JP4841970B2 - Lap laser welding method - Google Patents
Lap laser welding method Download PDFInfo
- Publication number
- JP4841970B2 JP4841970B2 JP2006052486A JP2006052486A JP4841970B2 JP 4841970 B2 JP4841970 B2 JP 4841970B2 JP 2006052486 A JP2006052486 A JP 2006052486A JP 2006052486 A JP2006052486 A JP 2006052486A JP 4841970 B2 JP4841970 B2 JP 4841970B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- plate material
- welding
- laser welding
- overlapped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laser Beam Processing (AREA)
Description
この発明は、複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、重ね合わせた板材を互いに溶接する重ねレーザ溶接方法に関する。 The present invention superimposes a plurality of plate materials, and irradiates laser light from the superposition direction in the vicinity of the end portion of the superposed plate material, while moving the laser light along the end portion, The present invention relates to a lap laser welding method for welding together.
自動車の車体パネルとして、高張力鋼よりなる薄板材から形成され、フランジ部2および折り曲げ部3を有する断面が図1aに示すようにハット形状の構造部材1を、互いに対向させてそのフランジ部2を重ね合わせ、その重ね合わせ部をスポット溶接などで接合したフレーム部材や、図1b、cに示すように前記フランジ部2と板材4あるいはフランジ部間に板材4を介在させてそれらを重ね合わせ、それらを同様に接合したフレーム部材、さらには、図1dに示すように複数枚の構造部材1を同一方向に重ね合わせたフレーム部材が使用されている。
上記重ね合わせ部の接合に、レーザ溶接を採用した場合には、連続溶接により接合強度が高く、ビード幅が狭いために、従来用いられていたスポット溶接やアーク溶接に比べて接合部の設計自由度が大きく、フランジ部の幅を狭くし、構造部材を小型化、軽量化することが可能となるなどの利点がある。
As a body panel of an automobile, a cross section having a
When laser welding is used to join the above-mentioned overlapping parts, the joint strength is high by continuous welding and the bead width is narrow. Therefore, the design of the joints is free compared to spot welding and arc welding used in the past. There are advantages such that the degree is large, the width of the flange portion is narrowed, and the structural member can be reduced in size and weight.
従来、板材の重ね溶接継ぎ手のレーザ溶接では、重ね合せ部の板材間の間隔にばらつきがあると溶接品質が低下することから、板材間の間隔の適正化に主眼がおかれていた。
例えば、レーザ照射側から重ね合せ部にローラを押し付け、ローラをレーザ光とともに移動させ、一方の板材を他方の板材に押し付けて両者の間隔を調整しながら溶接を行うことや、互いに重ね合わせた板材のフランジ部相互を、1対のローラで両側から挟みこみ同様に溶接することが、特許文献1に示されている。
Conventionally, in laser welding of lap weld joints of plate materials, if the gap between the plate materials in the overlapped portion varies, the welding quality deteriorates, and therefore, the focus has been on optimizing the gap between the plate materials.
For example, pressing the roller from the laser irradiation side to the overlapping part, moving the roller together with the laser beam, pressing one plate against the other plate and adjusting the distance between them, or welding the plates together
しかしながら、高張力鋼よりなる構造部材において、フランジ部の幅を短くして部材を軽量化し、重ね合わせ部端部近傍を、下側の板材裏面まで溶融するように溶接してより接合強度を高めようとすると、本発明者らの研究では、さらに、溶接凝固割れが問題になることがわかった。 However, in structural members made of high-strength steel, the width of the flange portion is shortened to reduce the weight of the member, and the vicinity of the end of the overlapped portion is welded so as to melt to the back side of the lower plate material to further increase the joint strength If it tried to do so, it turned out that the weld solidification crack becomes a problem in the research of the present inventors.
すなわち、図2aに示すように、断面がハット形状の構造部材の両側フランジ部を相互に重ね合わせたフレーム部材のフランジ部に、重ね合せ方向、すなわちフランジに交差する方向からレーザ光を照射して、下側の板材裏面まで溶融するように溶接するとともに、フランジの長手方向端部から溶接を開始する場合には、図2bに示すように、溶接始端部側が外側に広がるように変形し、割れが発生する。
また、図3のように、溶接開始点5をフランジの長手方向端部としないで、該端部から所定距離隔てた点を溶接開始点とした場合でも、溶接後に溶接部6の中央部分が膨出し、割れ7が発生する場合がある。なお、図において、8はレーザ溶接ヘッドである。
That is, as shown in FIG. 2a, the laser beam is irradiated from the overlapping direction, that is, the direction intersecting the flange, to the flange portion of the frame member in which the both side flange portions of the structural member having a hat-shaped cross section are mutually overlapped. When starting welding from the longitudinal end of the flange while welding so as to melt up to the lower plate material back, as shown in FIG. Will occur.
Further, as shown in FIG. 3, even when the
これは、重ね合わせた下側の板材の裏面まで溶融するようにレーザ光を照射して溶接する場合、レーザ光の照射により形成された溶融部が凝固するまで、溶融部より端部側のフランジ部位は、フランジ本体から切り離された状態になる。このとき、該部位の幅が小さいと、溶接部からの熱伝導により熱膨張して該部位が変形し、凝固途中の溶接ビードを引っ張り、凝固時に割れが発生するためと考えられる。 This is because when welding is performed by irradiating a laser beam so as to melt to the back surface of the stacked lower plate material, the flange on the end side from the melted portion is solidified until the melted portion formed by the laser beam irradiation is solidified. The part is separated from the flange body. At this time, if the width of the part is small, it is considered that the part expands due to heat conduction from the welded portion, the part is deformed, the weld bead in the middle of solidification is pulled, and a crack occurs during solidification.
従来、レーザ溶接における溶接部の割れや変形を防止する技術として、特許文献2や特許文献3が知られている。
特許文献2には、高炭素鋼よりなる部材とステンレス鋼などよりなる部材の重ね継ぎ手をレーザ溶接する際、溶融凝固時に発生する収縮応力などにより収縮割れが発生すること、および、その割れを、継ぎ手部の位置を工夫して引張応力が溶融部に多くかからないようにして防止することが記載されている。
Conventionally,
In
また、特許文献3には、一方の板材に対し、幅の狭いもう一方の板材を突き合わせて、突合せ部をレーザ溶接する場合、幅の狭い方の板材が熱による変形を受けて突き合せ部の間隔が広がるため、あらかじめ両方の板材の突合せ部を仮付けして、板材の変形を防止することが記載されている。
しかし、これらの文献では、上記のような凝固割れや、それに対する解決手段については何ら触れられていない。
Further, in
However, these documents do not mention at all the above solidification cracks and solutions for the same.
以上のように、高張力鋼よりなる薄板材のレーザ溶接において、部材の軽量化のためにフランジ部の幅を短くし、さらに、重ね合わせ部端部近傍を、下側の板材裏面まで溶融するように溶接してより接合強度を高めるように溶接する場合、溶接凝固割れが生じることは従来知られていなかった。
そこで、本発明は、上記のごとき状況に鑑み、少なくとも1枚の板材は高張力鋼よりなる複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記端部に沿って移動させて、重ね合わせた板材を互いに溶接する際、上記のような凝固割れのないレーザ溶接方法を提供することを課題とする。 Therefore, in the present invention, in view of the situation as described above, at least one plate material is formed by superimposing a plurality of plate materials made of high-strength steel, and in the vicinity of the end portion of the superposed plate material, Laser welding without solidification cracks as described above when laser beams are moved along the end portion while irradiating laser beams from the overlapping direction so as to melt to the back surface and the stacked plate materials are welded together. It is an object to provide a method.
上記の課題を解決するために、本発明は次のようにしたことを特徴とする。
請求項1の重ねレーザ溶接方法の発明は、板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記重ね合わせた板材の端部に沿って移動させて連続的に溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法において、
前記複数の板材のうち少なくとも1枚の板材は、薄板材から形成され、少なくとも片側に折り曲げ部およびそれに続く幅8mm以内のフランジ部を有する構造部材よりなり、前記フランジ部の長手方向に、溶接金属がC<0.05質量%、P+S<0.03質量%になるように前記溶接部を形成することを特徴とする。なお、以下でも、元素の含有量の%は質量%とする。
In order to solve the above problems, the present invention is characterized as follows.
The invention of the lap laser welding method according to
At least one plate material among the plurality of plate materials is formed of a thin plate material, and is formed of a structural member having a bent portion and a flange portion having a width of 8 mm or less following at least one side, and a weld metal is formed in the longitudinal direction of the flange portion. Is characterized in that the weld is formed such that C <0.05 mass% and P + S <0.03 mass%. In the following, the element content% is mass%.
請求項2の重ねレーザ溶接方法の発明は、板材のうち少なくとも1枚は高張力鋼よりなる板材を複数重ね合わせ、この重ね合わせた板材に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射しつつ、レーザ光を前記重ね合わせた板材の端部に沿って移動させて連続的に溶接部を形成し、重ね合わせた板材を互いに溶接するレーザ溶接方法において、
前記複数の板材のうち少なくとも1枚の板材は、薄板材から形成され、少なくとも片側に折り曲げ部およびそれに続く幅8mm以内のフランジ部を有する構造部材よりなり、前記フランジ部の長手方向に、溶接金属が0.08質量%<C<0.7質量%、P+S<0.05質量%になるように前記溶接部を形成することを特徴とする。
The invention of the lap laser welding method according to
At least one plate material among the plurality of plate materials is formed of a thin plate material, and is formed of a structural member having a bent portion and a flange portion having a width of 8 mm or less following at least one side, and a weld metal is formed in the longitudinal direction of the flange portion. Is formed such that 0.08 mass% <C <0.7 mass% and P + S <0.05 mass%.
請求項3の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記フランジ部の溶接方向端部より離れた位置で溶接を開始することを特徴とする。
請求項4の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記複数の板材のうちの一方の板材が他方の板材のフランジ部より突出するように重ね合わされており、前記フランジ部の溶接方向端部より溶接を開始することを特徴とする。
The invention of the lap laser welding method of
The invention of the overlap laser welding method of claim 4 is overlapped so that one plate member of the plurality of plate members protrudes from a flange portion of the other plate member, as described in the claim, Welding is started from an end portion in the welding direction of the flange portion .
請求項5の重ねレーザ溶接方法の発明は、該請求項に記載されているように、前記少なくとも1枚の板材が、両側に折り曲げ部およびフランジ部を有する断面がハット形状の構造部材であることを特徴とする。 According to a fifth aspect of the invention of the lap laser welding method, as described in the claim, the at least one plate member is a structural member having a hat-shaped cross section having a bent portion and a flange portion on both sides. It is characterized by .
請求項1、2の発明によれば、少なくとも1枚の板材は高張力鋼よりなる構造部材の重ね合わせた下側の板材裏面まで充分に溶け込みを行っても、溶接部に凝固割れを発生させずに重ね合わせた板材を互いにレーザ溶接することができるので、重ね合せ部の幅が狭くても強度の高い溶接部を形成することができ、構造部材を小型化、軽量化することが可能となる。
請求項3、4の発明によれば、請求項1、2の発明のレーザ溶接方法を重ね継ぎ手の形状に応じた形態で実施することができる。
According to the first and second aspects of the present invention, even if at least one plate material is sufficiently melted to the back surface of the lower plate material on which the structural members made of high-tensile steel are overlapped, solidification cracks are generated in the welded portion. Since the stacked plates can be laser welded together, a welded portion with high strength can be formed even if the width of the overlapped portion is narrow, and the structural member can be reduced in size and weight. Become.
According to the third and fourth aspects of the invention, the laser welding method of the first and second aspects of the invention can be carried out in a form corresponding to the shape of the lap joint.
請求項5の発明によれば、請求項1、2の発明のレーザ溶接方法を自動車のパネル部品の製造に適用することができる。
According to the invention of
以下、本発明の一実施の形態を、さらに図4〜8を用いて詳細に説明する。
高張力鋼よりなり、図4で示される断面形状がハット型の構造部材のような端部にフランジを有する板状部材を、同様のフランジや板材と重ね、両者の間をレーザ溶接してフレーム部材を製造する際、例えば8mm以内というようなよりフランジ幅(板材が重なっている幅)Aの狭い構造部材を用いて、フレーム部材全体をより軽量化しようとすると、溶接部からフランジ端部までの距離Bは1.5mm以上の範囲のうちのより短い距離にならざるを得ず、このような条件では、図3に示されるように、フランジ長手方向端部から離れた位置で溶接を開始したとしても、前記したように、溶接部からの熱伝導により変形した部位が凝固途中の溶接ビードを引っ張り、凝固割れが発生する場合があった。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.
A plate-like member made of high-strength steel and having a flange at the end, such as a hat-shaped structural member shown in FIG. 4, is overlapped with a similar flange or plate member, and laser-welded between the two to form a frame When manufacturing a member, using a structural member with a narrower flange width (width over which plate materials overlap) A, such as within 8 mm, to reduce the weight of the entire frame member, from the welded portion to the flange end The distance B must be shorter than the range of 1.5 mm or more, and under such conditions, welding is started at a position away from the flange longitudinal end as shown in FIG. Even if it did, as mentioned above, the site | part deform | transformed by the heat conduction from a welding part pulled the weld bead in the middle of solidification, and the solidification crack might generate | occur | produce.
なお、構造部材を軽量化するには、フランジ幅を8mm以内とするのがより効果的であり、そのようなフランジ幅において、溶接ビードからフランジ端部までの距離を1.5mm以上とするのは、1.5mm未満では、フランジ端部側が、フランジ端まで溶融してそのまま溶け落ち易くなるためである。 In order to reduce the weight of the structural member, it is more effective to set the flange width within 8 mm. In such a flange width, the distance from the weld bead to the flange end is set to 1.5 mm or more. This is because if the length is less than 1.5 mm, the flange end portion side melts to the flange end and is easily melted down.
そこで、本発明らは、凝固割れの発生原因を調べ、まず溶接金属成分と凝固割れとの関連について検討した。
図5は、薄板の重ねレーザ溶接における凝固過程の温度と溶接部周辺で発生する歪の関係を示す。図は、炭素量が0.06%、珪素量が0.5%、マンガン量が1.5%よりなる板厚1.2mmの引張強さ590MPaの鋼を用い、レーザ加工点出力2kW、溶接速度2m/minの条件で重ねレーザ溶接して得た試料を用いて得られたものである。
図5により、液相温度直下から溶接部には引張方向の力が働き、液相温度から温度が充分に低下すると、逆に溶接部には圧縮の力が働く。レーザ光照射位置後方の、凝固過程にある(2)の領域において、引っ張り方向の大きな歪が発生し、これが凝固割れにつながるものといえる。
Thus, the present inventors investigated the cause of solidification cracking, and first examined the relationship between the weld metal component and solidification cracking.
FIG. 5 shows the relationship between the temperature of the solidification process in the laminating laser welding of thin plates and the strain generated around the weld. The figure shows a steel plate with a tensile strength of 590 MPa with a plate thickness of 1.2 mm consisting of 0.06% carbon, 0.5% silicon, and 1.5% manganese. It was obtained by using a sample obtained by laser welding at a speed of 2 m / min.
According to FIG. 5, a tensile force acts on the welded portion immediately below the liquidus temperature, and a compressive force acts on the welded portion when the temperature is sufficiently lowered from the liquidus temperature. In the region (2) in the solidification process behind the laser light irradiation position, a large strain in the tensile direction is generated, which can be said to lead to solidification cracking.
そして、そのような歪の発生と凝固割れの関係は、図6に示されるような、一般的に知られている凝固温度脆性範囲(BTR)と収縮変位(P)の関係から説明できる。
すなわち、溶接部の温度と凝固収縮にともなう部材の変位量との間には、図中斜線で示す凝固割れ感受性の高い脆化域(D)があり、温度の降下にともない凝固収縮変位(P)の値が大きくなり、それが脆化域を通過すると凝固割れが発生すると考えられている。また液相温度直下では、最低延性値(Dmin)が小さく脆化域は広いが、液相率が高いので、たとえ柱状晶間に凝固割れが発生しても、液相により充填され凝固割れは発生しない。
The relationship between the occurrence of strain and solidification cracking can be explained from the relationship between the generally known solidification temperature brittleness range (BTR) and shrinkage displacement (P) as shown in FIG.
That is, there is an embrittlement region (D) having a high solidification cracking sensitivity indicated by hatching in the figure between the temperature of the weld and the displacement amount of the member accompanying solidification shrinkage, and the solidification shrinkage displacement (P) as the temperature decreases. ) Increases, and it is believed that solidification cracking occurs when it passes through the embrittled region. Also, just below the liquidus temperature, the minimum ductility value (Dmin) is small and the embrittlement region is wide, but the liquidus ratio is high, so even if solidification cracks occur between columnar crystals, they are filled by the liquid phase and solidification cracks are not Does not occur.
一般的に、凝固割れに影響を与える因子の一つとして、液相−固相間の凝固温度幅があげられる。Feに対する2元系において、少量の添加でも凝固温度幅を広げる元素としては、C、P、Sが知られている(例えば、松田著「溶接冶金学」1972年日刊工業新聞社発行、第158頁参照)。
また、C、P、Sは平衡分配係数が小さく、溶質が溶融金属中に排出され柱状晶間に残留するため、見かけの固相温度より最終凝固位置の温度は図2中の太字破線のように低下し、BTRを広げやすく凝固割れを起こしやすい元素であると考えられる。
さらに、その成分範囲で凝固過程の粒界強度が低くなるような、成分的に特に割れに敏感な成分範囲があると考えられ、その成分範囲は、C量とP+S量の範囲で決まると考えられる。
In general, one of the factors affecting solidification cracking is the solidification temperature range between the liquid phase and the solid phase. In the binary system for Fe, C, P, and S are known as elements that widen the solidification temperature range even when a small amount is added (for example, Matsuda, “Welding Metallurgy”, published by Nikkan Kogyo Shimbun, 1972, No. 158). Page).
C, P, and S have a small equilibrium partition coefficient, and the solute is discharged into the molten metal and remains between the columnar crystals. It is considered that it is an element that tends to expand to a BTR and easily cause solidification cracking.
Furthermore, it is considered that there is a component range that is particularly sensitive to cracking, such that the grain boundary strength in the solidification process is low in that component range, and that the component range is determined by the range of C amount and P + S amount. It is done.
そこで、凝固割れの発生するC量とP+S量の範囲について調べた。
実験は、種々のC量とP+S量を有する引張強度が270MPaから1470MPaの範囲の鋼板を用い、それらを同一種同士または異種を組み合わせて、図4で示されるようにハット型の構造部材と板状部材とをフランジ幅Aが8mmとなるように重ね合わせた。
そして、溶接ビード中心と板材の端部までの距離B:3.0mm、フランジ部長手方向端部から溶接開始点までの距離C:5mm、レーザ加工点出力:3.5kW、溶接速度:2m/minの条件でレーザ溶接を行った。
溶接後の割れの発生の有無を、溶接金属のC含有量とP+S量で整理した結果を図7で示す。図7中の(1)、(3)が凝固割れの発生しない領域、(2)が凝固割れの発生する領域である。
Therefore, the range of the amount of C and P + S in which solidification cracking occurred was examined.
In the experiment, steel sheets having various C amounts and P + S amounts and tensile strengths in the range of 270 MPa to 1470 MPa were used, and the same type or different types were combined to form a hat-shaped structural member and plate as shown in FIG. The shaped members were overlapped so that the flange width A was 8 mm.
And the distance B from the weld bead center to the end of the plate material: 3.0 mm, the distance C from the flange longitudinal end to the welding start point, 5 mm, laser processing point output: 3.5 kW, welding speed: 2 m / Laser welding was performed under the condition of min.
FIG. 7 shows the result of arranging the occurrence of cracks after welding according to the C content and P + S amount of the weld metal. In FIG. 7, (1) and (3) are regions where solidification cracks do not occur, and (2) is a region where solidification cracks occur.
この結果より、引張強度が270MPaから1470MPaの範囲の鋼板からなる複数の板材を重ね合わせ、この重ね合わせた板材の端部近傍に、重ね合わせた下側の板材の裏面まで溶融するように重ね合わせ方向からレーザ光を照射して、前記重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始し、レーザ光を前記端部に沿って移動させて溶接部を形成して、重ね合わせた板材を互いに溶接する場合、溶接部に、C<0.05%、P+S<0.05%、あるいは、0.08%<Cである溶接金属を形成するようにすれば、凝固割れを起こさずにレーザ溶接できることがわかった。
特に、少なくとも1枚の板材が440MPa以上の高張力鋼板よりなる場合には、凝固割れが起こりやすく、その場合でも、上記のような溶接金属を形成すれば凝固割れを防止できることもわかった。
From this result, a plurality of plate materials made of steel plates having a tensile strength in the range of 270 MPa to 1470 MPa are superposed, and superposed so as to melt to the back surface of the superposed lower plate material in the vicinity of the end of the superposed plate member. Laser beam is irradiated from the direction, welding is started from a position away from the welding direction end of the overlapped plate material, and the laser beam is moved along the end to form a welded portion. When welding plate materials to each other, if a weld metal with C <0.05%, P + S <0.05%, or 0.08% <C is formed in the welded portion, solidification cracking occurs. It was found that laser welding was possible without
In particular, it has also been found that when at least one plate material is made of a high-tensile steel plate of 440 MPa or more, solidification cracking is likely to occur, and even in that case, solidification cracking can be prevented by forming the above weld metal.
ただし、0.08%<Cの領域において、C含有量が0.7%以上では、特許文献4で示すようにマルテンサイト変態誘起割れが生じるから、C含有量の上限を0.7%未満とする必要があり、また、PとSの合計含有量が多くなると図6で示す脆化域を大きく広げ凝固割れが発生しやすくなるから、P+S<0.05%とする必要がある。 However, in the range of 0.08% <C, if the C content is 0.7% or more, martensite transformation-induced cracking occurs as shown in Patent Document 4, so the upper limit of the C content is less than 0.7%. In addition, if the total content of P and S increases, the embrittlement region shown in FIG. 6 is greatly widened and solidification cracks are likely to occur. Therefore, P + S <0.05% is necessary.
以上のように、レーザ溶接部の割れ感受性が、C量及びP、S量によって大きく異なる理由の詳細は必ずしも明らかではないが、本発明者らは次のような理由によるものと考えている。
図7の(1)で示す低Cかつ低P、S領域(C<0.05%、P+S<0.03%)は液相温度が高く、図5の領域(1)で示すように引張の力が大きくなる前に凝固が完了する。この場合、引張の力が発生しているが、図6で示すDminの範囲内と考えられるため、凝固割れは発生しない。
As described above, the details of the reason why the crack susceptibility of the laser weld varies greatly depending on the amount of C, the amount of P, and the amount of S are not necessarily clear, but the present inventors believe that the reason is as follows.
The low C and low P, S region (C <0.05%, P + S <0.03%) shown in (1) of FIG. 7 has a high liquidus temperature, and as shown in region (1) of FIG. Solidification is completed before the force increases. In this case, a tensile force is generated, but since it is considered to be within the range of Dmin shown in FIG. 6, no solidification cracking occurs.
また図7の(2)で示す低C域(C<0.05%)かつ高P、S域(P+S>0.03%)、及び中C域(0.05<C<0.08%)の場合は、固相温度が比較的低く、引張の力が最大になる図5の(2)の領域で凝固は完了する。この場合の引張の力は、図6で示す脆化域を通過すると考えられるため、凝固割れが発生する。
一方、図7の(3)で示す高C域(0.08%<C)の場合は、固相温度が充分に低く、引張応力が働く図5の(2)の領域では液相が充分に存在するため、たとえ割れが生じても液相により充填されるため、凝固割れは発生しない。凝固が完了するのは、図5の(3)の領域であり、この領域では、引張の力は充分に小さく図6で示すDminの範囲内、または圧縮の力に転ずるため、凝固割れは発生しないと考えられる。
Further, the low C region (C <0.05%) and the high P, S region (P + S> 0.03%), and middle C region (0.05 <C <0.08%) shown in FIG. ), Solidification is completed in the region (2) of FIG. 5 where the solid phase temperature is relatively low and the tensile force is maximum. Since the tensile force in this case is considered to pass through the embrittlement region shown in FIG. 6, solidification cracks occur.
On the other hand, in the case of the high C region (0.08% <C) shown in (3) of FIG. 7, the solid phase temperature is sufficiently low, and the liquid phase is sufficient in the region of (2) in FIG. Therefore, even if a crack occurs, it is filled with the liquid phase, so that no solidification crack occurs. Solidification is completed in the region of (3) in FIG. 5. In this region, the tensile force is sufficiently small and within the range of Dmin shown in FIG. It is thought not to.
なお、上記のレーザ溶接に当たっては、重ね合わせた板材の溶接方向端部より離れた位置から溶接を開始する場合について検討したが、重ね合わせた板材の溶接方向端部より溶接を開始する場合は、図2のように端部が開かないように、端部をクランプ冶具で拘束する必要がある。このようにすれば、図3に示されるように途中で膨出することなく溶接できる。
また、図8に示されるように、一方の板材4が他方の板材1から突出するように重ね合わされており、重ね合せ部の端部が揃っていない場合には、一方の板材4が他方の板材1から突出する距離Dおよび端部から溶接部までの距離Bをある程度大きくすれば、重ね合わせた板材の溶接方向端部より溶接を開始しても、上記のように溶接金属を形成することにより凝固割れを発生することなく溶接することができる。その場合、確実に凝固割れを防止するためには、上記距離Dは5mm以上が好ましく、距離Bは、2mm以上が好ましい。
In addition, in the case of the above laser welding, the case where welding is started from a position away from the welding direction end of the overlapped plate material was examined, but when welding is started from the welding direction end portion of the overlapped plate material, It is necessary to restrain the end with a clamp jig so that the end does not open as shown in FIG. If it does in this way, as shown in
In addition, as shown in FIG. 8, one plate member 4 is overlapped so as to protrude from the
本発明では、レーザ発振器としては、例えば、YAGレーザ、ファイバーレーザ、DISKレーザなどを用いることができ、溶接条件としては、加工点出力が3.5kW、溶接速度が2.0m/minが例示できる。
また、フランジ長手方向端部から距離Cを置いて溶接を開始する場合は、距離Cを、溶接部の溶接ビード中心からフランジ幅方向端部までの距離Bと同じかそれ以上の距離とするのがよい。
In the present invention, for example, a YAG laser, a fiber laser, a DISK laser, or the like can be used as the laser oscillator, and examples of the welding conditions include a machining point output of 3.5 kW and a welding speed of 2.0 m / min. .
In addition, when welding is started at a distance C from the flange longitudinal end, the distance C is equal to or greater than the distance B from the weld bead center of the weld to the flange width end. Is good.
重ね溶接する板材の材質としては、その少なくとも1枚が凝固割れの起こりやすい引張強度が440MPa以上の高張力鋼を用いる場合を本発明の対象とする。
高張力鋼以外の鋼を用いる場合の例としては、例えば引張強度が590MPa級の鋼板と270MPa級の鋼板の組み合わせなどがある。
As a material of the plate material to be lap welded, the case where a high strength steel having a tensile strength of 440 MPa or more, at least one of which is likely to cause solidification cracking, is an object of the present invention.
As an example in the case of using a steel other than the high-tensile steel, for example, there is a combination of a steel plate having a tensile strength of 590 MPa class and a steel sheet having a 270 MPa class.
レーザ溶接では、溶接金属の成分は、フィラー等の溶加材を別途添加しない場合、重ね合わせた各板材の母材成分値及びその板厚から計算される平均成分であり、計算されるCとP+Sの値が、上記本発明の規定を満たすように構造部材の材質を選定する。なお、3枚以上の板材を重ね合わせた場合には、隣り合った2枚の全ての組合せにおける、母材成分値及びその板厚から計算される平均成分で表現できる場合もあるから、その場合も同様に、計算される値が上記本発明の規定を満たすように構造部材の材質を選定する。
溶加材を加える場合は、それの添加量を考慮してCとP+Sの値を計算する必要がある。
In laser welding, the component of the weld metal is an average component calculated from the base material component value of each overlapped plate and the plate thickness when a filler material such as a filler is not added separately, and calculated as C and The material of the structural member is selected so that the value of P + S satisfies the above definition of the present invention. In addition, in the case where three or more plate materials are overlapped, in some cases, it can be expressed by an average component calculated from the base material component value and the plate thickness in all combinations of two adjacent plates. Similarly, the material of the structural member is selected so that the calculated value satisfies the above-mentioned definition of the present invention.
When a filler material is added, it is necessary to calculate the values of C and P + S in consideration of the amount added.
以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、特許請求の範囲に記載される事項によってのみ規定されており、上記以外の実施の形態も実施可能である。本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not something. This invention is prescribed | regulated only by the matter described in a claim, Embodiment other than the above can also be implemented. As long as the object of the present invention is achieved without departing from the present invention, various conditions can be adopted.
供試材として、厚さが1.2mmで引張強度が590MPa以上の高張力鋼(SPFC590)よりなる断面ハット形状の構造部材を、同じく高張力鋼よりなる平板上の板材に端部が揃うように重ねあわせた、重ね合せ部の幅は8mmであった。高張力鋼は、C量およびP+S量が異なる試料を用いた。そして、重ね合せ部を次の条件でレーザ溶接した。
レーザ溶接は、YAGレーザを用い、レーザ加工点出力を3.5kW、溶接速度を2.0m/minとした。また、レーザビームは、鋼板上に集光し、集光スポットは直径0.6mmとした。レーザ照射位置は、フランジ端部から2.5〜4.0mmで、フランジ長手方向端部から5.0mmはなれた点を開始位置とした。(以上、発明例1〜3、比較例1〜3)
また、上記と同様の鋼板を図8のように、Dを5mmとして重ね合せ、Bを2.5mmとしてフランジ端部から上記と同様にレーザ溶接した。(本発明例4)
得られた結果を表1に示す。表1より、本発明の条件を満たす場合は、割れを生じることなく溶接できることがわかる。
For laser welding, a YAG laser was used, the laser processing point output was 3.5 kW, and the welding speed was 2.0 m / min. The laser beam was focused on the steel plate and the focused spot was 0.6 mm in diameter. The laser irradiation position was 2.5 to 4.0 mm from the flange end, and the point separated from the flange longitudinal end by 5.0 mm was taken as the start position. (Inventive Examples 1-3, Comparative Examples 1-3)
Further, as shown in FIG. 8, the same steel plates as described above were overlapped with D being 5 mm, B was 2.5 mm, and laser welding was performed in the same manner as described above from the flange end. (Invention Example 4)
The obtained results are shown in Table 1. It can be seen from Table 1 that welding can be performed without causing cracks when the conditions of the present invention are satisfied.
1 断面ハット形状の構造部材
2 構造部材のフランジ部
3 構造部材の折り曲げ部
4 板材
5 溶接開始点
6 溶接部(溶接ビード)
7 凝固割れ部
8 レーザ溶接ヘッド
A フランジ幅
B 溶接部からフランジ端部までの距離
C フランジ長手方向端部から溶接開始点までの距離
D 一方の板材が他方の板材から突出する距離
DESCRIPTION OF
7
Claims (5)
前記複数の板材のうち少なくとも1枚の板材は、薄板材から形成され、少なくとも片側に折り曲げ部およびそれに続く幅8mm以内のフランジ部を有する構造部材よりなり、前記フランジ部の長手方向に、溶接金属がC<0.05質量%、P+S<0.03質量%になるように前記溶接部を形成することを特徴とする重ねレーザ溶接方法。 At least one of the plate materials is a stack of a plurality of plate materials made of high-tensile steel, while irradiating a laser beam from the overlay direction so as to melt to the back surface of the stacked lower plate material, In the laser welding method in which the laser beam is moved along the edge of the overlapped plate material to continuously form a weld, and the overlapped plate material is welded together,
At least one plate material among the plurality of plate materials is formed of a thin plate material, and is formed of a structural member having a bent portion and a flange portion having a width of 8 mm or less following at least one side, and a weld metal is formed in the longitudinal direction of the flange portion. The lap laser welding method is characterized in that the weld is formed such that C <0.05 mass% and P + S <0.03 mass%.
前記複数の板材のうち少なくとも1枚の板材は、薄板材から形成され、少なくとも片側に折り曲げ部およびそれに続く幅8mm以内のフランジ部を有する構造部材よりなり、前記フランジ部の長手方向に、溶接金属が0.08質量%<C<0.7質量%、P+S<0.05質量%になるように前記溶接部を形成することを特徴とする重ねレーザ溶接方法。 At least one of the plate materials is a stack of a plurality of plate materials made of high-tensile steel, while irradiating a laser beam from the overlay direction so as to melt to the back surface of the stacked lower plate material, In the laser welding method in which the laser beam is moved along the edge of the overlapped plate material to continuously form a weld, and the overlapped plate material is welded together,
At least one plate material among the plurality of plate materials is formed of a thin plate material, and is formed of a structural member having a bent portion and a flange portion having a width of 8 mm or less following at least one side, and a weld metal is formed in the longitudinal direction of the flange portion. The lap laser welding method is characterized in that the weld is formed such that 0.08 mass% <C <0.7 mass% and P + S <0.05 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006052486A JP4841970B2 (en) | 2006-02-28 | 2006-02-28 | Lap laser welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006052486A JP4841970B2 (en) | 2006-02-28 | 2006-02-28 | Lap laser welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007229740A JP2007229740A (en) | 2007-09-13 |
JP4841970B2 true JP4841970B2 (en) | 2011-12-21 |
Family
ID=38550857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006052486A Expired - Fee Related JP4841970B2 (en) | 2006-02-28 | 2006-02-28 | Lap laser welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4841970B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5000578B2 (en) * | 2008-04-17 | 2012-08-15 | 新日本製鐵株式会社 | Laser welding method for thin steel sheets |
JP6260421B2 (en) * | 2014-04-10 | 2018-01-17 | 新日鐵住金株式会社 | Manufacturing method of welded structure |
JP2015205286A (en) * | 2014-04-17 | 2015-11-19 | 新日鐵住金株式会社 | Method for production of welded structure, and the welded structure |
JP6539972B2 (en) * | 2014-10-02 | 2019-07-10 | 日本製鉄株式会社 | Laser welding method of steel plate and manufacturing method of welded structure |
CN112135706B (en) | 2018-05-21 | 2022-05-10 | 杰富意钢铁株式会社 | Lap laser welded joint, method for manufacturing lap laser welded joint, and automobile frame member |
CN113573837A (en) | 2019-03-28 | 2021-10-29 | 杰富意钢铁株式会社 | Lap laser spot welded joint, method for manufacturing same, and structural member for automobile body |
KR102603852B1 (en) | 2019-03-28 | 2023-11-17 | 제이에프이 스틸 가부시키가이샤 | Lap laser weld joint and method for producing same, and automotive body structural member |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05329671A (en) * | 1992-05-29 | 1993-12-14 | Sumitomo Metal Ind Ltd | Manufacture of loading wheel |
JP3124399B2 (en) * | 1992-12-08 | 2001-01-15 | マツダ株式会社 | Vehicle frame member and beam welding method thereof |
JP2002079388A (en) * | 2000-09-06 | 2002-03-19 | Nippon Steel Corp | Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse |
JP2002079387A (en) * | 2000-09-06 | 2002-03-19 | Nippon Steel Corp | Method for welding lap joint with laser beam |
JP2002180181A (en) * | 2000-12-15 | 2002-06-26 | Kawasaki Steel Corp | Method for producing extra-low carbon based high tensile steel welded joint and welded steel structure |
JP2002192379A (en) * | 2000-12-25 | 2002-07-10 | Honda Motor Co Ltd | Laser beam welding method and device therefor |
JP2006007237A (en) * | 2004-06-23 | 2006-01-12 | Nissan Motor Co Ltd | Work clamping device for laser beam welding |
-
2006
- 2006-02-28 JP JP2006052486A patent/JP4841970B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007229740A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4841970B2 (en) | Lap laser welding method | |
CN109641321B (en) | Method for manufacturing laser welded joint and laser welded joint | |
JP5630373B2 (en) | Manufacturing method of steel plate welded portion excellent in delayed fracture resistance and steel structure having the welded portion | |
JP4854327B2 (en) | Lap laser welding method | |
JP2000197969A (en) | Blank for integrally forming and forming method thereof | |
JP5000578B2 (en) | Laser welding method for thin steel sheets | |
CN112135706B (en) | Lap laser welded joint, method for manufacturing lap laser welded joint, and automobile frame member | |
JP2010279991A (en) | Method of lap-welding steel sheet by laser beam | |
JP5730139B2 (en) | Butt welding method for steel | |
JP4987453B2 (en) | Lap laser welding joint of steel plates and lap laser welding method | |
WO2018003341A1 (en) | Laser welded joint and method for manufacturing laser welded joint | |
JPH10328861A (en) | Laser lap welding method | |
JP7325021B2 (en) | Joining structure and joining method | |
JP2018108602A (en) | Overlap laser spot weld joint and manufacturing method for the weld joint | |
JP6852797B2 (en) | Laminated laser welded joints, manufacturing methods of lap laser welded joints and skeleton parts for automobiles | |
JP5861443B2 (en) | Laser welding method and laser welded joint | |
JP2000167673A (en) | Tailored blank, and its manufacture | |
JPH02268990A (en) | Welding method | |
JP5073526B2 (en) | Laser welding method for structural members | |
JP4754426B2 (en) | LASER LASER WELDING METHOD AND DEVICE | |
JP6409397B2 (en) | Welded structure manufacturing method and welded structure | |
JP2015205286A (en) | Method for production of welded structure, and the welded structure | |
JP2024103081A (en) | Lap-welding joint, automobile skeleton component, and manufacturing method for lap-welding joint | |
JPS61226192A (en) | Production of clad metal plate | |
JP2009000697A (en) | Laser beam welding method and laser welded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110502 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110621 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111005 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4841970 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |