[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4738964B2 - Hydrodynamic bearing device and motor having the same - Google Patents

Hydrodynamic bearing device and motor having the same Download PDF

Info

Publication number
JP4738964B2
JP4738964B2 JP2005290300A JP2005290300A JP4738964B2 JP 4738964 B2 JP4738964 B2 JP 4738964B2 JP 2005290300 A JP2005290300 A JP 2005290300A JP 2005290300 A JP2005290300 A JP 2005290300A JP 4738964 B2 JP4738964 B2 JP 4738964B2
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
bearing device
hydrodynamic bearing
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005290300A
Other languages
Japanese (ja)
Other versions
JP2007100802A (en
Inventor
健二 伊藤
貴開 稲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005290300A priority Critical patent/JP4738964B2/en
Publication of JP2007100802A publication Critical patent/JP2007100802A/en
Application granted granted Critical
Publication of JP4738964B2 publication Critical patent/JP4738964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/028Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に生じた潤滑流体の動圧作用で軸部材を非接触支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブ用のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは軸流ファンなどの小型モータ用として好適である。   The hydrodynamic bearing device is a bearing device that supports a shaft member in a non-contact manner by a dynamic pressure action of a lubricating fluid generated in a bearing gap. This hydrodynamic bearing device has features such as high-speed rotation, high rotation accuracy, and low noise. Information equipment such as magnetic disk devices such as HDD and FDD, CD-ROM, CD-R / RW, DVD-ROM / Spindle motor for disk drive in optical disk device such as RAM, magneto-optical disk device such as MD, MO, etc., for small motor such as polygon scanner motor of laser beam printer (LBP), color wheel of projector, or axial fan It is suitable as.

この種の流体軸受は、軸受隙間内の潤滑油に動圧を発生させる動圧発生手段を備えた動圧軸受と、動圧発生手段を備えていない、いわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of fluid dynamic bearing includes a dynamic pressure bearing having a dynamic pressure generating means for generating a dynamic pressure in the lubricating oil in the bearing gap, and a so-called perfect bearing having no dynamic pressure generating means (the bearing surface is a perfect circle). The bearings are roughly classified into shapes.

例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる流体軸受装置では、軸部材をラジアル方向に回転自在に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部とが設けられ、ラジアル軸受部として、ラジアル軸受隙間を介して対向する二面の何れか一方に動圧溝等の動圧発生部を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、あるいは、これに対向する面に動圧発生部を設けた動圧軸受が用いられる場合と(例えば、特許文献1参照)、軸部材の一端面を接触支持する構造の軸受(いわゆるピボット軸受)が用いられる場合とがある(例えば、特許文献2参照)。
特開2002−61641号公報 特開平11−191943号公報
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are provided. As the radial bearing portion, a dynamic pressure bearing in which a dynamic pressure generating portion such as a dynamic pressure groove is provided on any one of two surfaces opposed via a radial bearing gap is used. As the thrust bearing portion, for example, a case where a dynamic pressure bearing in which a dynamic pressure generating portion is provided on both end surfaces of the flange portion of the shaft member or a surface facing the flange portion is used (for example, see Patent Document 1), a shaft A bearing (so-called pivot bearing) having a structure in which one end surface of the member is in contact with and supported may be used (see, for example, Patent Document 2).
JP 2002-61641 A Japanese Patent Laid-Open No. 11-191943

上記の流体軸受装置では、近年の情報機器の低価格化に伴って、低コスト化の要求が厳しさを増してきている。そこで、流体軸受装置の低コスト化を図る手段の一例として、流体軸受装置の構成部材、例えばハウジングを、金属の機械加工品から樹脂の射出成形品に置き換える試みがなされている。流体軸受装置のモータへの組み込みは、例えば樹脂製ハウジングの外周をブラケット(保持部材)内周へ挿入することによって行われる。   In the above-described hydrodynamic bearing device, the demand for cost reduction has become more severe with the recent price reduction of information equipment. Therefore, as an example of means for reducing the cost of the hydrodynamic bearing device, an attempt has been made to replace a component of the hydrodynamic bearing device, such as a housing, from a metal machined product to a resin injection molded product. For example, the fluid bearing device is incorporated into the motor by inserting the outer periphery of the resin housing into the inner periphery of the bracket (holding member).

ところで、ハウジングを樹脂で射出成形する場合には、金型動作をいかに高精度に管理したとしても、金型の合わせ面に対応したハウジングの外周面領域に、金型の合わせ面の痕跡としてのパーティングラインが形成される。パーティングラインはハウジングの外周面に環状に形成された突状をなし、その多くはバリとなって現れている。このパーティングラインが保持部材との固定面に存在すると、保持部材への挿入時(モータへの組み込み時)、保持部材の内周面と干渉してコンタミが発生し、これが原因となって例えばディスク装置用のスピンドルモータではヘッドクラッシュを招く恐れがある。また、保持部材との固定強度を低下させる恐れもある。この場合、射出成形後に仕上げ加工を施し、パーティングラインの除去を行うことも考えられるが、完全除去は困難であり、かつ完全に除去しようとすれば、工程数増加に伴って加工コストが高騰する。   By the way, when the housing is injection-molded with resin, no matter how accurately the mold operation is managed, the outer peripheral surface area of the housing corresponding to the mold mating surface is used as a trace of the mold mating surface. A parting line is formed. The parting line has a protruding shape formed in an annular shape on the outer peripheral surface of the housing, and many of them appear as burrs. If this parting line is present on the fixed surface with the holding member, when inserted into the holding member (when incorporated in the motor), it interferes with the inner peripheral surface of the holding member, causing contamination. A spindle motor for a disk device may cause a head crash. Moreover, there is a possibility that the fixing strength with the holding member is lowered. In this case, finishing may be performed after injection molding to remove the parting line, but complete removal is difficult, and if complete removal is desired, the processing cost increases as the number of processes increases. To do.

本発明の目的は、モータ性能に悪影響を及ぼすコンタミの発生を回避可能な流体軸受装置を提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device capable of avoiding contamination that adversely affects motor performance.

上記目的を達成するため、本発明の流体軸受装置は、軸部材と、型成形された外筒体と、円筒状の内周面で外筒体の外周面の軸方向一部領域を保持する保持部材と、外筒体の内部に配置され、ラジアル軸受隙間に形成される流体の潤滑膜で軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えるものであって、外筒体の外周面が、保持部材に固定される領域と、この領域から軸方向に離間して形成された環状のパーティングラインを有することを特徴とするものである。なお、本発明でいう「外筒体」としては、例えば、内周に軸部材を挿入可能な軸受スリーブと別体に形成され、該軸受スリーブの外周を覆うハウジングの他、前記軸受スリーブと前記ハウジングとが一体形成された部材(軸受部材)等が挙げられる。 In order to achieve the above object, a hydrodynamic bearing device of the present invention holds a shaft member, a molded outer cylinder, and a partial area in the axial direction of the outer peripheral surface of the outer cylindrical body by a cylindrical inner peripheral surface. A holding member and a radial bearing portion that is disposed inside the outer cylindrical body and supports the shaft member in a radial direction in a radial direction with a fluid lubricating film formed in the radial bearing gap . the outer peripheral surface, a region which is fixed to the holding member, is characterized in that it has an axial spaced apart is formed by an annular parting line from this region. The “outer cylinder” referred to in the present invention is, for example, formed separately from a bearing sleeve into which a shaft member can be inserted on the inner periphery, and in addition to a housing that covers the outer periphery of the bearing sleeve, Examples thereof include a member (bearing member) integrally formed with the housing.

上記本発明の構成によれば、外筒体の外周面における保持部材との固定領域は金型成形面となるため、金型を高精度に仕上げておけば外筒体の外周面のうち、保持部材との固定領域は滑らかな平滑面とすることができる。そのため、パーティングラインの除去加工を行わずとも、保持部材への挿入時等に問題となるコンタミの発生を防止することができる。また、この場合、保持部材に対する外筒体の固定精度および固定強度を良好なものとすることもできる。   According to the configuration of the present invention, since the fixing region with the holding member on the outer peripheral surface of the outer cylindrical body is a mold forming surface, if the mold is finished with high accuracy, of the outer peripheral surface of the outer cylindrical body, The fixed region with the holding member can be a smooth smooth surface. For this reason, it is possible to prevent the occurrence of contamination that becomes a problem during insertion into the holding member without performing removal processing of the parting line. Further, in this case, the fixing accuracy and fixing strength of the outer cylindrical body with respect to the holding member can be improved.

上記構成に加え、軸部材の一端から外径側に張り出したハブ部を設けた構成の流体軸受装置では、ハブ部が、外筒体と数十〜数百μm程度の微小隙間を介して対向する対向面を有し、例えばハブ部と外筒体との間でラビリンスシールを構成する場合がある。このとき、外筒体のパーティングラインが、ハブ部との対向領域に存在すると、軸部材の回転時、パーティングラインがハブ部と干渉し、コンタミを生じさせる恐れがある。そのため、外筒体のパーティングラインは、ハブ部との対向面を除いた領域に設けられているのが望ましい。   In addition to the above-described configuration, in the hydrodynamic bearing device having a configuration in which a hub portion projecting from one end of the shaft member to the outer diameter side is provided, the hub portion is opposed to the outer cylinder body through a minute gap of about several tens to several hundreds of μm. For example, a labyrinth seal may be formed between the hub portion and the outer cylinder. At this time, if the parting line of the outer cylinder exists in a region facing the hub part, the parting line may interfere with the hub part when the shaft member is rotated, which may cause contamination. For this reason, it is desirable that the parting line of the outer cylindrical body is provided in a region excluding the surface facing the hub portion.

また、前記外筒体の外周面は、該外周面と対向する部材の内周面との間に潤滑流体(例えば、潤滑油)で満たされたシール空間を形成する場合がある。このとき、外筒体のパーティングラインがシール空間となる領域に存在すると、異物(コンタミ)がシール空間に満たされた潤滑油中に直接混入し、軸受性能の低下を招く恐れがある。そのため、外筒体のパーティングラインは、潤滑流体で満たされたシール空間以外の領域に設けられているのが望ましい。   The outer peripheral surface of the outer cylindrical body may form a seal space filled with a lubricating fluid (for example, lubricating oil) between the outer peripheral surface and the inner peripheral surface of a member facing the outer cylindrical surface. At this time, if the parting line of the outer cylindrical body is present in the region serving as the seal space, foreign matter (contamination) may be directly mixed into the lubricating oil filled in the seal space, leading to a decrease in bearing performance. Therefore, it is desirable that the parting line of the outer cylinder is provided in a region other than the seal space filled with the lubricating fluid.

以上に述べたパーティングラインは、特にコスト面で問題がなければ、外筒体の成形後に切削、研磨等の除去加工を施して除去することもできる。パーティングラインが保持部材との固定領域にある場合、仮に除去加工を行ったとしても、充填材を有する内部組織が表面に現れるため、保持部材への挿入時の摺接等によって充填材が脱落し、これがコンタミ発生の要因となる恐れがあるが、パーティングラインの除去加工面が保持部材との固定面、ハブ部との対向領域、あるいはシール空間の形成面以外に存在すればこの種の問題を回避することができる。   The parting line described above can be removed by performing removal processing such as cutting and polishing after the outer cylindrical body is formed unless there is a particular problem in cost. If the parting line is in the fixed area with the holding member, the internal structure with the filler will appear on the surface even if removal processing is performed, so the filler will fall off due to sliding contact during insertion into the holding member. However, this may cause contamination, but if the parting line removal processing surface exists on a surface other than the fixing surface with the holding member, the region facing the hub, or the formation surface of the seal space, The problem can be avoided.

以上の構成を有する流体軸受装置は、ロータマグネットとステータコイルとを有するモータ、例えばHDD等のディスク装置用のスピンドルモータに好ましく使用することができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having a rotor magnet and a stator coil, for example, a spindle motor for a disk device such as an HDD.

以上のことから、本発明によれば、モータ性能に悪影響を及ぼすコンタミの発生を防止可能な流体軸受装置を提供することができる。   From the above, according to the present invention, it is possible to provide a hydrodynamic bearing device capable of preventing the occurrence of contamination that adversely affects motor performance.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明にかかる流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、流体軸受装置1と、流体軸受装置1の軸部材2に取り付けられたハブ部としてのディスクハブ3と、例えば半径方向のギャップを介して対向させたスタータコイル4およびロータマグネット5と、流体軸受装置1のハウジング7を保持する部材としての保持部材6とを備えている。ステータコイル4は保持部材6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。また、保持部材6の内周にはハウジング7が取り付けられ、これにより流体軸受装置1が保持部材6に固定される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、軸部材2が一体に回転する。   FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to the present invention. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 and a disk hub 3 as a hub portion attached to a shaft member 2 of the hydrodynamic bearing device 1, for example, a gap in the radial direction. And a holding member 6 as a member for holding the housing 7 of the hydrodynamic bearing device 1. The stator coil 4 is attached to the outer periphery of the holding member 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. Further, a housing 7 is attached to the inner periphery of the holding member 6, whereby the hydrodynamic bearing device 1 is fixed to the holding member 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the shaft member 2 are rotated together.

図2は、上記スピンドルモータで使用される流体軸受装置1の一例を示す拡大断面図である。この流体軸受装置1は、回転中心に軸部2aを有する軸部材2と、軸部2aをその内周に挿入可能な軸受スリーブ8と、軸受スリーブ8を内周に固定する外筒体としてのハウジング7と、ハウジング7の一端開口をシールするシール部材9とを主な構成部材として備える。なお、以下では、説明の便宜上、シール部材9によってシールされる側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 is an enlarged cross-sectional view showing an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a shaft member 2 having a shaft portion 2a at the center of rotation, a bearing sleeve 8 into which the shaft portion 2a can be inserted into the inner periphery, and an outer cylinder that fixes the bearing sleeve 8 to the inner periphery. A housing 7 and a seal member 9 that seals one end opening of the housing 7 are provided as main components. In the following description, for convenience of explanation, the description will be made with the side sealed by the seal member 9 as the upper side and the opposite side in the axial direction as the lower side.

同図に示す流体軸受装置1では、軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8bと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部T1が設けられ、ハウジング7の底部7bの内底面7b1とフランジ部2bの下側端面2b2との間に第2スラスト軸受部T2が設けられる。   In the hydrodynamic bearing device 1 shown in the figure, a first radial bearing portion R1 and a second radial bearing portion R2 are connected between an inner peripheral surface 8a of the bearing sleeve 8 and an outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2. They are spaced apart in the direction. A first thrust bearing portion T1 is provided between the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the inner bottom surface 7b1 of the bottom portion 7b of the housing 7 and the flange portion 2b A second thrust bearing portion T2 is provided between the lower end surface 2b2.

軸部材2は、例えばステンレス鋼等の金属材料で、軸部2aとその一端に一体または別体に設けられたフランジ部2bとで構成される。あるいは、金属部分と樹脂部分とからなるハイブリッド構造(例えば軸部2aを金属材料で形成し、フランジ部2bを樹脂材料で形成する。)とすることもできる。   The shaft member 2 is made of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided at one end of the shaft portion 2a. Or it can also be set as the hybrid structure (For example, the shaft part 2a is formed with a metal material, and the flange part 2b is formed with a resin material) which consists of a metal part and a resin part.

軸受スリーブ8は、円筒状に形成され、ハウジング7の内周面に固定される。この実施形態における軸受スリーブ8は、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で形成される。なお、焼結金属に限らず、例えば黄銅等の軟質金属で軸受スリーブ8を形成することもできる。   The bearing sleeve 8 is formed in a cylindrical shape and is fixed to the inner peripheral surface of the housing 7. The bearing sleeve 8 in this embodiment is formed of a porous body made of sintered metal, particularly a sintered metal porous body mainly composed of copper. Note that the bearing sleeve 8 can be formed not only of sintered metal but also of soft metal such as brass.

軸受スリーブ8の内周面8aには、図3(a)に示すように、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面Aとなる上下2つの領域が軸方向に離隔して設けられている。各ラジアル軸受面Aには、動圧発生部として、例えばヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成されている。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、上側の動圧溝8a1による流体(例えば潤滑油)の引き込み力(ポンピング力)は、下側の対称形の動圧溝8a2に比べ相対的に大きくなる。   On the inner peripheral surface 8a of the bearing sleeve 8, as shown in FIG. 3A, two upper and lower regions serving as the radial bearing surfaces A of the first radial bearing portion R1 and the second radial bearing portion R2 are separated in the axial direction. Is provided. On each radial bearing surface A, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed as dynamic pressure generating portions. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Therefore, when the shaft member 2 rotates, the drawing force (pumping force) of the fluid (for example, lubricating oil) by the upper dynamic pressure groove 8a1 is relatively larger than that of the lower symmetrical dynamic pressure groove 8a2.

また、軸受スリーブ8の下側端面8bの一部環状領域には、第1スラスト軸受部T1のスラスト軸受面Bが形成され、該スラスト軸受面Bには、図3(b)に示すように、動圧発生部として、例えばスパイラル形状に配列された複数の動圧溝8b1が形成されている。   Further, a thrust bearing surface B of the first thrust bearing portion T1 is formed in a partial annular region of the lower end surface 8b of the bearing sleeve 8, and the thrust bearing surface B is formed as shown in FIG. 3 (b). As the dynamic pressure generating portion, for example, a plurality of dynamic pressure grooves 8b1 arranged in a spiral shape are formed.

ハウジング7は、有底筒状に形成され、円筒状の側部7aと、側部7aの下端に一体または別体に設けられた底部7bとを備えている(本実施形態では一体構造)。また、内底面7b1から軸方向上方に所定寸法だけ離れた位置に段部7cが一体に形成されている。流体軸受装置1の組立時には段部7cに軸受スリーブ8の下側端面8bを当接させることにより、ハウジング7に対する軸受スリーブ8の相対的な位置決めがなされる。軸受スリーブ8の下側端面8bとハウジング7の内底面7b1との間に形成された空間には、軸部材2のフランジ部2bが収容される。   The housing 7 is formed in a bottomed cylindrical shape, and includes a cylindrical side portion 7a and a bottom portion 7b provided integrally or separately at the lower end of the side portion 7a (in this embodiment, an integral structure). Further, a stepped portion 7c is integrally formed at a position away from the inner bottom surface 7b1 in the axial direction by a predetermined dimension. When the hydrodynamic bearing device 1 is assembled, the bearing sleeve 8 is positioned relative to the housing 7 by bringing the lower end face 8b of the bearing sleeve 8 into contact with the stepped portion 7c. A flange portion 2b of the shaft member 2 is accommodated in a space formed between the lower end surface 8b of the bearing sleeve 8 and the inner bottom surface 7b1 of the housing 7.

底部7bの内底面7b1の一部環状領域には、第2スラスト軸受部T2のスラスト軸受面Cが形成され、該スラスト軸受面Cには、動圧発生部として、例えばスパイラル形状に配列された複数の動圧溝が形成されている(図示省略)。   A thrust bearing surface C of the second thrust bearing portion T2 is formed in a partial annular region of the inner bottom surface 7b1 of the bottom portion 7b, and the thrust bearing surface C is arranged in a spiral shape, for example, as a dynamic pressure generating portion. A plurality of dynamic pressure grooves are formed (not shown).

本実施形態におけるハウジング7は、例えば、軸方向上下に分割可能な金型を用いて樹脂で射出成形された型成形品である。ハウジング7の外周面7a1には、図2の拡大断面図に示すように、金型の合わせ面の痕跡としてのパーティングライン11が形成されている。パーティングライン11は、モータへの組込時、ハウジング7の外周面7a1を保持する保持部材6の内周面6a、およびディスクハブ3の円筒部3bの内周面3b1との対向領域を除いた軸方向領域α内に、全周に亘って突状に形成されている。なお、図示例のパーティングライン11は、型成形後そのままの状態、すなわち金型の合わせ面上に形成されたバリがそのまま残存している状態を示している。   The housing 7 in the present embodiment is, for example, a molded product that is injection-molded with resin using a mold that can be divided in the axial direction. As shown in the enlarged sectional view of FIG. 2, a parting line 11 is formed on the outer peripheral surface 7 a 1 of the housing 7 as a trace of the mating surface of the mold. The parting line 11 excludes a region facing the inner peripheral surface 6a of the holding member 6 that holds the outer peripheral surface 7a1 of the housing 7 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the disc hub 3 when assembled into the motor. In the axial direction α, the entire circumference is projected. The parting line 11 in the illustrated example shows a state as it is after molding, that is, a state where burrs formed on the mating surfaces of the molds remain as they are.

ハウジング7を形成する樹脂材料は射出成形可能な樹脂材料であれば非晶性樹脂・結晶性樹脂を問わず使用可能で、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。もちろんこれらは一例にすぎず、軸受の用途や使用環境に適したその他の樹脂材料を使用することもできる。上記の樹脂材料には、必要に応じて強化材(繊維状、粉末上等の形態は問わない)や潤滑剤、導電材等の各種充填材が一種または二種以上配合される。   The resin material forming the housing 7 can be used regardless of amorphous resin or crystalline resin as long as it is a resin material that can be injection-molded. For example, as the amorphous resin, polysulfone (PSU), polyethersulfone ( Liquid crystalline polymer (LCP), polyetheretherketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) as crystalline resins such as PES), polyphenylsulfone (PPSU), polyetherimide (PEI) Etc. can be used. Of course, these are only examples, and other resin materials suitable for the application and use environment of the bearing can also be used. One or more kinds of various fillers such as a reinforcing material (fibrous, powdery form, etc.), a lubricant, and a conductive material are blended in the resin material as necessary.

なお、射出する材料としては樹脂材料の他、金属材料も使用可能である。金属材料としては、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。この他、金属粉とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形を採用することもできる。さらにこの他、射出する材料としてセラミックを使用することもできる。   In addition, as a material to be injected, a metal material can be used in addition to a resin material. As the metal material, for example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. In addition, so-called MIM molding may be employed in which after the injection molding with a mixture of metal powder and binder, degreasing and sintering. In addition, ceramic can also be used as the material to be injected.

ハウジング7の上端開口部の内周には、金属材料や樹脂材料で形成された環状のシール部材9が、例えば圧入、接着、あるいはこれらを併用して固定される。シール部材9の内周面9aは、軸部2aの外周面2a1に設けられたテーパ面2a2とシール空間Sを介して対向する。軸部2aのテーパ面2a2は上側に向かって漸次縮径しており、軸部材2の回転により遠心力シールとしても機能する。流体軸受装置の組立後、シール部材9で密封された流体軸受装置1の内部空間には潤滑流体として例えば潤滑油が充満され、この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。   An annular seal member 9 formed of a metal material or a resin material is fixed to the inner periphery of the upper end opening of the housing 7 by, for example, press fitting, bonding, or a combination thereof. The inner peripheral surface 9a of the seal member 9 is opposed to the tapered surface 2a2 provided on the outer peripheral surface 2a1 of the shaft portion 2a via the seal space S. The tapered surface 2a2 of the shaft portion 2a is gradually reduced in diameter toward the upper side, and functions as a centrifugal force seal by the rotation of the shaft member 2. After assembly of the hydrodynamic bearing device, the internal space of the hydrodynamic bearing device 1 sealed with the seal member 9 is filled with, for example, lubricating oil as a lubricating fluid. In this state, the oil level of the lubricating oil is within the range of the sealing space S. Maintained.

上記構成の流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面Aとなる上下二つの領域は、それぞれ軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして軸部材2の回転に伴い、ラジアル軸受面Aに形成された動圧溝の動圧作用によって、ラジアル軸受隙間に形成された潤滑膜の油膜剛性が高められ、これによって軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the upper and lower two regions serving as the radial bearing surface A of the inner peripheral surface 8a of the bearing sleeve 8 each have a radial bearing gap between the outer peripheral surface 2a1 of the shaft portion 2a. Opposite through. As the shaft member 2 rotates, the oil film rigidity of the lubricating film formed in the radial bearing gap is increased by the dynamic pressure action of the dynamic pressure groove formed in the radial bearing surface A, thereby causing the shaft member 2 to move in the radial direction. A first radial bearing portion R1 and a second radial bearing portion R2 that are rotatably supported in a non-contact manner are formed.

また、軸部材2が回転すると、軸部材2のフランジ部2bの上側端面2b1は、軸受スリーブ8の下側端面8bに形成されたスラスト軸受面Bと、スラスト軸受隙間を介して対向する。そして軸部材2の回転に伴い、スラスト軸受面Bに形成された動圧溝の動圧作用によってスラスト軸受隙間に形成された潤滑膜の油膜剛性が高められ、これによって軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1が形成される。同様に、フランジ部2bの下側端面2b2は、ハウジング7の底部7bの内底面7b1に形成されたスラスト軸受面Cとスラスト軸受隙間を介して対向する。軸部材2の回転に伴い、スラスト軸受面Cに形成された動圧溝の動圧作用によってスラスト軸受隙間に形成された潤滑膜の油膜剛性が高められ、これによって軸部材2をスラスト方向に回転自在に非接触支持する第2スラスト軸受部T2が形成される。   When the shaft member 2 rotates, the upper end surface 2b1 of the flange portion 2b of the shaft member 2 faces the thrust bearing surface B formed on the lower end surface 8b of the bearing sleeve 8 via the thrust bearing gap. As the shaft member 2 rotates, the oil film rigidity of the lubricating film formed in the thrust bearing gap is increased by the dynamic pressure action of the dynamic pressure groove formed in the thrust bearing surface B, thereby moving the shaft member 2 in the thrust direction. A first thrust bearing portion T1 that is rotatably supported in a non-contact manner is formed. Similarly, the lower end surface 2b2 of the flange portion 2b faces the thrust bearing surface C formed on the inner bottom surface 7b1 of the bottom portion 7b of the housing 7 via a thrust bearing gap. As the shaft member 2 rotates, the oil film rigidity of the lubricating film formed in the thrust bearing gap is increased by the dynamic pressure action of the dynamic pressure groove formed on the thrust bearing surface C, thereby rotating the shaft member 2 in the thrust direction. A second thrust bearing portion T2 that is freely contactlessly supported is formed.

なお、軸部材2の回転中は、潤滑油がハウジング7の底部7b側に押し込まれるため、このままではスラスト軸受部T1、T2のスラスト軸受隙間での圧力が極端に高まり、これに起因して潤滑油中での気泡の発生や潤滑油の漏れ、あるいは振動の発生が懸念される。この場合でも、例えば図中に示すように、スラスト軸受隙間(特に第1スラスト軸受部T1のスラスト軸受隙間)とシール空間Sを連通する流路10を設ければ、この流路10を通って潤滑油がスラスト軸受隙間とシール空間Sとの間で流動するため、かかる圧力差が早期に解消され、上記の弊害を防止することができる。図2では一例として、軸受スリーブ8の外周面8dの軸方向溝10a、シール部材9の下側端面9bの第1半径方向溝10b、軸受スリーブ8の上側端面8cの円環溝10cおよび軸受スリーブ8の上側端面8cの第2半径方向溝10dによって流路10を構成した。この場合、第1スラスト軸受部T1のスラスト軸受隙間→軸方向溝10a→第1半径方向溝10b→円環溝10c→第2半径方向溝10d→第1ラジアル軸受部R1のラジアル軸受隙間という経路を辿って潤滑油が軸受内部を循環する。   During the rotation of the shaft member 2, since the lubricating oil is pushed into the bottom 7b of the housing 7, the pressure in the thrust bearing gap between the thrust bearing portions T1 and T2 increases extremely, and the lubrication occurs due to this. There is concern about the generation of bubbles in oil, leakage of lubricating oil, or generation of vibration. Even in this case, for example, as shown in the figure, if a flow path 10 that communicates the thrust bearing gap (particularly the thrust bearing gap of the first thrust bearing portion T1) and the seal space S is provided, the flow path 10 passes through. Since the lubricating oil flows between the thrust bearing gap and the seal space S, the pressure difference is eliminated at an early stage, and the above-described adverse effects can be prevented. In FIG. 2, as an example, the axial groove 10a on the outer peripheral surface 8d of the bearing sleeve 8, the first radial groove 10b on the lower end surface 9b of the seal member 9, the annular groove 10c on the upper end surface 8c of the bearing sleeve 8, and the bearing sleeve. The flow path 10 was constituted by the second radial groove 10d of the upper end surface 8c of the eighth. In this case, the path of the thrust bearing gap of the first thrust bearing portion T1 → the axial groove 10a → the first radial groove 10b → the annular groove 10c → the second radial groove 10d → the radial bearing gap of the first radial bearing portion R1. The lubricating oil circulates inside the bearing.

以上の構成部材および要素からなる流体軸受装置1はモータに組み込まれる(図1参照)。流体軸受装置1のモータへの組み込みは、例えば保持部材6を金型にセットした状態で、保持部材6の上方から流体軸受装置1を挿入あるいは圧入し、ハウジング7の外周面7a1の一部軸方向領域を保持部材6の内周面6aに接着することにより行われる。   The hydrodynamic bearing device 1 composed of the above components and elements is incorporated in a motor (see FIG. 1). For example, the hydrodynamic bearing device 1 is incorporated into the motor by inserting or press-fitting the hydrodynamic bearing device 1 from above the holding member 6 in a state where the holding member 6 is set in a metal mold. This is performed by adhering the direction area to the inner peripheral surface 6 a of the holding member 6.

また、モータの組立時には、ディスクD(図1参照)を載置するためのディスクハブ3が軸部材2の上端に圧入、接着、あるいは圧入接着等の手段で固定される。本実施形態におけるディスクハブ3は、ハウジング7の上側を覆う略円盤状のプレート部3aと、プレート部3aの外周から軸方向下側に伸びる円筒状の円筒部3bと、円筒部3bの下端外周から外径側に突出させて設けられたディスク搭載部3cとで構成される。ディスクDは、円筒部3bの外周に外嵌され、ディスク搭載部3cの上側端面に載置される。
軸部材2に固定された状態で、ディスクハブ3のプレート部3aの下側端面3a1は、ハウジング7の上端面と微小な軸方向隙間(数十〜数百μm程度)を介して対向し、また円筒部3bの内周面3b1は、ハウジング7の外周面7a1の一部軸方向領域と微小な径方向隙間(数十〜数百μm程度)を介して対向する。このディスクハブ3とハウジング7との間に形成される微小幅の径方向および軸方向隙間でラビリンスシールが構成され、流体軸受装置1のシール機能が一層高められる。
Further, when the motor is assembled, the disk hub 3 for mounting the disk D (see FIG. 1) is fixed to the upper end of the shaft member 2 by means such as press-fitting, bonding, or press-fitting adhesion. The disk hub 3 in the present embodiment includes a substantially disc-shaped plate portion 3a covering the upper side of the housing 7, a cylindrical cylindrical portion 3b extending axially downward from the outer periphery of the plate portion 3a, and an outer periphery at the lower end of the cylindrical portion 3b. And a disk mounting portion 3c provided so as to protrude from the outer diameter side. The disc D is fitted on the outer periphery of the cylindrical portion 3b and placed on the upper end surface of the disc mounting portion 3c.
In a state of being fixed to the shaft member 2, the lower end surface 3 a 1 of the plate portion 3 a of the disk hub 3 faces the upper end surface of the housing 7 through a minute axial gap (about several tens to several hundreds of μm), Further, the inner peripheral surface 3b1 of the cylindrical portion 3b is opposed to a partial axial direction region of the outer peripheral surface 7a1 of the housing 7 through a minute radial gap (about several tens to several hundreds μm). A labyrinth seal is formed by the radial and axial gaps having a very small width formed between the disk hub 3 and the housing 7, and the sealing function of the hydrodynamic bearing device 1 is further enhanced.

上記のように、本発明では、ハウジング7を成形する金型の合わせ面の痕跡としてのパーティングライン11を、ハウジング外周面のうち保持部材6の内周面6a、およびディスクハブ3の内周面3b1との対向領域を除いた軸方向領域αに設けた。したがって、ハウジング7の外周面のうち、モータ(保持部材6)との固定領域およびディスクハブ3との対向領域は金型成形面、すなわち滑らかな平滑面とすることができる。そのため、パーティングライン11の除去加工を行わずとも、モータへの組込時および運転時の何れにおいてもパーティングライン11が他部材と干渉するのを防止して、コンタミの発生を防止することができる。また、保持部材6に対するハウジング7の固定精度や固定強度を良好なものとすることができる。   As described above, in the present invention, the parting line 11 as the trace of the mating surface of the mold for molding the housing 7 is used as the inner peripheral surface 6 a of the holding member 6 and the inner peripheral surface of the disk hub 3. It provided in the axial direction area | region (alpha) except the area | region facing the surface 3b1. Therefore, in the outer peripheral surface of the housing 7, the fixing region with the motor (holding member 6) and the region facing the disk hub 3 can be a mold forming surface, that is, a smooth smooth surface. For this reason, it is possible to prevent the parting line 11 from interfering with other members during assembly into the motor and during operation without preventing the parting line 11 from being removed. Can do. Further, the accuracy and strength of fixing the housing 7 to the holding member 6 can be improved.

なお、以上では、パーティングライン11をハウジング7の成形後そのままの状態とした構成について説明を行ったが、パーティングライン11はハウジング7の成形後に切削、研磨等の除去加工を施すことにより除去してもよい。除去加工を行うと、充填材を有するハウジング7の内部組織が表面に現れ、これがコンタミ発生の一因となる場合もあるが、本発明ではパーティングライン11を、ハウジング外周面のうち保持部材6の内周面6a、およびディスクハブ3の内周面3b1との対向領域を除いた軸方向領域α内に設けているため、この種の問題を回避することができる。   In the above description, the configuration in which the parting line 11 is left as it is after molding the housing 7 has been described. However, the parting line 11 is removed by performing removal processing such as cutting and polishing after the housing 7 is molded. May be. When the removal process is performed, the internal structure of the housing 7 having the filler appears on the surface, which may cause contamination, but in the present invention, the parting line 11 is connected to the holding member 6 on the outer peripheral surface of the housing. This kind of problem can be avoided because it is provided in the axial region α excluding the region facing the inner peripheral surface 6a and the inner peripheral surface 3b1 of the disk hub 3.

以上、本発明の構成を有する流体軸受装置1の一実施形態を説明したが、本発明は、この実施形態の流体軸受装置に限定されるものではなく、例えば図4〜図6に示すような流体軸受装置においても好ましく用いることができる。なお、以下の説明では、図2に示す実施形態と同一機能を有する部材および要素には共通の参照番号を付して重複説明を省略する。   As mentioned above, although one Embodiment of the hydrodynamic bearing apparatus 1 which has a structure of this invention was described, this invention is not limited to the hydrodynamic bearing apparatus of this embodiment, For example, as shown in FIGS. It can be preferably used also in a hydrodynamic bearing device. In the following description, members and elements having the same functions as those in the embodiment shown in FIG.

図4は、本発明にかかる流体軸受装置1の他の実施形態を示すものである。同図に示す流体軸受装置1は、主に、図2では別体であった軸受スリーブ8とハウジング7とを一体に構成し、この一体に構成された部材(軸受部材17)の下端開口部を、軸受部材17と別体の蓋部材18で封口した点で図2に示す流体軸受装置1と構成を異にする。ラジアル軸受部R1、R2は軸受部材17の内周面17aと軸部材2の外周面2a1との間に形成され、第1スラスト軸受部T1は下側端面17bとフランジ部2bの上側端面2b1との間、第2スラスト軸受部T2は蓋部材18の上側端面18aとフランジ部2bの下側端面2b2との間にそれぞれ形成される。
本実施形態における軸受部材17は、図2のハウジング7と同様に型成形品であり、該軸受部材17を成形する金型の合わせ面の痕跡としてのパーティングライン11は、軸受部材17の外周面17dのうち、保持部材6の内周面6aおよびディスクハブ3の内周面3b1との対向領域を除いた軸方向領域αに設けられている。したがって、上記同様の作用・効果が得られる。
FIG. 4 shows another embodiment of the hydrodynamic bearing device 1 according to the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 mainly includes a bearing sleeve 8 and a housing 7 which are separate from each other in FIG. 2, and a lower end opening of the integrally formed member (bearing member 17). 2 is different from the hydrodynamic bearing device 1 shown in FIG. 2 in that it is sealed with a bearing member 17 and a separate lid member 18. The radial bearing portions R1 and R2 are formed between the inner peripheral surface 17a of the bearing member 17 and the outer peripheral surface 2a1 of the shaft member 2, and the first thrust bearing portion T1 includes a lower end surface 17b and an upper end surface 2b1 of the flange portion 2b. The second thrust bearing portion T2 is formed between the upper end surface 18a of the lid member 18 and the lower end surface 2b2 of the flange portion 2b.
The bearing member 17 in the present embodiment is a molded product like the housing 7 of FIG. 2, and the parting line 11 as a trace of the mating surface of the mold for molding the bearing member 17 is the outer periphery of the bearing member 17. Of the surface 17 d, the surface 17 d is provided in an axial region α excluding a region facing the inner peripheral surface 6 a of the holding member 6 and the inner peripheral surface 3 b 1 of the disc hub 3. Therefore, the same operation and effect as described above can be obtained.

図5は、本発明にかかる流体軸受装置1の他の実施形態を示すものである。同図に示す流体軸受装置1は、ハウジング7の段部7cを削除した点で、図2に示す流体軸受装置1と構成を異にする。この場合、図2に示す構成の流体軸受装置1に比べ、スラスト軸受部T1、T2における支持面積を拡大させ、スラスト軸受部におけるモーメント荷重に対する負荷能力を向上させることができる。なお図示は省略するが、本実施形態においても、図4に示す実施形態と同様、底部7cを除きハウジング7と軸受スリーブ8とを一体の軸受部材17で構成し、該軸受部材17の下端開口部を別体の蓋部材18で封口する構成とすることもできる。   FIG. 5 shows another embodiment of the hydrodynamic bearing device 1 according to the present invention. The hydrodynamic bearing device 1 shown in the figure differs from the hydrodynamic bearing device 1 shown in FIG. 2 in that the step 7c of the housing 7 is deleted. In this case, as compared with the hydrodynamic bearing device 1 having the configuration shown in FIG. 2, the support area in the thrust bearing portions T <b> 1 and T <b> 2 can be expanded, and the load capacity for the moment load in the thrust bearing portion can be improved. Although not shown in the figure, in this embodiment as well, as in the embodiment shown in FIG. 4, the housing 7 and the bearing sleeve 8 are constituted by an integral bearing member 17 except for the bottom portion 7 c, and the lower end opening of the bearing member 17 is formed. It can also be set as the structure which seals a part with the cover member 18 of another body.

図6は、本発明にかかる流体軸受装置の他の実施形態を示すものである。同図に示す流体軸受装置21では、図2および図4、図5に示す流体軸受装置1と異なり、シール空間Sが軸部材2と一体に形成されたディスクハブ33の内周面33b1とハウジング7の外周面7a1との間、および第2スラスト軸受部T2がディスクハブ33の下側端面33a1とハウジング7の上側端面7a2との間に形成されている。
本実施形態において、ハウジング7のパーティングライン11は、外周面7a1のうち、ディスクハブ33の内周面33b1との間でシール空間Sを形成するテーパ面7a11、および保持部材6との固定面7a12を除く軸方向領域αの範囲内に設けられている。そのため、流体軸受装置21(ハウジング7)を保持部材6へ挿入する際に問題となるコンタミの発生防止と、固定精度および固定強度確保とが図られることに加え、潤滑油で満たされたシール空間S内へ異物が混入するのを防止することができる。なお、図示は省略するが、本実施形態においても、図4に示す実施形態と同様、ハウジング7と軸受スリーブ8とを一体の軸受部材17で構成することもできる。
FIG. 6 shows another embodiment of the hydrodynamic bearing device according to the present invention. In the hydrodynamic bearing device 21 shown in the figure, unlike the hydrodynamic bearing device 1 shown in FIGS. 2, 4, and 5, the inner peripheral surface 33 b 1 of the disk hub 33 in which the seal space S is formed integrally with the shaft member 2 and the housing. 7 and the second thrust bearing portion T2 are formed between the lower end surface 33a1 of the disk hub 33 and the upper end surface 7a2 of the housing 7.
In the present embodiment, the parting line 11 of the housing 7 is a fixed surface to the holding member 6 and the tapered surface 7a11 that forms the seal space S between the outer peripheral surface 7a1 and the inner peripheral surface 33b1 of the disk hub 33. 7a12 is provided within the range of the axial region α. Therefore, in addition to preventing the occurrence of contamination, which is a problem when the hydrodynamic bearing device 21 (housing 7) is inserted into the holding member 6, and ensuring the fixing accuracy and fixing strength, the seal space filled with lubricating oil. It is possible to prevent foreign matters from entering S. Although illustration is omitted, also in the present embodiment, the housing 7 and the bearing sleeve 8 can be constituted by an integral bearing member 17 as in the embodiment shown in FIG.

以上の説明では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではなく、例えば、ラジアル軸受部R1、R2として、いわゆる多円弧軸受やステップ軸受を採用しても良い。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 have exemplified the configuration in which the fluid dynamic pressure action is generated by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this. For example, so-called multi-arc bearings or step bearings may be adopted as the radial bearing portions R1 and R2.

図7は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。この例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a3、8a4、8a5で構成されている(いわゆる3円弧軸受)。3つの円弧面8a3、8a4、8a5の曲率中心は、それぞれ、軸受スリーブ8の軸中心Oから等距離オフセットされている。3つの円弧面8a3、8a4、8a5で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれ楔状に漸次縮小した形状を有している。そのため、軸受スリーブ8と軸部2aとが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。尚、3つの円弧面8a3、8a4、8a5の相互間の境界部に、分離溝と称される、一段深い軸方向溝を形成しても良い。   FIG. 7 shows an example of a case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a3, 8a4, and 8a5 (so-called three arc bearings). The centers of curvature of the three arcuate surfaces 8a3, 8a4, 8a5 are offset from the axial center O of the bearing sleeve 8 by an equal distance. In each region defined by the three arcuate surfaces 8a3, 8a4, and 8a5, the radial bearing gap has a shape that is gradually reduced in a wedge shape in both circumferential directions. For this reason, when the bearing sleeve 8 and the shaft portion 2a rotate relative to each other, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape in accordance with the direction of the relative rotation, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid. A deeper axial groove called a separation groove may be formed at the boundary between the three arcuate surfaces 8a3, 8a4, 8a5.

図8は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例においても、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面8a6、8a7、8a8で構成されているが(いわゆる3円弧軸受)、3つの円弧面8a6、8a7、8a8で区画される各領域において、ラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。このような構成の多円弧軸受は、テーパ軸受と称されることもある。また、3つの円弧面8a6、8a7、8a8の相互間の境界部に、分離溝と称される、一段深い軸方向溝8a9、8a10、8a11が形成されている。そのため、軸受スリーブ8と軸部2aとが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑流体が楔状に縮小した最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑流体の動圧作用によって、軸受スリーブ8と軸部2aとが非接触支持される。   FIG. 8 shows another example in the case where one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In this example as well, the region that becomes the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 is configured by three arc surfaces 8a6, 8a7, and 8a8 (so-called three arc bearings), but the three arc surfaces 8a6, In each region divided by 8a7 and 8a8, the radial bearing gap has a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. The multi-arc bearing having such a configuration may be referred to as a taper bearing. Further, deeper axial grooves 8a9, 8a10, 8a11 called separation grooves are formed at boundaries between the three arcuate surfaces 8a6, 8a7, 8a8. Therefore, when the bearing sleeve 8 and the shaft portion 2a are relatively rotated in a predetermined direction, the lubricating fluid in the radial bearing gap is pushed into the minimum gap side reduced in a wedge shape, and the pressure rises. The bearing sleeve 8 and the shaft portion 2a are supported in a non-contact manner by the dynamic pressure action of the lubricating fluid.

図9は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の他の例を示している。この例では、図8に示す構成において、3つの円弧面8a6、8a7、8a8の最小隙間側の所定領域θが、それぞれ、軸受スリーブ8の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 9 shows another example in the case where one or both of the radial bearing portions R1 and R2 are configured by multi-arc bearings. In this example, in the configuration shown in FIG. 8, the predetermined regions θ on the minimum gap side of the three circular arc surfaces 8 a 6, 8 a 7, 8 a 8 are each configured by concentric arcs with the axis O of the bearing sleeve 8 as the center of curvature. ing. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

以上の各例における多円弧軸受は、いわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらに6円弧以上の数の円弧面で構成された多円弧軸受を採用しても良い。また、ラジアル軸受部を多円弧軸受で構成する場合、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としても良い。   The multi-arc bearings in the above examples are so-called three-arc bearings, but are not limited to this, and so-called four-arc bearings, five-arc bearings, and multi-arc bearings composed of more than six arc surfaces are adopted. You may do it. Further, when the radial bearing portion is constituted by a multi-arc bearing, in addition to the configuration in which two radial bearing portions are provided apart from each other in the axial direction as in the radial bearing portions R1 and R2, the inner peripheral surface of the bearing sleeve 8 is provided. It is good also as a structure which provided the one radial bearing part over the up-and-down area | region of 8a.

なお、上記のラジアル軸受部R1、R2の一方又は双方は、ステップ軸受で構成することもできる(図示省略)。ステップ軸受は、例えば軸受スリーブ8の内周面8aのラジアル軸受面となる領域に、複数の軸方向溝形状の動圧溝を円周方向所定間隔に設けたものである。   Note that one or both of the radial bearing portions R1 and R2 may be configured by step bearings (not shown). In the step bearing, for example, a plurality of axial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a radial bearing surface of the inner peripheral surface 8 a of the bearing sleeve 8.

以上では、ラジアル軸受部R1、R2の双方を動圧軸受で構成した場合について説明を行ったが、ラジアル軸受部R1、R2の一方または双方をこれ以外の軸受で構成することもできる。例えば、図示は省略するが、軸部材2の外周面2a1を真円状外周面に形成すると共に、軸部材2の外周面2a1と対向する軸受スリーブ8の内周面8aを真円状内周面とすることで、いわゆる真円軸受を構成することもできる。   Although the case where both the radial bearing portions R1 and R2 are configured by dynamic pressure bearings has been described above, one or both of the radial bearing portions R1 and R2 can also be configured by other bearings. For example, although not shown, the outer peripheral surface 2a1 of the shaft member 2 is formed into a perfect circular outer peripheral surface, and the inner peripheral surface 8a of the bearing sleeve 8 facing the outer peripheral surface 2a1 of the shaft member 2 is formed into a perfect circular inner periphery. By using the surface, a so-called perfect circle bearing can be configured.

また、図示は省略するが、スラスト軸受部T1およびT2のうち一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   Although illustration is omitted, one or both of the thrust bearing portions T1 and T2 is provided with a plurality of radial groove-shaped dynamic pressure grooves at predetermined intervals in the circumferential direction, for example, in a region serving as a thrust bearing surface. Further, it can be constituted by a so-called step bearing, a so-called wave bearing (the step mold is a wave form), or the like.

また、スラスト軸受部は動圧軸受で構成する以外にも、例えば軸部2aの一端を凸球状に形成し、ハウジングの内底面等で接触支持するピボット軸受とすることもできる。   Further, the thrust bearing portion may be a pivot bearing in which, for example, one end of the shaft portion 2a is formed in a convex spherical shape and is in contact with and supported by the inner bottom surface of the housing, in addition to the dynamic bearing.

また、以上の説明では、流体軸受装置1の内部に充満する潤滑流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば磁性流体や空気等の気体を使用することもできる。   In the above description, the lubricating oil is exemplified as the lubricating fluid that fills the inside of the hydrodynamic bearing device 1, but other fluids that can generate dynamic pressure in each bearing gap, such as magnetic fluid and air, are also exemplified. A gas such as can also be used.

流体軸受装置を組み込んだスピンドルモータの一例を示す断面図である。It is sectional drawing which shows an example of the spindle motor incorporating the hydrodynamic bearing apparatus. 本発明の構成を有する流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which has a structure of this invention. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す平面図である。(A) is a sectional view of the bearing sleeve, and (b) is a plan view showing a lower end surface of the bearing sleeve. 流体軸受装置の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a hydrodynamic bearing apparatus. 流体軸受装置の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a hydrodynamic bearing apparatus. 流体軸受装置の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a hydrodynamic bearing apparatus. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part. ラジアル軸受部の他の形態を示す断面図である。It is sectional drawing which shows the other form of a radial bearing part.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
2a 軸部
3 ディスクハブ
6 保持部材
7 ハウジング
7a 側部
7b 底部
8 軸受スリーブ
9 シール部材
11 パーティングライン
17 軸受部材
α 軸方向領域
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
S シール空間
T1 第1スラスト軸受部
T2 第2スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 2a Shaft part 3 Disc hub 6 Holding member 7 Housing 7a Side part 7b Bottom part 8 Bearing sleeve 9 Seal member 11 Parting line 17 Bearing member alpha axial direction area | region R1 1st radial bearing part R2 2nd radial Bearing portion S Seal space T1 First thrust bearing portion T2 Second thrust bearing portion

Claims (5)

軸部材と、型成形された外筒体と、円筒状の内周面で外筒体の外周面の軸方向一部領域を保持する保持部材と、外筒体の内部に配置され、ラジアル軸受隙間に形成される潤滑流体の潤滑膜で軸部材をラジアル方向に非接触支持するラジアル軸受部とを備える流体軸受装置において、
外筒体の外周面が、保持部材に固定される領域と、この領域から軸方向に離間して形成された環状のパーティングラインを有することを特徴とする流体軸受装置。
A shaft member, a molded outer cylinder, a holding member that holds a partial area in the axial direction of the outer peripheral surface of the outer cylinder with a cylindrical inner peripheral surface, and a radial bearing disposed inside the outer cylinder In a hydrodynamic bearing device including a radial bearing portion that non-contact supports a shaft member in a radial direction with a lubricating film of a lubricating fluid formed in a gap,
The outer peripheral surface of the outer cylinder body, and a region which is fixed to the holding member, the fluid bearing apparatus characterized by having a parting line of the annular formed spaced apart from the region in the axial direction.
さらに、軸部材の一端から外径側に張り出し、外筒体との対向面を有するハブ部を備え、パーティングラインが、前記対向面との対向領域を除いて設けられたことを特徴とする請求項1記載の流体軸受装置。   The shaft member further includes a hub portion projecting from one end of the shaft member to the outer diameter side and having a surface facing the outer cylindrical body, and the parting line is provided except for a region facing the surface facing. The hydrodynamic bearing device according to claim 1. さらに、パーティングラインが、潤滑流体で満たされたシール空間以外の領域に設けられている請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the parting line is provided in a region other than the seal space filled with the lubricating fluid. 外筒体にパーティングラインの除去加工を施した請求項1〜3の何れかに記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a parting line removal process is performed on the outer cylindrical body. 請求項1〜4の何れかに記載の流体軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a rotor magnet, and a stator coil.
JP2005290300A 2005-10-03 2005-10-03 Hydrodynamic bearing device and motor having the same Active JP4738964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290300A JP4738964B2 (en) 2005-10-03 2005-10-03 Hydrodynamic bearing device and motor having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290300A JP4738964B2 (en) 2005-10-03 2005-10-03 Hydrodynamic bearing device and motor having the same

Publications (2)

Publication Number Publication Date
JP2007100802A JP2007100802A (en) 2007-04-19
JP4738964B2 true JP4738964B2 (en) 2011-08-03

Family

ID=38027956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290300A Active JP4738964B2 (en) 2005-10-03 2005-10-03 Hydrodynamic bearing device and motor having the same

Country Status (1)

Country Link
JP (1) JP4738964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439708B2 (en) * 2007-05-09 2014-03-12 日本電産株式会社 Motor and disk drive device
JP4857245B2 (en) * 2007-11-06 2012-01-18 シナノケンシ株式会社 Outer rotor type brushless motor
JP6221035B2 (en) 2013-07-05 2017-11-01 日本電産株式会社 Bearing mechanism, motor and blower fan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280879A (en) * 1993-03-26 1994-10-07 Onishi Raito Kogyosho:Kk Bearing and manufacture thereof
JP2002144380A (en) * 2000-11-09 2002-05-21 Nsk Ltd Roller bearing
JP2004011721A (en) * 2002-06-05 2004-01-15 Ntn Corp Fluid bearing device
JP2004316712A (en) * 2003-04-14 2004-11-11 Canon Inc Dynamic pressure bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280879A (en) * 1993-03-26 1994-10-07 Onishi Raito Kogyosho:Kk Bearing and manufacture thereof
JP2002144380A (en) * 2000-11-09 2002-05-21 Nsk Ltd Roller bearing
JP2004011721A (en) * 2002-06-05 2004-01-15 Ntn Corp Fluid bearing device
JP2004316712A (en) * 2003-04-14 2004-11-11 Canon Inc Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP2007100802A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US8256962B2 (en) Fluid dynamic bearing device
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US8356938B2 (en) Fluid dynamic bearing apparatus
KR101213552B1 (en) Dynamic pressure bearing device
US20090148084A1 (en) Fluid Dynamic Bearing Device
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US7625124B2 (en) Fluid bearing device
JP4476670B2 (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP2005114164A (en) Dynamic pressure bearing device
JP2006300181A (en) Dynamic pressure bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP4615328B2 (en) Hydrodynamic bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4642708B2 (en) Hydrodynamic bearing device
JP2007192316A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device
JP2006300178A (en) Fluid bearing device
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250