[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4850696B2 - Hydrogen production using pressure swing reforming - Google Patents

Hydrogen production using pressure swing reforming Download PDF

Info

Publication number
JP4850696B2
JP4850696B2 JP2006508732A JP2006508732A JP4850696B2 JP 4850696 B2 JP4850696 B2 JP 4850696B2 JP 2006508732 A JP2006508732 A JP 2006508732A JP 2006508732 A JP2006508732 A JP 2006508732A JP 4850696 B2 JP4850696 B2 JP 4850696B2
Authority
JP
Japan
Prior art keywords
reforming
pressure
zone
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006508732A
Other languages
Japanese (ja)
Other versions
JP2007524556A (en
Inventor
ヘルシュコビッツ,フランク
セガリッチ,ロバート,エル.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/756,652 external-priority patent/US20040170559A1/en
Priority claimed from US10/771,919 external-priority patent/US7914764B2/en
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JP2007524556A publication Critical patent/JP2007524556A/en
Application granted granted Critical
Publication of JP4850696B2 publication Critical patent/JP4850696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/46Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using discontinuously preheated non-moving solid materials, e.g. blast and run
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/0425In-situ adsorption process during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/168Adjusting the composition of the product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は概して、水素製造に関する。より詳しくは、本発明は、他に例をみない、熱的に効率のよい方法で圧力スイング改質を利用する、改善された水素製造方法に関する。   The present invention relates generally to hydrogen production. More particularly, the present invention relates to an improved method for producing hydrogen that utilizes pressure swing reforming in a thermally efficient manner unparalleled elsewhere.

水素は、多くの石油および石油化学関連運転に用いられる、鍵となる化学物質である。典型的には、水素は多くの製油所生成物の品質向上および仕上げに使われる。これらのプロセスに使用される水素は時に、アルカンの芳香族化合物への改質などの別の製油所プロセスの副生物として回収される。水素の別の供給源は、メタンなどの炭化水素の水蒸気改質を経由するものである。   Hydrogen is a key chemical used in many petroleum and petrochemical related operations. Typically, hydrogen is used to improve and finish many refinery products. The hydrogen used in these processes is sometimes recovered as a by-product of other refinery processes such as alkane reforming to aromatics. Another source of hydrogen is via steam reforming of hydrocarbons such as methane.

水蒸気改質法では、水蒸気を炭化水素含有供給原料と反応させて、水素リッチ合成ガスを生成させる。一般化学量論は、メタンについて例示すると、
CH+HO→CO+3H (1)
である。
In the steam reforming process, steam is reacted with a hydrocarbon-containing feedstock to produce hydrogen-rich synthesis gas. General stoichiometry is illustrated for methane,
CH 4 + H 2 O → CO + 3H 2 (1)
It is.

反応の高い吸熱性のため、典型的には、水蒸気改質は管に触媒が充填された大きな加熱炉で実施される。管は、1000℃に近い温度で熱を伝えながら、生成した合成ガスの高圧に耐えなければならない。非特許文献1に記載されているように、水蒸気改質法効率(生成物合成ガスの燃焼熱を、改質供給原料および加熱炉燃料の燃焼熱で割ったものと定義される)はおおよそ74%であるが、空間速度(C−当量供給原料の毎時標準立方フィート/触媒床のftと定義される)は1000時間−1である。残念ながら、水蒸気改質加熱炉は非常に大きな容量の空間(管の容量より桁違いに大きい)を占め、その結果、低い生産性が同方法の経済的魅力を制限する。よって、水蒸気改質プロセスの鍵となる制約は、水素と、水蒸気改質炉が占める大きい体積に対する、相対的に低い効率である。 Because of the high endothermic nature of the reaction, steam reforming is typically carried out in large furnaces with tubes packed with catalyst. The tube must withstand the high pressure of the produced synthesis gas while conducting heat at temperatures close to 1000 ° C. As described in Non-Patent Document 1, steam reforming efficiency (defined as the product synthesis gas combustion heat divided by the reforming feedstock and furnace fuel combustion heat) is approximately 74. %, But the space velocity (defined as C 1 -standard cubic feet per equivalent feed / ft 3 of catalyst bed) is 1000 hours- 1 . Unfortunately, steam reforming furnaces occupy a very large volume of space (an order of magnitude greater than the capacity of the tube), so that low productivity limits the economic attractiveness of the process. Thus, the key constraint of the steam reforming process is the relatively low efficiency for hydrogen and the large volume occupied by the steam reforming furnace.

セダークィスト(Sederquist)(特許文献1、特許文献2、特許文献3、特許文献4および特許文献5)は、サイクルの燃焼段階と改質段階の間での循環によって、改質熱を床内に提供する水蒸気改質法を教示している。セダークィストによって記載されているように、改質床内の上質の熱回収は、約97%の理論効率をもたらす。しかし、これらの特許内の実施例および商業予測は、空間速度約95時−1(C当量として)の、非常に低い生産性で作動する方法を記載している。更に、この方法は、生成物合成ガスを炭化水素合成に有用な圧力まで圧縮するための圧縮機を必要とする。 Sederquist (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4 and Patent Literature 5) provides reforming heat into the bed by circulation between the combustion phase and the reforming phase of the cycle. Teaches a steam reforming process. As described by Cedakist, fine heat recovery in the reforming bed results in a theoretical efficiency of about 97%. However, the examples and commercial predictions in these patents describe methods that operate at very low productivity, with space velocities of about 95 hr −1 (as C 1 equivalent). In addition, this process requires a compressor to compress the product synthesis gas to a pressure useful for hydrocarbon synthesis.

最近、周期的充填床運転で合成ガスを製造するための、非常に効率的で、非常に生産性の高い方法が発見された。この方法では、改質工程は、第1ゾーンを約700〜2000℃に予熱する工程、次いで2℃〜600℃の炭化水素含有供給原料を、水蒸気および場合によりCOと共に、第1ゾーンの入口に導入する工程を含む。反応体を導入すると、炭化水素はこの第1ゾーン中、触媒上で合成ガスへ改質される。次に、合成ガスを第1ゾーンから第2ゾーンに送り、そこでガスを炭化水素供給原料の入口温度に近い温度に冷却する。合成ガスが第2ゾーンの入口を出る時に、それを回収する。 Recently, a very efficient and very productive method has been discovered for producing synthesis gas in periodic packed bed operation. In this method, the reforming step comprises preheating the first zone to about 700-2000 ° C., then a hydrocarbon containing feed at 2 ° C.-600 ° C. with steam and optionally CO 2 at the inlet of the first zone. Including the step of Upon introduction of the reactants, the hydrocarbon is reformed into synthesis gas over the catalyst in this first zone. The synthesis gas is then sent from the first zone to the second zone where the gas is cooled to a temperature close to the hydrocarbon feedstock inlet temperature. As the synthesis gas exits the second zone inlet, it is recovered.

ガスを第2ゾーンの入口に導入する時に、再生工程が始まる。第2ゾーンの蓄積熱によって、このガスを同ゾーンの高い温度に加熱し、同ガスで熱を第1ゾーンに運び戻す。最後に、2つのゾーンの界面近くで酸素含有ガスおよび燃料を燃焼させて、熱い煙道ガスを生成させる。これは第1ゾーンを横切って移動し、同ゾーンを、供給原料を改質するのに十分な高温に再加熱する。いったん熱再生が完了すると、サイクルが完結し、改質が再び始まる。   The regeneration process begins when gas is introduced into the second zone inlet. The accumulated heat in the second zone heats this gas to a higher temperature in that zone and carries the heat back to the first zone. Finally, the oxygen-containing gas and fuel are combusted near the interface of the two zones to produce hot flue gas. This moves across the first zone and reheats the zone to a high temperature sufficient to reform the feedstock. Once heat regeneration is complete, the cycle is complete and reforming begins again.

この方法の利点は、改質工程を再生工程より高い圧力で運転して、圧力スイングを生み出し、高圧合成ガスを製造する能力である。   The advantage of this method is the ability to operate the reforming process at a higher pressure than the regeneration process, create a pressure swing, and produce high pressure synthesis gas.

炭化水素の水蒸気改質による水素の生成では一般に、生成物ストリームを、式2:
CO+HO→CO+H (2)
で示される、いわゆる水性シフト反応に付すことによって、式1に示した化学量論が変わる。
In the production of hydrogen by steam reforming of hydrocarbons, the product stream is generally represented by the formula 2:
CO + H 2 O → CO 2 + H 2 (2)
The stoichiometry shown in Formula 1 is changed by subjecting it to a so-called aqueous shift reaction represented by

米国特許第4,200,682号明細書US Pat. No. 4,200,682 米国特許第4,240,805号明細書US Pat. No. 4,240,805 米国特許第4,293,315号明細書US Pat. No. 4,293,315 米国特許第4,642,272号明細書US Pat. No. 4,642,272 米国特許第4,816,353号明細書US Pat. No. 4,816,353 スタンフォード研究所インターナショナルレポート(Stanford Research Institute International Report)No.212(1994)Stanford Research International Report No. 212 (1994)

任意の水素生成プロセスの実用化は、種々のプロセス段階を、いかにうまく総合的プロセス設計へ統合できるかに依存する。本明細書に記載の本発明は、改善された熱効率で水素を生成し、特に、製油所プロセスのため、燃料として直接使用するためおよび流通のため、比較的高圧の水素を必要とする環境に適応できるプロセス体系を提供する。   The practical application of any hydrogen production process depends on how well the various process steps can be integrated into an overall process design. The invention described herein produces hydrogen with improved thermal efficiency, especially in environments that require relatively high pressure hydrogen for refinery processes, for direct use as fuel and for distribution. Provide an adaptable process system.

本発明は、圧力スイング改質(合成ガスを生成させる)を、改善された熱効率で、高圧水素を生成させるのに十分な条件下における水性ガスシフト反応および水素分離と一体化することによって、水素生成における改良を提供する。よって、一実施形態では、圧力スイング改質プロセスの改質段階を、比較的高圧、例えば約10〜100バールで行い、実質的に同じ圧力で、生成物合成ガスを水性ガスシフト反応および水素分離工程に付して、高圧水素を供給する。   The present invention integrates pressure swing reforming (producing synthesis gas) with water gas shift reaction and hydrogen separation under conditions sufficient to produce high pressure hydrogen with improved thermal efficiency, thereby producing hydrogen. Provides improvements in Thus, in one embodiment, the reforming stage of the pressure swing reforming process is performed at a relatively high pressure, eg, about 10-100 bar, and the product syngas is subjected to a water gas shift reaction and a hydrogen separation step at substantially the same pressure. To supply high-pressure hydrogen.

本発明の別の実施形態は、圧力スイング改質プロセスの再生段階からの煙道ガスを再生床まで再循環させて、その中に存在する過剰酸素の量だけでなく、再生段階に必要な空気の量を低減することを含む。   Another embodiment of the present invention is to recycle flue gas from the regeneration stage of the pressure swing reforming process to the regeneration bed, not only the amount of excess oxygen present therein, but also the air required for the regeneration stage. Reducing the amount of.

従って、本発明の好適な実施形態は、
(a)床充填材および水蒸気改質触媒を含有する第1ゾーンの第1端を通じて、炭化水素および水蒸気を含む原料油ストリームを導入し、第1の高圧力において、H、CO、水蒸気およびCOを含む合成ガスストリームを生成させる工程;
(b)前記工程(a)の生成物合成ガスストリームの少なくとも一部を、床充填材を含有する第2ゾーンに送り、顕熱を前記生成物から前記充填材へ移動させる工程;
(c)前記生成物合成ガスを、実質的に全て前記第2ゾーンから取り出す工程;
(d)取り出した前記工程(c)の合成ガスを、水性ガスシフト反応器に送り、水蒸気を用いてCOをCOおよびHに転化し、Hが増加した生成物ストリームを生成させる工程;
(e)前記工程(d)の生成物ストリームを水素分離器に導入して、それから水素を分離して取り出し、副生物ストリームを得る工程;
(f)前記第2ゾーンの第2端に、酸素含有ガスを導入する工程;および
(g)前記第1の高圧力より低い圧力で、前記酸素含有ガスを燃料と接触させ、前記ゾーン内で前記燃料を燃焼させ、それによって前記第1ゾーンを再加熱し、前記第1ゾーンの第1端を通って出る煙道ガスを生成させる工程
を含んでなる。
Accordingly, preferred embodiments of the present invention are:
(A) introducing a feedstock stream comprising hydrocarbons and steam through a first end of a first zone containing a bed filler and a steam reforming catalyst, and at a first high pressure, H 2 , CO, steam and Producing a synthesis gas stream comprising CO 2 ;
(B) sending at least a portion of the product synthesis gas stream of step (a) to a second zone containing a floor filler to transfer sensible heat from the product to the filler;
(C) removing substantially all of the product synthesis gas from the second zone;
(D) sending the removed synthesis gas of step (c) to a water gas shift reactor and using steam to convert CO to CO 2 and H 2 to produce a product stream with increased H 2 ;
(E) introducing the product stream of step (d) into a hydrogen separator, from which hydrogen is separated and removed to obtain a by-product stream;
(F) introducing an oxygen-containing gas into a second end of the second zone; and (g) contacting the oxygen-containing gas with fuel at a pressure lower than the first high pressure; Combusting the fuel, thereby reheating the first zone and producing flue gas exiting through a first end of the first zone.

特に好適な実施形態では、酸素および燃料を、改質ゾーンに導入される水蒸気および炭化水素原料の温度より高温の煙道ガスを供給するのに十分な条件下で燃焼させ、この煙道ガスを使用して、改質段階で使われる水蒸気を製造するための熱を供給する。   In a particularly preferred embodiment, oxygen and fuel are combusted under conditions sufficient to provide a flue gas above the temperature of the steam and hydrocarbon feed introduced into the reforming zone, and the flue gas is Used to supply heat to produce steam used in the reforming stage.

その他の実施形態は、以下に記載される。   Other embodiments are described below.

本発明では、合成ガスを生成させる圧力スイング改質を、水性ガスシフト反応器および水素分離と統合して、高圧水素を生成させる。圧力スイング改質は最近発見されたプロセスであるので、まず、図l−aおよび1−bに概略的に例示した圧力スイング改質の基本の2工程サイクルを参照して、このプロセスの詳細を述べる。   In the present invention, pressure swing reforming to produce synthesis gas is integrated with a water gas shift reactor and hydrogen separation to produce high pressure hydrogen. Since pressure swing reforming is a recently discovered process, the details of this process will first be described with reference to the basic two-step cycle of pressure swing reforming schematically illustrated in FIGS. State.

図1−aおよび1−bを参照すると、スイング床改質装置と呼ばれる第1ゾーンまたは改質ゾーン(1)と、合成ガス熱レキュペレーター(7)と呼ばれる第2ゾーンまたは回復ゾーンがある。両ゾーンの床は充填材を含むが、改質床(1)は水蒸気改質用触媒を含む。別個の改質および回復ゾーンとして例示されているが、圧力スイング改質装置がただ一つの反応器よりなってもよいと認識すべきである。   Referring to FIGS. 1-a and 1-b, there is a first zone or reforming zone (1) called a swing bed reformer and a second zone or recovery zone called a syngas thermal recuperator (7). . The beds in both zones contain the filler, while the reforming bed (1) contains the steam reforming catalyst. Although illustrated as separate reforming and recovery zones, it should be recognized that the pressure swing reformer may consist of only one reactor.

図1−aに示されるように、改質工程とも呼ばれるサイクルの第1工程の開始時には、改質ゾーン(1)は高温であり、回復ゾーン(7)は改質ゾーン(1)より低温である。炭化水素含有供給原料は、水蒸気と共に、導管(15)を通って改質ゾーン(1)の第1端(3)に導入される。炭化水素は、メタン、石油ガス、石油留出物、灯油、ジェット燃料、燃料油、加熱油、ディーゼル燃料、軽油、ガソリンをはじめとする、吸熱水蒸気改質反応を受ける任意の物質であってよい。好ましくは、炭化水素はガス状物質、または、改質ゾーン(1)に導入すると迅速に実質的にガス状になるものである。好ましくは、水蒸気は、(存在するかもしれないCOまたはCO化学種中の炭素ではなく、炭化水素中の炭素のみを考慮して)約1〜約3の水蒸気対炭素比をもたらす量で、炭化水素に比例して存在する。 As shown in FIG. 1-a, at the start of the first step of the cycle, also called the reforming step, the reforming zone (1) is at a high temperature and the recovery zone (7) is at a lower temperature than the reforming zone (1). is there. The hydrocarbon-containing feedstock is introduced with steam into the first end (3) of the reforming zone (1) through the conduit (15). Hydrocarbons can be any substance that undergoes an endothermic steam reforming reaction, including methane, petroleum gas, petroleum distillates, kerosene, jet fuel, fuel oil, heating oil, diesel fuel, light oil, gasoline. . Preferably, the hydrocarbon is a gaseous substance or one that quickly becomes substantially gaseous upon introduction into the reforming zone (1). Preferably, the steam is in an amount that results in a steam to carbon ratio of about 1 to about 3 (considering only carbon in the hydrocarbon, not carbon in the CO or CO 2 species that may be present), Present in proportion to hydrocarbons.

この原料油ストリームは、床から熱を受け取り、触媒および熱上で合成ガスに転化される。この工程が進行するにつれ、システムの伝熱特性に基づく温度プロフィール(23)が生じる。本明細書で記載されるように、床が適切な伝熱能を持つよう設計されていれば、このプロフィールは比較的鋭い温度勾配を有し、その勾配は、工程が進行するにつれて改質ゾーン(1)を横切って移動する。   This feed stream receives heat from the bed and is converted to synthesis gas over the catalyst and heat. As this process proceeds, a temperature profile (23) is generated based on the heat transfer characteristics of the system. As described herein, if the bed is designed to have the appropriate heat transfer capability, this profile will have a relatively sharp temperature gradient that will change as the process proceeds ( 1) Move across.

合成ガスは、高温の第2端(5)を通って改質床(1)を出て、回復ゾーン(7)を通過する(第1端(11)を通って入り、第2端(9)から出る)。回復ゾーン(7)は、最初は改質ゾーン(1)より低い温度にある。合成ガスが回復ゾーン(7)を通過するにつれて、合成ガスは、前記ゾーンの、実質的に第2端(9)における温度に近い温度(これは、サイクルの第2工程の間、導管(19)を通って導入されている再生供給原料とほぼ同じ温度(例えば、約20〜約600℃)である)に冷却される。合成ガスが回復ゾーン(7)で冷却されるにつれて、温度勾配(24)が生じ、この工程の間に回復ゾーン(7)を横切って移動する。   The synthesis gas exits the reforming bed (1) through the hot second end (5) and passes through the recovery zone (7) (enters through the first end (11) and enters the second end (9). ) The recovery zone (7) is initially at a lower temperature than the reforming zone (1). As the syngas passes through the recovery zone (7), the syngas is heated to a temperature substantially close to that at the second end (9) of the zone (this is the conduit (19) during the second step of the cycle. ) Through about the same temperature as the recycled feedstock being introduced through (eg, about 20 to about 600 ° C.). As the synthesis gas is cooled in the recovery zone (7), a temperature gradient (24) is created and moves across the recovery zone (7) during this process.

工程間の時点では、温度勾配は既に、実質的に改質ゾーン(1)および回復ゾーン(7)を横切る移動を完了している。ゾーンは、上記改質工程の間に匹敵する時間で、勾配が両方を横切って移動するような大きさである。現時点で、回復ゾーン(7)は高温にあり、改質ゾーン(1)は低温にある(それぞれのゾーンの出口近くに存在する温度勾配を除く)。また現時点で、入口端(3)近くの改質ゾーン(1)の温度は、導管(15)を通じて入った炭化水素供給原料の温度に近い温度(例えば約20〜約600℃)まで冷却されている。   At the time between the processes, the temperature gradient has already substantially completed the movement across the reforming zone (1) and the recovery zone (7). The zone is sized such that the gradient moves across both at a comparable time during the reforming process. At present, the recovery zone (7) is at a high temperature and the reforming zone (1) is at a low temperature (except for the temperature gradient present near the exit of each zone). Also at this time, the temperature of the reforming zone (1) near the inlet end (3) is cooled to a temperature close to that of the hydrocarbon feedstock entering through the conduit (15) (eg, about 20 to about 600 ° C.). Yes.

圧力スイング改質の実施では、改質工程の終了を判断するための代替手段がある。改質工程の終わり頃に、改質ゾーン末端(5)の温度は下がり、その結果として、改質性能は許容される転化効率よりも低下する。改質性能とは、本明細書で用いるところでは、供給原料炭化水素の、合成ガス成分H、COおよびCOへの転化率を指す。用語「パーセント転化率」は、本明細書で用いるところでは、供給原料炭化水素質化学種中の炭素の、合成ガス化学種COおよびCOへのパーセント転化率として計算される。用語「未転化生成物炭化水素」とは、本明細書で用いるところでは、合成ガス成分H、COおよびCOではない、生成物炭化水素質化学種を意味する。典型的には、これらには供給原料炭化水素および供給原料炭化水素のクラッキング生成物だけでなく、生成物メタンも含まれる。改質性能が許容される限界より下のレベルに低下した時、改質工程は終了する。実際には、総合的な改質および合成ガス利用方法の最適化が、改質転化の所望の時間平均レベルを決定する。時間平均のそうした改質転化レベルは、典型的には80%より大きく、好ましくは90%より大きく、最も好ましくは95%より大きい。 In the implementation of pressure swing reforming, there is an alternative means for determining the end of the reforming process. Around the end of the reforming process, the temperature of the reforming zone end (5) decreases, and as a result, the reforming performance falls below the permissible conversion efficiency. The reforming performance, as used herein, refers to the conversion of the feed hydrocarbon, the synthesis gas components H 2, CO and CO 2. The term “percent conversion” as used herein is calculated as the percent conversion of carbon in the feed hydrocarbonaceous species to synthesis gas species CO and CO 2 . The term “unconverted product hydrocarbon” as used herein means a product hydrocarbonaceous species that is not the synthesis gas components H 2 , CO, and CO 2 . Typically, these include not only feed hydrocarbons and feed hydrocarbon cracking products, but also product methane. The reforming process ends when the reforming performance drops to a level below the acceptable limit. In practice, the optimization of the overall reforming and synthesis gas utilization method determines the desired time average level of reforming conversion. Such reformed conversion levels on a time average are typically greater than 80%, preferably greater than 90%, and most preferably greater than 95%.

改質工程が終了する時点、従って改質工程の継続時間は、(a)各改質工程中の改質装置の時変性能への応答として選んでもよく、(b)システムの総合(時間平均)性能に基づいて選んでもよく、(c)一定の改質工程継続時間に固定してもよい。実施形態(a)では、改質性能と相関関係がある少なくとも1つの運転の特徴をモニターする。この特徴は、CH、H、COのような組成、または改質床末端(5)の温度のような温度であってよい。本発明の一実施形態では、改質床末端(5)の温度が、約700〜約1200℃の予め選択された温度まで下がった時に、改質工程が終了する。実施形態(b)では、システムの総合(時間平均)性能を反映する測定された特徴に基づいて、改質工程継続時間を調節する。これは、CH、H、COのような平均生成物組成であってよい。本発明の一実施形態では、継続時間を短くするまたは長くするための、当該技術で公知の制御戦略を用いて、生成物中のCHの時間平均濃度に基づいて改質工程継続時間を調節し、予め定められた目標CH量を達成する。好ましい実施形態では、目標CH量を、炭化水素質供給原料炭素の約1〜約15%にあたる量に設定する。ケース(c)では、改質工程継続時間は、運転の空間速度に対して許容されると予め定められた値の、固定長のものである。本発明の一実施形態では、改質工程継続時間を約0.1秒〜約60秒未満、好ましくは約1.0〜30秒の継続時間に固定する。 The point at which the reforming process ends, and thus the duration of the reforming process, may be selected as a response to the time-varying performance of the reformer during each reforming process, and (b) the overall (time averaged) system ) May be selected based on performance, or (c) may be fixed at a constant reforming process duration. In embodiment (a), at least one operating characteristic that correlates with reforming performance is monitored. This feature may be a composition such as CH 4 , H 2 , CO, or a temperature such as the temperature of the modified bed end (5). In one embodiment of the invention, the reforming process ends when the temperature of the reformed bed end (5) falls to a preselected temperature of about 700 to about 1200 ° C. In embodiment (b), the reforming process duration is adjusted based on measured features that reflect the overall (time average) performance of the system. This may be an average product composition such as CH 4 , H 2 , CO. In one embodiment of the present invention, the reforming process duration is adjusted based on the time average concentration of CH 4 in the product using control strategies known in the art to shorten or lengthen the duration. And a predetermined target CH 4 amount is achieved. In a preferred embodiment, the target CH 4 amount is set to an amount equivalent to about 1 to about 15% of the hydrocarbonaceous feedstock carbon. In case (c), the reforming process duration is a fixed length of a value that is predetermined to be allowed for the space velocity of operation. In one embodiment of the invention, the reforming process duration is fixed to a duration of about 0.1 seconds to less than about 60 seconds, preferably about 1.0 to 30 seconds.

回復ゾーン(7)の第2端(9)で、出口導管(17)を通じて合成ガスを回収した後、再生工程とも呼ばれるサイクルの第2工程が始まる。図1−bに例示される再生工程は基本的に、レキュペレーター床(7)から改質装置床(1)へ熱を伝える工程を含む。そのようにすると、改質中の勾配23および24と同様に(ただし、それらとは逆方向に)、温度勾配25および26が、床を横切って移動する。好ましい実施形態では、回復ゾーン(7)の第2端(9)に、導管(19)を通じて酸素含有ガスおよび燃料を導入する。この混合物は、回復ゾーン(7)を横切って流れ、実質的に2つのゾーン(1)と(7)の界面(13)で燃焼する。本発明では、燃焼は回復ゾーン(7)と改質ゾーン(1)の界面(13)に隣接した領域で起こる。本発明では、用語「隣接した領域」とは、PSR床の、再生工程の燃焼が2つの目的((a)再生工程の終わりに、改質ゾーン末端(5)が800℃以上、好ましくは1000℃以上であるように、改質ゾーンを加熱すること;および(b)回復ゾーンを、次の改質工程で合成ガス顕熱を受け取るというその機能を果たすことができるまでに、十分な程度に冷却すること)を達成する領域を意味する。本明細書に記載される具体的な再生実施形態にもよるが、界面に隣接する領域は、回復ゾーン(7)の容量の0%〜約50%を含むことができ、改質ゾーン(1)の容量の0%〜約50%を含むことができる。本発明の好ましい実施形態では、再生工程燃焼の90%より多くは、界面に隣接する領域で起こり、同領域の容量は、回復ゾーン(7)の約20容量%未満、および改質ゾーン(1)の約20容量%未満を含む。   After the synthesis gas is recovered through the outlet conduit (17) at the second end (9) of the recovery zone (7), the second step of the cycle, also called the regeneration step, begins. The regeneration step illustrated in FIG. 1-b basically includes the step of transferring heat from the recuperator bed (7) to the reformer bed (1). In doing so, temperature gradients 25 and 26 move across the bed, similar to (but in the opposite direction to) gradients 23 and 24 during reforming. In a preferred embodiment, oxygen-containing gas and fuel are introduced through conduit (19) to the second end (9) of the recovery zone (7). This mixture flows across the recovery zone (7) and burns substantially at the interface (13) between the two zones (1) and (7). In the present invention, combustion occurs in a region adjacent to the interface (13) between the recovery zone (7) and the reforming zone (1). In the context of the present invention, the term “adjacent region” means that the combustion of the PSR bed has two purposes ((a) at the end of the regeneration step, the reforming zone end (5) is above 800 ° C., preferably 1000 ° C. Heating the reforming zone to be above ℃; and (b) the recovery zone to the extent that it can serve its function of receiving syngas sensible heat in the next reforming step. Means the area to achieve cooling). Depending on the specific regeneration embodiment described herein, the region adjacent to the interface can comprise 0% to about 50% of the capacity of the recovery zone (7) and the reforming zone (1 0% to about 50%. In a preferred embodiment of the invention, more than 90% of the regeneration process combustion occurs in the region adjacent to the interface, the volume of the region being less than about 20% by volume of the recovery zone (7), and the reforming zone (1 ) Less than about 20% by volume.

燃焼成分の1つ、例えば燃料を、2つのゾーンの界面(13)に(または実質的にそこに)導入して、燃焼の場所を固定してもよいが、他の成分、例えば酸素含有ガスを、回復ゾーン(7)の第1端(9)に導入してもよい。或いは、燃料と酸素含有ガス(19)ストリームを、回復ゾーン(7)の開口端(9)で混合し、ゾーンを通じて移動させ、ゾーンの界面(13)で燃焼させてもよい。この実施形態では、温度、時間、流体力学および触媒作用の組み合わせによって、燃焼の場所を制御する。通常、燃料と酸素の燃焼は、温度依存性の自己点火時間を必要とする。一実施形態では、再生の第1サブ工程における不燃性混合物の流れがゾーンの界面に達するまでに、回復ゾーン(7)が点火するほどに熱くなることのないように、同混合物が前記ゾーンにおける温度プロフィールを設定する。   One of the combustion components, eg fuel, may be introduced (or substantially there) at the interface (13) of the two zones to fix the location of the combustion, while other components, eg oxygen containing gas May be introduced at the first end (9) of the recovery zone (7). Alternatively, the fuel and oxygen-containing gas (19) stream may be mixed at the open end (9) of the recovery zone (7), moved through the zone, and combusted at the zone interface (13). In this embodiment, the location of combustion is controlled by a combination of temperature, time, hydrodynamics and catalysis. Usually, combustion of fuel and oxygen requires a temperature dependent autoignition time. In one embodiment, the mixture is not heated in the zone so that the recovery zone (7) does not become hot enough to ignite before the flow of the non-flammable mixture in the first sub-step of the regeneration reaches the zone interface. Set the temperature profile.

同位置での燃焼開始に、改質ゾーンにおける触媒の存在を利用することもでき、また改質ゾーンと回復ゾーンの間に空間(燃焼工程を更に安定化させ、燃焼を上記界面に隣接する区域に制限するように設計する)を追加することができる。更に別の実施形態では、回復ゾーンの機械的設計によって燃焼の場所を固定する。この設計では、燃料および酸素含有ガスは、供給物がゾーンの界面(13)で化合するまで燃焼を防ぐ、別個のチャネル(示されていない)を移動中である。同位置では、改質ゾーン中の保炎器(示されていない)または触媒が、燃焼が起こることを確実にする。   The presence of the catalyst in the reforming zone can also be used to start combustion at the same location, and the space between the reforming zone and the recovery zone (the zone adjacent to the interface is further stabilized by further stabilizing the combustion process). Designed to be limited to). In yet another embodiment, the location of combustion is fixed by the mechanical design of the recovery zone. In this design, fuel and oxygen-containing gas are moving through separate channels (not shown) that prevent combustion until the feeds combine at the zone interface (13). In the same position, a flame holder (not shown) or catalyst in the reforming zone ensures that combustion occurs.

燃料および酸素含有ガスの燃焼は、熱い煙道ガスを生成させる。これが改質ゾーン(1)を横切って移動する時に、同ゾーンを加熱する。煙道ガスは次に、改質ゾーンの第1端(3)を通り、導管(27)を通って出る。酸素含有ガス/燃料混合物の組成を調節して、改質ゾーンの所望の温度を提供する。組成(従って温度も)は、混合物の可燃部対不燃部の割合によって調節する。例えば、燃焼温度を下げるため、HO、CO、Nのような不燃性ガスを混合物に加えることができる。好ましい実施形態では、不燃性ガスは、混合物の一成分としての水蒸気、煙道ガスまたは酸素枯渇空気の使用によって得られる。熱い煙道ガスが改質装置内の温度勾配に達すると、勾配は床を横切って更に移動する。煙道ガスの出口温度は実質的に、改質ゾーン(1)の入口端(3)近くの温度に等しい。再生工程の開始時には、この出口温度は実質的に、先行する改質工程での、改質供給原料の入口温度に等しい。再生工程が進行するにつれて、この出口温度はゆっくりと、そして温度勾配が端(3)に達すると急速に上がり、前記工程の終わりまでには、改質供給原料の温度より50〜500℃上であり得る。 The combustion of the fuel and oxygen-containing gas produces hot flue gas. As this moves across the reforming zone (1), the zone is heated. The flue gas then exits through the first end (3) of the reforming zone and through the conduit (27). The composition of the oxygen-containing gas / fuel mixture is adjusted to provide the desired temperature of the reforming zone. The composition (and therefore the temperature) is adjusted by the ratio of combustible to non-combustible parts of the mixture. For example, incombustible gases such as H 2 O, CO 2 , N 2 can be added to the mixture to lower the combustion temperature. In a preferred embodiment, the non-flammable gas is obtained by the use of water vapor, flue gas or oxygen-depleted air as a component of the mixture. When the hot flue gas reaches a temperature gradient in the reformer, the gradient moves further across the floor. The outlet temperature of the flue gas is substantially equal to the temperature near the inlet end (3) of the reforming zone (1). At the start of the regeneration process, this outlet temperature is substantially equal to the reformate feedstock inlet temperature in the preceding reforming process. As the regeneration process proceeds, the outlet temperature slowly increases and rises rapidly when the temperature gradient reaches end (3), and by the end of the process it is 50-500 ° C. above the temperature of the reforming feed. possible.

圧力スイング改質の実施では、再生工程の終了を判断するための代替方法がある。改質工程の実施を可能にするのに十分な熱が改質床に供給または伝達された時に、再生工程は終了する。再生工程が終了する時点、従って再生工程の継続時間は、(a)各再生工程中のPSRの時変性能への応答として選んでもよく、(b)システムの総合(時間平均)性能に基づいて選んでもよく、(c)一定の再生工程継続時間として固定してもよい。実施形態(a)では、再生性能と相関関係がある何らかの運転の特徴をモニターする。この特徴は、O、CH、H、COのような組成、または改質床末端(3)の温度のような温度であってよい。本発明の一実施形態では、改質床末端(3)の温度が、約200〜約800℃の予め選択された温度まで上がった時に、再生工程が終了する。実施形態(b)では、システムの総合(時間平均)性能を反映する測定された特徴に基づいて、再生工程継続時間を調節する。この特徴は、CH、H、COのような平均生成物組成、または幾つかの他のシステム測定値であってよい。本発明の一実施形態では、継続時間を短くするまたは長くするための、当該技術で公知の制御戦略を用いて、生成物中のCHの時間平均濃度に基づいて再生継続時間を調節し、目標CH量を達成する。好ましい実施形態では、目標CH量を、炭化水素質供給原料炭素の約1〜約15%にあたる量に設定する。実施形態(c)では、再生工程継続時間は、運転の空間速度に対して許容されると予め定められた値の、固定長のものである。本発明の一実施形態では、再生工程継続時間を約0.1秒〜約60秒、好ましくは1.0〜30秒の継続時間に固定する。これら全てのケース(特に実施形態(c))で、再生流量も、上の実施形態(b)で継続時間の調節に関して記載されたものと類似のやり方で調節し、工程中に床に加えられる熱の量を増やす、または減らすことが好ましい。本発明の更なる実施形態では、再生工程継続時間を約1秒〜約60秒の継続時間に固定し、また再生流量を経時的に調節し、改質生成物中のCHの時間平均濃度を、目標CH量(炭化水素質供給原料炭素の約1%〜約15%にあたる量に設定されている)に近づける。 In the implementation of pressure swing reforming, there is an alternative method for determining the end of the regeneration process. The regeneration process ends when sufficient heat is supplied or transferred to the reforming bed to allow the reforming process to be performed. The point at which the regeneration process ends, and thus the duration of the regeneration process, may be selected as a response to the time-varying performance of the PSR during each regeneration process, and (b) based on the overall (time average) performance of the system. You may choose, (c) You may fix as fixed regeneration process continuation time. In the embodiment (a), some driving characteristics having a correlation with the reproduction performance are monitored. This feature may be a composition such as O 2 , CH 4 , H 2 , CO, or a temperature such as the temperature of the modified bed end (3). In one embodiment of the invention, the regeneration process ends when the temperature of the modified bed end (3) rises to a preselected temperature of about 200 to about 800 ° C. In embodiment (b), the regeneration process duration is adjusted based on measured features that reflect the overall (time average) performance of the system. This feature may be an average product composition such as CH 4 , H 2 , CO, or some other system measurement. In one embodiment of the invention, the regeneration duration is adjusted based on the time average concentration of CH 4 in the product using control strategies known in the art to shorten or lengthen the duration, Achieving the target CH 4 amount. In a preferred embodiment, the target CH 4 amount is set to an amount equivalent to about 1 to about 15% of the hydrocarbonaceous feedstock carbon. In embodiment (c), the regeneration process duration is of a fixed length, a value that is predetermined to be permissible for the driving space velocity. In one embodiment of the invention, the regeneration process duration is fixed to a duration of about 0.1 seconds to about 60 seconds, preferably 1.0 to 30 seconds. In all these cases (especially embodiment (c)), the regeneration flow is also adjusted in a manner similar to that described for adjusting the duration in embodiment (b) above and added to the floor during the process. It is preferable to increase or decrease the amount of heat. In a further embodiment of the present invention, the regeneration process duration is fixed to a duration of about 1 second to about 60 seconds, and the regeneration flow rate is adjusted over time to provide a time average concentration of CH 4 in the reformed product. To the target CH 4 amount (set to an amount corresponding to about 1% to about 15% of the hydrocarbonaceous feedstock carbon).

改質ゾーンは現時点で、再び、触媒改質に好適な改質温度にある。   The reforming zone is now again at a reforming temperature suitable for catalytic reforming.

圧力スイング改質では、サイクルの2つの工程を異なる圧力で行う。即ち、一般に、改質工程を再生工程より高圧で行う。改質工程の圧力は、約10気圧(絶対圧)〜約100気圧の範囲である。再生工程の圧力は、約1気圧〜約20気圧の範囲である。特に明記しない限り、絶対圧を単位として圧力を特定する。本質の部分では(in principle part)、固体の床充填材とガスの間の、定容熱容量の大きな差異に対して、圧力スイングが可能になる。   In pressure swing reforming, the two steps of the cycle are performed at different pressures. That is, generally, the reforming process is performed at a higher pressure than the regeneration process. The pressure in the reforming step ranges from about 10 atmospheres (absolute pressure) to about 100 atmospheres. The pressure in the regeneration process ranges from about 1 atmosphere to about 20 atmospheres. Unless otherwise specified, pressure is specified in absolute pressure. In essence, in principle, pressure swings are possible for large differences in the constant volume heat capacity between the solid bed filler and the gas.

システムの空間速度は、典型的には、毎時基準の、供給原料の容量ガス流量として表され、毎時ガス空間速度、即ちGHSVと呼ばれる。空間速度は、供給原料の炭化水素成分の観点から定義することもできる。そのように定義される時、メタン供給原料についてのGHSVは、メタンの毎時容量(標準状態)ガス流量を、床の容量で割ったものである。本明細書で用いるところでは、CGHSVと省略される用語「空間速度」は、C基準での任意の炭化水素供給原料の空間速度を意味する。そのようなものとして、炭化水素供給速度は、炭素供給原料のモル速度として計算され、標準容量速度は、あたかも炭素がガス状化学種であるかのように計算される。例えば、1.0Lの床にガス流量1,000NL/時で流れる、平均炭素数7.0のガソリン供給原料は、空間速度7,000であると言う。この定義は、改質工程中の供給原料ストリームに基づいており、ここで床容量は、改質および回復ゾーン中の、全ての触媒および伝熱固形分を含む。 The space velocity of the system is typically expressed as the volumetric gas flow rate of the feedstock on an hourly basis and is referred to as the hourly gas space velocity, or GHSV. The space velocity can also be defined in terms of the hydrocarbon component of the feedstock. As so defined, the GHSV for a methane feed is the methane hourly volume (standard state) gas flow divided by the bed volume. As used herein, the term “space velocity” abbreviated as C 1 GHSV means the space velocity of any hydrocarbon feed on a C 1 basis. As such, the hydrocarbon feed rate is calculated as the molar rate of the carbon feedstock and the standard capacity rate is calculated as if carbon is a gaseous species. For example, a gasoline feed with an average carbon number of 7.0 that flows through a 1.0 L bed at a gas flow rate of 1,000 NL / hr is said to have a space velocity of 7,000. This definition is based on the feed stream during the reforming process, where the bed volume includes all catalyst and heat transfer solids in the reforming and recovery zones.

圧力スイング改質では、空間速度CGHSVは、典型的には約1,000〜約50,000の範囲である。 For pressure swing reforming, the space velocity C 1 GHSV is typically in the range of about 1,000 to about 50,000.

好ましい実施形態では、伝熱パラメーター(ΔTHT)約0.1℃〜約500℃、より好ましくは約0.5℃〜40℃によって特徴付けられるような、十分な伝熱速度を提供する床充填および空間速度条件下で、圧力スイング改質を行う。パラメーターΔTHTは、改質に必要とされる床平均容量伝熱速度Hの、床の容量伝熱係数hに対する比である。改質に必要とされる容量伝熱速度は、空間速度と改質熱(C容量当たりの熱基準で)との積として計算される。例えば、H=4.9cal/cc/秒=2.2cal/cc*8000時−1/3600秒/時である(2.2cal/ccはメタンの標準容量当たりのメタン改質熱であり、8000はメタンのCGHSVである)。改質および再生工程の継続時間が類似の場合、Hの値は2工程で類似である。床の容量伝熱係数hは、当該技術で公知であり、典型的には、面積基準の係数(例えばcal/cm秒℃)と、伝熱のための比表面積(a、例えばcm/cm)(しばしば「充填物の湿潤面積」と称される)との積として計算される。 In a preferred embodiment, the bed packing provides a sufficient heat transfer rate as characterized by a heat transfer parameter (ΔT HT ) of about 0.1 ° C. to about 500 ° C., more preferably about 0.5 ° C. to 40 ° C. And pressure swing reforming under space velocity conditions. The parameter ΔT HT is the ratio of the bed average capacity heat transfer rate H required for reforming to the capacity heat transfer coefficient h v of the bed. The volumetric heat transfer rate that is needed for reforming is calculated as the product of the space velocity and the heat of reforming (with C 1 thermal reference per volume). For example, H = 4.9 cal / cc / sec = 2.2 cal / cc * 8000 hr- 1 / 3600 sec / hr (2.2 cal / cc is the heat of methane reforming per standard volume of methane, 8000 Is C 1 GHSV for methane). If the durations of the reforming and regeneration processes are similar, the value of H is similar in the two processes. The capacity heat transfer coefficient h v of the floor is known in the art and is typically an area-based coefficient (eg cal / cm 2 sec ° C.) and a specific surface area for heat transfer ( av , eg cm 2 / cm 3 ) (often referred to as “wetting area of the packing”).

圧力スイング改質法での使用に好適な床充填材には、少なくとも1000℃まで安定であるコーディエライト、ケイ酸アルミニウム粘土、ムライト、シリカ−アルミナ、ジルコニアなどが含まれる。適切な改質触媒には、貴、遷移および第VIII族成分、並びにAg、Ce、Cu、La、Mo、Mg、Sn、Ti、YおよびZn、またそれらの組み合わせが含まれる。好適な触媒系には、Ni、NiO、Rh、Ptおよびその組み合わせが含まれる。これらの材料は、当技術分野でよく知られている触媒担体上に堆積、またはその中に被覆することができる。   Bed fillers suitable for use in the pressure swing reforming process include cordierite, aluminum silicate clay, mullite, silica-alumina, zirconia and the like that are stable to at least 1000 ° C. Suitable reforming catalysts include noble, transition and group VIII components, and Ag, Ce, Cu, La, Mo, Mg, Sn, Ti, Y and Zn, and combinations thereof. Suitable catalyst systems include Ni, NiO, Rh, Pt and combinations thereof. These materials can be deposited on or coated on catalyst supports well known in the art.

図2(本発明の一実施形態を示す)を参照すると、圧力スイング改質器(128)は、高温水性ガスシフト反応器(130)および水素分離器(例えば、圧力スイング吸着装置(132))に、操作可能に連通している。炭化水素原料(112)(例えばメタン)および水蒸気(114)を圧力スイング改質器(128)に通し、そこで合成ガスに転化する。合成ガス(129)を高温シフト(HTS)反応器(130)に供給し、ここで、合成ガス中のCOレベルを低減し、更なる水素を生成させる(上記式2に示されている)。   Referring to FIG. 2 (which shows one embodiment of the present invention), the pressure swing reformer (128) is connected to a hot water gas shift reactor (130) and a hydrogen separator (eg, pressure swing adsorption device (132)). , Operably communicated. Hydrocarbon feed (112) (eg, methane) and steam (114) are passed through a pressure swing reformer (128) where it is converted to synthesis gas. Syngas (129) is fed to a high temperature shift (HTS) reactor (130) where the CO level in the syngas is reduced and more hydrogen is produced (shown in Equation 2 above).

圧力スイング改質器(128)の再生工程は、燃料(135)および酸素含有ガス(例えば空気(136))を、改質器(128)に導入し、そこで燃焼させることによって行う。一般に、再生原料は約20〜600℃、好ましくは150〜450℃である。この再生サイクルは、約1〜約10バール、好ましくは約1〜約5バールの圧力で運転される。   The regeneration process of the pressure swing reformer (128) is performed by introducing fuel (135) and an oxygen-containing gas (eg, air (136)) into the reformer (128) and combusting there. Generally, the regenerated raw material is about 20-600 ° C, preferably 150-450 ° C. This regeneration cycle is operated at a pressure of about 1 to about 10 bar, preferably about 1 to about 5 bar.

好適な実施形態では、圧力スイング改質器を、再生原料(135と136の組み合わせ)の温度および圧力、並びにスイング改質器の回復ゾーン特性(シフト反応器(130)の選択された入口温度に実質的に適合する合成ガス(129)温度をもたらす、ゾーン寸法および充填物ΔTHTを含む)を用いて運転する。典型的な回復ゾーン設計は、圧力スイング改質器床の合計の長さの約25〜40%の長さ、および約1〜約40℃のΔTHTをもたらす充填物を含む。一般に、再生入口温度は約200〜350℃であり、出口合成ガス温度は約220〜約400℃である。高温シフト反応器は通常、約250〜約400℃の入口温度で運転される。従って、例えば、圧力スイング改質器を約250℃の再生入口温度で運転すると、約290℃の合成ガスをもたらすことができ、それはシフト反応に適切な温度である。 In a preferred embodiment, the pressure swing reformer is adjusted to the temperature and pressure of the regeneration feed (135 and 136 combination) and the recovery zone characteristics of the swing reformer (selected inlet temperature of the shift reactor (130)). Operating with zone dimensions and packing ΔT HT , resulting in a substantially compatible synthesis gas (129) temperature). A typical recovery zone design includes a packing that provides a length of about 25-40% of the total length of the pressure swing reformer bed and a ΔT HT of about 1 to about 40 ° C. Generally, the regeneration inlet temperature is about 200-350 ° C and the outlet syngas temperature is about 220-400 ° C. The high temperature shift reactor is typically operated at an inlet temperature of about 250 to about 400 ° C. Thus, for example, operating a pressure swing reformer with a regeneration inlet temperature of about 250 ° C. can result in a synthesis gas of about 290 ° C., which is a suitable temperature for the shift reaction.

好適な実施形態では、シフトおよび分離の後、少なくとも意図した用途に必要となる圧力に適合した高圧で水素を供給するのに十分な高さの圧力で、改質サイクルを運転する。改質サイクルは、一般には約10バールを超える圧力、好ましくは約10〜100バールの圧力で運転される。改質工程を高圧で実行する場合、残留している生成物を床の空隙部分から押し流すため、改質工程終了時に短時間の不活性パージを含めることが望ましいことがある。好適な実施形態では、この不活性パージは、主に水蒸気からなる。   In a preferred embodiment, after the shift and separation, the reforming cycle is operated at a pressure high enough to supply hydrogen at a high pressure that is compatible with at least the pressure required for the intended application. The reforming cycle is generally operated at a pressure above about 10 bar, preferably at a pressure of about 10-100 bar. When the reforming process is performed at high pressure, it may be desirable to include a short inert purge at the end of the reforming process in order to drive residual product out of the voids in the bed. In a preferred embodiment, this inert purge consists primarily of water vapor.

加えて、炭化水素(112)および水蒸気(114)原料は、約1000〜50,000hr−1、より好ましくは約2000hr−1〜約25,000hr−1の空間速度(CGHSV)で改質器(128)に通される。 In addition, the hydrocarbon (112) and steam (114) feedstocks are reformed at a space velocity (C 1 GHSV) of about 1000 to 50,000 hr −1 , more preferably about 2000 hr −1 to about 25,000 hr −1. Through the vessel (128).

圧力スイング改質を利用する本明細書の実施形態では、比較的大きい体積の用途、例えば100kgH/hr超を生成させる用途で使用する床充填材は一般に、ハニカム・モノリスおよびウォール−フローモノリスの形状で、それは直線のチャネルを有し、圧力損失を最小にすると共に、より長い反応器長さを可能にする。本発明に好適なハニカム・モノリスは、約100セル/in〜約1600セル/in(15〜250セル/cm)のチャネル密度を有する。より小規模の運転では、発泡体モノリス、充填床などの屈曲した(torturous)充填物を使用することができる。本発明に好適な発泡体モノリスは、約10ppi(1インチあたりの気孔)〜約100ppi(4〜40気孔/cm)の気孔密度を有する。本発明に好適な充填床は、比表面積約100〜約2000ft−1(3.3〜65cm−1)の充填物を有する。 In embodiments herein that utilize pressure swing reforming, floor fillers used in relatively large volume applications, such as those that produce more than 100 kgH 2 / hr, are typically honeycomb monoliths and wall-flow monoliths. In shape, it has straight channels, minimizing pressure loss and allowing longer reactor lengths. A honeycomb monolith suitable for the present invention has a channel density of from about 100 cells / in 2 to about 1600 cells / in 2 (15 to 250 cells / cm 2 ). For smaller scale operations, a curved packing such as a foam monolith, packed bed, etc. can be used. A foam monolith suitable for the present invention has a pore density of about 10 ppi (pores per inch) to about 100 ppi (4-40 pores / cm). A packed bed suitable for the present invention has a packing with a specific surface area of about 100 to about 2000 ft −1 (3.3 to 65 cm −1 ).

上述したように、合成ガス(129)を高温シフト反応器(130)に供給し、ここで合成ガス(129)中のCOレベルが低減され、更なる水素が生成される。高温シフト反応は、当該分野でよく知られているプロセスである。一般に、このプロセスは、酸化鉄−酸化クロム触媒の存在下、約250〜約400℃で、1段階または2段階で行う。一般に、改質反応は、シフト反応の要求を満足させるのに十分な、過剰の水蒸気を用いて行う。このシフトは、入口温度150〜250℃で、触媒(典型的には、アルミナ担持の酸化銅−酸化亜鉛)を使用する低温の第2段階を含みうる。実際、COを生成物として回収すべき場合、第2の低温シフト工程が好ましい。いずれの場合も、その後生成物ガスストリーム(131)を水素分離器(132)、即ち圧力スイング吸着装置に通し、ここで同ガスストリーム(131)中の、水素以外の全てが吸着される。分離装置(132)を出る水素(133)はもちろん、改質サイクルが運転される圧力に基づく、所定の高圧にある。圧力スイング吸着おいて周知のように、減圧およびパージによって、吸着物質を床から脱着させ、パージガスストリーム(134)を与える。典型的には、水素を用いてパージを行う。 As described above, synthesis gas (129) is fed to the high temperature shift reactor (130) where the CO level in the synthesis gas (129) is reduced and additional hydrogen is produced. The high temperature shift reaction is a process well known in the art. Generally, this process is carried out in one or two steps at about 250 to about 400 ° C. in the presence of an iron oxide-chromium oxide catalyst. In general, the reforming reaction is performed with an excess of steam sufficient to satisfy the shift reaction requirements. This shift may include a low temperature second stage using a catalyst (typically alumina supported copper oxide-zinc oxide) at an inlet temperature of 150-250 ° C. Indeed, if CO 2 is to be recovered as a product, the second low temperature shift step is preferred. In either case, the product gas stream (131) is then passed through a hydrogen separator (132), ie a pressure swing adsorption device, where all but the hydrogen in the gas stream (131) is adsorbed. The hydrogen (133) leaving the separator (132) is of course at a predetermined high pressure based on the pressure at which the reforming cycle is operated. As known in pressure swing adsorption, adsorbate is desorbed from the bed by depressurization and purging to provide a purge gas stream (134). Typically, purging is performed using hydrogen.

本発明で使用できる水素分離技術には、吸収プロセス、極低温プロセス、圧力および温度スイング吸着プロセス並びに膜分離プロセスが含まれる。吸収プロセスは、典型的には、アミンまたは炭酸カリウムベースの溶液を利用して、COを除去する。好適な実施形態では、水素分離器(132)は、圧力スイング吸着分離システムである。図3〜5は、一つのブロックから次のブロックまで、熱交換や調節なしに移動するストリームを示す。実際、本発明の利点は、圧力スイング改質合成ガス流出物(129)の条件を調整して、シフト反応器(130)への導入前の調節を全く必要としないようにできることである。しかし、当該分野で知られている調節を、これらの流れに適用してよいと理解される。例えば、温度を調節するために、熱交換を適用することができる。分離工程(132)は一般に、シフト工程(130)の出口条件とは異なる条件の合成ガスを必要とする。好適な実施形態では、当該分野で知られているように、圧力スイング吸着工程への導入前に、高温シフトを出る合成ガス(131)を冷却・乾燥する。 Hydrogen separation techniques that can be used in the present invention include absorption processes, cryogenic processes, pressure and temperature swing adsorption processes, and membrane separation processes. Absorption process typically utilizes an amine or potassium carbonate-based solution to remove the CO 2. In a preferred embodiment, the hydrogen separator (132) is a pressure swing adsorption separation system. 3-5 show a stream moving from one block to the next without heat exchange or adjustment. Indeed, an advantage of the present invention is that the conditions of the pressure swing reforming syngas effluent (129) can be adjusted so that no adjustment is required prior to introduction into the shift reactor (130). However, it is understood that adjustments known in the art may be applied to these streams. For example, heat exchange can be applied to adjust the temperature. The separation step (132) generally requires syngas with conditions that are different from the exit conditions of the shift step (130). In a preferred embodiment, the synthesis gas (131) exiting the high temperature shift is cooled and dried prior to introduction into the pressure swing adsorption process, as is known in the art.

改質の入口ストリームは、炭化水素(112)および水蒸気(114)からなる。プロセスまわりで利用できる熱で経済的に達成可能な適宜の水準まで、これらのストリームを予熱してもよい。典型的には、水蒸気(114)は概ね、改質器の運転圧力に対応する沸騰温度、典型的には200〜300℃で利用できる。典型的には、改質原料を200〜400℃まで加熱できる廃熱を利用できる。予熱温度を上げると、加えた熱交換器の費用における水素プラント効率が改善される。このトレードオフは、当該分野でよく知られており、設備費およびエネルギーコストがいかなる所与の状況にあっても、これを当業者が最適化することができる。流入する改質原料の温度が、流出する煙道ガス(137)の温度についての下限を設定する。しかし、流出する煙道ガスの温度はまた、改質工程終了時に床(1)の改質区間に残存する温度によっても強く影響を受ける。その残存する温度は、改質の動力学、圧力および空間速度によって強く影響を受ける。本明細書に記載した条件下では、煙道ガス(137)は約400〜約500℃である。   The reforming inlet stream consists of hydrocarbon (112) and steam (114). These streams may be preheated to an appropriate level that is economically achievable with the heat available around the process. Typically, steam (114) is generally available at a boiling temperature corresponding to the operating pressure of the reformer, typically 200-300 ° C. Typically, waste heat capable of heating the reforming raw material to 200 to 400 ° C. can be used. Increasing the preheat temperature improves the hydrogen plant efficiency at the cost of the added heat exchanger. This trade-off is well known in the art and can be optimized by those skilled in the art for any given situation of equipment and energy costs. The temperature of the reforming raw material that flows in sets a lower limit for the temperature of the flue gas (137) that flows out. However, the temperature of the flue gas flowing out is also strongly influenced by the temperature remaining in the reforming section of the bed (1) at the end of the reforming process. The remaining temperature is strongly influenced by the reforming kinetics, pressure and space velocity. Under the conditions described herein, the flue gas (137) is from about 400 to about 500 ° C.

本発明の一実施形態では、約400〜約500℃の煙道ガスを供給するのに十分な条件下で再生を行う。図3に示した本実施形態では、煙道ガス(137)を蒸気発生器(138)で使用して、改質中の原料に使われる水蒸気(114)を製造する。水蒸気を生成した後、煙道ガス(140)は蒸気発生器(138)を出る。この煙道ガスは、必要に応じて、タービン(144)を動かすために使用することができる。   In one embodiment of the invention, regeneration is performed under conditions sufficient to provide flue gas at about 400 to about 500 ° C. In this embodiment shown in FIG. 3, the flue gas (137) is used in a steam generator (138) to produce water vapor (114) used as a raw material during reforming. After producing water vapor, the flue gas (140) exits the steam generator (138). This flue gas can be used to move the turbine (144) as needed.

図4に示す別の実施形態では、圧力スイング改質器の再生用燃料(135)として、パージストリーム(134)を導入する。好適な一実施形態では、パージ(134)の量は、再生に必要な燃料(135)の量にほぼ等しい。他の実施形態では、過剰のパージを、生成物燃料ガスストリーム(145)として取り出してもよく、不足のパージを、追加の燃料ストリーム(146)によって補充してもよい。   In another embodiment, shown in FIG. 4, a purge stream (134) is introduced as regeneration fuel (135) for the pressure swing reformer. In one preferred embodiment, the amount of purge (134) is approximately equal to the amount of fuel (135) required for regeneration. In other embodiments, excess purge may be withdrawn as product fuel gas stream (145), and insufficient purge may be replenished with additional fuel stream (146).

本発明の一実施形態では、図4に示す空気(142)をブロワ装置によって供給する。タービン膨脹器(144)を用いる場合、それは、空気ブロワを駆動するのに使用できる仕事エネルギーを回収する。本発明の一実施形態では、このブロワ−膨脹器の対を機械的に結合して、改善されたコストまたは効率を提供する。そのような実施形態では、PSR再生の圧力は、約2〜約10気圧(絶対)が好ましい。   In one embodiment of the present invention, air (142) shown in FIG. 4 is supplied by a blower device. When using a turbine expander (144), it recovers work energy that can be used to drive the air blower. In one embodiment of the present invention, this blower-expander pair is mechanically coupled to provide improved cost or efficiency. In such embodiments, the pressure for PSR regeneration is preferably about 2 to about 10 atmospheres (absolute).

本発明の別の実施形態では、PSR再生システムをガスタービンと一体化することによって、このブロワ−膨脹器機能を提供する。適度な圧力(7〜30気圧)まで空気を圧縮し、その空気の一部を燃料と共に燃焼させて、空気と燃焼生成物の化合ストリームが高温(900〜1300C)に加熱されるようにし、次いで化合ストリームをタービンで膨張させることによってガスタービンを運転して、圧縮機を駆動し、電気製造その他の目的に使用できる残余力を有するのに十分な機械動力を得る。高温圧縮空気をガスタービンから取り出し、外部のプロセスで使い、若干の組成および条件変化を有してタービンに戻し、燃焼希釈剤および膨張流体としてその役割を果たさせうることが、当該分野で知られている。   In another embodiment of the invention, this blower-expander function is provided by integrating a PSR regeneration system with a gas turbine. Compress the air to a moderate pressure (7-30 atmospheres) and burn a portion of the air with the fuel so that the combined stream of air and combustion products is heated to a high temperature (900-1300 C), then The gas turbine is operated by expanding the combined stream with the turbine to drive the compressor and obtain sufficient mechanical power to have residual power that can be used for electrical manufacturing and other purposes. It is known in the art that hot compressed air can be removed from a gas turbine and used in external processes and returned to the turbine with some composition and condition changes to serve as a combustion diluent and expansion fluid. It has been.

そのような実施形態では、新鮮再生空気(142)を、ガスタービンから抜き出される空気として供給し、再生煙道ガスの一部をガスタービンに戻して、燃焼希釈剤および膨張流体に関するガスタービンの要求を満たす。本実施形態では、PSRの再生圧力は、約7〜約20気圧(絶対)が好ましい。図4に示したように、再生煙道ガスを冷却し、その後それをストリーム(140)の一部としてタービンに返送することができる。或いは、ストリーム(137)の一部をタービンに戻し、残りの部分を冷却(138)し、再循環(141)させることができる。ガスタービンの出力を使用して、電気を併産したり、全体プロセスの電気の要求、および駆動機器の要求に電力を供給することができる。ガスタービン装置の選択は、規模、プロセス経済、および電力対水素生成物の所望の割合の問題である。   In such an embodiment, fresh regenerative air (142) is supplied as air drawn from the gas turbine and a portion of the regenerated flue gas is returned to the gas turbine to provide a gas turbine for the combustion diluent and expansion fluid. Satisfy the request. In this embodiment, the regeneration pressure of PSR is preferably about 7 to about 20 atmospheres (absolute). As shown in FIG. 4, the regenerative flue gas can be cooled and then returned to the turbine as part of the stream (140). Alternatively, a portion of stream (137) can be returned to the turbine and the remaining portion cooled (138) and recirculated (141). The output of the gas turbine can be used to co-produce electricity, or to supply power to the overall process electricity requirements and drive equipment requirements. The choice of gas turbine equipment is a matter of scale, process economy, and the desired ratio of power to hydrogen product.

図4に示す別の実施形態では、水蒸気再生器(138)からの煙道ガス(140)を、圧力スイング改質器(128)に再循環する(141)。この若干の煙道ガスの再循環により、必要とされる新鮮空気の量が低減され、床の中の過剰酸素が低減される。   In another embodiment shown in FIG. 4, flue gas (140) from the steam regenerator (138) is recirculated (141) to the pressure swing reformer (128). This slight flue gas recirculation reduces the amount of fresh air required and reduces excess oxygen in the bed.

前記実施形態は、単一の圧力スイング改質器に関して述べたが、代替の実施形態では、一方のシステムが改質を行い、その間に他方が再生を行うように、2つの圧力スイング改質器床を同時に用いる。このように複数の床を使用すると、各床の周期的な運転にもかかわらず、改質された生成物の連続的な流れがシフト反応器に供給される。適切な弁を使用して、床へ/床から流れる様々な流れを制御する。   While the above embodiment has been described with reference to a single pressure swing reformer, in an alternative embodiment, two pressure swing reformers so that one system performs reforming while the other performs regeneration. Use the floor simultaneously. When using multiple beds in this way, a continuous stream of reformed product is fed to the shift reactor despite the cyclic operation of each bed. Use appropriate valves to control the various flows to / from the floor.

更に本発明を例示するため、図4に示す実施形態について算出された熱および物質収支を表1に示す。この圧力スイング改質器システムは、2つの円筒状反応器(内のり寸法で直径7フィート(2.1M)、長さ4フィート(1.2M))として運転される。反応器は、円筒状の軸を垂直にして配置され、改質を上向流、再生を下向流として行う。充填物は、400セル/in(62セル/cm)ハニカム・モノリスからなり、50lb/ft(0.8g/cc)の嵩密度を有する。充填物の底部3分の2には、改質触媒が含まれる。全体のサイクル長さは30秒であり、再生工程が15秒、改質工程が15秒である。改質工程終了時に、短時間の水蒸気パージが含まれる。 To further illustrate the present invention, the heat and mass balance calculated for the embodiment shown in FIG. This pressure swing reformer system is operated as two cylindrical reactors (inner dimensions of 7 feet (2.1M) in diameter and 4 feet (1.2M) in length). The reactor is arranged with the cylindrical axis vertical, and reforming is performed as an upward flow and regeneration as a downward flow. The filling consists of 400 cells / in 2 (62 cells / cm 2 ) honeycomb monolith and has a bulk density of 50 lb / ft 3 (0.8 g / cc). The bottom two-thirds of the packing contains a reforming catalyst. The total cycle length is 30 seconds, the regeneration process is 15 seconds, and the reforming process is 15 seconds. A short steam purge is included at the end of the reforming process.

Figure 0004850696
Figure 0004850696

圧力スイング改質の基本の改質および再生工程を示す略図である。1 is a schematic diagram illustrating a basic reforming and regeneration process of pressure swing reforming. 圧力スイング改質の基本の改質および再生工程を示す略図である。1 is a schematic diagram illustrating a basic reforming and regeneration process of pressure swing reforming. 水素製造において圧力スイング改質を用いるプロセス設計の略図である。1 is a schematic diagram of a process design using pressure swing reforming in hydrogen production. 水素製造において圧力スイング改質を用いるプロセス設計の略図である。1 is a schematic diagram of a process design using pressure swing reforming in hydrogen production. 水素製造において圧力スイング改質を用いるプロセス設計の略図である。1 is a schematic diagram of a process design using pressure swing reforming in hydrogen production.

Claims (17)

水蒸気改質および高温水性ガスシフトプロセスで、高圧水素を生成させる方法であって、
圧力スイング改質器における改質サイクルの間に、1,000〜50,000の空間速度(C GHSV)で炭化水素を水蒸気改質する工程であって、前記改質を、高圧で、かつ、合成ガスストリームを高温水性ガスシフト反応で用いる範囲の温度で供給するのに十分な温度条件下で行う工程;
前記合成ガスを高温水性ガスシフト反応に付して、水素が濃縮された複数成分の生成物ガスストリームを供給する工程;
前記複数成分の生成物ガスストリームから高圧水素を分離する工程;および
前記圧力スイング改質器の再生サイクルの間に、前記圧力スイング改質器において、前記改質サイクルで使われる圧力より低い圧力で燃料と酸素を燃焼させて、前記改質サイクルに十分な温度条件を提供し、前記改質器を出る煙道ガスを生成させる工程
を含んでなることを特徴とする高圧水素を生成させる方法。
A method for producing high-pressure hydrogen in a steam reforming and high-temperature water gas shift process,
Steam reforming hydrocarbons at a space velocity (C 1 GHSV) of 1,000 to 50,000 during a reforming cycle in a pressure swing reformer, wherein the reforming is carried out at high pressure, and Conducting the synthesis gas stream under temperature conditions sufficient to provide a temperature in the range used for the hot water gas shift reaction;
Subjecting the synthesis gas to a hot water gas shift reaction to provide a multi-component product gas stream enriched in hydrogen;
Separating high pressure hydrogen from the multi-component product gas stream; and during a regeneration cycle of the pressure swing reformer, at a pressure lower than that used in the reforming cycle in the pressure swing reformer. A method of producing high pressure hydrogen comprising burning fuel and oxygen to provide sufficient temperature conditions for the reforming cycle to produce flue gas exiting the reformer.
改質圧力は、10〜100バールであることを特徴とする請求項1に記載の高圧水素を生成させる方法。  The method for producing high-pressure hydrogen according to claim 1, wherein the reforming pressure is 10 to 100 bar. 前記再生サイクルで、300〜600℃の前記改質器を出る煙道ガスを生成させるのに十分な燃料および酸素を燃焼させることを特徴とする請求項2に記載の高圧水素を生成させる方法。  The method of producing high pressure hydrogen according to claim 2, wherein the regeneration cycle combusts fuel and oxygen sufficient to produce flue gas exiting the reformer at 300-600C. 前記複数成分のガスストリームを、水素以外の成分が吸着される圧力スイング吸着プロセスに付して、高圧水素を供給することにより、前記複数成分のガスストリームから高圧水素を分離することを特徴とする請求項3に記載の高圧水素を生成させる方法。  The multi-component gas stream is subjected to a pressure swing adsorption process in which components other than hydrogen are adsorbed, and high-pressure hydrogen is supplied to separate high-pressure hydrogen from the multi-component gas stream. The method for producing high-pressure hydrogen according to claim 3. 改質温度条件は、220〜400℃の合成ガスを供給することを特徴とする請求項3に記載の高圧水素を生成させる方法。  The method for generating high-pressure hydrogen according to claim 3, wherein synthesis gas having a reforming temperature condition of 220 to 400 ° C. is supplied. 前記煙道ガスは、400〜500℃の温度であり、前記水蒸気改質サイクル用の水蒸気を生成させるために使用されることを特徴とする請求項3に記載の高圧水素を生成させる方法。  The method for generating high-pressure hydrogen according to claim 3, wherein the flue gas is at a temperature of 400 to 500 ° C. and is used to generate steam for the steam reforming cycle. 前記圧力スイング改質器から、吸着成分を回収する工程;および
前記吸着成分の少なくとも一部を、前記再生サイクル中に、燃料として前記圧力スイング改質器に導入する工程
を含むことを特徴とする請求項6に記載の高圧水素を生成させる方法。
Recovering adsorbed components from the pressure swing reformer; and introducing at least a portion of the adsorbed components into the pressure swing reformer as fuel during the regeneration cycle. The method for producing high-pressure hydrogen according to claim 6.
前記煙道ガスの一部を、前記再生サイクル中に、前記圧力スイング改質器に再循環させる工程を含むことを特徴とする請求項7に記載の高圧水素を生成させる方法。  8. The method of producing high pressure hydrogen according to claim 7, comprising recycling a portion of the flue gas to the pressure swing reformer during the regeneration cycle. 前記再生サイクルの酸素を、ガスタービンからの圧縮空気として供給することを特徴とする請求項1に記載の高圧水素を生成させる方法。  The method for generating high-pressure hydrogen according to claim 1, wherein oxygen in the regeneration cycle is supplied as compressed air from a gas turbine. 高圧水素を生成させる方法であって、
(a)高圧条件下の、炭化水素および水蒸気を含んでなる原料ストリームを、高温の、充填材および水蒸気改質触媒を含む第1ゾーンを経由して移動させて、1,000〜50,000の空間速度(C GHSV)で高圧合成ガスストリームを生成させる工程;
(b)前記工程(a)の前記合成ガスストリームの少なくとも一部を、前記第1ゾーンより低温の床充填材を含む第2ゾーンの第1端を経由して移動させて、前記生成物から前記第2ゾーンの充填材に顕熱を移動させ、高圧合成ガスを、前記充填材の第2端での温度に近い温度で供給する工程;
(c)実質的に全ての前記高圧合成ガスを、前記第2ゾーンから取り出し、前記ガスを高温水性ガスシフト反応ゾーンに導入して、水素が濃縮されたガスストリームを供給する工程;
(d)前記水素が濃縮されたガスストリームに水素分離ゾーンを通過させて、高圧水素を分離する工程;
(e)前記分離ゾーンから高圧水素を取り出す工程;および
(f)前記工程(a)より低い圧力の燃料および酸素含有ガスを、前記第2ゾーンの第2端に導入し、燃焼に次いで、前記第2および第1ゾーンを経由して通過させて、前記第1ゾーンを改質温度に加熱し、前記第1ゾーンの第1端を経由して出る煙道ガスを生成させる工程
を含んでなり、
前記工程(a)および(b)を、前記第2ゾーンの前記第2端において220〜400℃の合成ガスを供給するのに十分な条件で行うことを特徴とする高圧水素を生成させる方法。
A method for generating high-pressure hydrogen,
(A) A feed stream comprising hydrocarbon and steam under high pressure conditions is moved through a first zone containing a high temperature filler and steam reforming catalyst to produce 1,000 to 50,000 Producing a high pressure syngas stream at a space velocity of (C 1 GHSV) ;
(B) moving at least a portion of the synthesis gas stream of step (a) via a first end of a second zone containing a floor filler that is cooler than the first zone, from the product Transferring sensible heat to the filler in the second zone and supplying high pressure synthesis gas at a temperature close to the temperature at the second end of the filler;
(C) removing substantially all of the high pressure synthesis gas from the second zone, introducing the gas into a high temperature water gas shift reaction zone, and providing a gas stream enriched in hydrogen;
(D) separating the high-pressure hydrogen by passing the hydrogen-enriched gas stream through a hydrogen separation zone;
(E) removing high pressure hydrogen from the separation zone; and (f) introducing a fuel and oxygen-containing gas at a lower pressure than in step (a) into the second end of the second zone, followed by combustion, Passing through the second and first zones to heat the first zone to a reforming temperature and producing flue gas exiting through the first end of the first zone. ,
A method for producing high-pressure hydrogen, characterized in that the steps (a) and (b) are performed under conditions sufficient to supply a synthesis gas at 220 to 400 ° C. at the second end of the second zone.
前記水素分離ゾーンは、圧力スイング吸着ゾーンであり、それによって水素以外の前記生成物ガスストリームの実質的に全ての成分が吸着されることを特徴とする請求項10に記載の高圧水素を生成させる方法。  11. The high pressure hydrogen of claim 10, wherein the hydrogen separation zone is a pressure swing adsorption zone, whereby substantially all components of the product gas stream other than hydrogen are adsorbed. Method. 前記高圧条件は、10〜100バールであることを特徴とする請求項11に記載の高圧水素を生成させる方法。  The method of generating high-pressure hydrogen according to claim 11, wherein the high-pressure condition is 10 to 100 bar. 前記圧力スイング吸着ゾーンをパージして、パージガスストリームを供給する工程;および
前記パージガスストリームの少なくとも一部を、前記工程(e)の燃料として導入する工程
を含むことを特徴とする請求項12に記載の高圧水素を生成させる方法。
13. Purging the pressure swing adsorption zone and supplying a purge gas stream; and introducing at least a portion of the purge gas stream as fuel in the step (e). To produce high pressure hydrogen.
前記再生を、400〜500℃の時間平均温度を有する煙道ガスを供給するのに十分な条件下で行い、前記煙道ガスは、熱交換器を通過して前記改質工程(a)用の水蒸気を生成させることを特徴とする請求項13に記載の高圧水素を生成させる方法。  The regeneration is performed under conditions sufficient to supply a flue gas having a time average temperature of 400-500 ° C., the flue gas passing through a heat exchanger for the reforming step (a) The method for generating high-pressure hydrogen according to claim 13, wherein water vapor is generated. 前記熱交換器を通過した前記煙道ガスの少なくとも一部を、再生中に、前記第2ゾーンの第2端に再循環することを特徴とする請求項14に記載の高圧水素を生成させる方法。  15. The method of generating high pressure hydrogen according to claim 14, wherein at least a portion of the flue gas that has passed through the heat exchanger is recycled to the second end of the second zone during regeneration. . 前記工程(f)の前記酸素含有ガスを、ガスタービンからの圧縮空気として供給することを特徴とする請求項10に記載の高圧水素を生成させる方法。  The method for producing high-pressure hydrogen according to claim 10, wherein the oxygen-containing gas in the step (f) is supplied as compressed air from a gas turbine. 前記第1および第2ゾーンの前記充填材は、ケイ酸アルミニウムマグネシウム、ケイ酸アルミニウム粘土、ムライト、アルミナ、シリカ−アルミナ、ジルコニアおよびこれらの混合物よりなる群から選択される材料からなることを特徴とする請求項10に記載の高圧水素を生成させる方法。  The filler in the first and second zones is made of a material selected from the group consisting of aluminum magnesium silicate, aluminum silicate clay, mullite, alumina, silica-alumina, zirconia and mixtures thereof. The method for producing high-pressure hydrogen according to claim 10.
JP2006508732A 2003-02-28 2004-02-13 Hydrogen production using pressure swing reforming Expired - Lifetime JP4850696B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US45090303P 2003-02-28 2003-02-28
US60/450,903 2003-02-28
US10/756,652 US20040170559A1 (en) 2003-02-28 2004-01-13 Hydrogen manufacture using pressure swing reforming
US10/756,652 2004-01-13
US10/771,919 2004-02-04
US10/771,919 US7914764B2 (en) 2003-02-28 2004-02-04 Hydrogen manufacture using pressure swing reforming
PCT/US2004/004269 WO2004078644A1 (en) 2003-02-28 2004-02-13 Hydrogen manufacture using pressure swing reforming

Publications (2)

Publication Number Publication Date
JP2007524556A JP2007524556A (en) 2007-08-30
JP4850696B2 true JP4850696B2 (en) 2012-01-11

Family

ID=32912385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006508732A Expired - Lifetime JP4850696B2 (en) 2003-02-28 2004-02-13 Hydrogen production using pressure swing reforming

Country Status (1)

Country Link
JP (1) JP4850696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086015A (en) 2019-12-31 2021-07-08 한국과학기술연구원 A production method and system of blue hydrogen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084035A1 (en) * 2007-09-28 2009-04-02 General Electric Company Polygeneration systems
KR20210148316A (en) * 2019-04-05 2021-12-07 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Hydrogen production using integrated CO2 capture
JP7558398B2 (en) 2020-09-16 2024-09-30 エクソンモービル テクノロジー アンド エンジニアリング カンパニー Ammonia and urea production in a reverse flow reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220849A (en) * 1938-08-29 1940-11-05 Kellogg M W Co Method for forming synthesis gas
US2313157A (en) * 1938-07-28 1943-03-09 Koppers Co Inc Process for carrying out endothermic gas reactions at high temperatures
US4200682A (en) * 1979-03-16 1980-04-29 United Technologies Corporation Integrated fuel cell and fuel conversion apparatus
US4240805A (en) * 1979-03-16 1980-12-23 United Technologies Corporation Process for producing hydrogen containing gas
JPS62148303A (en) * 1985-12-23 1987-07-02 インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン Manufacture of hydrogen-containing gas, continuous supply ofhydrogen fuel to fuel cell, reaction equipment and fuel cellsystem
JP2000109302A (en) * 1998-08-31 2000-04-18 Praxair Technol Inc Ceramic film for endothermic reaction
US6103143A (en) * 1999-01-05 2000-08-15 Air Products And Chemicals, Inc. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon
US20010027220A1 (en) * 2000-03-28 2001-10-04 Kennedy Paul Edwin Hydrocarbon conversion process using a plurality of synthesis gas sources
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
WO2004000725A1 (en) * 2002-06-25 2003-12-31 Exxonmobil Research And Engineering Company Pressure swing reforming

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313157A (en) * 1938-07-28 1943-03-09 Koppers Co Inc Process for carrying out endothermic gas reactions at high temperatures
US2220849A (en) * 1938-08-29 1940-11-05 Kellogg M W Co Method for forming synthesis gas
US4200682A (en) * 1979-03-16 1980-04-29 United Technologies Corporation Integrated fuel cell and fuel conversion apparatus
US4240805A (en) * 1979-03-16 1980-12-23 United Technologies Corporation Process for producing hydrogen containing gas
JPS62148303A (en) * 1985-12-23 1987-07-02 インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン Manufacture of hydrogen-containing gas, continuous supply ofhydrogen fuel to fuel cell, reaction equipment and fuel cellsystem
JP2000109302A (en) * 1998-08-31 2000-04-18 Praxair Technol Inc Ceramic film for endothermic reaction
US6103143A (en) * 1999-01-05 2000-08-15 Air Products And Chemicals, Inc. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon
US20010027220A1 (en) * 2000-03-28 2001-10-04 Kennedy Paul Edwin Hydrocarbon conversion process using a plurality of synthesis gas sources
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
WO2004000725A1 (en) * 2002-06-25 2003-12-31 Exxonmobil Research And Engineering Company Pressure swing reforming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086015A (en) 2019-12-31 2021-07-08 한국과학기술연구원 A production method and system of blue hydrogen

Also Published As

Publication number Publication date
JP2007524556A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US7914764B2 (en) Hydrogen manufacture using pressure swing reforming
JP4667370B2 (en) Hydrocarbon synthesis method using pressure swing reforming
US20040170559A1 (en) Hydrogen manufacture using pressure swing reforming
CA2491231C (en) Pressure swing reforming
JP4714680B2 (en) Pressure swing reforming for fuel cell systems
US7045553B2 (en) Hydrocarbon synthesis process using pressure swing reforming
US20060183009A1 (en) Fuel cell fuel processor with hydrogen buffering
US7799314B2 (en) Hydrogen production and use in an internal combustion engine system
JP4850696B2 (en) Hydrogen production using pressure swing reforming

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term