーク)が発生した電池の個数を測定すると、下記の表1に示すような結果となった。なお、この漏液試験においては、電池を封口体10(30)を下向きにして1回落下させた後、封口体10(30)を上向きにして1回落下させ、ついで、電池の側面を下向きにして1回落下させて1セットとし、これを10セット行った。
3. Liquid Leakage Test (1) Dropping Experiment Next, 10 lithium ion batteries A, X, and Y prepared as described above were prepared, and 10 of each of these lithium ion batteries A, X, and Y were put into concrete. When the number of batteries in which liquid leakage (leakage) occurred when dropped from a height of 1.5 m was measured, the results shown in Table 1 below were obtained. In this liquid leakage test, the battery was dropped once with the sealing body 10 (30) facing down, then dropped once with the sealing body 10 (30) facing upward, and then the side of the battery faced downward. Then, it was dropped once to make one set, and 10 sets were performed.

(2)過充電試験
ついで、上述のように作製したリチウムイオン電池A,X,Yをそれぞれ10個ずつ用いて、1Itの充電々流で電池電圧が4.1Vになるまで充電し、その後、4.1Vの定電圧で3時間充電して満充電状態とした。このように満充電されたリチウムイオン電池A,X,Yのそれぞれ正・負極端子間に2Itの充電電流を流して、過充電開始から各電池の温度が130℃になるまで過充電を行い、過充電後に漏液(リーク)が発生した電池の個数を測定すると、下記の表1に示すような結果となった。なお、過充電開始から電池内が130℃になるまで過充電されると、電池内のガス圧が上昇して、第2弁キャップ12に形成されたノッチ部13aが破断するようになる。

Figure 0004854208
(2) Overcharge test Next, 10 lithium ion batteries A, X, and Y produced as described above were used to charge the battery voltage to 4.1 V with a charging current of 1 It, and then The battery was charged at a constant voltage of 4.1 V for 3 hours to be fully charged. In this way, a charging current of 2 It flows between the positive and negative terminals of each of the fully charged lithium ion batteries A, X, and Y to perform overcharging from the start of overcharging until the temperature of each battery reaches 130 ° C. When the number of batteries in which leakage (leakage) occurred after overcharging was measured, the results shown in Table 1 below were obtained. Note that, when the battery is overcharged from the start of overcharge until the temperature reaches 130 ° C., the gas pressure in the battery rises and the notch portion 13a formed in the second valve cap 12 breaks.
Figure 0004854208

上記表1の結果から明らかなように、電池Aにおいては、コンクリート上に1.5mの高さから落下させたに係わらず、漏液個数が0であるのに対して、電池Xにおいては10個の内1個(10%)、電池Yにおいては10個の内3個(30%)の電池に漏液が生じていたことが分かる。これは、電池Yにおいては、第2弁キャップ32の凹部32aの角部にガス抜き孔32cが設けられているため、落下の衝撃により封口体30の密閉性が壊れて、主に、ガス抜き孔32cから図3(b)の矢印3〜6の経路を通して電解液が電池外部にリークしたと考えられる。   As is apparent from the results of Table 1 above, in the battery A, the number of leaked liquids was 0, even though the battery A was dropped from a height of 1.5 m on the concrete, whereas in the battery X, 10 It can be seen that liquid leakage occurred in one (10%) of the batteries, and in battery Y, three of the 10 batteries (30%). In the battery Y, since the gas vent holes 32c are provided at the corners of the concave portions 32a of the second valve cap 32, the sealing performance of the sealing body 30 is broken due to the impact of the drop, and mainly the gas vent. It is considered that the electrolyte leaked from the hole 32c to the outside of the battery through the paths indicated by arrows 3 to 6 in FIG.

また、電池A、電池Xにおいては、第2弁キャップ12にガス抜き孔が設けられていない(薄肉部13にノッチ部13aが設けられている)ため、落下の衝撃により封口体10の密閉性が壊れることはない。ところが、電池Xにおいては、落下の衝撃により第2弁キャップ12と外装缶用ガスケット18の間の密閉性が壊れて、図2の矢印の2の経路を通して電解液が電池外部にリークしたと考えられる。一方、電池Aにおいては、封口体用ガスケット16が第2弁キャップ12のかしめ部の端部からはみ出た部分16aと、外装缶用ガスケット18の外装缶20のかしめ部21からはみ出た部分18aとは溶着されているので、第2弁キャップ12と外装缶用ガスケット18の間から漏液が生じることはないためである。 Further, in the battery A and the battery X, the second valve cap 12 is not provided with a gas vent hole (the notch portion 13a is provided in the thin wall portion 13), and thus the sealing property of the sealing body 10 due to the impact of dropping. Will not break. However, in the battery X, it is considered that the sealing performance between the second valve cap 12 and the outer can gasket 18 was broken by the impact of the drop, and the electrolyte leaked to the outside of the battery through the path indicated by the arrow 2 in FIG. It is done. On the other hand, in the battery A, a portion 16 a where the sealing body gasket 16 protrudes from the end portion of the caulking portion of the second valve cap 12, and a portion 18 a which protrudes from the caulking portion 21 of the outer can 20 of the outer can gasket 18. This is because no leakage occurs between the second valve cap 12 and the outer can gasket 18.

また、上記表1の結果から明らかなように、電池Aにおいては、過充電開始から電池内が130℃になるまで過充電されて、電池内のガス圧が上昇して、第2弁キャップ12に形成されたノッチ部13aが破断したのに係わらず、漏液個数が10個の内2個(20%)であるのに対して、電池Xにおいては10個の内4個(40%)、電池Yにおいては10個の内4個(40%)の電池に漏液が生じていたことが分かる。   Further, as is apparent from the results in Table 1, the battery A is overcharged from the start of overcharge until the inside of the battery reaches 130 ° C., the gas pressure in the battery rises, and the second valve cap 12 The number of leaked liquids is 2 out of 10 (20%), while the battery X has 4 (40%) despite the fact that the notch portion 13a formed in FIG. In the battery Y, it can be seen that liquid leakage occurred in 4 out of 10 batteries (40%).

これは、電池Yにおいては、電池内の温度上昇に伴い、外装缶用ガスケット36が軟化することにより、図3(b)の矢印1,2の経路から漏液が生じるとともに、封口体用ガスケット35が軟化することにより、ガス抜き孔32cから図3(b)の矢印3〜6の経路を通して電解液が電池外部にリークしたと考えられる。また、電池Xにおいては、電池内の温度上昇に伴い、外装缶用ガスケット18が軟化することにより、図2の矢印1,2の経路から漏液が生じるとともに、封口体用ガスケット16が軟化することにより、破断したノッチ部13aから図3(b)の矢印3〜6の経路を通して電解液が電池外部にリークしたと考えられる。これらに対して、電池Aにおいては、封口体用ガスケット16が第2弁キャップ12のかしめ部の端部からはみ出た部分16aと、外装缶用ガスケット18の外装缶20のかしめ部21からはみ出た部分18aとは溶着されているので、図3(b)の矢印2,3の経路から漏液が生じることはないが、図1の矢印1の経路および破断したノッチ部13aから図3(b)の矢印4〜6の経路を通して漏液が生じたためと考えられる。 In the battery Y, as the temperature in the battery rises, the outer can gasket 36 is softened, so that leakage occurs from the path indicated by arrows 1 and 2 in FIG. It is considered that the electrolyte solution leaked from the gas vent hole 32c to the outside of the battery through the path of arrows 3 to 6 in FIG. Further, in the battery X, as the temperature inside the battery rises, the outer can gasket 18 is softened, so that leakage occurs from the path indicated by arrows 1 and 2 in FIG. 2 and the sealing member gasket 16 is softened. Thus, it is considered that the electrolyte leaked from the broken notch portion 13a to the outside of the battery through the path indicated by arrows 3 to 6 in FIG. On the other hand, in battery A, the sealing member gasket 16 protruded from the end 16a of the second valve cap 12 from the end portion of the caulking portion and from the caulking portion 21 of the outer can 20 of the outer can gasket 18. Since the portion 18a is welded, leakage does not occur from the path indicated by arrows 2 and 3 in FIG. 3B, but the path indicated by arrow 1 in FIG. This is probably because leakage occurred through the route indicated by arrows 4-6 in FIG.

なお、上述の実施形態においては、負極活物質として天然黒鉛を用いる例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等が好適である。また、酸化錫、酸化チタン等のリチウムイオンを吸蔵・脱離し得る酸化物を用いてもよい。   In the above-described embodiment, an example in which natural graphite is used as the negative electrode active material has been described. However, in addition to natural graphite, a carbon-based material that can occlude / desorb lithium ions, such as graphite, carbon black, coke, and glass. Like carbon, carbon fiber, or a fired body thereof is preferable. Further, an oxide capable of inserting and extracting lithium ions such as tin oxide and titanium oxide may be used.

また、上述の実施形態においては、正極活物質としてLiCoOを用いる例について説明したが、LiCoO以外に、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物、例えば、LiNiOLiCo Ni (1−X) 、LiCrO、LiVO、LiMnO、αLiFeO、LiTiO、LiScO、LiYO、LiMn等が好ましいが、特に、LiNiOLiCo Ni (1−X) を単独で用いるかあるいはこれらの二種以上を混合して用いるのが好適である。また、ポリアセチレン、ポリアニリン等の導電性ポリマーを用いてもよい。 In the above-described embodiment, an example in which LiCoO 2 is used as the positive electrode active material has been described. However, in addition to LiCoO 2 , lithium-containing transition metal compounds that can accept lithium ions as guests, such as LiNiO 2 , LiCo X Ni ( 1-X) O 2 , LiCrO 2 , LiVO 2 , LiMnO 2 , αLiFeO 2 , LiTiO 2 , LiScO 2 , LiYO 2 , LiMn 2 O 4, etc. are preferred, and in particular, LiNiO 2 , LiCo X Ni (1-X) It is preferable to use O 2 alone or a mixture of two or more of these. Further, a conductive polymer such as polyacetylene or polyaniline may be used.

さらに、電解液としては、有機溶媒に溶質としてリチウム塩を溶解したイオン伝導体であって、イオン伝導率が高く、正・負の各電極に対して化学的、電気化学的に安定で、使用可能温度範囲が広くかつ安全性が高く、安価なものであれば使用することができる。例えば、有機溶媒としては上記エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒以外に、プロピレンカーボネート(PC)、スルフォラン(SL)、テトラハイドロフラン(THF)、γブチロラクトン(GBL)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2ジメトキシエタン(DME)等あるいはこれらの混合溶媒が好適である。また、溶質としては電子吸引性の強いリチウム塩を使用し、上記LiPF6以外に例えば、LiBF4、LiClO4、LiAsF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3等が好適である。 Furthermore, the electrolyte is an ionic conductor in which a lithium salt is dissolved as a solute in an organic solvent, has high ionic conductivity, is chemically and electrochemically stable for both positive and negative electrodes, and is used. If the possible temperature range is wide, the safety is high, and the cost is low, it can be used. For example, as the organic solvent, in addition to the mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), propylene carbonate (PC), sulfolane (SL), tetrahydrofuran (THF), γ-butyrolactone (GBL), dimethyl Carbonate (DMC), ethyl methyl carbonate (EMC), 1,2 dimethoxyethane (DME) and the like, or a mixed solvent thereof is preferable. Further, a lithium salt having a strong electron-withdrawing property is used as a solute. In addition to LiPF 6 , for example, LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 and the like are preferable.

なお、上述の実施形態においては、本発明をリチウムイオン電池に適用する例について説明したが、リチウムイオン電池以外に、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などの各種の密閉型電池においても本発明を適用することが可能である。   In the above-described embodiment, an example in which the present invention is applied to a lithium ion battery has been described. However, in addition to the lithium ion battery, the present invention is also applied to various sealed batteries such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery. It is possible to apply.

本発明の実施例の封口体をリチウムイオン電池の外装缶に取り付けた状態の要部を示す断面図である。It is sectional drawing which shows the principal part of the state which attached the sealing body of the Example of this invention to the exterior can of the lithium ion battery. 本発明の比較例1の封口体をリチウムイオン電池の外装缶の開口部に取り付けた状態の要部を示す断面図である。It is sectional drawing which shows the principal part of the state which attached the sealing body of the comparative example 1 of this invention to the opening part of the exterior can of a lithium ion battery. 本発明の比較例2の封口体をリチウムイオン電池の外装缶の開口部に取り付けた状態の要部を示す断面図である。It is sectional drawing which shows the principal part of the state which attached the sealing body of the comparative example 2 of this invention to the opening part of the exterior can of a lithium ion battery.

符号の説明Explanation of symbols

10…封口体、11…第1弁キャップ、11a…凸部、11b…フランジ部、11c…ガス抜き孔、12…第2弁キャップ、12a…凹部、12b…フランジ部、13…薄肉部、13a…ノッチ部、14…導電性弾性変形板、14a…凹部、14b…フランジ部、14c…ノッチ部、15…リング状PTCサーミスタ素子、16…封口体用ガスケット、18…外装缶用ガスケット、19…熱溶着リング、20…外装缶、20a…環状溝、21…外装缶の上端部(かしめ部)
DESCRIPTION OF SYMBOLS 10 ... Sealing body, 11 ... 1st valve cap, 11a ... Convex part, 11b ... Flange part, 11c ... Gas vent hole, 12 ... 2nd valve cap, 12a ... Recessed part, 12b ... Flange part, 13 ... Thin part, 13a DESCRIPTION OF SYMBOLS ... Notch part, 14 ... Conductive elastic deformation board, 14a ... Recessed part, 14b ... Flange part, 14c ... Notch part, 15 ... Ring-shaped PTC thermistor element, 16 ... Gasket for sealing body, 18 ... Gasket for outer can, 19 ... Thermal welding ring, 20 ... outer can, 20a ... annular groove, 21 ... upper end of the outer can (caulking)

Claims (3)

外部端子となる第1弁キャップと、該第1弁キャップを封口体用ガスケットおよび導電性弾性変形板を介して保持するとともに電池内の一方の電極に導電接続された第2弁キャップとからなる封口体が外装缶用ガスケットを介して発電要素を収容した金属製外装缶の開口部に配設されて該開口部が密封された密閉型電池であって、
前記第1弁キャップは、前記第2弁キャップのフランジ部の端部を内方にかしめ加工することにより、当該第2弁キャップのフランジ部により保持されているとともに、
前記封口体用ガスケットの前記第2弁キャップのかしめ部の端部からはみ出た部分と、前記外装缶用ガスケットの前記外装缶のかしめ部の端部からはみ出た部分とが溶着されていることを特徴とする密閉型電池。
A first valve cap serving as an external terminal; and a second valve cap that holds the first valve cap via a sealing body gasket and a conductive elastic deformation plate and is conductively connected to one electrode in the battery. A sealed battery in which a sealing body is disposed at an opening of a metal outer can containing a power generation element via a gasket for an outer can, and the opening is sealed;
The first valve cap is held by the flange portion of the second valve cap by caulking the end of the flange portion of the second valve cap inward,
The portion protruding from the end portion of the caulking portion of the second valve cap of the gasket for sealing body and the portion protruding from the end portion of the caulking portion of the outer can of the gasket for outer can are welded. A sealed battery.
前記導電性弾性変形板は前記第2弁キャップと導電接続状態で配設されていて、電池内圧が第1の設定圧力に上昇すると弾性変形して当該第2弁キャップとの電気的接続状態が遮断されるようになされており、
前記第2弁キャップの一部には電池内圧が前記第1の設定圧力よりも低い第2の設定圧力に達すると破断するノッチ部が配設されていることを特徴とする請求項1に記載の密閉型電池。
The conductive elastic deformation plate is disposed in a conductive connection state with the second valve cap. When the battery internal pressure rises to the first set pressure, the conductive elastic deformation plate is elastically deformed and an electrical connection state with the second valve cap is established. Are designed to be blocked,
The notch part which fractures | ruptures when the battery internal pressure reaches the 2nd setting pressure lower than the said 1st setting pressure is arrange | positioned in a part of said 2nd valve cap. Sealed battery.
外部端子となる第1弁キャップと、該第1弁キャップを封口体用ガスケットおよび導電性弾性変形板を介して保持するとともに電池内の一方の電極に導電接続された第2弁キャップとからなる封口体を外装缶用ガスケットを介して発電要素を収容した金属製外装缶の開口部に配設して該開口部を密封するようにした密閉型電池の製造方法であって、
前記第2弁キャップのフランジ部の端部を内方にかしめ加工して、当該第2弁キャップのフランジ部により前記第1弁キャップを保持させて封口体を形成する封口体形成工程と、
前記封口体を前記外装缶用ガスケットを介して発電要素を収容した金属製外装缶の開口部に配置する封口体配置工程と、
前記封口体が配置された前記外装缶の開口部の先端部を当該封口体側にかしめ付ける第1かしめ工程と、
前記封口体用ガスケットの前記第2弁キャップのかしめ部の端部からはみ出た部分と、前記外装缶用ガスケットの前記外装缶のかしめ部の端部からはみ出た部分とを溶着する溶着工程と、
再度、前記外装缶の開口部の先端部を当該封口体側にかしめ付ける第2かしめ工程とを備えたことを特徴とする密閉型電池の製造方法。
A first valve cap serving as an external terminal; and a second valve cap that holds the first valve cap via a sealing body gasket and a conductive elastic deformation plate and is conductively connected to one electrode in the battery. A method for producing a sealed battery in which a sealing body is disposed in an opening of a metal outer can containing a power generation element via a gasket for an outer can, and the opening is sealed,
A sealing body forming step in which an end portion of the flange portion of the second valve cap is caulked inward to hold the first valve cap by the flange portion of the second valve cap, thereby forming a sealing body;
A sealing body arranging step of arranging the sealing body in an opening of a metal outer can containing a power generation element via the gasket for the outer can;
A first caulking step of caulking the tip of the opening of the outer can where the sealing body is disposed to the sealing body side;
A welding step of welding a portion protruding from the end of the caulking portion of the second valve cap of the gasket for sealing body and a portion protruding from an end of the caulking portion of the outer can of the gasket for outer can;
A method for producing a sealed battery, comprising a second caulking step of caulking the tip of the opening of the outer can again to the sealing body side.
JP2005065182A 2005-03-09 2005-03-09 Sealed battery and manufacturing method thereof Expired - Fee Related JP4854208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065182A JP4854208B2 (en) 2005-03-09 2005-03-09 Sealed battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065182A JP4854208B2 (en) 2005-03-09 2005-03-09 Sealed battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006252848A JP2006252848A (en) 2006-09-21
JP4854208B2 true JP4854208B2 (en) 2012-01-18

Family

ID=37093119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065182A Expired - Fee Related JP4854208B2 (en) 2005-03-09 2005-03-09 Sealed battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4854208B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687189B2 (en) 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US7833647B2 (en) 2004-04-28 2010-11-16 Eveready Battery Company, Inc. Closure vent seal and assembly
WO2008100533A2 (en) * 2007-02-12 2008-08-21 Randy Ogg Stacked constructions for electrochemical batteries
CN101257097B (en) * 2007-03-02 2012-03-14 深圳市比克电池有限公司 Improved battery seal component and battery
CN101257099A (en) * 2007-03-02 2008-09-03 深圳市比克电池有限公司 Battery seal component as well as battery
CN101257098B (en) * 2007-03-02 2012-01-25 深圳市比克电池有限公司 Battery and battery seal component convenient for assembling
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
JP2010067379A (en) * 2008-09-09 2010-03-25 Sanyo Electric Co Ltd Sealed battery
US20100203384A1 (en) 2009-01-27 2010-08-12 G4 Synergetics, Inc. Electrode folds for energy storage devices
JP6023179B2 (en) 2012-04-12 2016-11-09 株式会社豊田自動織機 Current interrupt device and power storage device using the same
JP5765291B2 (en) * 2012-05-18 2015-08-19 株式会社豊田自動織機 Power storage device with current interrupt device
CN104584260B (en) * 2012-09-26 2018-03-06 三洋电机株式会社 Secondary cell pads and secondary cell
JP7241571B2 (en) * 2019-03-07 2023-03-17 Littelfuseジャパン合同会社 sealing body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017739B2 (en) * 1988-07-19 2000-03-13 アイシン・エィ・ダブリュ株式会社 Hydraulic equipment breathing apparatus in hydraulic equipment of automatic transmission
JP3143176B2 (en) * 1991-11-26 2001-03-07 三洋電機株式会社 Battery sealing body
JP2970340B2 (en) * 1992-09-29 1999-11-02 松下電器産業株式会社 Explosion-proof sealing plate for sealed batteries
JP4104416B2 (en) * 2002-10-17 2008-06-18 三洋電機株式会社 Sealed battery

Also Published As

Publication number Publication date
JP2006252848A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US10985400B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US10615401B2 (en) Cylindrical batteries
US6632572B1 (en) Lithium secondary battery
US10403872B2 (en) Cylindrical batteries
WO2015146078A1 (en) Cylindrical sealed battery and battery pack
JP4236308B2 (en) Lithium ion battery
WO2015146077A1 (en) Cylindrical hermetically sealed battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4854208B2 (en) Sealed battery and manufacturing method thereof
US20230083371A1 (en) Secondary battery
JP2000058115A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2008251187A (en) Sealed battery
JP2010238558A (en) Sealed square battery
KR100942906B1 (en) Electrochemical device ensuring a good safety
JP2000058112A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4984359B2 (en) Sealed battery and its sealing plate
US20240204235A1 (en) Secondary battery
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4104416B2 (en) Sealed battery
JP3627359B2 (en) Sealed non-aqueous secondary battery
JP2009302019A (en) Sealed battery
JP2000058113A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4420484B2 (en) Sealed battery
KR20130131983A (en) Secondary battery comprising apparatus for preventing overcharge
JP2000277063A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees