JP4853683B2 - Treated water reuse system using discharge head - Google Patents
Treated water reuse system using discharge head Download PDFInfo
- Publication number
- JP4853683B2 JP4853683B2 JP2009007108A JP2009007108A JP4853683B2 JP 4853683 B2 JP4853683 B2 JP 4853683B2 JP 2009007108 A JP2009007108 A JP 2009007108A JP 2009007108 A JP2009007108 A JP 2009007108A JP 4853683 B2 JP4853683 B2 JP 4853683B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- pipe
- tank
- filtration
- treated water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Jet Pumps And Other Pumps (AREA)
- Filtration Of Liquid (AREA)
Description
この発明は、下水、し尿、集落排水、又は工場廃水等の汚水を排水処理設備で浄化し、その処理水を高度処理して工業用水等に利用する再利用システムに関し、詳しくは、処理水の放流堰を利用して、ろ過装置の原液供給と、ろ過操作、及び、動力源の回収を行う放流落差を利用した処理水再利用システムに関する。 The present invention relates to a reuse system that purifies sewage such as sewage, human waste, community wastewater, or factory wastewater with a wastewater treatment facility, and uses the treated water as industrial water after advanced treatment. The present invention relates to a treated water reuse system that uses a discharge drop to perform stock solution supply, filtration operation, and recovery of a power source using a discharge weir.
従来、下水処理場やし尿処理場の汚水は、沈殿等の濃縮と生物処理を行い、固液分離を行った分離水を殺菌消毒して河川や海に放流している。水資源の少ない我が国では、放流水を二次処理水として農業用水や工業用水としての活用が期待されている。近年、環境汚染がなく気象条件に左右されない発電設備として、河川、貯水池等の水の位置エネルギーを利用する小水力の水車発電装置が見直されており、水車発電装置に使用した水は通常放流している。例えば、浄水処理設備の電力の一部を賄う水力発電装置として、河川等から取水する導水管に水力発電装置と膜ろ過装置を設けた浄水処理設備が、特許文献1に開示してある。また、河川や貯水池等の放流堰に水車を設置してエゼクタの抽気作用を利用する自己サイフォン形水車発電機も特許文献2で、この特許出願人が提案している。そして、水よりも若干重い繊維ろ材を収納し、槽底に攪拌翼を垂設した下降流式ろ過機も、特許文献3に開示しており、比重が略0.9の繊維ろ材を収納し、槽底に攪拌翼を垂設した上向流式ろ過機も、特許文献4に開示してある。 Conventionally, sewage from sewage treatment plants and human waste treatment plants has been concentrated and biologically processed, such as sedimentation, and the separated water that has been subjected to solid-liquid separation is sterilized and disinfected and released into rivers and the sea. In Japan, where water resources are scarce, it is expected that the discharged water will be used as agricultural water and industrial water as secondary treated water. In recent years, small hydro turbine generators that use the potential energy of water in rivers, reservoirs, etc. have been reviewed as a power generation facility that is free from environmental pollution and is not affected by weather conditions, and the water used for turbine generators is normally discharged. ing. For example, Patent Document 1 discloses a water purification treatment facility in which a hydroelectric generation device and a membrane filtration device are provided in a water conduit that takes water from a river or the like as a hydroelectric generation device that covers a part of the power of the water purification treatment facility. Further, Patent Document 2 proposes a self-siphon type water turbine generator that uses a bleed action of an ejector by installing a water wheel in a discharge weir such as a river or a reservoir. And the downflow type filter which accommodated the fiber filter medium a little heavier than water and suspended the stirring blade on the tank bottom is also disclosed in Patent Document 3, and contains the fiber filter medium having a specific gravity of about 0.9. An upward flow filter having a stirring blade suspended from the bottom of the tank is also disclosed in Patent Document 4.
従来の、河川や貯水池の水位差を利用する小水力の水車発電装置は、未利用エネルギーやクリーンな自然エネルギーを有効活用でき、環境負荷の低減と電力使用量の削減に寄与するものである。河川等から取水する導水管に水力発電装置と膜ろ過装置を設けた浄水処理設備は、原水の圧力を利用して、浄水処理を行ないながら電力を得ることができる利点があるが、下水処理場やし尿処理場で浄化した処理水は微細な浮遊物を含有し、膜ろ過装置では目詰まりが発生し、頻繁に洗浄する必要があり、早期に劣化する恐れがある。河川や貯水池等の放流堰に水車を設置してエゼクタの抽気作用を利用する自己サイフォン形水車発電機は、小さい水の落差を利用して、簡単な管構造でサイフォン作用を発生させて自動運転が可能となる。また、繊維ろ材を収納した密閉型ろ過槽は、ろ材の洗浄が容易であり、多くの微細浮遊物を含む処理水でも精密ろ過が行える利点がある。 Conventional small hydro turbine generators that utilize the difference in water level between rivers and reservoirs can effectively utilize unused energy and clean natural energy, thereby contributing to reduction of environmental load and power consumption. Water treatment facilities with hydroelectric generators and membrane filtration devices installed in water conduits that draw water from rivers, etc. have the advantage of being able to obtain power while performing water purification using the pressure of raw water. The treated water purified at the palm urine treatment plant contains fine suspended solids, and the membrane filtration device is clogged, needs to be washed frequently, and may deteriorate early. A self-siphon turbine generator that uses an ejector's bleed action by installing a water wheel in a discharge weir such as a river or a reservoir uses a small drop of water to generate a siphon action with a simple pipe structure to automatically operate. Is possible. In addition, the sealed filtration tank containing the fiber filter medium has an advantage that the filter medium can be easily washed, and that fine filtration can be performed even with treated water containing many fine suspended matters.
この発明は、河川や貯水池等の放流落差を利用する自己サイフォン形水車発電機の技術を応用し、排水処理設備で浄化した処理水を放流堰の放流落差を利用して、更に高度処理を行うろ過装置を設置し、ろ過槽の原液供給とろ過操作、及びろ材洗浄と動力源の回収を行う放流落差を利用した処理水再利用システムを提供する。 This invention applies the technology of a self-siphon type water turbine generator that uses the discharge drop of rivers, reservoirs, etc., and further treats the treated water purified by the wastewater treatment facility using the discharge drop of the discharge weir. Provide a treated water reuse system that uses a drop head to install a filtration device, supply undiluted liquid in a filtration tank, perform filtration operations, clean filter media, and recover a power source.
ろ材を収納したろ過槽に排水処理場等の処理水を供給し、高度処理して再利用するろ過装置において、ろ過槽に接続した給水管を放流堰に跨設し、給水管の始端部を上部水槽に水没させてサイフォン状に形成し、ろ過槽の処理水管と洗浄排水管を上部水槽の水位よりも低位置に配設すると共に、放流堰の越流水を受ける水受槽を下部水槽に設置して、水受槽に吸気エゼクタを設けたエゼクタ管を垂下し、吸気エゼクタに連結した抽気管を給水管に接続したもので、放流堰の越流水が水受槽に流入すれば、水受槽に垂下したエゼクタ管が落水により負圧となり、吸気エゼクタのエゼクタ作用で給水管に溜まる空気を吸引し、サイフォン作用により放流水を給水管からろ過槽に流入させることができる。 In a filtration device that supplies treated water from a wastewater treatment plant, etc. to a filtration tank containing filter media and performs advanced treatment and reuses, a water supply pipe connected to the filtration tank is straddled over a discharge weir, and the start end of the water supply pipe is Submerged in the upper tank and formed into a siphon, and the treatment tank and the washing drain pipe of the filtration tank are placed at a position lower than the water level of the upper tank, and a water receiving tank that receives the overflow water from the discharge weir is installed in the lower tank Then, the ejector pipe provided with the intake ejector in the water receiving tank is suspended, and the extraction pipe connected to the intake ejector is connected to the water supply pipe. If the overflow water from the discharge weir flows into the water receiving tank, it is suspended in the water receiving tank. The discharged ejector pipe becomes negative pressure due to falling water, the air accumulated in the feed water pipe is sucked by the ejector action of the intake ejector, and the discharged water can be flowed from the feed water pipe into the filtration tank by the siphon action.
放流堰を利用して、上部水槽に発電機を搭載した水車を垂設し、水車の吸出管を放流堰に跨設して下部水槽に水没し、水受槽の吸気エゼクタに連結する抽気管を分岐して吸出管に連結したもので、ろ過装置を始動させる吸気エゼクタの抽気作用を利用して、水車を始動させて水車発電を行うことができる。 Use a discharge weir to suspend a water turbine equipped with a generator in the upper water tank, lay a water pipe suction pipe over the discharge weir, submerge in the lower water tank, and connect a bleed pipe connected to the intake ejector of the water receiving tank It is branched and connected to the suction pipe. By using the extraction action of the intake ejector that starts the filtration device, the turbine can be started and the turbine can generate electricity.
下部水槽の近傍に設置するろ過装置は、ろ過槽の槽底に立設した攪拌機にエアモータを配設し、エアモータの排気管を攪拌機の羽根近傍のろ過槽に接続したもので、ろ材層を洗浄する時に、攪拌機でろ材を攪拌しながらエアモータの排気空気を噴出させるので、機械攪拌と空気攪拌の相乗作用による洗浄効果が得られ、低出力でろ材の再生が可能となる。 The filtration device installed in the vicinity of the lower water tank is an agitator installed on the bottom of the filtration tank with an air motor, and the exhaust pipe of the air motor is connected to the filtration tank near the blades of the agitator to clean the filter media layer. At this time, since the exhaust air of the air motor is ejected while stirring the filter medium with the stirrer, a cleaning effect by synergistic action of mechanical stirring and air stirring is obtained, and the filter medium can be regenerated with low output.
エアモータに圧縮空気を供給する駆動空気管に空気圧縮機を接続し、水車の発電機の給電線を空気圧縮機に接続して、駆動空気管に圧縮空気槽を付設したもので、水車の発電機を利用して空気圧縮機に送電し、エアモータへの圧縮空気の供給圧の脈動を防止しながら、攪拌機を駆動させることができる。ろ材層の攪拌洗浄不用時に圧縮空気を圧縮空気槽に蓄えることも可能となる An air compressor is connected to the drive air pipe that supplies compressed air to the air motor, the power supply line of the turbine generator is connected to the air compressor, and a compressed air tank is attached to the drive air pipe. The stirrer can be driven while transmitting the power to the air compressor using the machine and preventing the pulsation of the supply pressure of the compressed air to the air motor. It is also possible to store compressed air in the compressed air tank when the filter medium layer is not stirred and washed.
ろ過槽に収納するろ材を繊維ろ材とし、ろ過槽の頂部に排水処理水の給水管を垂下し、ろ過槽の下部に高度処理水を抜出す処理水管と、ろ過槽の適所に洗浄水給水管をそれぞれ接続したもので、放流堰の放流落差を利用してろ過装置の原液供給が行なわれ、圧縮性に富む繊維ろ材がろ材層ろ材間空隙率を減少させて微細な懸濁物質が捕捉除去し、高度処理を可能とする。ろ材層を攪拌すれば、繊維ろ材は分散・展開が容易であり、繊維隙間に保持された捕捉懸濁物質を簡単に剥離・脱落できる。洗浄動力が低減でき、洗浄時のろ材の劣化もなく、ろ材の耐久年数が長くなる。 The filter medium to be stored in the filter tank is a fiber filter medium, a treated water pipe is drawn down from the top of the filter tank, and the treated water pipe is withdrawn from the treated tank at the bottom of the filter tank. Are connected to each other, and the stock solution of the filtration device is supplied using the discharge drop of the discharge weir, and the fiber filter medium rich in compressibility reduces the porosity between the filter medium layers and traps and removes fine suspended substances. And advanced processing is possible. If the filter medium layer is stirred, the fiber filter medium can be easily dispersed and developed, and the trapped suspended substances held in the fiber gaps can be easily peeled off and dropped off. The cleaning power can be reduced, the filter medium is not deteriorated during cleaning, and the durability of the filter medium is prolonged.
ろ過槽を、浮上ろ材を収納した密閉式のろ過槽に構成し、ろ過槽の槽底に排水処理水を供給する給水管と、ろ過槽の頂部に高度処理水を抜出す処理水管を接続し、処理水管を分岐して洗浄水排水管を連結すれば、上向流によりろ材層を形成し、ろ材間空隙を効率良く充填することも可能となる。ろ材層の下方から攪拌すれば、ろ材の隙間に保持された捕捉懸濁物質は、簡単に剥離・脱落して、洗浄動力が低減できる。 The filtration tank is configured as a sealed filtration tank containing floating filter media, and a water supply pipe that supplies wastewater treated water to the bottom of the filtration tank and a treated water pipe that draws out advanced treated water at the top of the filtration tank are connected. If the treated water pipe is branched and the washing water drain pipe is connected, it is possible to form a filter medium layer by upward flow and efficiently fill the gaps between the filter media. If stirring is performed from below the filter medium layer, the trapped suspended substance held in the gaps of the filter medium can be easily peeled off and dropped, and the cleaning power can be reduced.
排水処理場等の放流堰の放流落差を利用して、ろ過槽に接続した給水管と、発電機を搭載した水車の吸出管を放流堰にそれぞれ跨設して、越流水を受ける水受槽の吸気エゼクタに連結する抽気管を水車の吸出管と水車の吸出管に接続してサイフォン作用を発生させるので、排水処理水が放流堰を越流すれば、水受槽の吸気エゼクタに抽気作用を発生させて、ろ過槽の給水管と水車の吸出管に留まる空気を排出し、ろ過槽のろ過操作と水車による発電を開始することができる。上部水槽の水位が低下してろ過装置と水車が停止しても、水位が上昇すれば吸気エゼクタに抽気作用が発生し、自動的にろ過装置と水車の作動が可能となる。下水処理場等の処理水を無駄に放流することなく微細浮遊物を分離して、高度処理水として工業用水等に有効に活用でき、同時に、回収した電力をろ過装置のろ材洗浄の動力源としても活用できる。ろ材層の攪拌洗浄不用時に圧縮空気を圧縮空気槽に蓄えることができ、電力を蓄電器に蓄えることも、付帯設備に流用することも可能となる。 A water receiving tank that receives overflow water by straddling a water supply pipe connected to the filtration tank and a suction pipe of a water turbine equipped with a generator, using the discharge head of the discharge weir at a wastewater treatment plant, etc. Since the bleed pipe connected to the intake ejector is connected to the suction pipe of the turbine and the suction pipe of the turbine to generate a siphon action, if the drainage water overflows the discharge weir, the extraction action of the intake tank will generate the extraction action. Thus, the air remaining in the water supply pipe of the filter tank and the suction pipe of the water turbine is discharged, and the filtration operation of the filter tank and the power generation by the water wheel can be started. Even if the water level in the upper tank is lowered and the filtration device and the water turbine are stopped, if the water level rises, an extraction action is generated in the intake ejector, and the filtration device and the water wheel can be automatically operated. Fine suspended solids can be separated without wastefully discharging treated water from sewage treatment plants, etc., and can be effectively used for industrial water etc. as advanced treated water, and at the same time, the recovered power can be used as a power source for washing filter media Can also be used. When the filter medium layer is not stirred and washed, compressed air can be stored in the compressed air tank, and electric power can be stored in the capacitor or diverted to incidental facilities.
本発明の実施の形態を図面に基づき詳述すると、図1は放流落差を利用した処理水再利用システムのフローチャートであって、固液分離等を行った下水処理場等の処理水を貯水する上部水槽Aと、処理水を放流する下部水槽Bの間に放流堰1が配設してあり、下部水槽Bの近傍にろ過装置2を設置してある。ろ過装置2にろ過槽3が設置してあり、ろ過槽3の頂部に下水処理場等の処理水を供給する給水管4を接続し、ろ過槽3の給水管4をサイフォン状に形成し、管頂部4aを放流堰1に跨設して始端部4bを上部水槽Aに垂下してある。上部水槽Aに、発電機5を搭載した軸流型の水車6を垂設し、水車6に連結した吸出管7の管頂部7aを放流堰1に跨設して、後端部7bを下部水槽Bに垂下し、水車6と吸出管7をサイフォン状に形成してある。水車6の吸出管7の後端部7bは、上部水槽Aの水車6の吸込口6aより低い位置に開口して、下部水槽Bに水没させてある。放流堰1の越流水を受ける水受槽8が下部水槽Bに設置してあり、水受槽8の槽底から垂下したエゼクタ管9に吸気エゼクタ10を設けてある。上部水槽Aの排水処理水が放流堰1を越流すれば、上部水槽Aの排水処理水が水受槽8に流入して、エゼクタ管9を流下する。エゼクタ管9は落水で負圧となり、吸気エゼクタ10に抽気作用を発生させる。 An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart of a treated water reuse system using a discharge drop, and stores treated water in a sewage treatment plant or the like that has performed solid-liquid separation or the like. A discharge weir 1 is disposed between the upper water tank A and a lower water tank B that discharges treated water, and a filtration device 2 is installed in the vicinity of the lower water tank B. A filtration tank 2 is installed in the filtration device 2, a water supply pipe 4 for supplying treated water from a sewage treatment plant or the like is connected to the top of the filtration tank 3, and the water supply pipe 4 of the filtration tank 3 is formed in a siphon shape. The pipe top portion 4 a is straddled over the discharge weir 1, and the start end portion 4 b is suspended from the upper water tank A. An axial-flow type water turbine 6 equipped with a generator 5 is suspended in the upper water tank A, and a top portion 7a of a suction pipe 7 connected to the water turbine 6 is straddled over the discharge weir 1, and a rear end portion 7b is formed in the lower portion. The water wheel 6 and the suction pipe 7 are formed in a siphon shape depending on the water tank B. The rear end portion 7b of the suction pipe 7 of the water turbine 6 opens at a position lower than the suction port 6a of the water turbine 6 of the upper water tank A and is submerged in the lower water tank B. A water receiving tank 8 that receives the overflow water from the discharge weir 1 is installed in the lower water tank B, and an intake ejector 10 is provided in an ejector pipe 9 that hangs down from the bottom of the water receiving tank 8. If the wastewater treated water in the upper water tank A overflows the discharge weir 1, the wastewater treated water in the upper water tank A flows into the water receiving tank 8 and flows down the ejector pipe 9. The ejector tube 9 becomes negative pressure due to falling water, and causes the intake ejector 10 to extract air.
図2は下部水槽の近傍に設置するろ過槽であって、ろ過槽3にろ材流出防止用のスクリーン11が張設してあり、スクリーン11の上部にろ材層12を形成するろ過室13と、スクリーン11の下部にろ材層12で微細浮遊物を取り除いた高度処理水を流入させる集水室14を構成し、ろ過槽3の上端周部にろ材層12を攪拌洗浄した洗浄排水を越流させる排水トラフ15が配設してある。ろ過槽3の槽底にエアモータ16を配設した攪拌機17が立設してあり、攪拌機17の羽根17aをスクリーン11上部のろ過室13に突設させてある。ろ過槽3の集水室14に処理水管18と、給水管4から分岐させた洗浄水給水管19がろ過槽3に構成するろ過室13の側壁に接続してあり、ろ過槽3の上端周部の排水トラフ15に洗浄排水管20が接続してある。ろ過槽3に接続した処理水管18と洗浄排水管20の接続口18a、20aは、上部水槽Aに貯留する処理水をろ過装置2で処理する時の最低水位よりも低位置に開口してある。ろ材槽12を形成するろ材は、比重が水より重い公知のろ材を用いることができる。 FIG. 2 is a filtration tank installed in the vicinity of the lower water tank, and a filter 11 for preventing a filter medium outflow is stretched over the filter tank 3, and a filtration chamber 13 for forming a filter medium layer 12 on the upper part of the screen 11, A water collection chamber 14 is formed at the bottom of the screen 11 to allow the treated water from which fine suspended solids have been removed by the filter medium layer 12 to flow, and the washing drainage obtained by stirring and washing the filter medium layer 12 is allowed to flow over the upper periphery of the filter tank 3. A drain trough 15 is provided. A stirrer 17 having an air motor 16 disposed on the bottom of the filtration tank 3 is erected, and blades 17a of the stirrer 17 are projected from the filtration chamber 13 above the screen 11. A treated water pipe 18 and a washing water supply pipe 19 branched from the water supply pipe 4 are connected to the water collection chamber 14 of the filtration tank 3, and are connected to the side wall of the filtration chamber 13 constituting the filtration tank 3. A cleaning drain pipe 20 is connected to the drain trough 15 of the section. The treated water pipe 18 connected to the filtration tank 3 and the connection ports 18a and 20a of the cleaning drain pipe 20 are opened at a position lower than the lowest water level when the treated water stored in the upper water tank A is treated by the filtration device 2. . As the filter medium forming the filter medium tank 12, a known filter medium having a specific gravity heavier than water can be used.
図2に示すように、エアモータ16に連結した駆動空気管21に空気圧縮機22を連結してあり、エアモータ16に連結した排気管23を、ろ過槽3のろ過室13に突設した攪拌機17の羽根17a近傍に接続してある。空気圧縮機22に連結した駆動空気管21から分岐して圧縮空気槽24が配設してあり、エアモータ16に供給する圧縮空気圧の脈動を防止する。この発明の実施例では、排水トラフ15の上部を被覆してろ過槽3を密閉型としてあるが、処理水を供給する給水管4をろ過槽3の頂部に垂下して開放型としても良いものである。なお、ろ過槽3近傍の給水管4に給水弁V6と空気排出弁V33が設けてあり、ろ過槽3の集水室14に接続した処理水管18に処理水弁V7が設けてある。給水管4から分岐してろ過槽3に洗浄水を供給する洗浄水給水管19に給水弁V9と、ろ過槽3のろ材を洗浄した洗浄排水を排出する洗浄排水管20に排水弁V8が設けてある。 As shown in FIG. 2, an air compressor 22 is connected to a driving air pipe 21 connected to an air motor 16, and an agitator 17 in which an exhaust pipe 23 connected to the air motor 16 is protruded from the filtration chamber 13 of the filtration tank 3. Connected to the vicinity of the blade 17a. A compressed air tank 24 is branched from the drive air pipe 21 connected to the air compressor 22 to prevent pulsation of the compressed air pressure supplied to the air motor 16. In the embodiment of the present invention, the upper part of the drainage trough 15 is covered and the filtration tank 3 is a sealed type. However, the water supply pipe 4 for supplying treated water may be suspended from the top of the filtration tank 3 to be an open type. It is. A water supply valve V6 and an air discharge valve V33 are provided in the water supply pipe 4 near the filtration tank 3, and a treatment water valve V7 is provided in the treatment water pipe 18 connected to the water collecting chamber 14 of the filtration tank 3. A water supply valve V9 is provided in the washing water supply pipe 19 that branches from the water supply pipe 4 and supplies the washing water to the filtration tank 3, and a drain valve V8 is provided in the washing drain pipe 20 that discharges the washing waste water that has washed the filter medium in the filtration tank 3. It is.
図3は下部水槽側に設置したろ過装置を作動させるフローチャートであって、水受槽8に垂下したエゼクタ管9の吸気エゼクタ10にエゼクタ弁V3を介装した抽気管25が接続してあり、抽気管25の後端部を給水管4の管頂部4aに上方から連結してある。給水管4の近傍の抽気管25に管頂部4aに滞留する空気を排出する抽気弁V4と、管頂部4aに上昇水を検知する満水検知器LS1を介装してある。ろ過槽3を稼動させる時には、抽気管25に介装したエゼクタ弁V3と抽気弁V4を開口し、上部水槽Aの処理水が放流堰1を越流して下部水槽Bの水受槽8に流入すれば、吸気エゼクタ10に抽気作用を発生させ、抽気管25から給水管4の管頂部4aに貯まる空気を排出し、上部水槽Aの処理水を給水管4に流入させて空気の排出を満水検知器LS1で検出する。給水管4の空気の排出によりサイフォン作用が発生し、給水弁V6を開放すれば、上部水槽Aの処理水がろ過槽3に供給されて、微細浮遊物を分離して高度処理が行なえる。上部水槽Aの水位が低下してろ過槽3のろ過作用が停止しても、再び水位が上昇して放流堰1を越流すれば、排水処理水が水受槽8に流入してエゼクタ管9の吸気エゼクタ10に抽気作用が発生し、水位の変動に係わらずろ過槽3の供給ポンプを不要として、自動運転が可能となる。なお、給水管4の管頂部4aにろ過装置2への供給流量を計測する流量計Q2と給水を停止させる真空破壊弁V32が設けてある。 FIG. 3 is a flowchart for operating the filtration device installed on the lower water tank side, and an extraction pipe 25 interposing an ejector valve V3 is connected to an intake ejector 10 of an ejector pipe 9 hanging from the water receiving tank 8. The rear end of the trachea 25 is connected to the top 4a of the water supply pipe 4 from above. A bleed valve 25 for discharging the air staying at the pipe top 4a is interposed in the bleed pipe 25 in the vicinity of the water supply pipe 4, and a full water detector LS1 for detecting rising water at the pipe top 4a. When the filtration tank 3 is operated, the ejector valve V3 and the extraction valve V4 interposed in the extraction pipe 25 are opened, and the treated water in the upper water tank A overflows the discharge weir 1 and flows into the water receiving tank 8 in the lower water tank B. For example, the intake ejector 10 is caused to bleed, the air stored in the pipe top 4a of the water supply pipe 4 is discharged from the bleed pipe 25, and the treated water in the upper water tank A is caused to flow into the water supply pipe 4 to detect the exhaust of the air. This is detected by the instrument LS1. If the siphon action is generated by the discharge of air from the water supply pipe 4 and the water supply valve V6 is opened, the treated water in the upper water tank A is supplied to the filtration tank 3, and the fine suspended matter can be separated and advanced treatment can be performed. Even if the water level of the upper water tank A falls and the filtering action of the filter tank 3 stops, if the water level rises again and overflows the discharge weir 1, the wastewater treated water flows into the water receiving tank 8 and the ejector pipe 9 As a result, an extraction operation is generated in the intake ejector 10, and the supply pump of the filtration tank 3 is not required regardless of the fluctuation of the water level, and an automatic operation becomes possible. In addition, the flowmeter Q2 which measures the supply flow volume to the filtration apparatus 2 and the vacuum breaker valve V32 which stops water supply are provided in the pipe top part 4a of the water supply pipe 4. FIG.
図4は上部水槽に垂設した水車を作動させるフローチャートであって、エゼクタ管9の吸引作用を発生させる吸気エゼクタ10に接続した抽気管25が、エゼクタ弁V3の後方から分岐して、水車6の吸出管7の管頂部7aに上方から連結してある。水車6に連結した吸出管7の近傍の抽気管25に、管頂部7aに滞留する空気を排出する抽気弁V2を介装してある。なお、吸出管7の管頂部7aに水車6の揚水量を調整する流量調整弁V1と、水車6の排出流量を計測する流量計Q1、及び水車6を停止させる真空破壊弁V31が設けてある。水車9を稼動させる時には、抽気管25に介装したエゼクタ弁V3と抽気弁V2を開口し、上部水槽Aの処理水が水受槽8に流入すれば、吸気エゼクタ10に抽気作用を発生させて吸出管7の管頂部7aに貯まる空気が排出されて、吸出管7が負圧となる。同時に、水車6の空気も吸引されて負圧となり、水車6の内部の水が上昇して吸出管7に流入し、吸出管7の垂下させた後端部7bの液体移動によりサイフォン作用を発生させる。吸出管7のサイフォン作用により水車6を駆動し、水車6に連動連結した発電機5を作動させて発電を開始する。 FIG. 4 is a flowchart for operating the water turbine suspended in the upper water tank. The extraction pipe 25 connected to the intake ejector 10 for generating the suction action of the ejector pipe 9 branches from the rear of the ejector valve V3, and the water turbine 6 The suction pipe 7 is connected to the pipe top 7a from above. A bleed valve 25 that discharges air remaining in the pipe top portion 7 a is interposed in the bleed pipe 25 near the suction pipe 7 connected to the water turbine 6. A flow rate adjusting valve V1 for adjusting the pumping amount of the water turbine 6, a flow meter Q1 for measuring the discharge flow rate of the water turbine 6, and a vacuum breaker valve V31 for stopping the water turbine 6 are provided at the pipe top 7a of the suction pipe 7. . When the water turbine 9 is operated, if the ejector valve V3 and the bleed valve V2 provided in the bleed pipe 25 are opened and the treated water in the upper water tank A flows into the water receiving tank 8, the bleed action is generated in the intake ejector 10. The air stored in the pipe top part 7a of the suction pipe 7 is discharged, and the suction pipe 7 becomes negative pressure. At the same time, the air in the water turbine 6 is also sucked into a negative pressure, the water inside the water turbine 6 rises and flows into the suction pipe 7, and siphon action is generated by the liquid movement of the rear end 7 b where the suction pipe 7 is suspended. Let The water turbine 6 is driven by the siphon action of the suction pipe 7, and the power generator 5 linked to the water turbine 6 is operated to start power generation.
図1に示すように、この発明の実施例では、発電機5の給電線39が空気圧縮機22に接続してあり、水車6を利用して空気圧縮機22に送電し、圧縮空気槽24で圧縮空気圧の脈動を防止しながら、空気圧縮機22からろ過槽3に配設したエアモータ16を駆動して、攪拌機17を作動させることができる。ろ材層12の攪拌洗浄不用時に圧縮空気を圧縮空気槽24に蓄えることができ、電力を蓄電器に蓄えることも、付帯設備に流用することも可能となる、上部水槽Aの水位が低下して水車6の稼動が停止しても、再び上部水槽Aの水位が上昇して放流堰1を越流すれば、処理水が水受槽8に流入してエゼクタ管9の吸気エゼクタ10に抽気作用が発生し、水位の変動に係わらず水車6の自動運転が可能となる。高水位側の上部水槽Aに水車6を垂設すれば、高水位側の上部水槽Aと低水位側の下部水槽Bに水位差が少なくても、低水位側に吸出管7の後端部7bを水没させてサイフォン作用を起すことができ、低落差で利用できる。 As shown in FIG. 1, in the embodiment of the present invention, the power supply line 39 of the generator 5 is connected to the air compressor 22, and power is transmitted to the air compressor 22 using the water turbine 6, and the compressed air tank 24. Thus, the stirrer 17 can be operated by driving the air motor 16 disposed in the filtration tank 3 from the air compressor 22 while preventing the pulsation of the compressed air pressure. Compressed air can be stored in the compressed air tank 24 when the filter medium layer 12 is not stirred and washed, and electric power can be stored in a capacitor, or can be diverted to ancillary equipment. Even if the operation of 6 is stopped, if the water level of the upper water tank A rises again and overflows the discharge weir 1, the treated water flows into the water receiving tank 8 and the bleed action occurs in the intake ejector 10 of the ejector pipe 9. However, the water turbine 6 can be automatically operated regardless of the fluctuation of the water level. If the water turbine 6 is suspended in the upper water tank A on the high water level side, the rear end of the suction pipe 7 on the low water level side even if the water level difference between the upper water tank A on the high water level side and the lower water tank B on the low water level is small. 7b can be submerged to cause siphon action and can be used with a low head.
図5はろ過装置の他の実施例の上向流式密閉ろ過装置であって、密閉型のろ過槽26に浮上ろ材を収納して処理水を上向流で供給し、ろ過槽26の上半部にろ材層27を形成してある。ろ過槽26の槽底に給水管28と、頂部に集水ノズル29を配設した処理水管30を連結してあり、上部水槽Aの排水処理水を槽底から給水し、ろ材層27で微細浮遊物を分離した高度処理水を頂部から抜き出す。ろ過槽26の槽底にエアモータ31を配設した攪拌機32が立設してあり、攪拌機32の羽根32aをろ材層27の下方近傍に突設させてある。エアモータ31に駆動空気管33が接続してあり、エアモータ31に連結した排気管34と、給水管28から分岐させた洗浄水給水管35が、攪拌機32の羽根32a近傍のろ過槽26の側壁にそれぞれ接続してある。分岐させた給水管28と洗浄水給水管36にそれぞれ給水弁V6、V9を介装してある。処理水管30から洗浄排水管36を分岐してあり、処理水管30と洗浄排水管36に処理水弁V7と排水弁V8を介装してある。ろ過槽26に接続した処理水管30は、上部水槽Aに貯留する処理水をろ過槽26で処理する時の最低水位よりも低位置に開口してある。 FIG. 5 shows an upflow-type sealed filtration device according to another embodiment of the filtration device. The floating filter medium is stored in a sealed-type filtration tank 26 and treated water is supplied in an upward flow. A filter medium layer 27 is formed on the half. A water supply pipe 28 is connected to the tank bottom of the filtration tank 26, and a treated water pipe 30 having a water collection nozzle 29 disposed at the top, and the wastewater treated water of the upper water tank A is supplied from the tank bottom. Highly treated water from which suspended matter has been separated is extracted from the top. A stirrer 32 in which an air motor 31 is disposed is erected on the bottom of the filtration tank 26, and a blade 32 a of the stirrer 32 protrudes near the lower side of the filter medium layer 27. A driving air pipe 33 is connected to the air motor 31, and an exhaust pipe 34 connected to the air motor 31 and a washing water supply pipe 35 branched from the water supply pipe 28 are formed on the side wall of the filtration tank 26 near the blade 32 a of the stirrer 32. Each is connected. Water supply valves V6 and V9 are interposed in the branched water supply pipe 28 and the wash water supply pipe 36, respectively. A washing drain pipe 36 is branched from the treated water pipe 30, and a treated water valve V 7 and a drain valve V 8 are interposed in the treated water pipe 30 and the washing drain pipe 36. The treated water pipe 30 connected to the filtration tank 26 is opened at a position lower than the lowest water level when the treated water stored in the upper water tank A is treated in the filtration tank 26.
図6は、上向流式ろ過槽に収納する浮上ろ材の正面図と側面図であって、図5に示すろ過槽26にろ材層27を形成するろ材は、本願発明の実施例ではポリエステル、ナイロンの芯糸37aと押え糸37bに固定した放射状短繊維の花糸37cで比重が水よりも軽いモールろ材37を構成してある。ろ材層12を形成するモールろ材37は、モールろ材37、37間の空隙を効率良く平均的に充填して、ろ材層形成時のろ材間空隙率を減少させる。ろ過槽3に圧入される処理水が、ろ材層12を圧縮してモールろ材37、37間の空隙率をさらに減少させ、モールろ材37、37間の空隙を優先的に通過する処理水中の懸濁物質をろ材間充填短繊維の花糸37cによって捕捉、除去する。このモールろ材37は、洗浄時の花糸37cの脱落が非常に少ないため、ろ材の耐久性も高く、安定したろ過運転が長期にわたり可能となる。 FIG. 6 is a front view and a side view of a floating filter medium housed in an upward flow filtration tank, and the filter medium forming the filter medium layer 27 in the filter tank 26 shown in FIG. A mole filter medium 37 having a specific gravity lighter than water is constituted by a filament yarn 37c of radial short fibers fixed to a nylon core yarn 37a and a presser yarn 37b. The Mole filter medium 37 forming the filter medium layer 12 efficiently and uniformly fills the gaps between the Mole filter mediums 37, 37, and reduces the porosity between the filter medium when forming the filter medium layer. The treated water injected into the filtration tank 3 compresses the filter medium layer 12 to further reduce the porosity between the molding filter media 37 and 37, and the suspended water in the treated water that preferentially passes through the gap between the molding filter media 37 and 37. The turbid material is captured and removed by the flower yarn 37c between the filter medium-filled short fibers. Since the Mole filter medium 37 has very little dropout of the flower yarn 37c at the time of washing, the filter medium has high durability, and a stable filtration operation can be performed over a long period of time.
図7は他の実施例の浮上ろ材であって、比重が0.7〜1.0で3〜50mm□の複合繊維を融着したろ材を使用している。この繊維ろ材38は、合成樹脂性の繊度が18〜65デニールの第一フィラメント38aと、繊度が3〜10デニールの第二フィラメント38b、及び繊度が1.5〜6デニールの第三フィラメント38cを混綿してウエッブを熱融着させて、空隙率を概略95%に形成してある。この繊維ろ材38でろ材層27を形成してあり、ろ過運転時にろ材が目詰りしてきた時には、ろ過圧力の上昇に対抗して細いフィラメントで形成される空隙を太いフィラメントが確保し、この作用も合せて長時間の運転を可能とする。目詰まりして洗浄するに当たっても、あるいは、ろ材層27を形成した場合でも、その空隙が均一であり洗浄再生を容易となる。浮上ろ材は、粒状のろ材でも使用が可能であり、比重が0.05で粒径が0.5〜2.0mmφの発泡ポリスチレンで構成した粒状の発泡ろ材を使用すれば、空隙率は少なくなるが、ろ過槽26に流入する処理水のゆるやかな上昇流でろ材層27が形成され、攪拌機32を作動させながら、エアモータ31の排気圧縮空気を攪拌機32の羽根32a近傍に供給すれば、撹拌洗浄により容易に拡散され、捕捉された微細粒子をろ材層27から分離排出できる。 FIG. 7 shows a floating filter medium according to another embodiment, which uses a filter medium in which a composite fiber having a specific gravity of 0.7 to 1.0 and 3 to 50 mm □ is fused. The fiber filter medium 38 includes a first filament 38a having a synthetic resin fineness of 18 to 65 denier, a second filament 38b having a fineness of 3 to 10 denier, and a third filament 38c having a fineness of 1.5 to 6 denier. The web is heat-sealed by blending to form a porosity of approximately 95%. When the filter medium layer 27 is formed with the fiber filter medium 38 and the filter medium becomes clogged during the filtration operation, the thick filament secures the void formed by the thin filaments against the increase in the filtration pressure, and this action also works. In addition, it enables long-time operation. Even when clogging and cleaning, or when the filter medium layer 27 is formed, the gaps are uniform and cleaning and regeneration are easy. The floating filter medium can also be used as a granular filter medium. If a granular foamed filter medium made of expanded polystyrene having a specific gravity of 0.05 and a particle diameter of 0.5 to 2.0 mmφ is used, the porosity decreases. However, if the filter medium layer 27 is formed by a gentle upward flow of the treated water flowing into the filtration tank 26 and the exhaust compressed air of the air motor 31 is supplied to the vicinity of the blades 32a of the stirrer 32 while operating the stirrer 32, stirring washing Therefore, the fine particles that are easily diffused and trapped can be separated and discharged from the filter medium layer 27.
実施例1
図1の処理水再利用システムにおいて、処理場に設置したろ過装置を作動させる手順を説明すると、上部水槽Aの処理水が満水となり、放流堰1を越流して下部水槽Bに設置した水受槽8に流入すれば、エゼクタ管9を流下する落水で負圧が生じ、吸気エゼクタ10に抽気作用を発生せて抽気管25の空気を吸引できる。上記の状況において、ろ過装置の単独運転開始は、先ず、
(1)ろ過運転開始時
a.ろ過槽3に付設する処理水管18の処理水弁V7、洗浄排水管20の排水弁V8、洗浄水給水管19の給水弁V9と、給水管4の管頂部4aに設けた真空破壊弁V32、及びろ過槽3近傍の給水管4に設けた空気排出弁V33を閉止し、
b.吸気エゼクタ10に接続した抽気管25のエゼクタ弁V3と、給水管4の抽気弁V4、ろ過槽3近傍の給水管4の給水弁V6を開放する。
c.受水槽8が放流堰1の越流水を受水すると、
d.放流水が流下するエゼクタ管9の落水により負圧となり、吸気エゼクタ10の抽気作用を開始し、給水管4の管頂部4aに貯まる空気を吸引する。
e.給水管4の管頂部4aに設けた満水検知器LS1で空気排出完了を検知して、
f.ろ過槽3の処理水弁V7を開放すると、処理水の放流を開始する。
g.給水管4の抽気弁V4と、抽気管25のエゼクタ弁V3を閉止すれば、
h.ろ過装置2で微細浮遊物を処理した高度処理水の放流運転が可能となる。
Example 1
In the treated water reuse system of FIG. 1, the procedure for operating the filtration device installed in the treatment plant will be described. The treated water in the upper tank A is full, the water receiving tank installed in the lower tank B over the discharge weir 1. 8 flows into the ejector pipe 9, a negative pressure is generated by the falling water flowing down the ejector pipe 9, and the air extraction action is generated in the intake ejector 10 to suck the air in the extraction pipe 25. In the above situation, the start of single operation of the filtration device
(1) At the start of filtration operation a. A treated water valve V7 of the treated water pipe 18 attached to the filtration tank 3, a drain valve V8 of the washing drain pipe 20, a feed valve V9 of the washing water feed pipe 19, and a vacuum breaker valve V32 provided on the pipe top 4a of the feed water pipe 4, And the air discharge valve V33 provided in the water supply pipe 4 near the filtration tank 3 is closed,
b. The ejector valve V3 of the extraction pipe 25 connected to the intake ejector 10, the extraction valve V4 of the water supply pipe 4, and the water supply valve V6 of the water supply pipe 4 near the filtration tank 3 are opened.
c. When the receiving tank 8 receives the overflow water from the discharge weir 1,
d. A negative pressure is generated by the falling water of the ejector pipe 9 where the discharged water flows down, and the extraction action of the intake ejector 10 is started, and the air accumulated in the pipe top 4a of the water supply pipe 4 is sucked.
e. The completion of air discharge is detected by the full water detector LS1 provided at the pipe top 4a of the water supply pipe 4,
f. When the treated water valve V7 of the filtration tank 3 is opened, the discharge of treated water is started.
g. If the extraction valve V4 of the water supply pipe 4 and the ejector valve V3 of the extraction pipe 25 are closed,
h. The discharge operation of the advanced treated water which processed the fine suspended matter with the filtration apparatus 2 is attained.
(2)洗浄排水時
a.ろ過槽3の給水弁V6と処理水弁V7を開放し、
b.抽気管25のエゼクタ弁V3と給水管4の抽気弁V4、ろ過槽3の洗浄排水弁V8と洗浄給水弁V9、及び給水管4の真空破壊弁V32と空気排出弁V33を閉止した
c.ろ過槽3の処理水の高度処理を継続運転中において、
d.ろ過槽3の給水弁V6と、処理水弁V7を閉止し、
e.ろ過槽3の洗浄排水弁V8と、洗浄給水弁V9を開放する。
f.エアモータ16の駆動弁V21と、給水管4の空気排出弁V33を開放すれば、
g.攪拌機17の回転と共に、エアモータ16の排気空気による攪拌洗浄が開始できる洗浄の相乗効果が得られる。
(2) During washing drainage a. Open the water supply valve V6 and the treated water valve V7 of the filtration tank 3,
b. The ejector valve V3 of the extraction pipe 25, the extraction valve V4 of the water supply pipe 4, the cleaning drainage valve V8 and the cleaning water supply valve V9 of the filtration tank 3, and the vacuum breaker valve V32 and the air discharge valve V33 of the water supply pipe 4 are closed c. During continuous operation of advanced treatment of treated water in filtration tank 3,
d. Close the water supply valve V6 and the treated water valve V7 of the filtration tank 3,
e. The washing drain valve V8 and the washing water supply valve V9 of the filtration tank 3 are opened.
f. If the drive valve V21 of the air motor 16 and the air discharge valve V33 of the water supply pipe 4 are opened,
g. Along with the rotation of the stirrer 17, a synergistic effect of cleaning that can start stirring cleaning with the exhaust air of the air motor 16 is obtained.
(3)洗浄排水終了後の通常のろ過運転
a.ろ過槽3の洗浄排水弁V8と洗浄給水弁V9、エアモータ16の駆動弁V21と、給水管4の空気排出弁V33を開放し
b.抽気管25のエゼクタ弁V3と給水管4の抽気弁V4、ろ過槽3の給水弁V6と、処理水弁V7、給水管4の管頂部4bの真空破壊弁V32を閉止した
c.洗浄排水運転中において、
d.エアモータ16の駆動弁V21と、給水管4の空気排出弁V33を閉止し、ろ過槽3の洗浄排水弁V8と、洗浄給水弁V9を閉止する。
e.ろ過槽3の給水弁V6と処理水管18の処理水弁V7を開放すれば、通常高度処理水の放流運転が可能となる。
(3) Normal filtration operation after washing drainage a. Open the drainage valve V8 and the cleaning water supply valve V9 of the filtration tank 3, the drive valve V21 of the air motor 16, and the air discharge valve V33 of the water supply pipe 4; b. The ejector valve V3 of the extraction pipe 25, the extraction valve V4 of the water supply pipe 4, the water supply valve V6 of the filtration tank 3, the treated water valve V7, and the vacuum break valve V32 of the pipe top 4b of the water supply pipe 4 are closed c. During washing drainage operation,
d. The drive valve V21 of the air motor 16 and the air discharge valve V33 of the water supply pipe 4 are closed, and the cleaning / drainage valve V8 and the cleaning water supply valve V9 of the filtration tank 3 are closed.
e. If the water supply valve V6 of the filtration tank 3 and the treated water valve V7 of the treated water pipe 18 are opened, the normal advanced treated water can be discharged.
(4)ろ過装置単独運転停止時
a.ろ過槽3の給水弁V6と、処理水弁V7を開放し、
b.抽気管25のエゼクタ弁V3と給水管4の抽気弁V4、ろ過槽3の洗浄排水管20の排水弁V8と洗浄水給水管19の洗浄給水弁V9、エアモータ16の駆動弁V21、及び給水管4の空気排出弁V33と給水管4の管頂部4aの真空破壊弁V32を閉止した
c.通常放流運転中において、
d.ろ過槽3の給水弁V6と、処理水弁V7を閉止して、
e.給水管4の真空破壊弁V32を開放する。
f.給水管の真空破壊により、ろ過槽3への給水を停止することにより、運転を停止できる。
(4) When the filtration device is shut down a. Open the water supply valve V6 and the treated water valve V7 of the filtration tank 3,
b. The ejector valve V3 of the extraction pipe 25, the extraction valve V4 of the water supply pipe 4, the drain valve V8 of the cleaning drain pipe 20 of the filtration tank 3, the cleaning water supply valve V9 of the cleaning water supply pipe 19, the drive valve V21 of the air motor 16, and the water supply pipe No. 4 air discharge valve V33 and the vacuum break valve V32 at the top 4a of the water supply pipe 4 are closed c. During normal discharge operation,
d. Close the water supply valve V6 and the treated water valve V7 of the filtration tank 3,
e. The vacuum break valve V32 of the water supply pipe 4 is opened.
f. The operation can be stopped by stopping the water supply to the filtration tank 3 by the vacuum breakage of the water supply pipe.
実施例2
図1の処理水再利用システムにおいて、処理場に設置した水車を作動させる手順を説明すると、
1)水車6の吸出管7の流量調整弁V1と抽気弁V2、及び抽気管25のエゼクタ弁V3を開放する。
2)受水槽8が放流堰1の越流水を受水すると、
3)放流水が流下するエゼクタ管9の落水により負圧となり、吸気エゼクタ10の抽気作用を開始し、吸出管7の頂部に貯まる空気を吸引し、サイフォンを形成して水車放流発電運転を開始する。
Example 2
In the treated water reuse system of FIG. 1, the procedure for operating the water turbine installed in the treatment plant will be described.
1) Open the flow rate adjustment valve V1 and the extraction valve V2 of the suction pipe 7 of the water turbine 6 and the ejector valve V3 of the extraction pipe 25.
2) When the water receiving tank 8 receives the overflow water from the discharge weir 1,
3) Negative pressure is generated by the falling water of the ejector pipe 9 where the discharged water flows down, the bleed action of the intake ejector 10 is started, the air accumulated at the top of the suction pipe 7 is sucked, a siphon is formed, and the turbine discharge power generation operation is started. To do.
実施例3
図1に示す、放流落差を利用した処理水再利用システムにおいて、水車運転中におけるろ過装置の運転開始は、
a.水車6の吸出管7の管頂部7aの抽気弁V2と、抽気管25のエゼクタ弁V3と給水管4の抽気弁V4、ろ過槽3の給水弁V6と処理水弁V7、ろ過槽3の洗浄排水弁V8と洗浄水の給水弁V9、水車6の真空破壊弁V31、及び給水管4の真空破壊弁V32を閉止し、水車6の吸出管7の流量調整弁V1を開放した
b.水車単独運転中において、
c.水車6の吸出管7の管頂部7aの抽気弁V2、及び、給水管4の給水弁V6と抽気弁V4を開放する。
d.水車6の吸出管7の吸気圧力により、ろ過槽3の給水管4内の空気は抽気される。
e.給水管4の満水検知器LS1で空気排出完了を検知して、
f.ろ過槽3の給水弁V6と処理水弁V7を開放すれば、通常高度処理水の放流を開始する。
g.水車6の吸出管7の抽気弁V2と給水管4の抽気弁V4を閉止することにより、水車放流発電運転と、通常高度処理水の放流運転が可能となる。
Example 3
In the treated water reuse system using the discharge drop shown in FIG.
a. Washing of the extraction valve V2 at the top 7a of the suction pipe 7 of the water turbine 6, the ejector valve V3 of the extraction pipe 25, the extraction valve V4 of the water supply pipe 4, the water supply valve V6 of the filtration tank 3, the treated water valve V7, and the filtration tank 3 The drain valve V8, the flush water supply valve V9, the vacuum break valve V31 of the water wheel 6 and the vacuum break valve V32 of the water pipe 4 are closed, and the flow rate adjustment valve V1 of the suction pipe 7 of the water wheel 6 is opened b. During the water turbine alone operation,
c. The extraction valve V2 at the pipe top 7a of the suction pipe 7 of the water turbine 6 and the water supply valve V6 and the extraction valve V4 of the water supply pipe 4 are opened.
d. The air in the water supply pipe 4 of the filtration tank 3 is extracted by the intake pressure of the suction pipe 7 of the water turbine 6.
e. The completion of air discharge is detected by the full water detector LS1 of the water supply pipe 4,
f. If the water supply valve V6 and the treated water valve V7 of the filtration tank 3 are opened, the discharge of the normal advanced treated water is started.
g. By closing the extraction valve V2 of the suction pipe 7 of the water turbine 6 and the extraction valve V4 of the water supply pipe 4, it is possible to perform the turbine discharge power generation operation and the normal altitude treated water discharge operation.
この発明に係わる放流落差を利用した処理水再利用システムは、排水処理場等の放流堰の放流落差を利用して、ろ過槽の給水管と、発電機を搭載した水車の吸出管を放流堰にそれぞれ跨設し、ろ過槽の攪拌機を駆動するエアモータに空気圧縮機を配設すると共に、越流水を受ける水受槽の吸気エゼクタに連結する抽気管を水車の吸出管と水車の吸出管に接続してサイフォン作用を発生させるもので、下水等の排水処理水が放流堰を越流すれば、ろ過槽のろ過操作と水車による発電を開始することができ、上部水槽の水位が低下してろ過装置と水車が停止しても、水位が上昇すれば吸気エゼクタに抽気作用が発生して自動的にろ過装置と水車の作動が可能となる。従って、下水処理場等の処理水を無駄に放流することなく微細浮遊物を分離して、高度処理水として工業用水等に有効に活用でき、同時に、回収した電力をろ過装置のろ材洗浄の動力源としても活用できる。ろ材層の攪拌洗浄不用時に圧縮空気を圧縮空気槽に蓄えることができ、電力を蓄電器に蓄えることも、付帯設備に流用することも可能となる、 The treated water reuse system using a discharge drop according to the present invention uses a discharge drop of a discharge weir such as a wastewater treatment plant to connect a water supply pipe of a filtration tank and a suction pipe of a water turbine equipped with a generator to the discharge weir. The air compressor is installed on the air motor that drives the stirrer of the filtration tank, and the extraction pipe connected to the intake ejector of the water receiving tank that receives the overflow water is connected to the suction pipe of the turbine and the suction pipe of the turbine. If the treated wastewater such as sewage overflows the discharge weir, the filtration operation of the filtration tank and the power generation by the water wheel can be started, and the water level of the upper tank is lowered and filtered. Even if the device and the water turbine are stopped, if the water level rises, the suction action is generated in the intake ejector, and the filtration device and the water turbine can be automatically operated. Therefore, fine suspended solids can be separated without wastefully discharging treated water from a sewage treatment plant, etc., and can be effectively used for industrial water etc. as advanced treated water. It can also be used as a source. Compressed air can be stored in the compressed air tank when the filter medium layer is not stirred and washed, and electric power can be stored in a capacitor, or can be diverted to incidental equipment.
1 放流堰
3、26 ろ過槽
4、28 給水管
4b 始端部
5 発電機
6 水車
7 吸出管
8 水受槽
9 エゼクタ管
10 吸気エゼクタ
16 エアモータ
17、32 攪拌機
17a、32a 羽根
18、30 処理水管
20、36 洗浄排水管
19、35 洗浄水給水管
21、33 駆動空気管
22 空気圧縮機
23、34 排気管
24 圧縮空気槽
25 抽気管
39 給電線
A 上部水槽
B 下部水槽
DESCRIPTION OF SYMBOLS 1 Discharge weir 3, 26 Filtration tank 4, 28 Water supply pipe 4b Starting end part 5 Generator 6 Water wheel 7 Suction pipe 8 Water receiving tank 9 Ejector pipe 10 Intake ejector 16 Air motor 17, 32 Stirrer 17a, 32a Blade | wing 18, 30 Treated water pipe 20, 36 Washing drain pipe 19, 35 Washing water supply pipe 21, 33 Drive air pipe 22 Air compressor 23, 34 Exhaust pipe 24 Compressed air tank 25 Extraction pipe 39 Feeding line A Upper water tank B Lower water tank
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007108A JP4853683B2 (en) | 2009-01-16 | 2009-01-16 | Treated water reuse system using discharge head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007108A JP4853683B2 (en) | 2009-01-16 | 2009-01-16 | Treated water reuse system using discharge head |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010162482A JP2010162482A (en) | 2010-07-29 |
JP4853683B2 true JP4853683B2 (en) | 2012-01-11 |
Family
ID=42579118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009007108A Expired - Fee Related JP4853683B2 (en) | 2009-01-16 | 2009-01-16 | Treated water reuse system using discharge head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4853683B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103771605B (en) * | 2014-02-13 | 2015-01-28 | 天津市水利科学研究院 | Onboard micro-filtration algae removal system and algae removal method |
CN104399290B (en) * | 2014-12-01 | 2016-03-23 | 邓希海 | A kind of sewage purification and automatic back-washing blowdown apparatus |
JP6456744B2 (en) * | 2015-03-27 | 2019-01-23 | 住友重機械エンバイロメント株式会社 | Water treatment equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3109644B2 (en) * | 1994-07-25 | 2000-11-20 | 株式会社石垣 | How to wash and regenerate filter media |
JP2000126515A (en) * | 1998-10-23 | 2000-05-09 | Ishigaki:Kk | Downflow type filter using fiber filter medium |
JP4766392B2 (en) * | 2006-10-02 | 2011-09-07 | 株式会社石垣 | Self-siphon turbine generator |
-
2009
- 2009-01-16 JP JP2009007108A patent/JP4853683B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010162482A (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102179179B (en) | Vertical roll membrane filtering device and cleaning method thereof | |
CN105582724B (en) | Filtration system before a kind of self-cleaning pump | |
JP4853683B2 (en) | Treated water reuse system using discharge head | |
KR101731949B1 (en) | Water purifier and backwash method having natural flowing type backwash | |
JP5902538B2 (en) | Solid-liquid separator and solid-liquid separator cleaning method | |
KR101102979B1 (en) | Auto filtering apparatus capable of removing deposits | |
JP3984145B2 (en) | Cleaning method for solid-liquid separator | |
CN106219861A (en) | A kind of belt Magneto separate sewage disposal system | |
CN102923842B (en) | Aerated biological filtration tank | |
CN202876507U (en) | Horizontal cylindrical grating | |
CN201768409U (en) | Gas floating type reverse washing sand filtering continuous filter device | |
CN203729390U (en) | Reclaimed water reusing device and reclaimed water reusing closestool | |
CN208802864U (en) | Oil, mud, water separation tank | |
KR101581704B1 (en) | Filtration device for small sewage treatment using a filter cloth | |
CN208815647U (en) | A kind of water pipeline for hydraulic engineering | |
CN214160022U (en) | Improved spiral sand washer | |
CN103111104A (en) | Oilfield wastewater filtering device | |
CN216764506U (en) | Air floatation machine for treating oil-containing landfill leachate | |
CN217961354U (en) | A recovery processing device for strip tower knockout drum lime set | |
CN211871607U (en) | Oil-water collecting system for lathe | |
CN221053645U (en) | Drilling mud purifying and recycling device | |
KR100563987B1 (en) | Automatic system of intake and water-purifying apparatus for lake | |
CN213951755U (en) | High-efficient fibre recovery unit | |
CN220736349U (en) | A sediment device for washing medicine machine sewage treatment | |
CN218089135U (en) | Back-flushing type seawater desalination process tail water treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |