[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4844023B2 - Dimensional stabilization method for solid polymer electrolyte membrane - Google Patents

Dimensional stabilization method for solid polymer electrolyte membrane Download PDF

Info

Publication number
JP4844023B2
JP4844023B2 JP2005194451A JP2005194451A JP4844023B2 JP 4844023 B2 JP4844023 B2 JP 4844023B2 JP 2005194451 A JP2005194451 A JP 2005194451A JP 2005194451 A JP2005194451 A JP 2005194451A JP 4844023 B2 JP4844023 B2 JP 4844023B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid polymer
cell
polymer electrolyte
mea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005194451A
Other languages
Japanese (ja)
Other versions
JP2007012537A (en
Inventor
直和 熊谷
隆了 屋
裕之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2005194451A priority Critical patent/JP4844023B2/en
Publication of JP2007012537A publication Critical patent/JP2007012537A/en
Application granted granted Critical
Publication of JP4844023B2 publication Critical patent/JP4844023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、固体高分子電解質膜型(以下「固体高分子型」と略称する)セルの構成部品であるMEA(電解質膜−電極アセンブリ)の、中心的な材料である電解質膜の寸法を安定化する方法に関する。本発明はまた、その方法により寸法を安定化した電解質膜またはMEAの保管および輸送の方法にも関し、さらに、その電解質膜またはMEAを使用した固体高分子型セルの製造方法にも関する。ここで、「MEA(電解質膜−電極アセンブリMembrane Electrode Assembly)」とは、固体高分子型電解質膜/イオン交換膜の片面または両面に、電極を接合一体化することによって得られる、電極−電解質膜接合体のことをいう。 The present invention stabilizes the dimensions of the electrolyte membrane, which is the central material of MEA (electrolyte membrane-electrode assembly), which is a component of a solid polymer electrolyte membrane type (hereinafter abbreviated as “solid polymer type”) cell. It relates to the method of making. The present invention also relates to a method for storing and transporting an electrolyte membrane or MEA whose dimensions are stabilized by the method, and further to a method for producing a solid polymer cell using the electrolyte membrane or MEA. Here, “MEA (electrolyte membrane-electrode assembly)” means an electrode-electrolyte membrane obtained by joining and integrating electrodes on one or both sides of a solid polymer electrolyte membrane / ion exchange membrane. Refers to a joined body.

固体高分子型のセル、代表的には燃料電池は、基本的な態様としては図1に示すように、1枚のMEA(電解質膜−電極アセンブリ)、2枚のセパレータ/複極板、2枚の反応ガス/反応液の拡散体、2枚の給電板、2枚の絶縁板および2枚のエンドプレートから構成されるか、または、1枚のMEA、2枚のセパレータ/複極板、1枚の反応ガス/反応液の拡散体、1枚の金属不溶性電極、2枚の給電/集電板、2枚の絶縁板および2枚のエンドプレートから構成される。 As shown in FIG. 1, a solid polymer type cell, typically a fuel cell, basically has one MEA (electrolyte membrane-electrode assembly), two separators / bipolar plates, A reaction gas / reaction liquid diffuser, two power supply plates, two insulation plates and two end plates, or one MEA, two separators / bipolar plates, It consists of one reactant gas / reaction liquid diffuser, one metal insoluble electrode, two power supply / current collector plates, two insulating plates, and two end plates.

上記の構成部材を使用して、1枚のMEA、2枚のセパレータ/複極板および2枚の反応ガス/反応液の拡散体を積み重ねることにより、または、1枚のMEA、2枚のセパレータ/複極板、1枚の反応ガス/反応液用の拡散体および1枚の金属不溶性電極を積み重ねることにより、たとえば燃料電池の単セルが構成される。この単セルを複数個積層してセル・スタックを構成し、セル・スタックの両端に給電/集電板、絶縁板およびエンドプレートを配置して、エンドプレートに設けたボルトを締め付けてその形状を維持するという要領で、燃料電池が構成される。 By stacking one MEA, two separators / bipolar plates and two reaction gas / reaction liquid diffusers using the above components, or one MEA, two separators For example, a single cell of a fuel cell is formed by stacking a bipolar plate, a reactant gas / reaction liquid diffuser, and a metal insoluble electrode. A plurality of single cells are stacked to form a cell stack. A power supply / current collector plate, an insulating plate, and an end plate are arranged at both ends of the cell stack, and the bolts provided on the end plate are tightened to form the shape. The fuel cell is configured in the manner of maintaining.

セルの構成において、MEAと拡散体とを一体化した例も見受けられる(特許文献1)が、燃料電池をはじめとするこの種のセルは、基本的には、MEAや電解質膜のしきい性を利用して、2枚のセパレータ/複極板の間に2個の隔離された反応室を設けた電気化学反応装置であって、反応物/生成物が気体の場合に対処できるよう、二つの電極のうち少なくとも一方にはガス拡散電極とした構造が、より一般的である。 In the cell configuration, an example in which an MEA and a diffuser are integrated can be seen (Patent Document 1). However, this type of cell including a fuel cell basically has a threshold of MEA or electrolyte membrane. An electrochemical reaction apparatus having two isolated reaction chambers between two separators / bipolar plates, with two electrodes so that the reactant / product can be handled in the case of gas A structure in which at least one of them is a gas diffusion electrode is more general.

このような構造を有する固体高分子型セルは、各種燃料電池のほか、水電解セル、可逆セル(燃料電池と水電解セルとを一体にしたもの、「一体化再生可能燃料電池」URFCSと呼ぶ)をはじめ、除湿用セル、空気中の酸素濃縮用セル、酸素陰極によるソーダ電解用セル、オンサイトでのオゾンまたは過酸化水素製造用のセル、および、亜硝酸ガス、フロンガス、二酸化炭素を処理するための電気化学セルといった、多岐にわたる用途が期待される電気化学セルである。 The polymer electrolyte cell having such a structure is referred to as a water electrolysis cell, a reversible cell (integrated fuel cell and water electrolysis cell, “integrated renewable fuel cell” URFCS) in addition to various fuel cells. ), Dehumidification cell, oxygen concentration cell in air, soda electrolysis cell with oxygen cathode, on-site ozone or hydrogen peroxide production cell, nitrous acid gas, Freon gas, carbon dioxide It is an electrochemical cell that is expected to be used in a wide variety of applications, such as an electrochemical cell.

これらの固体高分子型セルでは、単セルを大型化することによりセルのスケールアップを図ろうとすれば、構成部材の大型化に伴う加工精度の制約が高まること、締め付け時の構成部材の均一な接触が得難くなること、などの問題に遭遇する。単セルの大型化によるスケールアップはまた、電解電流や発電電流が増大することになり、その結果、電圧降下の増大や電源装置の整流効率の低下によって、システム全体の効率が低下するという問題もある。そこで、図1にみるように、単セルを積層させたセル・スタックによって、スケールアップを図るのが通常である。 In these polymer electrolyte cells, if the scale of the cell is increased by increasing the size of the single cell, the restriction on the processing accuracy associated with the increase in the size of the component will increase, and the components will be uniform when tightened. We encounter problems such as difficulty in obtaining contact. Scale-up by increasing the size of a single cell also increases the electrolysis current and power generation current. As a result, there is a problem that the efficiency of the entire system decreases due to an increase in voltage drop and a decrease in rectification efficiency of the power supply device. is there. Therefore, as shown in FIG. 1, it is usual to increase the scale by a cell stack in which single cells are stacked.

このような固体高分子型セルの、単セルおよびスタック内での反応物や生成物/副生成物の輸送経路の形成は、それぞれのセルごとに外部からの導入経路を設ける「外部マニホールド方式」によるか、または、構成部材に設けた開口部を積層することで形成される空間を、ヘッダー管構造の幹線として利用し、そこから各単セルへ分岐流出させる機構をセル内に設ける「内部マニホールド方式」のいずれかによる。通常は、構造の簡素化によるコスト低減、省スペースという点において有利な、内部マニホールド方式が選択されている。 The formation of transport paths for reactants and products / by-products in single cells and stacks of such polymer electrolyte cells is an “external manifold system” in which an external introduction path is provided for each cell. Or a space formed by stacking openings provided in the constituent members is used as a main line of the header pipe structure, and a mechanism for branching out of each single cell from there is provided in the cell. According to one of "method". Usually, an internal manifold system is selected which is advantageous in terms of cost reduction and space saving due to simplification of the structure.

内部マニホールド方式では、外部から供給される反応物は、まず内部マニホールドを通って各セルに設けられた分流機構部から各セル室内へ流入して、セパレータ上に設けられた流路を経由し、その反応剤流体が拡散体側へ流出して、そこを透過して電極面へ至るというものであるから、前記のようなセル内に形成される2個の隔離された反応室へ2種類以上の異なる反応剤を供給する場合には、それぞれの室のための内部マニホールドを設ける必要がある。基本的には、反応ガスAの出入り口用と反応ガスBの出入り口用に合計4個の開口部を設けるが、反応系が発熱的であって冷却材の導入が必要である場合や、スタックのセル数が数十〜数百に及ぶような場合には、さらに冷却系出入り口用の内部マニホールドを追加して設ける必要がある。 In the internal manifold system, the reactants supplied from the outside first flow into the cell chambers from the flow dividing mechanism provided in each cell through the internal manifold, and pass through the flow path provided on the separator. Since the reactant fluid flows out to the diffuser side and permeates there to reach the electrode surface, two or more kinds of reaction fluids are formed in the two isolated reaction chambers formed in the cell as described above. When supplying different reactants, it is necessary to provide an internal manifold for each chamber. Basically, a total of four openings are provided for the entrance and exit of the reaction gas A and the entrance and exit of the reaction gas B. However, when the reaction system is exothermic and the introduction of coolant is necessary, When the number of cells reaches several tens to several hundreds, it is necessary to additionally provide an internal manifold for the cooling system entrance / exit.

内部マニホールド方式を採用したスタック内で、目的とする電極反応を、安全かつ安定的に連続して進行させるためには、前記のマニホールドどうしが、たとえば適宜のシール材の挿入によって、それぞれ分離されていて、反応物、生成物および冷却材が、互いに混合しないようにしなければならない。 In order to allow the intended electrode reaction to proceed continuously in a safe and stable manner in a stack that employs an internal manifold system, the manifolds are separated from each other, for example, by inserting an appropriate sealing material. Thus, the reactants, products and coolant must be kept from mixing with each other.

構成部材を積層することによって上記の機能をもつ内部マニホールドを形成するには、MEA/電解質膜、セパレータ/複極板、給電板のそれぞれ対応する箇所に開口部を設ける必要があり、その開口部がずれていると、反応物や冷却水が混合してしまい、セル・スタックはその機能を果たすことができない。そのため、構成部材のマニホールド用開口部の加工精度が高いこと、とりわけ開口孔のピッチが均一であることは、固体高分子型セルの製造にとって肝要である。とくにMEAとセパレータについては、図2に示すように、MEAに設ける開口部と電極部との間、セパレータに設ける開口部と流路/接電面との間で、寸法の整合性がとれていなければならないため、より高い加工精度が求められる。 In order to form an internal manifold having the above functions by laminating constituent members, it is necessary to provide openings at corresponding locations on the MEA / electrolyte membrane, separator / bipolar plate, and power supply plate. Otherwise, the reactants and cooling water will mix and the cell stack will not be able to perform its function. Therefore, high processing accuracy of the manifold openings of the constituent members, particularly that the pitch of the opening holes is uniform, is essential for the production of the solid polymer cell. In particular, with respect to the MEA and the separator, as shown in FIG. 2, dimensional consistency is maintained between the opening provided in the MEA and the electrode part, and between the opening provided in the separator and the flow path / electric contact surface. Therefore, higher machining accuracy is required.

ところが、固体高分子電解質膜は、温度および(または)湿度が変化すると含水率が変化し、それに伴って寸法の変化が生じる。乾燥状態と、水中にあって完全に膨潤した状態とで、その寸法は、電解質膜のイオン交換容量やイオン交換基の種類によって多少の差はあるものの、おおよそ20%も変化するという不定形性を示す。そのため、MEAの製造後にマニホールド開口部の孔あけ加工を施しても、MEAを放置すれば、加工直後と放置後とで開口部にずれが生じ、MEAの開口部、電極部と、セパレータの開口部、流路部/接電部との間で寸法上の不整合を生じて、セル内に組み込めないとう事態を招くことになる。この問題は、製造段階とセルの組み立て作業との間だけでなく、保管や輸送のときにも生じる。 However, the solid polymer electrolyte membrane has a moisture content that changes with changes in temperature and / or humidity, and changes in dimensions accordingly. The dimensions of the dry state and the fully swollen state in water vary by about 20%, although there are some differences depending on the ion exchange capacity of the electrolyte membrane and the type of ion exchange group. Indicates. For this reason, even if the opening of the manifold opening is performed after the MEA is manufactured, if the MEA is left as it is, the opening is shifted immediately after the processing, and the opening of the MEA, the electrode, and the separator are opened. Dimensional mismatch between the liquid crystal part and the flow path part / electric contact part, leading to a situation where it cannot be incorporated into the cell. This problem occurs not only between the manufacturing stage and the cell assembly operation, but also during storage and transportation.

このような固体高分子電解質膜がもつ寸法の不安定さに起因して、たとえ管理の行き届いた設備を使用してセルの組み立てを行なった場合でも、電解質膜は、実際の使用環境ではほぼ完全に湿潤な環境におかれるため、膨張が生じることは避け難い。電解質膜が膨張すれば、ボルトなどで締め付けられていない部分は、図3に示すように、シワが寄ることになる。このシワは、発明者らの経験では、高さが0.5〜1.0mm程度に達する。そうすると、セパレータ上に設けられた深さ1mm程度の流路に電解質膜が落ち込んで、流路を狭めたり、甚だしい場合には閉塞したりする。このことは、セルの入口と出口の間の圧力損失が増加する現象からも、確認される。 Due to the dimensional instability of such a solid polymer electrolyte membrane, the electrolyte membrane is almost perfect in the actual usage environment even when the cell is assembled using carefully managed equipment. Therefore, it is difficult to avoid swelling. If the electrolyte membrane expands, wrinkles approach the portion that is not tightened with a bolt or the like, as shown in FIG. According to the inventors' experience, the wrinkles reach a height of about 0.5 to 1.0 mm. If it does so, an electrolyte membrane will fall into a channel of about 1 mm in depth provided on a separator, and a channel will be narrowed or it will be blocked if it is severe. This is also confirmed from the phenomenon that the pressure loss between the inlet and outlet of the cell increases.

電解質膜の膨張が防げない以上、膜におけるシワの発生やシワの形状は、コントロールすることが困難である。シワにより流路が狭くなったり閉塞されたりすれば、スタックを構成するセルごとの流動抵抗はまちまちになるから、マニホールドから各セルヘの反応剤流体の供給が不規則となり、スタックの性能が変動するし、それ以前の問題として、再現性よくセル・スタックを製造することが困難になる。このようなわけで、固体高分子型セル用の電解質膜やMEAの寸法を安定化する方策が求められている。 As long as the expansion of the electrolyte membrane cannot be prevented, it is difficult to control the generation of wrinkles and the shape of the wrinkles in the membrane. If the flow path is narrowed or blocked by wrinkles, the flow resistance of each cell that makes up the stack will vary, so the reactant fluid supply from the manifold to each cell will be irregular, and the stack performance will vary. However, as a problem before that, it becomes difficult to manufacture a cell stack with high reproducibility. For this reason, there is a need for measures to stabilize the dimensions of the electrolyte membrane for the polymer electrolyte cell and the MEA.

その方策としては、まず寸法の変動が少ない固体高分子電解質膜を製造することが考えられ、製造方法の改良によってそれを実現する技術が開示された(特許文献2〜4、非特許文献1)。一方、電極と電解質膜との熱圧着接合処理のときに電解質膜から水分が蒸発することを防止して、電解質膜を湿潤状態に維持することや(特許文献5)、セル内に電解質膜やMEAを組み込んだ後に活性化する(特許文献6)という対策も提案された。しかしこれらは、電解質膜やMEAの製造時や開口部加工後の寸法安定化をはかる技術ではないため、前記した、開口部ピッチのずれやシワの発生を防止する効果があるわけではない。
特願2002−295311 特開2003−297393 特公平5−75835 特開平6−231779 特開平10−40932 特開2004−6416 脇添ら「個体高分子型燃料電池用イオン交換膜の検討」燃料電池シンポジウム講演予稿集(1997)
As a measure therefor, it is conceivable to first produce a solid polymer electrolyte membrane with little variation in dimensions, and techniques for realizing it by improving the production method have been disclosed (Patent Documents 2 to 4, Non-Patent Document 1). . On the other hand, it is possible to prevent moisture from evaporating from the electrolyte membrane during the thermocompression bonding process between the electrode and the electrolyte membrane to maintain the electrolyte membrane in a wet state (Patent Document 5), A countermeasure for activating the MEA after incorporation (Patent Document 6) has also been proposed. However, these are not techniques for stabilizing the dimensions at the time of manufacturing the electrolyte membrane or MEA or after processing the opening, and thus do not have the effect of preventing the above-described deviation of the opening pitch and generation of wrinkles.
Japanese Patent Application No. 2002-295311 JP 2003-297393 A JP 5-75835 JP-A-6-231777 JP 10-40932 A JP2004-6416 Wakizoe et al. "Study on ion exchange membrane for solid polymer fuel cell" Proceedings of Fuel Cell Symposium (1997)

本発明の基本的な目的は、固体高分子型セルの構成部材である固体高分子電解質膜の寸法を安定化する方法を提供することにある。本発明の実際上の目的は、電解質膜の寸法を安定化することによって、電解質膜やMEAに設ける開口部のピッチのずれを防ぎ、使用中に電解質膜にシワが生じることを防止して、セル・スタックの組み立て、保管、輸送を容易にすること、流路の狭隘化および閉塞を生じさせないこと、それによって安定で信頼性の高い固体高分子型セルの製造を可能とすることを目的としている。開口部の加工が済んだMEAや電解質膜の寸法安定化を図ることによって、それらの輸送、保管、組み立て作業を簡素な設備で行えるようにすることも、本発明の実際上の目的に含まれる。 A basic object of the present invention is to provide a method for stabilizing the dimensions of a solid polymer electrolyte membrane which is a constituent member of a solid polymer cell. The practical purpose of the present invention is to prevent the pitch deviation of the openings provided in the electrolyte membrane and MEA by stabilizing the dimensions of the electrolyte membrane, and to prevent the electrolyte membrane from wrinkling during use. For the purpose of facilitating assembly, storage and transportation of cell stacks, preventing narrowing and blockage of flow paths, and thereby enabling the production of stable and highly reliable polymer electrolyte cells. Yes. It is also included in the practical object of the present invention that the dimensional stabilization of the MEA and the electrolyte membrane that have been processed for the opening can be carried out by simple equipment for their transportation, storage, and assembly operations. .

本発明の電解質膜の寸法安定化方法は、固体高分子型セルの構成部品である固体高分子電解質膜の寸法を安定化する方法であって、原理的には、固体高分子電解質膜を、純水、希酸溶液またはアルカリ溶液に浸漬した状態で、100℃以下であるがその固体高分子電解質膜の使用温度を超える温度に加熱処理することによって固体高分子電解質膜を膨張するだけ膨張させ、希酸またはアルカリの溶液で処理した場合には、処理に続いて純水で洗浄し、使用の時点まで、処理終了時の温度以下の温度において湿潤状態を維持することからなる。より具体的には、電解質膜−電極アセンブリに組み込まれた固体高分子電解質膜に対して、上記の寸法安定化処理を行なうことからなる。
Dimensional stabilization method of the electrolyte membrane of the present invention is a method of stabilizing the dimensions of the solid polymer electrolyte membrane which is a component of a polymer electrolyte cell, in principle, a solid polymer electrolyte membrane, In a state immersed in pure water, dilute acid solution or alkali solution, the solid polymer electrolyte membrane is expanded as much as possible by heat treatment at a temperature not higher than 100 ° C. but exceeding the operating temperature of the solid polymer electrolyte membrane. In the case of treatment with a dilute acid or alkali solution, the treatment is followed by washing with pure water and maintaining the wet state at a temperature not higher than the temperature at the end of the treatment until the point of use. More specifically, the dimensional stabilization treatment is performed on the solid polymer electrolyte membrane incorporated in the electrolyte membrane-electrode assembly.

本発明の方法による固体高分子電解質膜の寸法安定化は、簡易な手法で固体高分子電解質膜の寸法不定形性の解消ないし低減を可能とする。具体的には、MEAや電解質膜に生じる寸法変化を、2%以内に抑制することが可能であり、膨張処理における処理温度を、実際のセルの使用温度以上に選定することによって、使用中にセル内で生じるシワの発生を実質的に抑制することが可能である。安定化の対象には、現に市販され、入手が可能な固体高分子電解質膜も、当然に含まれる。このような効果があるから、簡易な製造設備を用いて、固体高分子電解質膜やMEAに設けられる開口部孔ピッチのずれや使用中に生じるシワの発生を防止しながら、固体高分子型セルを確実に製作することが可能となる。 The dimensional stabilization of the solid polymer electrolyte membrane by the method of the present invention makes it possible to eliminate or reduce the dimensional irregularity of the solid polymer electrolyte membrane by a simple method. Specifically, the dimensional change that occurs in the MEA or the electrolyte membrane can be suppressed to within 2%, and by selecting the treatment temperature in the expansion treatment to be higher than the actual cell use temperature, It is possible to substantially suppress the generation of wrinkles generated in the cell. Naturally, the object of stabilization includes solid polymer electrolyte membranes that are currently commercially available and available. Because of these effects, using a simple manufacturing facility, while preventing the deviation of the opening hole pitch provided in the solid polymer electrolyte membrane or MEA and the generation of wrinkles that occur during use, the solid polymer cell Can be reliably manufactured.

その簡易な手法で製造された固体高分子型セルでは、電解質膜のシワの発生が防げるため、内部マニホールドにおける流路の閉塞や漏洩が生じないという、機能的な要求も十分に満たされる。開口部の加工をしたMEAや電解質膜は、取り扱いが難しいとされてきたが、その輸送および保管も、同様に簡易で容易に実施できる。実際に、まず膨張処理を行なってから開口部を加工し、その後は膨張処理時の温度よりも低い、脱イオンされた純水や希酸、アルカリ溶液に浸漬して保管や輸送を行なえば、上記のように2%以下の寸法変化しか生じないため、理想的な状態で電解質膜やMEAを保管したり輸送したりすることが容易である。長期にわたり保管する場合でも、必要であれば使用前に再度、膨張処理温度以下での希酸またはアルカリ溶液による処理や、純水による洗浄処理を実施すれば、寸法上の問題は生じない。 In the polymer electrolyte cell manufactured by the simple technique, the generation of wrinkles in the electrolyte membrane can be prevented, and the functional requirement that the flow path in the internal manifold is not blocked or leaked is sufficiently satisfied. Although it has been considered that handling of the MEA or the electrolyte membrane in which the opening has been processed is difficult, the transportation and storage thereof can be similarly performed easily and easily. Actually, after the expansion process is performed first, the opening is processed, and then stored and transported by immersing it in deionized pure water, dilute acid, or alkaline solution, which is lower than the temperature during the expansion process. Since only a dimensional change of 2% or less occurs as described above, it is easy to store and transport the electrolyte membrane and MEA in an ideal state. Even when stored for a long period of time, if necessary, if a treatment with a dilute acid or alkali solution below the expansion treatment temperature or a washing treatment with pure water is carried out again before use, no dimensional problem will occur.

本発明において、寸法安定化の対象とする固体高分子電解質膜およびMEAの、水中における寸法と水温との関係を、「ナフィオン(Naffion)115」を例にとって示せば、表1(電解質膜)および表2(MEA)のとおりである。表1のA〜Nおよび表2の1〜14は、それぞれ番号に従い水温の履歴を時間的に変化させたことを意味するものであり、膨張率は、電解質膜およびMEAを140℃で10分間乾燥させたものの寸法を基準(1.0)として求めた、各水温における寸法の増大率を示した値である。固体高分子膜のこうした性質については、「電気化学および工業物理化学」(1984)p.351−7に記載があり、発明者らはそれに示唆を受けて実験した結果が、表1および表2のデータである。 In the present invention, the relationship between the dimensions and the water temperature of the solid polymer electrolyte membrane and MEA to be dimensionally stabilized is shown in Table 1 (electrolyte membrane) and “Naffion 115” as an example. It is as Table 2 (MEA). A to N in Table 1 and 1 to 14 in Table 2 mean that the water temperature history was changed with time according to the numbers, respectively, and the expansion rate was 10 minutes at 140 ° C. for the electrolyte membrane and MEA. It is the value which showed the increase rate of the dimension in each water temperature calculated | required on the basis of the dimension of what was dried (1.0). For these properties of solid polymer membranes, see “Electrochemistry and Industrial Physical Chemistry” (1984) p. The data of Table 1 and Table 2 are the results of experiments conducted by the inventors based on the suggestions.

表1 固体高分子電解質膜の水温による寸法変化

Figure 0004844023
Table 1 Dimensional change of solid polymer electrolyte membrane with water temperature
Figure 0004844023


表2 MEAの水温による寸法変化

Figure 0004844023

Table 2 Dimensional change of MEA with water temperature
Figure 0004844023

表1のデータから、固体高分子型電解質膜の基本的な性質として、下記のことがわかる。
(1)乾燥状態から湿潤状態に移ると、寸法が増加する。
(2)水中での寸法は、水温の上昇とともに、100℃近辺まで単調に増加する。
(3)いったん60℃、85℃、100℃まで昇温し、膨張させた結果到達した寸法は、水温を20〜5℃まで低下させても、もはやほとんど変化せず、もとの寸法に戻らない。
(4)しかし、湿潤状態でいったん膨張させたものも、乾燥すれば収縮して寸法が小さくなる。
From the data in Table 1, the following can be seen as basic properties of the solid polymer electrolyte membrane.
(1) The dimensions increase when moving from a dry state to a wet state.
(2) The size in water increases monotonously up to around 100 ° C. as the water temperature rises.
(3) Once the temperature is increased to 60 ° C., 85 ° C. and 100 ° C. and expanded, the dimensions reached will no longer change even when the water temperature is lowered to 20-5 ° C., and return to the original dimensions. Absent.
(4) However, once expanded in a wet state, the size shrinks and shrinks when dried.

上記した固体高分子電解質膜の性質を利用して寸法の安定化をはかる本発明の処理法は、具体的には、固体高分子電解質膜またはMEAを、1〜数十枚、容器内に入れた脱イオン水、希酸またはアルカリの水溶液に浸漬し、溶液を加温して、目的とする固体高分子型セルの最高使用温度より高い温度に達した状態で、少なくとも20分間置く。 Specifically, the processing method of the present invention for stabilizing the dimensions by utilizing the properties of the above-mentioned solid polymer electrolyte membrane is specifically designed by placing one to several tens of solid polymer electrolyte membranes or MEAs in a container. It is immersed in an aqueous solution of deionized water, dilute acid or alkali, and the solution is heated and placed at a temperature higher than the maximum use temperature of the intended solid polymer cell for at least 20 minutes.

処理に使用する容器としては、汚染成分として混入する可能性のあるアニオンやカチオンの溶出が生じ得ないような材質、たとえばパイレックスガラス、高密度PP、高密度PE、耐熱ポリ塩化ビニル、PTFEなどのポリマーでライニングした金属容器が好ましく、使用に先立って、容器内を純水で洗浄して不純物イオンを除き、洗浄水の電導度を5μS/cm以下にすることが好ましい。 As a container used for processing, a material which does not allow elution of anions and cations which may be mixed as a contaminating component, such as Pyrex glass, high density PP, high density PE, heat resistant polyvinyl chloride, PTFE, etc. A metal container lined with a polymer is preferable. Prior to use, it is preferable that the inside of the container is washed with pure water to remove impurity ions, and the conductivity of the washing water is 5 μS / cm or less.

処理中は浴内の温度分布が均一であることが望ましいから、攪拌機や循環ポンプなどを用いるとよい。処理時の浴設定温度は、目的とする寸法安定性を得るためには、基本的にはセルの最高使用温度より高い温度であれば何℃でもよいが、使用する固体高分子膜の耐熱温度が上限となる。計測系の精度や浴のサイズ、浴内の温度分布などを考慮すれば、最高使用温度より5℃以上高くすれば、問題なく寸法安定化が図れる。 Since it is desirable that the temperature distribution in the bath is uniform during the treatment, a stirrer or a circulation pump may be used. In order to obtain the desired dimensional stability, the bath setting temperature during the treatment may be any temperature as long as it is basically higher than the maximum use temperature of the cell. However, the heat resistant temperature of the solid polymer membrane used is not limited. Is the upper limit. Considering the accuracy of the measurement system, the size of the bath, the temperature distribution in the bath, etc., the dimension can be stabilized without problems if the temperature is raised 5 ° C. or more from the maximum operating temperature.

加熱処理を行なったならば、電解質膜またはMEAを容器内の液に浸漬させたまま、液の温度を5℃〜室温の範囲に低下させる。処理液として希酸やアルカリの水溶液を使用した場合には、電解質膜を液から取り出し、脱イオン水で洗浄する。洗浄は、洗浄液の電導度が5μS/cm以下となるまで行なう。通常は数回の洗浄で足りる。いったん膨張させた固体高分子膜は、乾燥すると収縮するので、上記の冷却がおわるまで、電解質膜またはMEAを浴から取り出すべきでないが、いったん室温付近まで冷却したのちは、水の蒸発速度が十分に遅くなるので、乾燥と収縮は実際上問題でなくなる。 If heat processing is performed, the temperature of a liquid will be reduced to the range of 5 degreeC-room temperature, with electrolyte membrane or MEA being immersed in the liquid in a container. When an aqueous solution of dilute acid or alkali is used as the treatment liquid, the electrolyte membrane is taken out from the liquid and washed with deionized water. Cleaning is performed until the conductivity of the cleaning liquid is 5 μS / cm or less. Usually several washings are enough. The solid polymer membrane once expanded shrinks when dried, so the electrolyte membrane or MEA should not be removed from the bath until the above cooling is complete, but once cooled to near room temperature, the water evaporation rate is sufficient. Drying and shrinkage are practically no problem.

容器から取り出した電解質膜またはMEAの加工は、電解質膜の乾燥が生じないように脱イオン水を供給しながら、所定の箇所に孔を開ける。加工用具には、とくに制限がない。確実を期するためには、固体電解質膜が常に脱イオン交換水に浸漬されていることを確保する装置、または少なくとも水の蒸発が生じ難い機構を有する加工装置を使用することが望ましい。一例を挙げれば、図4に示すような治具に電解質膜やMEAを固定し、脱イオン水を注入し、図4の押え板によって水の蒸発を防止しながら、平らに伸ばす。その状態で、工具を用いて所定の箇所に開口を設ければ、寸法の変化を伴わずに電解質膜やMEAの加工が行なえる。 In the processing of the electrolyte membrane or MEA taken out from the container, holes are made at predetermined locations while supplying deionized water so that the electrolyte membrane does not dry. There are no particular restrictions on the processing tool. In order to ensure certainty, it is desirable to use a device that ensures that the solid electrolyte membrane is always immersed in deionized water, or at least a processing device that has a mechanism that hardly causes evaporation of water. For example, an electrolyte membrane or MEA is fixed to a jig as shown in FIG. 4, deionized water is injected, and the flat plate is stretched while preventing evaporation of water by the holding plate shown in FIG. 4. In this state, if an opening is provided at a predetermined location using a tool, the electrolyte membrane or MEA can be processed without any change in dimensions.

開口部の加工をした電解質膜またはMEAを、寸法変化を伴わずに保管および輸送を行うには、5℃〜加熱処理温度以下の水温が維持できるような容器や保管場所を選定して、電解質膜またはMEAが、常に脱イオン水中に浸漬している状態にするだけでよい。輸送に際しても、あらかじめ脱イオン水で洗浄液が5μS/cm以下に達するまで洗浄したPE、PP等の袋や容器内に、脱イオン水を十分な量注ぎ、その中に電解質膜やMEAを入れて密封し、5℃〜処理温度を超えない温度に保てばよい。保管場所が室温を大きく超える場合や、輸送中に室温を大きく超える高温に達する場合には、その温度を考慮に入れて、加熱処理の温度を設定してやれば、電解質膜およびMEAの寸法変化を伴わず保管・輸送が可能である。 To store and transport an electrolyte membrane or MEA that has been processed for an opening without dimensional change, select a container or storage location that can maintain a water temperature of 5 ° C. to a heat treatment temperature or lower, and store the electrolyte. It is only necessary that the membrane or MEA is always immersed in deionized water. During transportation, a sufficient amount of deionized water is poured into a bag or container of PE, PP, etc. that has been washed with deionized water until the cleaning solution reaches 5 μS / cm or less, and an electrolyte membrane or MEA is placed therein. It should be sealed and kept at a temperature not exceeding 5 ° C. to the processing temperature. If the storage location greatly exceeds the room temperature or reaches a high temperature that greatly exceeds the room temperature during transportation, if the temperature of the heat treatment is set in consideration of the temperature, the dimensional change of the electrolyte membrane and MEA is accompanied. It can be stored and transported.

寸法安定化した電解質膜やMEAを用いた固体高分子型セル・スタックの組み立ては、あらかじめセパレータを脱イオン交換水中に浸漬して水分を保持させ、セパレータA/拡散体/開口部加工済みのMEA、または電解質膜/拡散体/セパレータBのように、部品を積層して行けばよい。積層中にMEAや電解質膜の乾燥・収縮が生じないようにするには、MEAや電解質膜上に脱イオン水を注ぎながら作業をすればよい。積層体の下方に位置するセルヘの水の供給は、一時的にプレス機によって積層体を加圧し、その際に形成される内部マニホールドを利用するという方策がある。所定のセル数に応じた数量の部品を積層したのち、エンドプレート上のボルトを締め付けることで、最終的に任意のセル数、たとえば10セルからなる固体高分子型セル・スタックが形成できる。 The assembly of a polymer electrolyte cell stack using a dimensionally stabilized electrolyte membrane or MEA is performed by pre-immersing the separator in deionized exchange water to retain moisture, and the separator A / diffuser / opening processed MEA. Alternatively, the components may be laminated like the electrolyte membrane / diffuser / separator B. In order to prevent the MEA and the electrolyte membrane from drying and shrinking during the lamination, the work may be performed while pouring deionized water onto the MEA and the electrolyte membrane. In order to supply water to the cell located below the laminated body, there is a method of temporarily pressurizing the laminated body with a press and using an internal manifold formed at that time. After stacking a number of parts corresponding to a predetermined number of cells, a bolt on the end plate is tightened to finally form a solid polymer cell stack having an arbitrary number of cells, for example, 10 cells.

本発明の方法によって寸法を安定化することが可能な固体高分子電解質は、その種類に制限はなく、イオン交換基として−NH 、−COO、−SO 2−などの基を有し、水和水を保持し、かつ、水和水の取り込みによって寸法が増大するようなもの、および温度の上昇により分子間の結合距離が広がり、水を取り込む量が増加する性質を有するものは、いずれも本発明による寸法安定化の対象となる。 The type of the solid polymer electrolyte whose dimensions can be stabilized by the method of the present invention is not limited, and has a group such as —NH 4 + , —COO or —SO 3 2 as an ion exchange group. However, those that retain hydration water and increase in size due to the incorporation of hydration water, and those that have the property of increasing the amount of water incorporation by increasing the bond distance between molecules due to an increase in temperature. These are the objects of dimensional stabilization according to the present invention.

ただし、固体高分子電解質の種類によって、使用可能な、または好適な浴の種類が限定される。たとえば、強酸性型の−SO 2−基を有するものについては、脱イオン水のほかに、希硫酸、希塩酸などの強酸が適用可能であるが、弱酸性型の−COO基を有するものでは脱イオン水が好適であり、−NH 基を有するものに対しては、脱イオン水およびアルカリ溶液が使用可能である。アニオン膜とカチオン膜との接合により得られるバイポーラ膜も、脱イオン水を使用するのが好都合である。 However, the type of bath that can be used or is suitable is limited depending on the type of the solid polymer electrolyte. For example, for those having a strongly acidic type —SO 3 2 — group, strong acids such as dilute sulfuric acid and dilute hydrochloric acid can be applied in addition to deionized water, but those having a weakly acidic type —COO group In deionized water, deionized water and an alkaline solution can be used for those having —NH 4 + groups. A bipolar membrane obtained by joining an anion membrane and a cation membrane also advantageously uses deionized water.

本発明の方法により寸法安定化できる可能なMEAも、その種類、製法等に限定はなく、ホットプレス法によるもの、無電解メッキ法によるものなど、どれも対象になる。表1および表2に示したデータは、触媒層内に撥水材が含まれているMEAのそれであるが、電極面自体が撥水性を有するようなものであっても、本発明の方法は、十分に適用可能であることがわかる。 The possible MEA that can be dimensionally stabilized by the method of the present invention is not limited in its type, manufacturing method, and the like, and any of the hot press method and the electroless plating method can be used. The data shown in Table 1 and Table 2 is that of MEA in which a water repellent material is contained in the catalyst layer, but even if the electrode surface itself has water repellency, the method of the present invention It can be seen that it is sufficiently applicable.

ただし、MEAの製法によって電極面積の膨張率が異なるため、本発明による寸法安定化処理を行ない、しかも所定の有効電極面積を有するMEAを実現するためには、MEA製造時点での電極面積と、所定温度で処理した後の寸法との関係を求めておき、その関係にもとづいて、電極寸法をやや小さく製造する必要がある。電極の単位面積当たり触媒担持量は、安定化処理後の電極面積に対して必要な量となるように設計すればよい。MEA上の電極の被覆がなされていない箇所は、通常の固体電解質と同じ性質を示すので、とくに大きな問題はなく、本発明を適用することができる。 However, since the expansion ratio of the electrode area differs depending on the MEA manufacturing method, the dimensional stabilization process according to the present invention is performed, and in order to realize a MEA having a predetermined effective electrode area, the electrode area at the time of manufacturing the MEA, It is necessary to obtain a relationship with dimensions after processing at a predetermined temperature, and to manufacture the electrodes with a slightly smaller size based on the relationship. What is necessary is just to design the catalyst load per unit area of an electrode so that it may become a required quantity with respect to the electrode area after a stabilization process. The portion on the MEA where the electrode is not covered exhibits the same properties as a normal solid electrolyte, and therefore there is no particular problem and the present invention can be applied.

前記のようにして加工された電解質膜やMEAについて、工具や加工雰囲気、保管環境によって汚染が生じた場合図、とりわけ不純物イオンのイオン交換基への吸着が生じた可能性がある場合には、図4を参照して説明したいずれの操作の後でも、それに引き続いて、強酸性溶液やアルカリ性水溶液を用いた不純物イオンの脱離処理が可能である。その後、脱イオン水で処置すれば、問題なくセルの組み立てに供することができる。この場合も、使用する溶液の温度が、5℃〜最高使用温度の範囲から選択された温度を超えないように管理すれば、固体電解質やMEAの寸法変化は防ぐことができる。 Regarding the electrolyte membrane and MEA processed as described above, when contamination occurs due to the tool, processing atmosphere, and storage environment, particularly when there is a possibility that the adsorption of impurity ions to the ion exchange group has occurred, After any of the operations described with reference to FIG. 4, impurity ion desorption treatment using a strongly acidic solution or an alkaline aqueous solution can be performed subsequently. Then, if it treats with deionized water, it can use for the assembly of a cell without a problem. Also in this case, if the temperature of the solution to be used is controlled so as not to exceed the temperature selected from the range of 5 ° C. to the maximum use temperature, the dimensional change of the solid electrolyte or MEA can be prevented.

製作した10セル・スタックの、反応ガス用および冷却水用マニホールド合計4系統のうち1系統内に、Nガスを50kPaの圧力で封入して、リークのないことを確認した。さらに、10セル・スタックのMEAの両極電極触媒層にPt触媒を使用したセル・スタックを製作し、反応ガスのマニホールドの2系統に、純H、純Oおよび加湿水蒸気を導入した。製作したセル内に形成される内部マニホールドどうしの区分が不十分であるか、電解質膜の破損が生じている場合には、水素と酸素が混合してしまい、両極での濃度差が生じないため、分極が起こらずにセル電圧が0V付近の電圧を示すか、または0.8V以下で電圧値が大きく増減するという現象が起こる。製作したスタックについては、すべてのセルにおいて、表3に示したように、約1Vの開回路電圧が得られており、それぞれの内部マニホールドが区分されていることが確認できた。 N 2 gas was sealed at a pressure of 50 kPa in one of a total of four reaction gas and cooling water manifolds of the manufactured 10-cell stack, and it was confirmed that there was no leak. Furthermore, a cell stack using a Pt catalyst for the bipolar electrode catalyst layer of the 10 cell stack MEA was manufactured, and pure H 2 , pure O 2 and humidified water vapor were introduced into two systems of the reaction gas manifold. If the internal manifolds formed in the manufactured cell are not sufficiently divided or the electrolyte membrane is damaged, hydrogen and oxygen will be mixed, and there will be no difference in concentration between the two electrodes. The phenomenon that the cell voltage shows a voltage in the vicinity of 0V without polarization or the voltage value greatly increases or decreases below 0.8V occurs. With respect to the manufactured stack, as shown in Table 3, an open circuit voltage of about 1 V was obtained in all the cells, and it was confirmed that each internal manifold was divided.

表3 本発明のセル・スタックの水素−酸素導入時の各セルの開回路電圧セル

Figure 0004844023
Table 3 Open circuit voltage cell of each cell when hydrogen-oxygen is introduced into the cell stack of the present invention
Figure 0004844023

参考例Reference example

実施例1と同様にして3セル・スタックを製作し、スタック温度を68℃に保って乾燥Nガスを流通させ、LCRメーターの1kHzにおける交流抵抗値をスタック端子間で測定しながら、乾燥前に2.22mΩであった抵抗値が290mΩに増大するまで、MEAを乾燥させた。 A three-cell stack was manufactured in the same manner as in Example 1, and the dry N 2 gas was circulated while maintaining the stack temperature at 68 ° C., and the AC resistance value at 1 kHz of the LCR meter was measured between the stack terminals. The MEA was dried until the resistance value increased from 2.22 mΩ to 290 mΩ.

本発明によって寸法安定化させたMHAをセル内に配置して燃料電池の運転を行なった。上記の方法によりMEAを乾燥させた後にセルを分解したところ、分解直後から、MEAの急激な寸法収縮が生じた。このため、セル内に挿入された状態であっても、乾燥条件にさらされれば、MEAの収縮が生じていることが明らかであり、収縮に伴って、MEAの引張りによる破損や、シール材からのずれといった事態が憂慮された。 The fuel cell was operated by placing the MHA that had been dimensionally stabilized according to the present invention in the cell. When the cell was disassembled after drying the MEA by the above method, the MEA suddenly contracted in size immediately after disassembly. For this reason, even if it is inserted into the cell, it is clear that the MEA contracts if exposed to the drying conditions. I was worried about the situation.

一方、抵抗値を測定しながら乾燥させる操作を3回実施し、その後、反応ガスマニホールドの2系統にH、Oおよび加湿水蒸気をそれぞれ導入した結果、すべてのセルで、表3のように約1Vの開回路電圧が得られた。このことから、MEAが乾燥によって収縮した場合でも、MEAや電解質膜の強度不足による破損が生じないことと、内部マニホールド部分のしきい性が十分機能し得ることを確認できた。 On the other hand, the drying operation was carried out three times while measuring the resistance value, and then H 2 , O 2 and humidified water vapor were introduced into the two systems of the reaction gas manifold, respectively. An open circuit voltage of about 1V was obtained. From this, it was confirmed that even when the MEA contracts due to drying, the MEA or the electrolyte membrane is not damaged due to insufficient strength, and the threshold of the internal manifold portion can sufficiently function.

表4 スタックの繰り返し乾燥後の水素−酸素導入時の各セルの開回路電圧

Figure 0004844023
Table 4 Open circuit voltage of each cell upon introduction of hydrogen-oxygen after repeated drying of the stack
Figure 0004844023

表3の結果が示していることは、本発明によって寸法安定化を図った固体電解質またはMEAを装備したセルの運転方法に関して、とりわけガス拡散電極を使用するものであって電極面への反応ガスの供給が必要であり、セル内の濡れが問題となるような場合には、セルの製造後にN等の乾燥流体を導入して、製造時に大量にセル内に導入される水を除去するという手法が、効果的であるという事実である。 The results shown in Table 3 indicate that the method of operating a cell equipped with a solid electrolyte or MEA that has been dimensionally stabilized according to the present invention, in particular, using a gas diffusion electrode and reacting gas to the electrode surface. If wetting of the cell becomes a problem, a dry fluid such as N 2 is introduced after the cell is manufactured to remove a large amount of water introduced into the cell at the time of manufacturing. This is the fact that this method is effective.

本発明に従って処理をしたMEAを備えるセルを分解して、MEAを観察した。図3に示すように、MEA上にシワが発生している箇所はほぼ見られなかった。この観察結果は、セル内の圧力損失(流動抵抗)を測定した表4のデータにおいて、本発明によれば圧力損失が抑えられていることと符合しており、流路の閉塞や狭隘化が避けられていることが確認できた。 The cell with MEA treated according to the present invention was disassembled and the MEA was observed. As shown in FIG. 3, almost no wrinkles were observed on the MEA. This observation result is consistent with the fact that the pressure loss is suppressed according to the present invention in the data of Table 4 in which the pressure loss (flow resistance) in the cell is measured. It was confirmed that it was avoided.

表5 固体高分子型セル内の圧力損失

Figure 0004844023
Table 5 Pressure loss in polymer electrolyte cell
Figure 0004844023

固体高分子型燃料電池の一般的な構造を示す模式的な図。The schematic diagram which shows the general structure of a polymer electrolyte fuel cell. MEA上の電極部および開口部と、セパレータ上の節電部/流路部および開口部の取り合いを示す模式的な図。The typical figure which shows the connection of the electrode part and opening part on MEA, and the power-saving part / flow-path part and opening part on a separator. 本発明の寸法安定化方法を施したMEA(a)と、施さないMEA(b)との、使用後の外観を比較した写真。The photograph which compared the external appearance after use of MEA (a) which gave the dimensional stabilization method of this invention, and MEA (b) which does not give. MEA/電解質膜の開口部を加工する工程の説明図Explanatory drawing of the process which processes the opening part of MEA / electrolyte membrane

Claims (5)

固体高分子型セルの構成部品である固体高分子電解質膜の寸法を安定化する方法であって、電解質膜−電極アセンブリ(以下「MEA」と略記)に組み込まれた固体高分子電解質膜を、純水、希酸溶液またはアルカリ溶液に浸漬した状態で、100℃以下であるがその固体高分子電解質膜の使用温度を超える温度に加熱処理することによって固体高分子電解質膜を膨張するだけ膨張させ、希酸またはアルカリの溶液で処理した場合には、処理に続いて純水で洗浄し、使用の時点まで、処理終了時の温度以下の温度において湿潤状態を維持することからなる寸法安定化方法。 A method for stabilizing the dimensions of a solid polymer electrolyte membrane, which is a component of a solid polymer cell, comprising a solid polymer electrolyte membrane incorporated in an electrolyte membrane-electrode assembly (hereinafter abbreviated as “MEA”) , In a state immersed in pure water, dilute acid solution or alkali solution, the solid polymer electrolyte membrane is expanded as much as possible by heat treatment at a temperature not higher than 100 ° C. but exceeding the operating temperature of the solid polymer electrolyte membrane. In the case of treatment with a dilute acid or alkali solution, the treatment is washed with pure water following the treatment, and the wet state is maintained at a temperature below the temperature at the end of the treatment until the point of use. . 温度5〜100℃の範囲内における固体高分子電解質膜の寸法の変動率が2%以下である寸法安定性を得る請求項1の方法。 The method according to claim 1, wherein the dimensional stability is such that the dimensional variation rate of the solid polymer electrolyte membrane in the temperature range of 5 to 100 ° C is 2% or less. 請求項1に記載の方法を実施して寸法を安定化した固体高分子電解質膜を組み込んだMEAを、温度5〜100℃の範囲内の純水中に浸漬した状態で保管し、または輸送することからなる、寸法安定化固体高分子電解質膜の保管または輸送の方法。 The MEA incorporating the solid polymer electrolyte membrane that has been subjected to the method according to claim 1 and whose dimensions are stabilized is stored or transported in a state of being immersed in pure water within a temperature range of 5 to 100 ° C. A method for storing or transporting a dimensionally stabilized solid polymer electrolyte membrane, comprising: 請求項1に記載の方法を実施して寸法を安定化した固体高分子電解質膜を組み込んだMEAに孔開け加工を施し、固体高分子型セル・スタックの組み立てを行なうことからなる固体高分子型セルの製造方法。 A solid polymer type comprising: subjecting a MEA incorporating a solid polymer electrolyte membrane having a dimension stabilized by performing the method according to claim 1 to perforating and assembling a solid polymer type cell stack. Cell manufacturing method. 請求項1に記載の方法を実施して寸法を安定化した固体高分子電解質膜を組み込んだMEAを、構成部分としてそなえる固体高分子型セル。 A solid polymer cell comprising , as a constituent part , an MEA incorporating a solid polymer electrolyte membrane that has been subjected to the method according to claim 1 and whose dimensions have been stabilized.
JP2005194451A 2005-07-01 2005-07-01 Dimensional stabilization method for solid polymer electrolyte membrane Active JP4844023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194451A JP4844023B2 (en) 2005-07-01 2005-07-01 Dimensional stabilization method for solid polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194451A JP4844023B2 (en) 2005-07-01 2005-07-01 Dimensional stabilization method for solid polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2007012537A JP2007012537A (en) 2007-01-18
JP4844023B2 true JP4844023B2 (en) 2011-12-21

Family

ID=37750733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194451A Active JP4844023B2 (en) 2005-07-01 2005-07-01 Dimensional stabilization method for solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4844023B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381367B2 (en) * 2009-06-15 2014-01-08 旭硝子株式会社 Method for producing fluororesin molded body
JP5557810B2 (en) * 2011-08-10 2014-07-23 Jx日鉱日石金属株式会社 Indium hydroxide and method for producing compound containing indium hydroxide
WO2013015032A1 (en) * 2011-07-26 2013-01-31 Jx日鉱日石金属株式会社 Method for producing indium hydroxide or compound containing indium hydroxide
KR102606906B1 (en) * 2018-02-08 2023-11-29 한국재료연구원 Stack for carbon dioxide conversion and method for carbon dioxide conversion using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303627A (en) * 2003-03-31 2004-10-28 Yuasa Corp Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell

Also Published As

Publication number Publication date
JP2007012537A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US8163429B2 (en) High efficiency fuel cell system
EP2986360B1 (en) Hollow fiber module
JP4548478B2 (en) Fuel cell stack
WO2015147142A1 (en) Water-electrolysis method and water-electrolysis device
US8697298B2 (en) Fuel cell system with heater
US20220274055A1 (en) Electrochemical cell and method of processing a gaseous stream containing hydrogen
Atifi et al. Effect of internal current, fuel crossover, and membrane thickness on a PEMFC performance
EP1168475B1 (en) Method of operating a phosphoric acid fuel cell
JP4844023B2 (en) Dimensional stabilization method for solid polymer electrolyte membrane
JP2001118587A (en) Solid polymer type fuel cell and method for operating the same
JP5341624B2 (en) Fuel cell system
JP7076418B2 (en) Fuel cell system and its control method
CN102106026A (en) Fuel cell
US6815109B2 (en) Fuel cell system
WO2006088971A1 (en) Improved drying method for fuel cell stacks
KR20160038029A (en) Shaped electrochemical cell
JP2007173166A (en) Fuel cell system
KR101601377B1 (en) A heat exchange unit of suppling air to fuel cell cathod and a heat exchange method thereof
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
CN113991147A (en) Rapid activation system of proton exchange membrane fuel cell
JP2011025154A (en) Hollow fiber membrane module for moisture exchange
KR102278869B1 (en) New modular electrochemical cell and stack design
EP1646099B1 (en) Electrochemical device
EP4383383A1 (en) Method for post-treating polybenzimidazole-based separator for secondary battery and post-treated polybenzimidazole-based separator
US11764374B2 (en) Water electrolysis and electricity generating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250