JP4840567B2 - Manufacturing method of high strength steel sheet - Google Patents
Manufacturing method of high strength steel sheet Download PDFInfo
- Publication number
- JP4840567B2 JP4840567B2 JP2005332901A JP2005332901A JP4840567B2 JP 4840567 B2 JP4840567 B2 JP 4840567B2 JP 2005332901 A JP2005332901 A JP 2005332901A JP 2005332901 A JP2005332901 A JP 2005332901A JP 4840567 B2 JP4840567 B2 JP 4840567B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- slab
- rolled
- hot
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車車体、補強材、ホイール、足廻り部品、その他あらゆる機械構造部品を製造するために最適な、引張強度が590MPa以上の高強度薄鋼板の製造方法に関する。 The present invention, automobile bodies, reinforcements, wheels, undercarriage components, optimal to other manufacturing any mechanical structural parts, the tensile strength is a method of manufacturing a more high-strength thin steel plate 590 MPa.
地球環境保護および乗員の安全性向上のため、自動車用鋼板においては、薄肉化、高強度が検討されている。鋼板を高強度化するためには、固溶強化、析出強化、変態強化などがあるが、そのうち、析出強化は少ない添加元素で高い強度が達成される点で、製造コストの低減に有利な方法である。また、析出強化鋼は高い降伏強度が得られるため、その点においても析出強化は有効な強化方法であるといえる。 In order to protect the global environment and improve the safety of passengers, thinning and high strength are being investigated for automotive steel sheets. There are solid solution strengthening, precipitation strengthening, transformation strengthening, etc. to increase the strength of the steel sheet. Of these, precipitation strengthening is a method that is advantageous in reducing manufacturing costs in that high strength is achieved with a small amount of additive elements. It is. Further, since precipitation strengthened steel can provide high yield strength, precipitation strengthening can be said to be an effective strengthening method in this respect.
析出強化法は、主として鋼中にTi、Nb、Vなどの元素を添加し、それら元素の炭窒化物を生成させることで強度を得る方法である。このような析出強化法を利用して上述のような高強度が要求される部品を製造する技術として、例えば特許文献1、2、3、4に開示されたものが提案されている。しかしながら、鋼中に上記のような元素を添加すると、特に製品の引張強度が590MPa級以上の場合、連続鋳造工程において、スラブコーナー部および長辺側の表面に横方向の亀裂(横割れ)が発生しやすくなり、製品の表面品質の低下、歩留まりの低下の原因となる。また、上記欠陥を低減するためには、連続鋳造速度の大幅な低下が必要であり、生産能率の低下が不可避である。
本発明はかかる事情に鑑みてなされたものであって、高強度と優れた連続鋳造性を両立させることができる析出強化型の高強度薄鋼板の製造方法を提供することを目的とする。 The present invention was made in view of such circumstances, and an object thereof is to provide a method for manufacturing a precipitation strengthening type high strength thin steel plate which can achieve both excellent continuous castability and high strength.
本発明者らは、上記課題を解決すべく鋭意研究した結果、連続鋳造工程における表面亀裂(横割れ)は、析出強化元素であるTi、Nb、Vの炭窒化物が原因となって発生し、このような表面亀裂は窒素を極めて低くすることにより制御することができ、これによって製品強度を低下させることなく、連続鋳造性を著しく向上させることが可能であることを見出した。そして、さらに自動車用高強度鋼板として必要な種々の機械的特性、表面特性、および連続鋳造性を向上させるための化学成分組成、製造方法を検討した結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that surface cracks (lateral cracks) in the continuous casting process are caused by the carbonitrides of Ti, Nb, and V, which are precipitation strengthening elements. It has been found that such surface cracks can be controlled by making the nitrogen extremely low, thereby making it possible to remarkably improve the continuous castability without reducing the product strength. Further, as a result of studying various chemical properties, surface properties, and chemical composition for improving continuous castability and manufacturing methods necessary for high-strength steel sheets for automobiles, the present invention has been completed.
本発明はこのような知見に基づいて完成されたものであり、以下の(1)〜(8)を提供する。
(1)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%、Ti:0.03〜0.09%を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取ることを特徴とする高強度薄鋼板の製造方法。
(2)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%、Nb:0.03〜0.09%を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取ることを特徴とする高強度薄鋼板の製造方法。
(3)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%を含有し、さらに、TiおよびNbをTi:0.01%以上、Nb:0.01%以上、かつTi+Nb:0.03〜0.15%を満たす範囲で含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取ることを特徴とする高強度薄鋼板の製造方法。
(4)さらに820℃以下で連続焼鈍し、溶融亜鉛めっきまたは合金化溶融亜鉛めっきを行うことを特徴とする上記(1)から(3)のいずれかに記載の高強度薄鋼板の製造方法。
(5)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%、Ti:0.03〜0.09%を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取って熱延鋼板とし、この熱延鋼板を、冷間圧延し、720〜820℃で連続焼鈍することを特徴とする高強度薄鋼板の製造方法。
(6)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%、Nb:0.03〜0.09%を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取って熱延鋼板とし、この熱延鋼板を、冷間圧延し、720〜820℃で連続焼鈍することを特徴とする高強度薄鋼板の製造方法。
(7)質量%で、C:0.04〜0.09%、Si:0.50%以下、Mn:1.20〜1.80%、P:0.050%以下、S:0.01%以下、N:0.0019%以下、Sol.Al:0.01〜0.1%を含有し、さらに、TiおよびNbをTi:0.01%以上、Nb:0.01%以上、かつTi+Nb:0.03〜0.15%を満たす範囲で含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造してスラブとし、このスラブを、直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取って熱延鋼板とし、この熱延鋼板を、冷間圧延し、720〜820℃で連続焼鈍することを特徴とする高強度薄鋼板の製造方法。
(8)質量%で、さらに、V:0.01〜0.2%を含有することを特徴とする上記(1)から(7)のいずれかに記載の高強度薄鋼板の製造方法。
This invention is completed based on such knowledge, and provides the following (1)- (8) .
(1) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. A steel containing Al: 0.01 to 0.1%, Ti: 0.03 to 0.09%, the balance being Fe and inevitable impurities is continuously cast into a slab, and this slab is directly or A method for producing a high-strength thin steel sheet, which is once cooled and heated, hot-rolled at 830 ° C or higher, cooled at an average cooling rate of 20 ° C / sec or higher, and then wound at 500 to 620 ° C.
(2) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. A steel containing Al: 0.01 to 0.1%, Nb: 0.03 to 0.09%, the balance being Fe and inevitable impurities is continuously cast into a slab, and this slab is directly or A method for producing a high-strength thin steel sheet, which is once cooled and heated, hot-rolled at 830 ° C or higher, cooled at an average cooling rate of 20 ° C / sec or higher, and then wound at 500 to 620 ° C.
(3) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. Al: 0.01 to 0.1%, and Ti and Nb satisfy the range of Ti: 0.01% or more, Nb: 0.01% or more, and Ti + Nb: 0.03 to 0.15% In this case, the steel containing the balance of Fe and inevitable impurities is continuously cast into a slab. The slab is directly or once cooled and heated, and then hot-rolled at 830 ° C. or higher, and an average cooling rate of 20 ° C. After cooling at / sec or more, the manufacturing method of the high strength thin steel plate characterized by winding at 500-620 degreeC.
(4) The method for producing a high-strength thin steel sheet according to any one of (1) to (3) above, wherein continuous annealing is further performed at 820 ° C. or less, and hot dip galvanizing or alloying hot dip galvanizing is performed.
(5) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. A steel containing Al: 0.01 to 0.1%, Ti: 0.03 to 0.09%, the balance being Fe and inevitable impurities is continuously cast into a slab, and this slab is directly or Once cooled and heated, hot-rolled at 830 ° C. or higher, cooled at an average cooling rate of 20 ° C./sec or higher, and then wound at 500 to 620 ° C. to form a hot-rolled steel plate. A method for producing a high-strength thin steel sheet, which is rolled and continuously annealed at 720 to 820 ° C.
(6) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. A steel containing Al: 0.01 to 0.1%, Nb: 0.03 to 0.09%, the balance being Fe and inevitable impurities is continuously cast into a slab, and this slab is directly or Once cooled and heated, hot-rolled at 830 ° C. or higher, cooled at an average cooling rate of 20 ° C./sec or higher, and then wound at 500 to 620 ° C. to form a hot-rolled steel plate. A method for producing a high-strength thin steel sheet, which is rolled and continuously annealed at 720 to 820 ° C.
(7) By mass%, C: 0.04 to 0.09%, Si: 0.50% or less, Mn: 1.20 to 1.80%, P: 0.050% or less, S: 0.01 % Or less, N: 0.0019% or less, Sol. Al: 0.01 to 0.1%, and Ti and Nb satisfy the range of Ti: 0.01% or more, Nb: 0.01% or more, and Ti + Nb: 0.03 to 0.15% In this case, the steel containing the balance of Fe and inevitable impurities is continuously cast into a slab. The slab is directly or once cooled and heated, and then hot-rolled at 830 ° C. or higher, and an average cooling rate of 20 ° C. Of high strength thin steel sheet characterized by being rolled at 500 to 620 ° C. to be a hot rolled steel sheet, cold-rolled and continuously annealed at 720 to 820 ° C. Production method.
(8) The method for producing a high-strength thin steel sheet according to any one of (1) to (7) above, further containing V: 0.01 to 0.2% by mass%.
本発明によれば、高強度と優れた連続鋳造性を有する高強度薄鋼板の製造方法を得ることができる。このため連続鋳造工程における表面欠陥による歩留低下および連続鋳造速度の低下による生産能率の低下を抑制することができるので、低コストで高強度鋼板を製造することができる。 According to the present invention, it is possible to obtain a method for producing a high strength thin steel plate having excellent continuous castability and high strength. For this reason, since the yield fall by the surface defect in a continuous casting process and the fall of the production efficiency by the fall of a continuous casting speed can be suppressed, a high strength steel plate can be manufactured at low cost.
以下、本発明について、化学成分、製造方法に分けて具体的に説明する。 Hereinafter, the present invention will be specifically described by dividing it into chemical components and production methods.
[化学成分]
まず、本発明鋼板の化学成分の限定理由について説明する。以下の説明において%は質量%である。
C:0.04〜0.09%
CはTi、Nb、Vと炭化物として析出し、強化に大きく寄与する。その含有量が0.04%未満では十分にTi、Nb、Vの炭化物が析出せず、強度が著しく低下する。一方、0.09%を超えると連続鋳造工程で不均一凝固に起因した引抜き方向に平行な表面亀裂(縦割れ)が発生するため、歩留まりおよび生産能率が著しく低下する。したがって、C含有量を0.04〜0.09%とする。スポット溶接部において高い接合強度を得る観点からは0.06%以上が望ましい。
[Chemical composition]
First, the reasons for limiting the chemical components of the steel sheet of the present invention will be described. In the following description, “%” means “% by mass”.
C: 0.04 to 0.09%
C precipitates as Ti, Nb, V and carbides, and greatly contributes to strengthening. If the content is less than 0.04%, Ti, Nb and V carbides are not sufficiently precipitated, and the strength is remarkably lowered. On the other hand, if it exceeds 0.09%, surface cracks (longitudinal cracks) parallel to the drawing direction due to non-uniform solidification occur in the continuous casting process, so the yield and production efficiency are significantly reduced. Therefore, the C content is 0.04 to 0.09%. From the viewpoint of obtaining high joint strength in the spot welded portion, 0.06% or more is desirable.
Si:0.50%以下
Siはフェライト相を固溶強化するので、強度を向上させるために添加してもよい。しかし、その含有量が0.50%を超えると熱間圧延工程で赤スケールと呼ばれる表面欠陥が発生し、歩留まりが低下する。したがって、Si含有量を0.50%以下とする。良好な化成処理性を得る観点からは0.15%以下が望ましい。
Si: 0.50% or less Since Si strengthens the ferrite phase in solid solution, it may be added to improve the strength. However, if the content exceeds 0.50%, surface defects called red scale occur in the hot rolling process, and the yield decreases. Therefore, the Si content is 0.50% or less. From the viewpoint of obtaining good chemical conversion properties, 0.15% or less is desirable.
Mn:1.20〜1.80%
Mnは高い析出強化量を安定的に達成するために重要な元素である。その含有量が1.20%未満では析出物が粗大化し、十分な強度が得られない。一方、1.80%を超えると熱延後に鋼の組織が針状フェライト組織またはベイナイト組織となり、十分な伸びが得られない。したがって、Mn含有量を1.20〜1.80%とする。めっき原板として良好なめっき密着性を得る観点からは1.60%以下が望ましい。
Mn: 1.20 to 1.80%
Mn is an important element for stably achieving a high precipitation strengthening amount. If the content is less than 1.20%, the precipitate becomes coarse and sufficient strength cannot be obtained. On the other hand, if it exceeds 1.80%, the structure of steel becomes a needle-like ferrite structure or a bainite structure after hot rolling, and sufficient elongation cannot be obtained. Therefore, the Mn content is 1.20 to 1.80%. From the viewpoint of obtaining good plating adhesion as a plating original plate, 1.60% or less is desirable.
P:0.050%以下
Pはフェライト相を固溶強化するので、強度を向上させるために添加してもよい。しかし、その含有量が0.050%を超えるとスポット溶接強度が低下する。したがって、P含有量を0.050%以下とする。
P: 0.050% or less Since P strengthens the ferrite phase by solid solution strengthening, P may be added to improve the strength. However, if the content exceeds 0.050%, the spot welding strength decreases. Therefore, the P content is 0.050% or less.
S:0.01%以下
Sは鋼板中の不純物として含有される。しかし、その含有量が0.01%を超えると溶接性が著しく低下する。したがって、S含有量を0.01%以下とする。良好な伸びフランジ性を得る観点からは0.005%以下が望ましい。
S: 0.01% or less S is contained as an impurity in the steel sheet. However, if the content exceeds 0.01%, the weldability is significantly reduced. Therefore, the S content is set to 0.01% or less. From the viewpoint of obtaining good stretch flangeability, 0.005% or less is desirable.
N:0.0019%以下
Nは鋼板中に不純物として含有される。Nは連続鋳造工程における表面亀裂の生成を促すため有害で、その含有量が0.0019%を超えるとその影響が極めて顕著となる。したがって、N含有量を0.0019%以下とする。表面亀裂の生成を抑制する効果を高める観点からは0.0015%以下が望ましい。
本発明は、このようにNを著しく低減することで、Ti、Nb、Vの炭窒化物の形成による連続鋳造工程における表面亀裂を抑制し、歩留まりおよび製造能率を大幅に向上させたことに特徴がある。
Nを低減する手段は、特に限定されるものではなく、種々の製鋼技術、例えば転炉吹錬での脱窒素促進、大気からの窒素ピックアップ抑制技術、真空脱ガス法などを総合的に、または単独で用いることにより、前記範囲までNを低減すればよい。
N: 0.0019% or less N is contained as an impurity in the steel sheet. N is harmful because it promotes the formation of surface cracks in the continuous casting process, and when its content exceeds 0.0019%, its influence becomes extremely significant. Therefore, the N content is 0.0019% or less. From the viewpoint of enhancing the effect of suppressing the formation of surface cracks, 0.0015% or less is desirable.
The present invention is characterized by significantly reducing the yield and production efficiency by suppressing surface cracks in the continuous casting process due to the formation of Ti, Nb, and V carbonitrides by significantly reducing N in this way. There is.
Means for reducing N are not particularly limited, and various steelmaking techniques, for example, promotion of denitrification in converter blowing, nitrogen pickup suppression technique from the atmosphere, vacuum degassing method, etc., or By using it alone, N may be reduced to the above range.
Sol.Al:0.01〜0.1%
Alは製鋼工程で脱酸のために添加される。Sol.Alの含有量が0.01%未満では脱酸の効果が十分でなく、0.1%を超えるとその効果が飽和するばかりか、溶接性やめっき性を劣化させる。したがって、Sol.Al含有量を0.01〜0.1%とする。
Sol. Al: 0.01 to 0.1%
Al is added for deoxidation in the steelmaking process. Sol. If the Al content is less than 0.01%, the effect of deoxidation is not sufficient, and if it exceeds 0.1%, the effect is saturated, and weldability and plating properties are deteriorated. Therefore, Sol. Al content shall be 0.01 to 0.1%.
Ti、Nbは析出強化のために、単独または複合して添加される。また、析出強化のために選択成分として、さらにVを添加してもよい。
Ti:0.03〜0.09%
Tiは炭窒化物として析出して、強度を上昇させる。単独で添加する場合は、その含有量が0.03%未満ではこの効果が十分でない。一方、0.09%を超えると、連続鋳造における表面亀裂の発生が著しくなり、歩留まりや製造能率が低下する。したがって、Tiを単独で添加する場合は、その含有量を0.03〜0.09%とする。
Ti and Nb are added singly or in combination for precipitation strengthening. Further, V may be further added as a selective component for precipitation strengthening.
Ti: 0.03 to 0.09%
Ti precipitates as carbonitride and increases the strength. When added alone, if the content is less than 0.03%, this effect is not sufficient. On the other hand, if it exceeds 0.09%, the occurrence of surface cracks in continuous casting becomes significant, and the yield and production efficiency decrease. Therefore, when adding Ti alone, the content is made 0.03 to 0.09%.
Nb:0.03〜0.09%
Nbは炭窒化物として析出して、強度を上昇させる。単独で添加する場合は、その含有量が0.03%未満ではこの効果が十分でない。一方、0.09%を超えると、連続鋳造における表面亀裂の発生が著しくなり、歩留まりや製造能率が低下する。したがって、Nbを単独で添加する場合は、その含有量を0.03〜0.09%とする。熱間圧延工程、冷間圧延工程において生産能率を向上させる観点からは0.05%以下が望ましい。
Nb: 0.03 to 0.09%
Nb precipitates as carbonitride and increases the strength. When added alone, if the content is less than 0.03%, this effect is not sufficient. On the other hand, if it exceeds 0.09%, the occurrence of surface cracks in continuous casting becomes significant, and the yield and production efficiency decrease. Therefore, when adding Nb independently, the content shall be 0.03-0.09%. From the viewpoint of improving production efficiency in the hot rolling process and the cold rolling process, 0.05% or less is desirable.
TiおよびNbをTi:0.01%以上、Nb:0.01%以上、かつTi+Nb:0.03〜0.15%
TiとNbを複合添加することで、単独添加するよりもさらに強度と連続鋳造性をバランスよく向上させることができる。これは、耐亀裂特性の劣化に起因する連続鋳造における表面亀裂が発生しやすくなる温度などの条件はTiとNbで異なることから、複合添加するとそれぞれの特定温度におけるこの劣化が大幅に緩和し、平均化することにより、表面亀裂の発生が緩和するためと考えられる。TiおよびNbそれぞれの含有量が0.01%未満では、複合添加の効果が得られない。さらに、Ti+Nbの含有量が0.03%未満では強度が不十分となる。一方、0.15%を超えると連続鋳造における表面亀裂の発生が著しくなり、歩留まりや製造能率が低下する。したがって、Ti、Nbを複合添加する場合には、TiおよびNbそれぞれの含有量をTi:0.01%以上、Nb:0.01%以上、かつTi+Nb:0.03〜0.15%とする。
Ti and Nb are Ti: 0.01% or more, Nb: 0.01% or more, and Ti + Nb: 0.03-0.15%
By adding Ti and Nb in combination, the strength and continuous castability can be improved with a better balance than when they are added alone. This is because conditions such as the temperature at which surface cracks are likely to occur in continuous casting due to degradation of crack resistance characteristics are different for Ti and Nb, so this deterioration at each specific temperature is greatly mitigated when combined addition, This is considered to be because the generation of surface cracks is mitigated by averaging. When the content of each of Ti and Nb is less than 0.01%, the effect of composite addition cannot be obtained. Furthermore, if the content of Ti + Nb is less than 0.03%, the strength is insufficient. On the other hand, if it exceeds 0.15%, the occurrence of surface cracks in continuous casting becomes remarkable, and the yield and production efficiency decrease. Therefore, when Ti and Nb are added together, the contents of Ti and Nb are Ti: 0.01% or more, Nb: 0.01% or more, and Ti + Nb: 0.03 to 0.15%. .
V:0.01〜0.2%
Vは、Ti、Nbと複合添加することで、析出物を微細化し、強度を向上させる効果があり、必要に応じて添加する。その含有量が0.01%未満ではこの効果が十分でなく、0.2%を超えると連続鋳造における表面亀裂の発生が著しくなり、歩留まりや製造能率が低下する。したがって、Vを添加する場合は、その含有量を0.01〜0.2%とする。
V: 0.01 to 0.2%
V is added in combination with Ti and Nb, and has the effect of refining precipitates and improving strength, and is added as necessary. If the content is less than 0.01%, this effect is not sufficient, and if it exceeds 0.2%, surface cracks occur in continuous casting, and the yield and production efficiency decrease. Therefore, when adding V, the content is made 0.01 to 0.2%.
残部はFeおよび不可避的不純物元素からなる。このような不可避的不純物元素は本発明の目的である高強度と優れた連続鋳造性を低下させない範囲で許容され、例えば、Cu:0.1%以下、Ni:0.1%以下、Sn:0.01%以下、Mo:0.01%以下、Cr:0.1%以下、Sb:0.01%以下、O:0.003%以下、Zr:0.01%以下などを挙げることができる。 The balance consists of Fe and inevitable impurity elements. Such inevitable impurity elements are allowed within a range that does not deteriorate the high strength and excellent continuous castability that are the object of the present invention. For example, Cu: 0.1% or less, Ni: 0.1% or less, Sn: 0.01% or less, Mo: 0.01% or less, Cr: 0.1% or less, Sb: 0.01% or less, O: 0.003% or less, Zr: 0.01% or less it can.
[製造方法]
次に本発明製造方法について説明する。
・上記化学成分および組成を有する鋼を連続鋳造する
本発明では、スラブは連続鋳造法により鋳造される。連続鋳造法は、本発明の課題からして前提となるものであり、しかも鋳型鋳造法と比較して生産能率が高いためである。連続鋳造機は垂直曲げ型が望ましい。これは、垂直曲げ型は設備コストと表面品質のバランスに優れ、かつ、表面亀裂の抑制効果が顕著に発揮されるためである。連続鋳造の引き抜き速度は2.0m/min以上が望ましい。これは2.0m/min以上で、本発明の表面亀裂の抑制効果が一層顕著となるためである。また、連続鋳造での曲げ帯および矯正帯でのスラブの表面温度は600℃以下または850℃以上であることが望ましい。これは600℃超え850℃未満でスラブを曲げ変形すると表面亀裂(横割れ)が発生しやすくなるためである。
[Production method]
Next, the manufacturing method of the present invention will be described.
-Continuous casting of steel having the above chemical composition and composition In the present invention, the slab is cast by a continuous casting method. This is because the continuous casting method is a premise from the problem of the present invention and has a higher production efficiency than the mold casting method. The continuous casting machine is preferably a vertical bending die. This is because the vertical bending die is excellent in the balance between equipment cost and surface quality, and exhibits a remarkable effect of suppressing surface cracks. The drawing speed of continuous casting is desirably 2.0 m / min or more. This is because the effect of suppressing surface cracks of the present invention becomes more remarkable at 2.0 m / min or more. Further, the surface temperature of the slab in the bending band and the straightening band in continuous casting is desirably 600 ° C. or lower or 850 ° C. or higher. This is because when the slab is bent and deformed at a temperature exceeding 600 ° C. and less than 850 ° C., surface cracks (lateral cracks) are likely to occur.
・連続鋳造後、スラブを直接、または一旦冷却して加熱後、830℃以上で熱間圧延し、平均冷却速度20℃/sec以上で冷却した後、500〜620℃で巻取る
連続鋳造後、直接圧延する場合の圧延開始温度は1000℃以上、一旦冷却して加熱する場合の加熱温度は1150℃以上が望ましい。圧延開始温度が1000℃未満では圧延荷重が高くなり、熱延の生産能率がやや低下するためである。また、加熱温度が1150℃以上で炭窒化物生成元素の溶体化を促進し、強化能をさらに向上させるためである。連続鋳造後のスラブを830℃以上で熱間圧延するのは、830℃未満で熱間圧延すると、組織が不均一となり、伸びが劣化するからである。また、熱延後の平均冷却速度を20℃/sec以上とするのは、20℃/sec未満では、高温に加熱された際、強化に寄与しない粗大なTi、Nb、Vの炭窒化物が析出するため強度が著しく低下するからである。また巻取り温度を500〜620℃とするのは、巻取り温度が500℃未満では、ベイナイト組織が生成して伸びが低下し、一方、620℃を超えると、強化に寄与しない粗大なTi、Nb、Vの炭窒化物が析出するため強度が著しく低下するからである。ここで熱間圧延後、さらに820℃以下で連続焼鈍し、溶融亜鉛めっきまたは合金化溶融亜鉛めっきを行ってもよい。焼鈍は、表面酸化膜を還元してめっき性を向上させるために行なう。焼鈍温度を820℃以下としたのは、820℃を超えるとTi、Nb、Vの析出物が粗大化し、強度が低下するからである。
-After continuous casting, the slab is directly or once cooled and heated, hot-rolled at 830 ° C or higher, cooled at an average cooling rate of 20 ° C / sec or higher, and then wound at 500 to 620 ° C. The rolling start temperature in the case of direct rolling is preferably 1000 ° C. or higher, and the heating temperature in the case of once cooling and heating is preferably 1150 ° C. or higher. This is because when the rolling start temperature is less than 1000 ° C., the rolling load becomes high and the production efficiency of hot rolling slightly decreases. Moreover, it is for heating at 1150 degreeC or more to accelerate | stimulate solutionization of a carbonitride production | generation element, and to improve a reinforcement capability further. The reason why the slab after continuous casting is hot-rolled at 830 ° C. or higher is that when it is hot-rolled below 830 ° C., the structure becomes non-uniform and the elongation deteriorates. Moreover, the average cooling rate after hot rolling is 20 ° C./sec or more because if it is less than 20 ° C./sec, coarse Ti, Nb, and V carbonitrides that do not contribute to strengthening when heated to a high temperature. This is because the strength is remarkably lowered due to precipitation. The coiling temperature is set to 500 to 620 ° C., when the coiling temperature is less than 500 ° C., the bainite structure is generated and the elongation is lowered. On the other hand, when the coiling temperature exceeds 620 ° C., coarse Ti that does not contribute to strengthening, This is because Nb and V carbonitrides precipitate, so that the strength is remarkably lowered. Here, after the hot rolling, continuous annealing may be performed at 820 ° C. or less, and hot dip galvanizing or alloying hot dip galvanizing may be performed. Annealing is performed in order to reduce the surface oxide film and improve the plating property. The reason why the annealing temperature is set to 820 ° C. or lower is that when the temperature exceeds 820 ° C., the precipitates of Ti, Nb, and V become coarse and the strength decreases.
・必要に応じて、上記工程に加え、さらに、冷間圧延し、720〜820℃で連続焼鈍する
冷間圧延は常法でよい。焼鈍は、冷間圧延ひずみを再結晶により除去して加工性を向上させる目的、または、表面酸化膜を還元してめっきや化成処理などの表面処理性を向上させる目的のために行う。連続焼鈍は、バッチ焼鈍と比べて製造能率を高くすることができるため、また、析出物の粗大化による鋼板の軟化を抑制できるために行う。連続焼鈍温度を720〜820℃としたのは、焼鈍温度が720℃未満では焼鈍の効果が十分でなく、820℃を超えるとTi、Nb、Vの析出物が粗大化し強度が低下するからである。連続焼鈍工程で、同時に溶融亜鉛めっきまたは合金化溶融亜鉛めっきを行ってもよい。
-In addition to the said process as needed, it cold-rolls and performs continuous annealing at 720-820 degreeC Cold rolling may be a conventional method. Annealing is performed for the purpose of removing cold rolling strain by recrystallization to improve workability, or reducing the surface oxide film to improve surface treatment properties such as plating and chemical conversion treatment. The continuous annealing is performed because the production efficiency can be increased as compared with the batch annealing and the softening of the steel sheet due to the coarsening of the precipitates can be suppressed. The reason for setting the continuous annealing temperature to 720 to 820 ° C. is that if the annealing temperature is less than 720 ° C., the effect of annealing is not sufficient, and if it exceeds 820 ° C., the precipitates of Ti, Nb and V become coarse and the strength decreases. is there. In the continuous annealing step, hot dip galvanizing or alloying hot dip galvanizing may be performed simultaneously.
以上のように製造された熱延鋼板または冷延鋼板は、形状矯正および表面粗さ調整のためにスキンパスを行ってもよい。また、さらに電気亜鉛めっき、有機潤滑被覆など各種の表面処理を行ってもよい。 The hot-rolled steel sheet or cold-rolled steel sheet manufactured as described above may be subjected to a skin pass for shape correction and surface roughness adjustment. Furthermore, various surface treatments such as electrogalvanization and organic lubricating coating may be performed.
以下、本発明の実施例について具体的に説明する。 Examples of the present invention will be specifically described below.
(実施例1)
表1に示す化学成分、組成を有する鋼番号1〜22を連続鋳造してスラブとした。鋳造速度は2.0〜2.5m/minであった。曲げ帯のスラブ表面温度は860〜950℃、矯正帯でのスラブ表面温度は850〜910℃であった。一旦700℃以下まで冷却した後、1150〜1250℃に加熱し、熱間圧延を行った。最終圧延温度を830〜850℃とし、仕上板厚を1.6〜3.2mmとした。熱間圧延後すぐに、平均冷却速度25〜80℃/秒で冷却し、520〜600℃で巻き取った。さらに、鋼番号10、11については、圧延率50%で冷間圧延後、800℃で焼鈍した。
Example 1
Steel numbers 1 to 22 having the chemical components and compositions shown in Table 1 were continuously cast into slabs. The casting speed was 2.0 to 2.5 m / min. The slab surface temperature of the bending band was 860 to 950 ° C., and the slab surface temperature of the correction band was 850 to 910 ° C. After cooling to 700 ° C. or lower once, it was heated to 1150 to 1250 ° C. and hot rolled. The final rolling temperature was 830 to 850 ° C., and the finished plate thickness was 1.6 to 3.2 mm. Immediately after hot rolling, it was cooled at an average cooling rate of 25 to 80 ° C./second and wound up at 520 to 600 ° C. Further, steel numbers 10 and 11 were annealed at 800 ° C. after cold rolling at a rolling rate of 50%.
表2に機械的特性、表面欠陥の評価結果を示す。機械的特性はJIS5号引張試験片を圧延方向と直角に採取し、JISZ2241に準拠して試験した。表面欠陥は製品板の表面を目視で評価し、不良材については欠陥分類(日本鉄鋼協会発行 熱延鋼板マニュアル(2000),P44参照)を記した。 Table 2 shows the evaluation results of mechanical properties and surface defects. For mechanical properties, a JIS No. 5 tensile test piece was taken at right angles to the rolling direction and tested in accordance with JIS Z2241. For surface defects, the surface of the product plate was visually evaluated, and for defective materials, the defect classification (see Japan Iron and Steel Institute hot-rolled steel sheet manual (2000), P44) was noted.
表2より明らかなように、本発明例である鋼番号2〜11は、機械的特性において590MPa級以上の高強度と25%以上の高い伸びを兼備したものとなった。また、2.0m/min以上の高速鋳造をしたにもかかわらず、スラブの表面亀裂に起因した表面欠陥のない良好な表面が得られた。一方、比較例である鋼番号12〜22では、いずれかの特性が劣った。鋼番号12はCが高く、スラブ凝固割れが発生したため、へげによる表面欠陥が発生した。鋼番号13はSiが高いため、熱間圧延工程において発生した赤スケールと称する表面欠陥が発生した。鋼番号14はMnが低いため、析出物が粗大化し、強度が低かった。鋼番号15はMnが高く、ベイナイト組織となったため、伸びが低かった。鋼番号16、17、18はNが高いため、連続鋳造工程でスラブに表面亀裂が発生し、製品の表面欠陥となった。鋼番号19はNbが高いため、連続鋳造工程でスラブに表面亀裂が発生し、製品の表面欠陥となった。鋼番号20はTiが高いため、連続鋳造工程でスラブに表面亀裂が発生し、製品の表面欠陥となった。鋼番号21はNb+Tiが高いため、連続鋳造工程でスラブに表面亀裂が発生し、製品の表面欠陥となった。鋼番号22はVが高いため、連続鋳造工程でスラブに表面亀裂が発生し、製品の表面欠陥となった。なお、本発明例の鋼番号2、9は、Nが0.0015%を超えておりやや高目であって、製品の表面に微小なへげが発生したが、実用上問題ないレベルであった。 As is apparent from Table 2, steel numbers 2 to 11 as examples of the present invention have both high strength of 590 MPa class or higher and high elongation of 25% or more in mechanical properties. In addition, despite the high speed casting of 2.0 m / min or higher, a good surface free from surface defects due to surface cracks in the slab was obtained. On the other hand, in the steel numbers 12-22 which are comparative examples, either characteristic was inferior. Steel No. 12 had a high C, and slab solidification cracking occurred, which caused surface defects due to nicks. Since Steel No. 13 had high Si, a surface defect called red scale occurred in the hot rolling process. Steel No. 14 had a low Mn, so the precipitates became coarse and the strength was low. Steel No. 15 had a high Mn and a bainite structure, so the elongation was low. Steel Nos. 16, 17, and 18 had high N, so surface cracks occurred in the slab during the continuous casting process, resulting in product surface defects. Steel No. 19 had a high Nb, so that a surface crack occurred in the slab during the continuous casting process, resulting in a surface defect of the product. Since Steel No. 20 had high Ti, surface cracks occurred in the slab during the continuous casting process, resulting in product surface defects. Steel No. 21 had a high Nb + Ti, so that a surface crack occurred in the slab during the continuous casting process, resulting in a product surface defect. Since Steel No. 22 had a high V, surface cracks occurred in the slab during the continuous casting process, resulting in product surface defects. Steel Nos. 2 and 9 in the inventive examples were slightly higher than N in excess of 0.0015%, and a slight baldness was generated on the surface of the product. It was.
(実施例2)
表3に示す製造条件で熱延鋼板および冷延鋼板を製造した。鋼番号は表1のとおりである。熱延鋼板の板厚は1.6〜3.2mm、冷延鋼板の板厚は1.2〜2.0mmである。符号Lは熱間圧延後、酸洗し、連続溶融亜鉛めっき設備(以下「CGL」という)で焼鈍および溶融亜鉛めっきを施した。冷間圧延は、酸洗でスケール除去後実施した。符号Y、Zは酸洗、冷間圧延後、CGLで焼鈍および溶融亜鉛めっきを施した。
(Example 2)
Hot-rolled steel sheets and cold-rolled steel sheets were manufactured under the manufacturing conditions shown in Table 3. The steel numbers are as shown in Table 1. The plate thickness of the hot-rolled steel plate is 1.6 to 3.2 mm, and the plate thickness of the cold-rolled steel plate is 1.2 to 2.0 mm. Reference symbol L was hot-rolled, pickled, and annealed and hot-dip galvanized in a continuous hot-dip galvanizing facility (hereinafter referred to as “CGL”). Cold rolling was performed after removing the scale by pickling. Reference symbols Y and Z were pickled and cold-rolled, and then annealed and hot-dip galvanized with CGL.
表4に機械的特性、表面欠陥の評価結果を示す。機械的特性はJIS5号引張試験片を圧延方向と直角に採取し、JISZ2241に準拠して試験した。表面欠陥は製品板の表面を目視で評価し、不良材については欠陥分類日本鉄鋼協会発行 熱延鋼板マニュアル(2000),P44参照)を記した。 Table 4 shows the evaluation results of mechanical properties and surface defects. For mechanical properties, a JIS No. 5 tensile test piece was taken at right angles to the rolling direction and tested in accordance with JIS Z2241. For surface defects, the surface of the product plate was visually evaluated, and for defective materials, the defect classification published by the Japan Iron and Steel Institute Hot Rolled Steel Sheet Manual (2000), P44) was noted.
結果を表4に示す。符号Cは巻取温度が低いため、析出物が粗大化し、伸びが低下した。符号Dは熱間圧延の仕上温度が低いため、組織が不均一となり、伸びが低下した。符号Fは熱間圧延後の平均冷却速度が低いため、析出物が粗大化し、強度が低下した。符号Iは巻取温度が高いため、析出物が粗大化し、強度が低下した。符号Mは熱間圧延の仕上温度が低いため、組織が不均一となり、伸びが低下した。符号Nは巻取り温度が高いため、析出物が粗大化し、強度が低下した。符号Rは熱間圧延後の平均冷却速度が低いため、析出物が粗大化し、強度が低下した。符号Sは焼鈍温度が低いため、十分に再結晶せず、伸びが著しく低下した。符号Tは焼鈍温度が高いため、析出物が粗大化し、強度が著しく低下した。一方、その他の例は、機械的特性において590MPa級以上の高強度と25%以上の高い伸びを兼備したものとなった。また、2.0m/min以上の高速鋳造をしたにもかかわらず、スラブの表面亀裂に起因した表面欠陥のない良好な表面が得られた。なお、製造条件が本発明の範囲内のもののうち符号V、W、Xは、曲げ帯および矯正帯のいずれかのスラブ表面温度が600℃超え850℃未満のため、製品の表面に微小なへげが発生したが、実用上問題ないレベルであった。 The results are shown in Table 4. Since the coil | winding temperature was low for the code | symbol C, the deposit coarsened and elongation fell. Since the finishing temperature of the hot rolling was low for the code D, the structure became non-uniform and the elongation decreased. Code F had a low average cooling rate after hot rolling, so the precipitates became coarse and the strength decreased. Since the winding temperature of the code | symbol I was high, the precipitate coarsened and the intensity | strength fell. Since the finishing temperature of the hot rolling of M is low, the structure becomes non-uniform and the elongation decreases. Since the winding temperature of the code N is high, the precipitate is coarsened and the strength is lowered. The symbol R had a low average cooling rate after hot rolling, resulting in coarse precipitates and a decrease in strength. Since S has a low annealing temperature, it was not sufficiently recrystallized and the elongation was significantly reduced. Since the annealing temperature of the code T is high, the precipitates are coarsened and the strength is remarkably reduced. On the other hand, in other examples, the mechanical properties were both high strength of 590 MPa class or higher and high elongation of 25% or more. In addition, despite the high speed casting of 2.0 m / min or higher, a good surface free from surface defects due to surface cracks in the slab was obtained. Note that among the manufacturing conditions within the scope of the present invention, the symbols V, W, and X are minute on the surface of the product because the slab surface temperature of either the bending band or the straightening band is higher than 600 ° C. and lower than 850 ° C. Although baldness occurred, it was at a level where there was no practical problem.
本発明は、従来高強度化との両立が困難であった、優れた表面性状と高能率、低コスト化を実現するものであり、自動車車体、補強材、ホイール、足廻り部品、その他あらゆる機械構造部品に適用可能である。特に、自動車用鋼板の高強度化は自動車の燃費および安全性の向上に対して最も有効な手段であることから、高能率、低コストの高強度鋼板に対する社会的な期待は大きく、したがって、本発明は産業上極めて有益であると考えられる。 The present invention realizes excellent surface properties, high efficiency, and low cost, which has been difficult to achieve with high strength in the past, and is used for automobile bodies, reinforcing materials, wheels, undercarriage parts, and other machines. Applicable to structural parts. In particular, increasing the strength of steel sheets for automobiles is the most effective means for improving the fuel efficiency and safety of automobiles, so there are great social expectations for high-efficiency, low-cost, high-strength steel sheets. The invention is considered to be extremely useful in industry.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005332901A JP4840567B2 (en) | 2005-11-17 | 2005-11-17 | Manufacturing method of high strength steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005332901A JP4840567B2 (en) | 2005-11-17 | 2005-11-17 | Manufacturing method of high strength steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007138238A JP2007138238A (en) | 2007-06-07 |
JP4840567B2 true JP4840567B2 (en) | 2011-12-21 |
Family
ID=38201474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005332901A Expired - Fee Related JP4840567B2 (en) | 2005-11-17 | 2005-11-17 | Manufacturing method of high strength steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4840567B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102069091B (en) * | 2010-11-11 | 2013-01-09 | 攀钢集团钢铁钒钛股份有限公司 | Titanium blank rough rolling method of ordinary hot rolling mill |
JP2012172230A (en) * | 2011-02-23 | 2012-09-10 | Jfe Steel Corp | Method for manufacturing high-tensile-strength hot-dip galvanized steel sheet |
WO2016132549A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
BR112017013229A2 (en) | 2015-02-20 | 2018-01-09 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel product |
WO2016135898A1 (en) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | Hot-rolled steel sheet or plate |
BR112017017443A2 (en) | 2015-02-25 | 2018-04-03 | Nippon Steel & Sumitomo Metal Corporation | hot rolled steel sheet |
TWI629367B (en) | 2016-08-05 | 2018-07-11 | 日商新日鐵住金股份有限公司 | Steel plate and plated steel |
US11236412B2 (en) | 2016-08-05 | 2022-02-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
CN115404326A (en) * | 2022-09-21 | 2022-11-29 | 攀钢集团研究院有限公司 | Production method of hot-dip galvanized steel plate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653911B2 (en) * | 1989-06-23 | 1994-07-20 | 住友金属工業株式会社 | High-strength hot-rolled steel sheet suitable for upset butt welding |
JPH08143952A (en) * | 1994-11-21 | 1996-06-04 | Sumitomo Metal Ind Ltd | Production of high strength hot rolled steel plate excellent in workability, fatigue characteristic, and surface characteristic |
JP3235416B2 (en) * | 1995-07-24 | 2001-12-04 | 住友金属工業株式会社 | Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties |
JP2000045041A (en) * | 1998-07-28 | 2000-02-15 | Nippon Steel Corp | High strength steel plate excellent in blankability, and its production |
-
2005
- 2005-11-17 JP JP2005332901A patent/JP4840567B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007138238A (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108474096B (en) | Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same | |
CN111433380B (en) | High-strength galvanized steel sheet and method for producing same | |
JP5042232B2 (en) | High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same | |
JP5549307B2 (en) | Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same | |
KR101923327B1 (en) | High strength galvanized steel sheet and production method therefor | |
KR101607041B1 (en) | Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property | |
WO2013114850A1 (en) | Hot-dip galvanized steel sheet and production method therefor | |
JP2011017060A (en) | High-strength steel sheet and manufacturing method therefor | |
JP5531757B2 (en) | High strength steel plate | |
JP6610749B2 (en) | High strength cold rolled steel sheet | |
JP5305149B2 (en) | Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof | |
JP5391607B2 (en) | High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same | |
KR102162898B1 (en) | High-strength hot-dip galvanized steel sheet and its manufacturing method | |
JP4840567B2 (en) | Manufacturing method of high strength steel sheet | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4736853B2 (en) | Precipitation strengthened high strength steel sheet and method for producing the same | |
JP2013185240A (en) | High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them | |
JP5381154B2 (en) | Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same | |
JP4434198B2 (en) | Manufacturing method of thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance | |
JP4528184B2 (en) | Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability | |
JP5310920B2 (en) | High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening | |
JP4010132B2 (en) | Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same | |
JP3896892B2 (en) | Method for producing hot-dip galvanized hot-rolled steel sheet with excellent strain age hardening characteristics | |
JP2003268490A (en) | Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method | |
JP4301013B2 (en) | Cold-rolled steel sheet with excellent dent resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4840567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |