[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4850338B2 - Semiconductor electrode manufacturing method and photochemical battery - Google Patents

Semiconductor electrode manufacturing method and photochemical battery Download PDF

Info

Publication number
JP4850338B2
JP4850338B2 JP2000376939A JP2000376939A JP4850338B2 JP 4850338 B2 JP4850338 B2 JP 4850338B2 JP 2000376939 A JP2000376939 A JP 2000376939A JP 2000376939 A JP2000376939 A JP 2000376939A JP 4850338 B2 JP4850338 B2 JP 4850338B2
Authority
JP
Japan
Prior art keywords
substrate
oxide semiconductor
resin
heat
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000376939A
Other languages
Japanese (ja)
Other versions
JP2002184475A (en
Inventor
正仁 中林
安一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2000376939A priority Critical patent/JP4850338B2/en
Publication of JP2002184475A publication Critical patent/JP2002184475A/en
Application granted granted Critical
Publication of JP4850338B2 publication Critical patent/JP4850338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光化学電池用の半導体電極及びその製造方法、並びに該電極を用いた光化学電池に関する。
【0002】
【従来の技術】
色素で増感された酸化物半導体を含む太陽電池が知られている。例えば、特開平1-220380号公報には、多孔質で結晶型の酸化チタンのうような金属酸化物からなる半導体に、ルテニウム金属錯体のような光増感色素を吸着させた酸化物半導体電極を用いた色素増感型太陽電池が提案されている。
上記色素増感型太陽電池は、具体的には、導電性表面を有する透明基板と、その導電性表面に形成された、増感色素を吸着した酸化物半導体膜を光電極とし、対極として導電性表面を有する透明基板を用い、これらの電極間に電解質溶液を封入して作製される。
【0003】
導電性表面に形成される酸化物半導体膜は、酸化物半導体微粒子集合体の焼成物から形成される。具体的には金属アルコキシドを出発原料とし、加水分解と重縮合を経て酸化物を得るゾル-ゲル法、酸化物半導体の微粒子をスラリーにして導電性表面に塗布する方法、水溶液中における化学反応を利用して、導電性表面上に酸化物半導体薄膜を析出させる液相析出法などが用いられ、これらの方法で導電性表面上に形成された酸化物半導体やその前駆体を焼成して形成される。
【0004】
上記のように酸化物半導体電極は、その耐久性や実用的なエネルギー変換効率を得る目的で、焼成の工程を必要とする。そのため、電極となる基板には高い耐熱性が要求され、実際上、酸化錫、錫ドープ酸化インジュウム、フッ素ドープ酸化錫、アンチモンドープ酸化錫などをコートした透明導電性ガラス基板に限られており、耐熱性に劣る樹脂等を半導体電極基板として用いることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、光化学電池用の半導体電極の基板材料としてガラスだけでなく任意の光透過性基板、特に耐熱性に劣る合成樹脂等を適用することができ、かつ実用性のあるエネルギー変換効率を得ることができる半導体電極の製造方法、及び前記半導体電極を用いた光化学電池を提供することを目的とする。さらには、屈曲性、加工成形性等に優れた半導体電極及び光化学電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは上記の課題について検討した結果、耐熱性基板上に酸化物半導体及び/又はその前駆体からなる層を形成させ、これを加熱焼成した後に、得られた酸化物半導体膜を任意の光透過性基板上に転写して酸化物半導体電極を形成することにより、当該課題を解決できることを見出した。
【0007】
即ち、本発明は以下の発明を包含する。
(1)フッ素樹脂又は熱分解性樹脂の層で表面処理された耐熱性基板上に酸化物半導体及び/又はその前駆体を含む層を形成させ、これを加熱焼成して得られる酸化物半導体膜を、被転写基板上に転写することを特徴とする半導体電極の製造方法。
(2)前記被転写基板が合成樹脂である前記(1)に記載の製造方法。
(3)耐熱性基板の表面処理に用いる熱分解性樹脂が(メタ)アクリレート樹脂、セルロース系樹脂及びポリエチレングリコールから選ばれる前記(1)又は(2)に記載の製造方法。
(4)耐熱性基板の表面処理に用いる熱分解性樹脂がポリ(2-エチルヘキシル(メタ)アクリレート)、ポリエチル(メタ)アクリレート、エチルセルロース及びポリエチレングリコールから選ばれる前記(1)又は(2)に記載の製造方法。
【0008】
【発明の実施の形態】
本発明で用いる酸化物半導体としては特に限定されず、従来公知の半導体を用いることができる。例えば、Ti、Nb、Zn、Sn、Zr、Y、La、Ta、Hf、Sr、In、V、Cr、Mo、W等の遷移金属の酸化物のほか、SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb2O6、等のペロブスカイト系酸化物、あるいはこれらの複合酸化物又は酸化物混合物等が挙げられる。特に半導体特性、耐食性、安定性及び安全性の点からTiO2、ZnOが好適である。なお、これらの酸化物半導体は微粒子として用いることが好ましく、その平均粒径は通常1〜1000nm、好ましくは5〜200nmである。
【0009】
また、本明細書でいう「酸化物半導体の前駆体」とは、最終的に得られる酸化物半導体の前段階の状態のもので、加熱焼成により酸化物半導体になり得るものをいう。そのようなものとしては、例えば、上記の酸化物半導体を形成しうる金属アルコキシド及びその加水分解物や縮合物、金属錯体、金属有機酸塩、金属ハロゲン化物等、さらには結晶構造の変化により半導体としての物性を示すもの等が挙げられる。例えば、TiO2半導体の前駆体としては、チタンエトキシド、チタンプロポキシドのような金属アルコキシド、又はこのような金属アルコキシドを加水分解、重縮合させた縮合物、あるいはチタンアセチルアセトナートのような金属錯体、オクチル酸チタンのような金属有機酸塩、四塩化チタンのような金属ハロゲン化物を原料とし、これらの溶液を加水分解したものが挙げられる。
【0010】
本発明で用いられる耐熱性基板の材料としては、通常の焼成条件に耐えうるものであれば特に制限されないが、300〜1000℃の焼成条件下でも変形、化学変化等を起こさないものが好ましい。このような基板材料としてはステンレス、ニッケル、白金、金、チタン等の金属、ガラス、及びポリイミド等の耐熱性樹脂等が挙げられる。前記材料からなる板やシートを耐熱性基板として用いることができる。これらの耐熱性基板は単独で用いても良いが、酸化物半導体膜の転写性(剥れやすさ)を付与する目的で、耐熱性基板に表面処理を施しても良い。このような処理としては、エチレン-テトラフルオロエチレン共重合体、ポリビニルフルオリド、ポリクロロトリフルオロエチレン等のフッ素樹脂からなる離型層を設けたり、焼成時の熱により燃焼・分解するような合成樹脂類、例えばポリ(2-エチルヘキシル(メタ)アクリレート)、ポリエチル(メタ)アクリレート等の(メタ)アクリレート樹脂、エチルセルロース等のセルロース系樹脂、ポリエチレングリコール等の熱分解性樹脂の層を設ける等の方法がある。
【0011】
前記耐熱性基板上に酸化物半導体及び/又はその前駆体の層を形成させる方法としては、例えば次のようにしてできる。酸化物半導体の微粒子を水若しくは有機溶媒又はこれらの混合溶媒に分散させた液や、酸化物半導体の前駆体の溶液若しくは懸濁液、或はこれらを混合した液やスラリーを調製して塗布液とする。塗布液中の酸化物半導体及び/又はその前駆体の濃度は1〜70重量%とすることが好ましい。次いで、塗布液をスピンコート法、ディップコート法、スクリーン印刷法、ブレードコート法などによって耐熱性基板上に塗布し、必要に応じて乾燥させることにより、酸化物半導体及び/又は前駆体の層を形成させることができる。なお、塗布液には、必要に応じて界面活性剤、粘度調整剤、分散剤等の添加剤を加えてもよい。
【0012】
次に、酸化物半導体及び/又は前駆体を含む層が形成された耐熱性基板を加熱焼成する。加熱焼成の条件としては300〜1000℃で1〜120分間とすることが好ましい。300℃未満では十分に焼結が進まず、十分な膜強度が得られなかったり、膜中の電子の移動度が低下するためにエネルギー変換効率が低下するおそれがある。また、1000℃よりも高くなると焼結が進みすぎて多孔質となり得ず、後述する色素の吸着量が減少するためエネルギー変換効率が低下する。酸化物半導体及び/又は前駆体を含む層が形成された耐熱性基板を加熱焼成することにより、耐熱性基板上に酸化物半導体膜が形成される。
【0013】
加熱焼成して得られる酸化物半導体膜は、多孔質構造の膜であり、その厚さは通常1〜50μm程度であり、好ましくは5〜20μm程度である。また、見かけの面積に対する実表面積の比が10以上、好ましくは100以上である。なお、実表面積とはBET法により求められる多孔質膜の総表面積である。
【0014】
このようにして形成された酸化物半導体膜には、電流の取り出しのための集電電極が配置される。集電電極の形成は、加熱焼成処理の前後いずれに行ってもよく、その方法としては、蒸着法やスパッタ法によって酸化物半導体やその前駆体上に金属や酸化物導電体を層を堆積させる方法、金属微粒子や酸化物導電体微粒子を樹脂や溶剤と共に混ぜて酸化物半導体やその前駆体上に塗布する方法、耐熱性基板上に光透過性の金属メッシュを配置し、メッシュ上に上記塗布液を塗布して金属メッシュと一体化した酸化物半導体膜を形成する方法等が挙げられる。
【0015】
このようにして形成された酸化物半導体膜に、増感剤として色素を吸着(化学吸着、物理吸着、堆積等)させてもよい。色素の吸着は、被転写基板に転写する前後のいずれに行っても良い。色素を吸着させる方法としては、例えば色素を有機溶媒に溶解させた溶液中に、前記酸化物半導体膜が形成された基板を浸漬すればよい。必要に応じ、溶液が半導体膜の内部に速やかに進入するよう、減圧処理を行ったり、吸着を促進する目的で溶液を加熱しても良い。
【0016】
本発明で用いることのできる色素としては、可視光領域及び/又は赤外光領域に吸収を持つものであれば特に制限されず、例えば金属錯体や有機色素等が挙げられる。
金属錯体としては、ルテニウム、オスミウム、鉄、亜鉛、白金等の金属錯体、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィル又はその誘導体等がある。これらの中で、増感効果や耐久性の面からルテニウム錯体が好適である。ルテニウム錯体としては、RuL2(CN)2、RuL2(SCN)2、RuL3(CN)等が挙げられる。ここでLは、2,2'-ビピリジル-4,4'-ジカルボキシレート等の配位子であり、カルボキシル基、ヒドロキシル基、スルホン基等の官能基を持つものが酸化物半導体膜への吸着性の点から好ましい。
【0017】
また、有機色素としては、フタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン系色素、ローズベンガル、ローダミンB等が挙げられ、同様の理由からカルボキシル基、ヒドロキシル基、スルホン基等の官能基を導入することが好ましい。
【0018】
次に、耐熱性基板上に形成させた酸化物半導体膜を被転写基板に転写する方法について説明する。
被転写基板としては、光透過性のものであれば特に制限されず、従来から用いられているガラス基板の他に、合成樹脂を材料とする基板を用いることができる。
【0019】
前記合成樹脂の例としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリスチレン、エチレン‐プロピレンゴム等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂エチレン‐酢酸ビニル共重合体、エチレン‐アクリル酸共重合体、エチルセルロース、トリ酢酸セルロース等のセルロース誘導体、ポリ(メタ)アクリル酸とそのエステル化合物、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアセタール、ポリアセタール、ポリアミド、ポリイミド、ナイロン、ウレタン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、ポリカーボネート、尿素樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、フラン樹脂等が挙げられる。これらの合成樹脂の中でも、良好な光線透過率や電解液に対する耐性、気体の透過が少ない等のことから、ポリオレフィン又はポリエステル樹脂が好ましい。
【0020】
合成樹脂を用いる場合は、厚さ10〜1000μmのフィルム状としたものを被転写基板として用いることもできる。
酸化物半導体膜を被転写基板に転写する方法としては、酸化物半導体膜と被転写基板とを接着剤等を用いて貼り合わせた後、耐熱性基板から引き剥がして行う方法、接着剤自体を被転写基板として酸化物半導体膜と貼り合わせた後、耐熱性基板から引き剥がして行う方法等が挙げられる。
【0021】
上記の転写工程で用いることのできる接着剤は特に限定されるものではなく、各種合成樹脂や無機接着剤を用いることができる。合成樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリスチレン、エチレン‐プロピレンゴム等のポリオレフィン、エチレン‐酢酸ビニル共重合体、エチレン‐アクリル酸共重合体、エチルセルロース、トリ酢酸セルロース等のセルロース誘導体、ポリ(メタ)アクリル酸とそのエステルとの共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアセタール、ポリアセタール、ポリアミド、ポリイミド、ナイロン、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。無機接着剤としては、例えば、低融点ガラス、ケイ酸ソーダ等のアルカリ金属ケイ酸塩等が挙げられる。これらの接着剤の中でも、接着性、電解液に対する耐性、光透過性及び転写性の点から、ポリオレフィン、エチレン‐酢酸ビニル共重合体、ウレタン樹脂、エポキシ樹脂、シリコーン樹脂が好ましい。また、これらの接着剤には、必要に応じて添加剤を用いることができる。添加剤としては、架橋剤、分散剤、タッキファイヤー、レベリング剤、可塑剤、消泡剤等が挙げられる。
【0022】
このような接着剤を用いて、酸化物半導体膜と被転写基板とを接着する方法についてより具体的に説明すると、例えば、有機溶剤や水に溶解又は分散した接着剤を酸化物半導体膜上、又は被転写基板上に塗布し、酸化物半導体膜と被転写基板とを貼り合わせて乾燥する方法、加熱溶融させた接着剤を酸化物半導体膜上、又は被転写基板上に塗布して貼り合わせた後に冷却する方法、上記のような合成樹脂からなる樹脂フィルムを酸化物半導体膜と被転写基板との間に挟み込み、加熱して接着する方法等が挙げられる。接着剤層の厚さは特に限定されないが5〜300μm、好ましくは10〜200μmである。
上述のようにして製造した半導体電極を用いて光化学電池を製造することができる。
【0023】
電解質層としては、通常、電解質溶液が使用される。その他、ゲル状或いは固体の電解質も使用される。電解質溶液は、特に限定されないが、I/I3、Br/Br3、キノン/ハイドロキノン等のレドックス対を含む溶液が挙げられる。具体的には、I/I3の場合、ヨウ素とヨウ素のアンモニウム塩とを、アセトニトリル、エチレンカーボネート、プロピレンカーボネート等の有機溶媒に溶解させた溶液が用いられる。
【0024】
また、電子やホールを輸送する材料も適用でき、各種金属フタロシアニン、ペリレンテトラカルボン酸、ペリレンやコロネン等多環芳香族、アリールアミン類等の電荷輸送材料、ポリピロール、ポリフェニレンビニレン等の導電性高分子などが使用可能である。これらの電解質層の厚みとしては、通常、1〜50μm程度である。
【0025】
対向電極としては、任意の導電性材料が使用でき、例えば、金、白金、銀、銅等の金属材料や、前述の導電性ガラス、カーボン等が挙げられるが、レドックス対の反応を十分な速度で行わせる触媒能を持つものが好ましく、白金、導電材料表面に白金メッキや白金蒸着を施したもの、カーボン等が挙げられる。
本発明の半導体電極を用いて光化学電池を製造する場合、本発明の半導体電極と対向電極とを電解質に接触させることにより色素増感型太陽電池等の光化学電池を製造することができる。
【0026】
【実施例】
(実施例1)
<TiO2膜の形成>
水3.6mlとアセチルアセトン0.4mlの混合液中に結晶性酸化チタン粒子(日本アエロジル社製 商品名P-25、平均粒径21nm)12gを加え、乳鉢でよく分散させた。さらに、水16mlを、かき混ぜながら徐々に加え、最後に界面活性剤(Aldrich製 Triton X-100)0.2mlを加えてよく撹拌し、酸化チタンを38重量%含有する酸化チタンスラリーを調製した。
【0027】
次に、耐熱性基板として厚さ1.1mmのステンレス板にポリ(2-エチルへキシルメタクリレート)を約10μmの厚みで塗布し、該ポリ(2-エチルヘキシルメタクリレート)上に集電電極として使用する100メッシュの金の網(ニラコ社製)を貼り合わせたものを別途用意した。この基板上に、上記のスラリーを1.5×1.5cmの面積、厚さ50μmで塗布し、室温で5時間乾燥させた。次に450℃で30分間、空気中で加熱焼成を行うとともに、ポリ(2-エチルヘキシルメタクリレート)を熱分解させ、集電電極を有する酸化チタン半導体電極を作製した。
【0028】
<転写>
得られた半導体電極上に熱溶融性のEVA(エチレン-酢酸ビニル共重合体)シート(武田薬品工業製 商品名 タケメルト 厚さ150μm)、コロナ処理した50μmの二軸延伸ポリエチレンテレフタレート(PET)フィルムを順次重ね、110℃に加熱されたヒートロールラミネータで接着した。ついでステンレス板から半導体電極を剥離し、被転写基板として前記PETフィルム上にEVAを介して酸化チタン半導体が形成されたPET基板半導体電極を得た。
【0029】
<色素の吸着>
得られたPET基板半導体電極をシス-ビス(イソチオシアネート)ビス(2,2'-ビピリジル-4,4'-ジカルボキシレート)ルテニウムのエタノール溶液(3×10-4M)に24時間浸漬し、酸化チタン上に増感色素を吸着させ、色素増感酸化チタン半導体電極を作製した。
【0030】
<光化学電池の作製>
色素増感酸化チタン半導体電極とその対向電極とを電解液に接触させて光化学電池を構成した。対向電極としては、表面抵抗50Ω/□のITOコートPETフィルムのITO面に白金を蒸着したものを用いた。電解液としては、エチレンカーボネートとアセトニトリルとの混合液(容量比80/20)に、電解質として0.5Mのテトラプロピルアンモニウムヨーダイドと0.05Mのヨウ素とを含むものを用いた。また、両電極間には25μmのPETフィルムをスペーサーとして挟み、端部はエポキシ樹脂で封止した。
【0031】
<光化学電池の特性評価>
作製した光化学電池の特性評価を、JIS C8911で定義されるAM1.5の疑似太陽光(1000W/m2)を照射して行った結果、エネルギー変換効率は5.5%であった。
さらに、この光化学電池の表側に直径1cmの棒を当てて折り曲げ、次にその裏面にあてて反対側に折り曲げる操作を10回繰り返した後、エネルギー変換効率の測定を行ったところ、5.0%であった。
【0032】
(参考例1)
実施例と同様にして調製した酸化チタンスラリーを、表面抵抗50Ω/□のITOコートPETフィルムのITO面に塗布した。室温で5時間乾燥した後、100℃で30分間熱処理を行い、酸化チタン半導体電極を作製した。色素の吸着、光化学電池の作製は実施例と同様にして行った。
このエネルギー変換効率を測定したところ2.7%であった。
さらに、実施例と同様に、折り曲げる操作を行い、エネルギー変換効率の測定を行ったところ、0.8%であった。この酸化チタン膜の状態を目視で観察したところ、酸化チタン膜の一部がITOコートPET基板から剥がれ落ちた状態であった。
【0033】
【発明の効果】
本発明により、任意の材料の基板を用いて半導体電極を製造する方法を提供できる。特に、本発明により、従来の加熱焼成条件では適用できないような耐熱性の劣る合成樹脂基板等を用いて実用的なエネルギー変換効率を有する半導体電極を提供でき、さらには該電極を用いて高耐久性、高効率の光化学電池を提供できる。本発明により、従来基板として用いられていたガラスに比較して、屈曲性及び加工成形性に優れ、軽量である合成樹脂を基板として用いることができるため、設置箇所の自由度が高く、平面でも曲面でも設置でき、かつ設置作業の容易な半導体電極及び光化学電池を提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor electrode for a photochemical battery, a method for producing the same, and a photochemical battery using the electrode.
[0002]
[Prior art]
Solar cells containing an oxide semiconductor sensitized with a dye are known. For example, Japanese Patent Laid-Open No. 1-220380 discloses an oxide semiconductor electrode in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on a semiconductor made of a metal oxide such as porous and crystalline titanium oxide. A dye-sensitized solar cell using the above has been proposed.
Specifically, the dye-sensitized solar cell has a transparent substrate having a conductive surface and an oxide semiconductor film adsorbing a sensitizing dye formed on the conductive surface as a photoelectrode and conductive as a counter electrode. A transparent substrate having a conductive surface is used and an electrolyte solution is sealed between these electrodes.
[0003]
The oxide semiconductor film formed on the conductive surface is formed from a fired product of an oxide semiconductor fine particle aggregate. Specifically, a metal alkoxide is used as a starting material, and a sol-gel method in which an oxide is obtained through hydrolysis and polycondensation, a method in which fine particles of an oxide semiconductor are applied to a conductive surface, and a chemical reaction in an aqueous solution. The liquid phase deposition method is used to deposit an oxide semiconductor thin film on the conductive surface, and the oxide semiconductor formed on the conductive surface and the precursor thereof are baked by these methods. The
[0004]
As described above, the oxide semiconductor electrode requires a firing step for the purpose of obtaining durability and practical energy conversion efficiency. Therefore, the substrate to be an electrode is required to have high heat resistance, and is actually limited to a transparent conductive glass substrate coated with tin oxide, tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, It has been difficult to use a resin having poor heat resistance as a semiconductor electrode substrate.
[0005]
[Problems to be solved by the invention]
The present invention can be applied not only to glass but also to an optically transparent substrate, particularly a synthetic resin having inferior heat resistance, as a substrate material for a semiconductor electrode for a photochemical battery, and to obtain practical energy conversion efficiency. It is an object of the present invention to provide a method for producing a semiconductor electrode, and a photochemical battery using the semiconductor electrode. Furthermore, it aims at providing the semiconductor electrode and photochemical battery excellent in flexibility, workability, etc.
[0006]
[Means for Solving the Problems]
As a result of examining the above problems, the present inventors have formed a layer comprising an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate, and after heating and firing the layer, the obtained oxide semiconductor film is arbitrarily selected. It was found that the above problem can be solved by forming an oxide semiconductor electrode by transferring it onto a light-transmitting substrate.
[0007]
That is, the present invention includes the following inventions.
(1) An oxide semiconductor film obtained by forming a layer containing an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate surface-treated with a layer of a fluororesin or a thermally decomposable resin , and heating and baking the layer. Is transferred onto the substrate to be transferred.
(2) The manufacturing method according to (1), wherein the transfer substrate is a synthetic resin.
(3) The production method according to (1) or (2), wherein the thermally decomposable resin used for the surface treatment of the heat resistant substrate is selected from a (meth) acrylate resin, a cellulose resin, and polyethylene glycol.
(4) The thermodegradable resin used for the surface treatment of the heat-resistant substrate is described in (1) or (2) above, which is selected from poly (2-ethylhexyl (meth) acrylate), polyethyl (meth) acrylate, ethyl cellulose, and polyethylene glycol. Manufacturing method.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The oxide semiconductor used in the present invention is not particularly limited, and a conventionally known semiconductor can be used. For example, oxides of transition metals such as Ti, Nb, Zn, Sn, Zr, Y, La, Ta, Hf, Sr, In, V, Cr, Mo, W, SrTiO 3 , CaTiO 3 , BaTiO 3 , Examples thereof include perovskite oxides such as MgTiO 3 and SrNb 2 O 6 , composite oxides or oxide mixtures thereof. In particular, TiO 2 and ZnO are preferable from the viewpoint of semiconductor characteristics, corrosion resistance, stability, and safety. Note that these oxide semiconductors are preferably used as fine particles, and the average particle diameter is usually 1 to 1000 nm, preferably 5 to 200 nm.
[0009]
The term “oxide semiconductor precursor” as used in this specification refers to a state in which the oxide semiconductor is finally obtained and can be converted into an oxide semiconductor by heating and baking. As such, for example, metal alkoxide and its hydrolyzate or condensate, metal complex, metal organic acid salt, metal halide, etc. that can form the above-mentioned oxide semiconductor, and further semiconductor by change of crystal structure The thing which shows the physical property as is mentioned. For example, precursors of TiO 2 semiconductors include metal alkoxides such as titanium ethoxide and titanium propoxide, condensates obtained by hydrolysis and polycondensation of such metal alkoxides, or metals such as titanium acetylacetonate. Examples include a complex, a metal organic acid salt such as titanium octylate, and a metal halide such as titanium tetrachloride as raw materials, and hydrolyzing these solutions.
[0010]
The material of the heat-resistant substrate used in the present invention is not particularly limited as long as it can withstand normal firing conditions. However, a material that does not cause deformation, chemical change or the like even under firing conditions of 300 to 1000 ° C. is preferable. Examples of such a substrate material include metals such as stainless steel, nickel, platinum, gold, and titanium, glass, and heat resistant resins such as polyimide. A plate or sheet made of the above material can be used as the heat resistant substrate. These heat resistant substrates may be used alone, but surface treatment may be applied to the heat resistant substrate for the purpose of imparting transferability (easy to peel) of the oxide semiconductor film. Such treatments include providing a release layer made of fluororesin such as ethylene-tetrafluoroethylene copolymer, polyvinyl fluoride, polychlorotrifluoroethylene, etc., or combusting and decomposing by heat during firing. A method of providing a layer of a resin, for example, a (meth) acrylate resin such as poly (2-ethylhexyl (meth) acrylate) or polyethyl (meth) acrylate, a cellulose resin such as ethyl cellulose, or a thermally decomposable resin such as polyethylene glycol There is.
[0011]
As a method for forming an oxide semiconductor and / or precursor layer thereof on the heat resistant substrate, for example, the following method can be used. Coating liquid by preparing a liquid in which oxide semiconductor fine particles are dispersed in water or an organic solvent or a mixed solvent thereof, a solution or suspension of an oxide semiconductor precursor, or a liquid or slurry in which these are mixed. And The concentration of the oxide semiconductor and / or its precursor in the coating solution is preferably 1 to 70% by weight. Next, the coating liquid is applied onto a heat-resistant substrate by spin coating, dip coating, screen printing, blade coating, or the like, and dried as necessary to form an oxide semiconductor and / or precursor layer. Can be formed. In addition, you may add additives, such as surfactant, a viscosity modifier, and a dispersing agent, to a coating liquid as needed.
[0012]
Next, the heat-resistant substrate on which the layer containing an oxide semiconductor and / or a precursor is formed is heated and fired. It is preferable that the heating and baking conditions are 300 to 1000 ° C. for 1 to 120 minutes. If the temperature is lower than 300 ° C., the sintering does not proceed sufficiently, and sufficient film strength cannot be obtained, or the energy conversion efficiency may decrease because the mobility of electrons in the film decreases. On the other hand, if the temperature is higher than 1000 ° C., the sintering is too advanced to be porous, and the amount of dye adsorbed, which will be described later, decreases, resulting in a decrease in energy conversion efficiency. An oxide semiconductor film is formed over the heat resistant substrate by heating and baking the heat resistant substrate on which the layer including the oxide semiconductor and / or the precursor is formed.
[0013]
The oxide semiconductor film obtained by heating and baking is a porous structure film, and its thickness is usually about 1 to 50 μm, preferably about 5 to 20 μm. The ratio of the actual surface area to the apparent area is 10 or more, preferably 100 or more. The actual surface area is the total surface area of the porous membrane determined by the BET method.
[0014]
In the oxide semiconductor film thus formed, a collecting electrode for taking out current is arranged. The collector electrode may be formed either before or after the heat-firing treatment, and as a method thereof, a layer of metal or oxide conductor is deposited on the oxide semiconductor or its precursor by vapor deposition or sputtering. A method, a method in which metal fine particles or oxide conductor fine particles are mixed with a resin or a solvent and applied onto an oxide semiconductor or a precursor thereof, a light-transmitting metal mesh is disposed on a heat-resistant substrate, and the above-described coating is applied on the mesh. Examples thereof include a method of forming an oxide semiconductor film integrated with a metal mesh by applying a liquid.
[0015]
A dye may be adsorbed (chemical adsorption, physical adsorption, deposition, etc.) as a sensitizer on the oxide semiconductor film formed as described above. The adsorption of the dye may be performed either before or after the transfer to the transfer substrate. As a method for adsorbing the dye, for example, the substrate on which the oxide semiconductor film is formed may be immersed in a solution in which the dye is dissolved in an organic solvent. If necessary, the solution may be heated for the purpose of performing pressure reduction treatment or promoting adsorption so that the solution quickly enters the inside of the semiconductor film.
[0016]
The dye that can be used in the present invention is not particularly limited as long as it has absorption in the visible light region and / or the infrared light region, and examples thereof include metal complexes and organic dyes.
Examples of metal complexes include metal complexes such as ruthenium, osmium, iron, zinc and platinum, metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof. Among these, a ruthenium complex is preferable from the viewpoint of sensitization effect and durability. Examples of the ruthenium complex include RuL 2 (CN) 2 , RuL 2 (SCN) 2 , RuL 3 (CN) and the like. Here, L is a ligand such as 2,2′-bipyridyl-4,4′-dicarboxylate, which has a functional group such as a carboxyl group, a hydroxyl group, a sulfone group, or the like to the oxide semiconductor film. It is preferable from the point of adsorptivity.
[0017]
Examples of organic dyes include phthalocyanine, cyanine dyes, merocyanine dyes, xanthene dyes, triphenylmethane dyes, rose bengal, rhodamine B, and the like. For the same reason, carboxyl groups, hydroxyl groups, sulfone groups, etc. It is preferable to introduce a functional group of
[0018]
Next, a method for transferring the oxide semiconductor film formed over the heat-resistant substrate to the substrate to be transferred will be described.
The substrate to be transferred is not particularly limited as long as it is light-transmitting, and a substrate made of a synthetic resin can be used in addition to a conventionally used glass substrate.
[0019]
Examples of the synthetic resin include, for example, polyolefins such as polyethylene, polypropylene, polyisobutylene, polystyrene, and ethylene-propylene rubber, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid copolymer. Polymers, cellulose derivatives such as ethyl cellulose and cellulose triacetate, poly (meth) acrylic acid and its ester compounds, polyvinyl acetals such as polyvinyl acetate, polyvinyl alcohol and polyvinyl butyral, polyacetal, polyamide, polyimide, nylon, urethane resin, epoxy Resin, silicone resin, fluororesin, polycarbonate, urea resin, melamine resin, phenol resin, resorcinol resin, furan resin, etc. . Among these synthetic resins, polyolefins or polyester resins are preferable because they have good light transmittance, resistance to an electrolytic solution, and little gas permeation.
[0020]
When a synthetic resin is used, a film having a thickness of 10 to 1000 μm can be used as a substrate to be transferred.
As a method for transferring the oxide semiconductor film to the substrate to be transferred, a method in which the oxide semiconductor film and the substrate to be transferred are bonded together using an adhesive, and then peeled off from the heat-resistant substrate, or the adhesive itself is used. For example, a method in which the oxide semiconductor film is attached to the substrate to be transferred and then peeled off from the heat resistant substrate can be used.
[0021]
The adhesive that can be used in the transfer step is not particularly limited, and various synthetic resins and inorganic adhesives can be used. Synthetic resins include, for example, polyethylene, polypropylene, polyisobutylene, polystyrene, polyolefins such as ethylene-propylene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, cellulose derivatives such as ethyl cellulose, cellulose triacetate, Copolymer of poly (meth) acrylic acid and its ester, polyvinyl acetal such as polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyamide, polyimide, nylon, polyester resin, urethane resin, epoxy resin, silicone resin, fluorine Examples thereof include resins. Examples of the inorganic adhesive include alkali metal silicates such as low melting point glass and sodium silicate. Among these adhesives, polyolefins, ethylene-vinyl acetate copolymers, urethane resins, epoxy resins, and silicone resins are preferable from the viewpoints of adhesiveness, resistance to an electrolytic solution, light transmittance, and transferability. Moreover, an additive can be used for these adhesives as needed. Examples of the additive include a crosslinking agent, a dispersant, a tackifier, a leveling agent, a plasticizer, and an antifoaming agent.
[0022]
More specifically, a method for bonding the oxide semiconductor film and the transfer substrate using such an adhesive is described. For example, an adhesive dissolved or dispersed in an organic solvent or water is formed on the oxide semiconductor film. Alternatively, it is applied to a transfer substrate, and the oxide semiconductor film and the transfer substrate are bonded together and dried, and a heat-melted adhesive is applied to the oxide semiconductor film or the transfer substrate and bonded. And a method in which the resin film made of the synthetic resin as described above is sandwiched between the oxide semiconductor film and the substrate to be transferred, and is heated and bonded. Although the thickness of an adhesive bond layer is not specifically limited, 5-300 micrometers, Preferably it is 10-200 micrometers.
A photochemical battery can be manufactured using the semiconductor electrode manufactured as described above.
[0023]
As the electrolyte layer, an electrolyte solution is usually used. In addition, a gel or solid electrolyte is also used. The electrolyte solution is not particularly limited, and examples thereof include a solution containing a redox pair such as I / I 3 , Br / Br 3 , and quinone / hydroquinone. Specifically, in the case of I / I 3 , a solution in which iodine and an ammonium salt of iodine are dissolved in an organic solvent such as acetonitrile, ethylene carbonate, propylene carbonate or the like is used.
[0024]
In addition, materials that transport electrons and holes can also be applied. Various metal phthalocyanines, perylene tetracarboxylic acids, polycyclic aromatics such as perylene and coronene, charge transport materials such as arylamines, and conductive polymers such as polypyrrole and polyphenylene vinylene. Etc. can be used. The thickness of these electrolyte layers is usually about 1 to 50 μm.
[0025]
As the counter electrode, any conductive material can be used, and examples thereof include metal materials such as gold, platinum, silver, and copper, and the above-described conductive glass and carbon. Those having a catalytic ability to be carried out in (1) are preferred, and platinum, platinum-plated or platinum-deposited conductive material surfaces, carbon, and the like can be mentioned.
When manufacturing a photochemical cell using the semiconductor electrode of the present invention, a photochemical cell such as a dye-sensitized solar cell can be manufactured by bringing the semiconductor electrode of the present invention and the counter electrode into contact with an electrolyte.
[0026]
【Example】
Example 1
<Formation of TiO 2 film>
In a mixed solution of 3.6 ml of water and 0.4 ml of acetylacetone, 12 g of crystalline titanium oxide particles (trade name P-25, manufactured by Nippon Aerosil Co., Ltd., average particle size 21 nm) were added and well dispersed in a mortar. Further, 16 ml of water was gradually added with stirring, and finally 0.2 ml of a surfactant (Triton X-100 manufactured by Aldrich) was added and stirred well to prepare a titanium oxide slurry containing 38% by weight of titanium oxide.
[0027]
Next, poly (2-ethylhexyl methacrylate) is applied to a stainless steel plate having a thickness of 1.1 mm as a heat resistant substrate to a thickness of about 10 μm and used as a collecting electrode on the poly (2-ethylhexyl methacrylate). What stuck the mesh net | network (made by Niraco) was prepared separately. On this substrate, the above slurry was applied in an area of 1.5 × 1.5 cm and a thickness of 50 μm, and dried at room temperature for 5 hours. Next, it was heated and fired in air at 450 ° C. for 30 minutes, and poly (2-ethylhexyl methacrylate) was thermally decomposed to produce a titanium oxide semiconductor electrode having a current collecting electrode.
[0028]
<Transfer>
Heat-meltable EVA (ethylene-vinyl acetate copolymer) sheet (trade name: Takemelt Thickness 150 μm, manufactured by Takeda Pharmaceutical Co., Ltd.) and corona-treated 50 μm biaxially stretched polyethylene terephthalate (PET) film on the obtained semiconductor electrode The layers were sequentially stacked and bonded with a heat roll laminator heated to 110 ° C. Subsequently, the semiconductor electrode was peeled off from the stainless steel plate to obtain a PET substrate semiconductor electrode in which a titanium oxide semiconductor was formed on the PET film via EVA as a transfer substrate.
[0029]
<Dye adsorption>
The obtained PET substrate semiconductor electrode was immersed in an ethanol solution (3 × 10 −4 M) of cis-bis (isothiocyanate) bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium for 24 hours. A sensitizing dye was adsorbed on titanium oxide to prepare a dye-sensitized titanium oxide semiconductor electrode.
[0030]
<Production of photochemical battery>
A photochemical battery was constructed by bringing a dye-sensitized titanium oxide semiconductor electrode and its counter electrode into contact with an electrolytic solution. As the counter electrode, an ITO-coated PET film having a surface resistance of 50Ω / □ with platinum deposited on the ITO surface was used. As the electrolytic solution, a mixture of ethylene carbonate and acetonitrile (capacity ratio 80/20) containing 0.5M tetrapropylammonium iodide and 0.05M iodine as the electrolyte was used. A 25 μm PET film was sandwiched between the electrodes as a spacer, and the end was sealed with an epoxy resin.
[0031]
<Characteristic evaluation of photochemical battery>
The characteristic evaluation of the produced photochemical battery was performed by irradiating AM1.5 artificial sunlight (1000 W / m 2 ) defined in JIS C8911. As a result, the energy conversion efficiency was 5.5%.
Furthermore, after repeating the operation of applying a 1 cm diameter rod to the front side of this photochemical battery and bending it to the back side and then bending it to the opposite side, the energy conversion efficiency was measured and found to be 5.0%. It was.
[0032]
(Reference Example 1)
A titanium oxide slurry prepared in the same manner as in the example was applied to the ITO surface of an ITO-coated PET film having a surface resistance of 50Ω / □. After drying at room temperature for 5 hours, a heat treatment was performed at 100 ° C. for 30 minutes to produce a titanium oxide semiconductor electrode. The dye adsorption and the production of the photochemical battery were carried out in the same manner as in the examples.
The energy conversion efficiency was measured and found to be 2.7%.
Further, as in the example, the bending operation was performed and the energy conversion efficiency was measured, and it was 0.8%. When the state of the titanium oxide film was visually observed, a part of the titanium oxide film was peeled off from the ITO-coated PET substrate.
[0033]
【The invention's effect】
According to the present invention, a method of manufacturing a semiconductor electrode using a substrate of any material can be provided. In particular, according to the present invention, it is possible to provide a semiconductor electrode having practical energy conversion efficiency using a synthetic resin substrate having poor heat resistance, which cannot be applied under conventional heating and baking conditions. And a highly efficient photochemical battery can be provided. According to the present invention, since a synthetic resin which is superior in flexibility and workability and is lightweight as a substrate can be used as a substrate as compared with the glass conventionally used as a substrate, the degree of freedom of installation place is high, and even on a flat surface It is possible to provide a semiconductor electrode and a photochemical battery that can be installed even on a curved surface and are easy to install.

Claims (4)

フッ素樹脂又は熱分解性樹脂の層で表面処理された耐熱性基板上に酸化物半導体及び/又はその前駆体を含む層を形成させ、これを加熱焼成して得られる酸化物半導体膜を、被転写基板上に転写することを特徴とする半導体電極の製造方法。 An oxide semiconductor film obtained by forming a layer containing an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate surface-treated with a layer of a fluororesin or a thermally decomposable resin and heating and firing the layer is formed. A method for producing a semiconductor electrode, wherein the semiconductor electrode is transferred onto a transfer substrate. 前記被転写基板が合成樹脂である請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the substrate to be transferred is a synthetic resin. 耐熱性基板の表面処理に用いる熱分解性樹脂が(メタ)アクリレート樹脂、セルロース系樹脂及びポリエチレングリコールから選ばれる請求項1又は2に記載の製造方法。The production method according to claim 1 or 2, wherein the thermally decomposable resin used for the surface treatment of the heat resistant substrate is selected from a (meth) acrylate resin, a cellulose resin, and polyethylene glycol. 耐熱性基板の表面処理に用いる熱分解性樹脂がポリ(2-エチルヘキシル(メタ)アクリレート)、ポリエチル(メタ)アクリレート、エチルセルロース及びポリエチレングリコールから選ばれる請求項1又は2に記載の製造方法。The production method according to claim 1 or 2, wherein the thermally decomposable resin used for the surface treatment of the heat resistant substrate is selected from poly (2-ethylhexyl (meth) acrylate), polyethyl (meth) acrylate, ethyl cellulose and polyethylene glycol.
JP2000376939A 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery Expired - Lifetime JP4850338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376939A JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376939A JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Publications (2)

Publication Number Publication Date
JP2002184475A JP2002184475A (en) 2002-06-28
JP4850338B2 true JP4850338B2 (en) 2012-01-11

Family

ID=18845728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376939A Expired - Lifetime JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Country Status (1)

Country Link
JP (1) JP4850338B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP2005032917A (en) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd Method for manufacturing organic thin film solar cell and transfer sheet
JP4852838B2 (en) * 2003-11-10 2012-01-11 大日本印刷株式会社 Method for producing dye-sensitized solar cell substrate and method for producing dye-sensitized solar cell
EP1589548A1 (en) * 2004-04-23 2005-10-26 Sony Deutschland GmbH A method of producing a porous semiconductor film on a substrate
US20060219294A1 (en) * 2005-03-30 2006-10-05 Dai Nippon Printing Co., Ltd. Oxide semiconductor electrode, dye-sensitized solar cell, and, method of producing the same
JP4848661B2 (en) * 2005-03-30 2011-12-28 大日本印刷株式会社 Method for producing dye-sensitized solar cell substrate and dye-sensitized solar cell substrate
JP4915076B2 (en) * 2005-03-30 2012-04-11 大日本印刷株式会社 Manufacturing method of oxide semiconductor electrode
JP4848666B2 (en) * 2005-05-06 2011-12-28 大日本印刷株式会社 Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
JP5007492B2 (en) * 2005-05-09 2012-08-22 大日本印刷株式会社 Method for producing intermediate transfer medium, method for producing oxide semiconductor electrode, and method for producing dye-sensitized solar cell
JP4929658B2 (en) * 2005-09-26 2012-05-09 大日本印刷株式会社 Stack for oxide semiconductor electrode
JP5140938B2 (en) * 2006-03-31 2013-02-13 大日本印刷株式会社 Dye-sensitized solar cell
JP5205734B2 (en) * 2006-09-29 2013-06-05 大日本印刷株式会社 Laminated body for oxide semiconductor electrode, oxide semiconductor electrode, and dye-sensitized solar cell using the same
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
EP2277184A4 (en) * 2008-02-26 2012-01-04 Dyesol Ltd A sub-assembly for use in fabricating photo- electrochemical devices and a method of producing a sub-assembly
US8779126B2 (en) 2008-10-29 2014-07-15 Fujifilm Corporation Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
DE102008055969A1 (en) * 2008-11-05 2010-06-10 Sefar Ag Substrate for an optoelectronic device
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5620469B2 (en) 2010-03-24 2014-11-05 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP5565728B2 (en) * 2010-08-10 2014-08-06 学校法人同志社 Titania nanotube array, method for producing titania electrode, titania electrode, and dye-sensitized solar cell to which this titania electrode is applied
JP5554725B2 (en) * 2011-01-12 2014-07-23 綜研化学株式会社 Method for producing porous semiconductor electrode using sheet formed material
JP2012199175A (en) * 2011-03-23 2012-10-18 Sony Corp Photoelectric conversion device and manufacturing method of the same
JP5756772B2 (en) 2011-03-30 2015-07-29 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236715B2 (en) * 1997-09-29 2009-03-11 シャープ株式会社 Manufacturing method of semiconductor for photoelectric conversion material
JP3777289B2 (en) * 1999-09-24 2006-05-24 株式会社東芝 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2002184475A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
JP4850338B2 (en) Semiconductor electrode manufacturing method and photochemical battery
JP5029015B2 (en) Dye-sensitized metal oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell
JP4392741B2 (en) Photoelectric cell
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JPH11273753A (en) Coloring matter sensitizing type photocell
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2010001877A1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
JP2008130553A (en) Dye-sensitized solar battery and manufacturing method of dye-sensitized solar battery
WO2002067357A1 (en) Metal oxide dispersion and photoactive electrode for dye-sensitized solar cell, and dye-sensitized solar cell
WO2008004556A1 (en) Dye-sensitized solar cell module and method for fabricating same
WO2005112184A1 (en) Photoelectric converter and transparent conductive substrate used therein
JP2005174934A (en) Dye-sensitive solar cell, and method for manufacturing the same
JP2002008740A (en) Dye sensitized photocell and its manufacturing method
JP2001160425A (en) Optical semiconductor electrode and its manufacturing method
JP6094839B2 (en) Dye-sensitized solar cell and method for producing the same
JP4596305B2 (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP2004311197A (en) Optical electrode and dye-sensitized solar cell using it
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4637470B2 (en) Manufacturing method of laminate
JPH11219734A (en) Semiconductor for photoelectric conversion material, laminate using the semiconductor, manufacture of those and photocell
JP5102921B2 (en) Manufacturing method of semiconductor electrode
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5140031B2 (en) Photoelectric cell
JP2004146664A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term