[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4736374B2 - Steel material with super large heat input welding characteristics - Google Patents

Steel material with super large heat input welding characteristics Download PDF

Info

Publication number
JP4736374B2
JP4736374B2 JP2004230046A JP2004230046A JP4736374B2 JP 4736374 B2 JP4736374 B2 JP 4736374B2 JP 2004230046 A JP2004230046 A JP 2004230046A JP 2004230046 A JP2004230046 A JP 2004230046A JP 4736374 B2 JP4736374 B2 JP 4736374B2
Authority
JP
Japan
Prior art keywords
toughness
less
heat input
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004230046A
Other languages
Japanese (ja)
Other versions
JP2004360074A (en
Inventor
知哉 藤原
昌彦 濱田
威 一ノ瀬
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004230046A priority Critical patent/JP4736374B2/en
Publication of JP2004360074A publication Critical patent/JP2004360074A/en
Application granted granted Critical
Publication of JP4736374B2 publication Critical patent/JP4736374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、土木、建設機械、造船、パイプ、タンクおよび海洋構造物などの溶接構造物として使用される超大入熱溶接用鋼材に関するものである。   The present invention relates to a steel material for super large heat input welding used as a welded structure such as a building, civil engineering, construction machine, shipbuilding, pipe, tank and offshore structure.

厚鋼板に代表される溶接構造用鋼材は、上記種々の分野で使用され、高強度化や高靭性化などの特性の改善が図られてきた。   Steel materials for welded structures represented by thick steel plates have been used in the various fields described above, and have been improved in properties such as higher strength and higher toughness.

特許文献1には、主にラインパイプに用いる鋼としてCを0.03%以下に低減しかつ微量のBを添加した極低C−B添加鋼が開示されおり、C量の低減により島状マルテンサイトの低減が図られ、溶接部の靱性が向上すること、微量のBの添加により母材組織をベイナイトとし高強度、高靱性な母材が得られることが示されている。   Patent Document 1 discloses an ultra-low CB-added steel in which C is reduced to 0.03% or less as a steel mainly used for a line pipe and a small amount of B is added. It has been shown that martensite is reduced, the toughness of the welded portion is improved, and that a high strength and high toughness base material can be obtained by adding a trace amount of B to the base material structure as bainite.

特許文献2には、材質ばらつきの小さなMn、Nb量を調整した極低C−B添加ベイナイト鋼とその製造方法が開示されている。   Patent Document 2 discloses an ultra-low C—B-added bainitic steel in which the amount of Mn and Nb with small material variations is adjusted, and a method for manufacturing the same.

特許文献3には、材質のばらつきが少なく、かつ耐疲労特性に優れたCu添加による析出強化を利用した極低C−B添加高靭性鋼材とその製造方法が開示されている。   Patent Document 3 discloses an extremely low CB-added high toughness steel material using precipitation strengthening by Cu addition with little variation in material and excellent fatigue resistance, and a manufacturing method thereof.

溶接構造物の製作にあたっては溶接施工コスト削減の観点から大入熱溶接の適用が望ましい。上記各公報には、極低C−B添加鋼において低C化による島状マルテンサイトの低減は、溶接部靱性の向上に効果があることが示されているが、いずれも対象は溶接入熱量100kJ/cm未満の比較的入熱量の少ない領域に限られており、施工コスト低減に対する寄与は小さいという問題があった。   In producing a welded structure, it is desirable to apply high heat input welding from the viewpoint of reducing welding construction costs. In each of the above publications, it is shown that the reduction of island martensite by reducing C in an extremely low CB-added steel is effective in improving weld toughness. There is a problem that it is limited to a region with a relatively small amount of heat input of less than 100 kJ / cm, and that the contribution to reduction in construction cost is small.

特開昭54−132421号公報Japanese Patent Laid-Open No. 54-132421 特開平8−144019号公報JP-A-8-144019 特開平9−249915号公報報Japanese Laid-Open Patent Publication No. 9-249915

本発明の課題は、大入熱溶接においても靱性劣化が少なく、溶接構造物の施工コスト低減に寄与できる鋼材を提供することにあり、具体的には母材の特性として降伏応力が450MPa以上または引張り強さが570MPa以上、JIS Z 2202 に規定の幅10mmのVノッチシャルピー衝撃試験片を用いた衝撃試験における破面遷移温度()が−40℃以下、溶接ボンドでの吸収エネルギーが−10℃において100J以上の鋼材を提供することにある。 An object of the present invention is to provide a steel material that has little toughness deterioration even in high heat input welding and can contribute to a reduction in the construction cost of a welded structure. Specifically, the yield stress is 450 MPa or more as a property of the base material. Fracture surface transition temperature ( V T S ) in an impact test using a V-notch Charpy impact test piece having a tensile strength of 570 MPa or more and a width of 10 mm as defined in JIS Z 2202 is −40 ° C. It is to provide a steel material of 100 J or more at −10 ° C.

本発明者らは、上記課題を解決するため種々の実験と検討をおこなった結果、下記の知見を得た。   As a result of various experiments and studies to solve the above problems, the present inventors have obtained the following knowledge.

母材の引張り強さを570MPa以上の強度とし、かつ大入熱溶接した場合の溶接ボンド部の靭性を確保するにはCuを0.8%を超えて含有させ析出強化を図るのが有効で、かつフェライト組織分率を50%以下にするのがよい。   In order to ensure the tensile strength of the base material to be 570 MPa or more and to secure the toughness of the weld bond part when high heat input welding is performed, it is effective to contain Cu exceeding 0.8% to enhance the precipitation. In addition, the ferrite structure fraction is preferably 50% or less.

本発明は、このような知見に基づきなされたもので、その要旨は下記に示す超大入熱溶接性に優れた鋼材にある。   The present invention has been made on the basis of such knowledge, and the gist thereof is a steel material excellent in super-high heat input weldability shown below.

(1)質量%で、C:0.03〜0.1%、Si:0.01〜0.5%以下、Mn:0.5〜2%、Cu:0.8超〜2%、Ti:0.005〜0.025%、N:0.002〜0.008%、sol.Al:0.002〜0.05%、O(酸素):0.0035%以下を含有し、残部はFeおよび不純物からなり、金属組織がベイナイトまたはマルテンサイト組織の50%以上とフェライト組織50%以下からなるものであることを特徴とする、570MPa以上の引張強度を有する超大入熱溶接特性に優れた鋼材。 (1) By mass%, C: 0.03 to 0.1%, Si: 0.01 to 0.5% or less, Mn: 0.5 to 2%, Cu: more than 0.8 to 2%, Ti : 0.005-0.025%, N: 0.002-0.008%, sol.Al: 0.002-0.05%, O (oxygen): 0.0035% or less, the balance being It is composed of Fe and impurities, and the metal structure is composed of 50% or more of bainite or martensite structure and 50% or less of ferrite structure , and is excellent in super large heat input welding characteristics having a tensile strength of 570 MPa or more. Steel material.

(2)Feの一部に代えて、質量%で、Ni:0.2〜2%、Cr:0.05〜1%、Mo:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.07%のうちの1種以上を含有することを特徴とする、上記(1)に記載の570MPa以上の引張強度を有する超大入熱溶接特性に優れた鋼材。
(2) Instead of a part of Fe, in mass%, Ni: 0.2-2%, Cr: 0.05-1%, Mo: 0.05-1%, V: 0.01-0. 1%, Nb: It contains one or more of 0.005 to 0.07%, and is excellent in super large heat input welding characteristics having a tensile strength of 570 MPa or more as described in (1) above Steel material.

本発明によれば、TSが570MPa以上、YSが450MPa以上、JIS Z 2202 に規定の10mm幅、Vノッチシャルピー衝撃試験片を用いた衝撃試験でのvTsが−40℃以下で、300kJ/mmでの溶接時の−10℃での吸収エネルギーが100J以上の鋼が得られ、種々の溶接構造物において優れた効果を発揮する。   According to the present invention, TS is 570 MPa or more, YS is 450 MPa or more, 10 mm width as defined in JIS Z 2202, vTs in an impact test using a V-notch Charpy impact test piece is −40 ° C. or less, and 300 kJ / mm. Steel having an absorption energy at −10 ° C. during welding of 100 J or more is obtained, and exhibits excellent effects in various welded structures.

以下、本発明の実施の形態について詳しく説明する。なお、各元素の含有量の「%」表示は全て「質量%」とする。   Hereinafter, embodiments of the present invention will be described in detail. The “%” display of the content of each element is all “mass%”.

C:0.03〜0.1%
Cは、母材の強度確保を目的に含有させる。0.03%未満では570MPa以上の強度を確保することができない。一方、0.1%を超えると溶融線近傍の溶接熱影響部の靱性が劣化する。したがって、Cの含有量は0.03〜0.1%とした。なお、好ましくは0.08%以下、さらに望ましくは0.06%以下である。望ましい下限は0.04%である。
C: 0.03-0.1%
C is contained for the purpose of securing the strength of the base material. If it is less than 0.03%, a strength of 570 MPa or more cannot be secured. On the other hand, if it exceeds 0.1%, the toughness of the weld heat-affected zone near the melting line deteriorates. Therefore, the content of C is set to 0.03 to 0.1%. In addition, Preferably it is 0.08% or less, More desirably, it is 0.06% or less. A desirable lower limit is 0.04%.

Si:0.01〜0.5%
Siは、脱酸剤として添加する元素である。その効果を得るためには、0.01%以上含有させる必要がある。一方、含有量が増加すると溶接冷却過程において残留γがセメンタイトへ分解する反応を抑制し島状マルテンサイトを増加させるので、溶接部靱性の確保の観点からは含有量は少ない方が望ましく、上限を0.5%とした。好ましい上限は0.3%、さらに好ましくは0.15%以下である。
Si: 0.01 to 0.5%
Si is an element added as a deoxidizer. In order to acquire the effect, it is necessary to contain 0.01% or more. On the other hand, when the content is increased, the reaction of residual γ is decomposed into cementite in the welding cooling process and the island-like martensite is increased. 0.5%. The upper limit is preferably 0.3%, more preferably 0.15% or less.

Mn:0.5〜2%
Mnは、母材の強度確保、溶接熱影響部の焼入性の確保に有効で、また脱酸元素としても有効である。0.5%未満では、溶接熱影響部にフェライトが生成し靱性が劣化するので0.5%以上含有させる必要がある。一方、2%を超えると中心偏析による板厚方向での母材特性の不均一や靱性の劣化をもたらす。したがって、Mnの上限は2%とした。
Mn: 0.5-2%
Mn is effective for ensuring the strength of the base material, ensuring the hardenability of the weld heat affected zone, and is also effective as a deoxidizing element. If it is less than 0.5%, ferrite is generated in the weld heat-affected zone and the toughness deteriorates, so it is necessary to contain 0.5% or more. On the other hand, if it exceeds 2%, the base material properties are not uniform in the thickness direction due to center segregation and the toughness is deteriorated. Therefore, the upper limit of Mn is 2%.

Cu:0.8超〜2%
Cuは、ε析出物として単独で析出して母材の強度を向上させる効果がある。鋼材に時効処理や冷却途中からの徐冷などの処理を施すことにより前記析出物を析出させることができる。析出したCuは母材では強度を向上させ、また溶接熱影響部ではCuが再溶解するので硬度過剰となりがちな溶接部の硬度を低減し溶接部の靱性を向上させる効果がある。ε析出物を析出させることによって、効果的に強度を向上させるためには、0.8%を超えるCu量が必要である。しかしながら、2%を超えて含有させると、溶接熱影響部で未固溶の析出物が増加し、靭性が低下するため2%以下とする必要がある。
Cu: more than 0.8 to 2%
Cu has the effect of improving the strength of the base material by depositing alone as an ε precipitate. The precipitate can be precipitated by subjecting the steel material to a treatment such as an aging treatment or a slow cooling from the middle of cooling. Precipitated Cu has the effect of improving the strength of the base metal and reducing the hardness of the welded portion, which tends to be excessively hard, and improving the toughness of the welded portion because Cu is remelted in the weld heat affected zone. In order to effectively improve the strength by precipitating ε precipitates, an amount of Cu exceeding 0.8% is required. However, if the content exceeds 2%, undissolved precipitates increase in the weld heat-affected zone and the toughness decreases, so it is necessary to make it 2% or less.

Ti:0.005〜0.025%
Tiは、母材の強度を向上させると同時に、連続鋳造スラブの横ひび割れを防止するのに有効である。また、固溶Nと結合することによって形成されるTiNは、加熱時のγ結晶粒の粗大化を抑制し、母材および溶接部の靱性を向上させる効果がある。これらの効果を発揮させるには0.005%以上含有させる必要がある。しかしながら、0.025%を超えて含有させると母材の靱性が劣化するため上限は0.025%とした。
Ti: 0.005-0.025%
Ti is effective for improving the strength of the base material and at the same time preventing lateral cracking of the continuously cast slab. Moreover, TiN formed by combining with solute N has an effect of suppressing the coarsening of γ crystal grains during heating and improving the toughness of the base material and the welded portion. In order to exert these effects, it is necessary to contain 0.005% or more. However, if the content exceeds 0.025%, the toughness of the base material deteriorates, so the upper limit was made 0.025%.

N:0.002〜0.008%
Nは、Tiと結合してTiNを形成し、加熱時のγ粒の粗大化を抑制し、母材および溶接熱影響部の靱性を改善する。このたには、0.002%以上含有させることが必要である。しかしながら、Bを含有させない場合Nが0.008%を超えると、過剰のNが組織中に存在し靱性を劣化させる。γ粒の細粒化の観点からは、N量はTi量の4.3分の1よりもやや多く含有されることが望ましい。
N: 0.002 to 0.008%
N combines with Ti to form TiN, suppresses the coarsening of γ grains during heating, and improves the toughness of the base material and the weld heat affected zone. For this purpose, it is necessary to contain 0.002% or more. However, when N is not contained when N exceeds 0.008%, excess N is present in the structure and the toughness is deteriorated. From the viewpoint of finer γ grains, it is desirable that the N content is slightly larger than 4.3 times the Ti content.

sol.Al:0.002〜0.05%
Alは、脱酸を目的で添加する。その効果を得るには、0.002%以上含有させる必要がある。一方、Al含有が増加するとSiと同様、溶接冷却過程において残留オーステナイトがセメンタイトへ分解する反応を抑制し島状マルテンサイトを増加させる。したがって、溶接熱影響部の靱性を確保する観点から含有は少ないほうが望ましが、0.05%までの量であれば問題がない。望ましい上限は0.03%、さらに望ましくは0.01%である。
sol.Al: 0.002 to 0.05%
Al is added for the purpose of deoxidation. In order to acquire the effect, it is necessary to contain 0.002% or more. On the other hand, when Al content increases, the reaction of residual austenite to decompose to cementite in the welding cooling process is suppressed as in the case of Si, and island martensite is increased. Therefore, it is desirable that the content is less from the viewpoint of ensuring the toughness of the weld heat affected zone, but there is no problem if the amount is up to 0.05%. A desirable upper limit is 0.03%, more desirably 0.01%.

O:0.0035%以下
酸素は、必要により含有させてもよい元素で、含有させれば酸化物を形成することにより溶接熱影響部の組織を微細化する作用がある。この効果は不純物量を超える量でも効果があるが、含有させる場合は0.001%を超えた量とするのが好ましい。一方、過剰な添加は粗大な酸化物の形成から靱性に悪影響を及ぼすため含有させる場合の上限を0.0035%とした。
O: 0.0035% or less Oxygen is an element that may be contained if necessary, and if contained, forms an oxide and has the effect of refining the structure of the weld heat affected zone. This effect is effective even if the amount exceeds the amount of impurities, but when it is contained, the amount is preferably over 0.001%. On the other hand, excessive addition has an adverse effect on toughness due to the formation of coarse oxides, so the upper limit for inclusion is set to 0.0035%.

上記の化学組成のCu含有鋼材において、さらに母材の強度を高めたい場合には各鋼材に、Ni、Cr、Mo、VおよびNbのうちの1種以上を含有させるのが有効である。以下、各元素毎に説明する。   In the Cu-containing steel material having the above chemical composition, it is effective that each steel material contains at least one of Ni, Cr, Mo, V, and Nb when it is desired to further increase the strength of the base material. Hereinafter, each element will be described.

Ni:0.2〜2%
Niは、靱性劣化を最小限に抑え母材の強度を上昇させるのに有効で、0.2%以上の添加が好ましい。一方、2%を超えて含有させてもコストアップに見合う強度、靱性の改善効果が見られないため、上限を2%とした。
Ni: 0.2-2%
Ni is effective in minimizing toughness deterioration and increasing the strength of the base material, and is preferably added in an amount of 0.2% or more. On the other hand, even if the content exceeds 2%, the effect of improving the strength and toughness commensurate with the cost increase is not seen.

Cr:0.05〜1%
Crは、母材の強度確保を目的として含有させる。そのためには、少なくとも0.05%含有させる必要がある。一方、1%以上含有させると靱性を劣化させるため、その上限は1%とした。好ましい上限は0.5%以下である。
Cr: 0.05 to 1%
Cr is contained for the purpose of securing the strength of the base material. For that purpose, it is necessary to contain at least 0.05%. On the other hand, if the content is 1% or more, the toughness deteriorates, so the upper limit was made 1%. A preferable upper limit is 0.5% or less.

Mo:0.05〜1%
Moは、母材の強度確保を目的として含有させる。そのためには少なくとも0.05%含有させる必要がある。一方、1%を超えて含有させた場合は靱性を劣化させるので上限を1%とした。好ましい上限は0.5%である。
Mo: 0.05 to 1%
Mo is contained for the purpose of securing the strength of the base material. For that purpose, it is necessary to contain at least 0.05%. On the other hand, if the content exceeds 1%, the toughness deteriorates, so the upper limit was made 1%. A preferable upper limit is 0.5%.

V:0.01〜0.1%
Vは、母材の強度確保を目的として含有させる。そのためには少なくとも0.01%含有させる必要がある。一方、0.1%を超えて含有させた場合は靱性を劣化させるため、その上限を0.1%とした。好ましい上限は0.05%以下、さらに好ましくは0.03%以下である。
V: 0.01 to 0.1%
V is contained for the purpose of securing the strength of the base material. For that purpose, it is necessary to contain at least 0.01%. On the other hand, if the content exceeds 0.1%, the toughness deteriorates, so the upper limit was made 0.1%. The upper limit is preferably 0.05% or less, more preferably 0.03% or less.

Nb:0.005〜0.07%
Nbは母材の強度を上昇させると同時に組織の微細化を通して母材の低温靱性を改善する効果がある。これらの効果を得るには0.005%以上含有させる必要がある。一方、0.07%を超えて過剰に含有させると粗大な炭化物、窒化物を形成して靱性を低下させる。したがって、上限は0.07%とした。強度と靱性のバランスの観点より、好ましい上限は0.05%、さらに好ましくは0.03%である。
Nb: 0.005 to 0.07%
Nb has the effect of increasing the strength of the base material and improving the low temperature toughness of the base material through refinement of the structure. In order to obtain these effects, it is necessary to contain 0.005% or more. On the other hand, if the content exceeds 0.07%, coarse carbides and nitrides are formed and the toughness is lowered. Therefore, the upper limit was made 0.07%. From the viewpoint of balance between strength and toughness, the preferable upper limit is 0.05%, more preferably 0.03%.

フェライト組織分率:50%以下
上述したように、本発明鋼において570MPa以上の強度を確保するためには、上記のような化学組成とし、さらに適切なフェライト組織分率を確保する必要がある。時効析出による強化を図ることができるためにフェライト組織分率は50%以下でよい。
Ferrite structure fraction: 50% or less As described above, in order to ensure the strength of 570 MPa or more in the steel of the present invention, it is necessary to have the above-described chemical composition and further ensure an appropriate ferrite structure fraction. Since strengthening by aging precipitation can be achieved, the ferrite structure fraction may be 50% or less.

本発明の鋼材は、金属組織がフェライト組織以外は、ベイナイトまたはマルテンサイト組織である。この場合、靱性改善の理由からベイナイト組織のラスの平均長さは50μm以下であるのが好ましい。靱性改善の観点からは、ベイナイトラスの長さは短ければ短いほど良く、それを実現するためには一般的には、例えばオーステナイトの未再結晶温度域で強圧下圧延をすればよい。しかしながら、本発明鋼材のように比較的焼入性の低い鋼では、ベイナイトの平均ラス長さを15μm以下にしようとすると、強圧下圧延によって、同時に初析αの生成頻度を高めることとなり、ベイナイトとマルテンサイトの組織分率が不足する。ベイナイトとマルテンサイトの組織分率が不足すると所望の強度が確保されないため、ベイナイトの平均ラス長さは15μm以上に調整するのがよい。   The steel material of the present invention has a bainite or martensite structure except that the metal structure is a ferrite structure. In this case, for the purpose of improving toughness, the average length of the lath of the bainite structure is preferably 50 μm or less. From the viewpoint of improving toughness, the shorter the length of the bainite lath, the better. In order to achieve this, in general, rolling under high pressure may be performed in a non-recrystallization temperature range of austenite, for example. However, in a steel with a relatively low hardenability like the steel of the present invention, if the average lath length of bainite is set to 15 μm or less, the generation frequency of pro-eutectoid α is simultaneously increased by rolling under strong rolling. And the martensite organization fraction is insufficient. If the bainite and martensite structure fractions are insufficient, the desired strength cannot be ensured. Therefore, the average lath length of bainite is preferably adjusted to 15 μm or more.

表1に示す化学組成を有する33種の鋼を180kg真空溶解炉を用いて溶製した。表中記号1〜12は本発明例 、記号X1〜X7は比較例である。   33 types of steel having chemical compositions shown in Table 1 were melted using a 180 kg vacuum melting furnace. In the table, symbols 1 to 12 are examples of the present invention, and symbols X1 to X7 are comparative examples.

Figure 0004736374
Figure 0004736374

これらの各180kg鋼塊を鍛造して厚さ160mmの鋼片とした。次いで、表2に示す各温度に加熱して熱間圧延して、各温度で仕上げて冷却した。その後、これらの表に示す600〜630℃の温度範囲で1時間保持して焼戻し熱処理を施し、板厚40mmの鋼板とした。   These 180 kg steel ingots were forged into steel pieces having a thickness of 160 mm. Subsequently, it heated to each temperature shown in Table 2, hot-rolled, finished at each temperature, and cooled. Thereafter, the steel plate was held at a temperature range of 600 to 630 ° C. shown in these tables for 1 hour and subjected to tempering heat treatment to obtain a steel plate having a thickness of 40 mm.

Figure 0004736374
Figure 0004736374

このようにして得た各鋼板の板厚中心部から、JIS4号引張試験片とJIS Z 2202に規定の幅10mmのVノッチシャルピー衝撃試験片をそれぞれ圧延方向と平行な方向で採取し、母材の機械的性質を調査した。また、各鋼板についてナイタルで腐食して組織を現出させた後、光学顕微鏡により20視野を観察して面積率を求め、フェライト組織分率を調べた。   JIS No. 4 tensile test pieces and V-notch Charpy impact test pieces with a width of 10 mm specified in JIS Z 2202 were sampled in the direction parallel to the rolling direction from the center of the thickness of each steel plate thus obtained. The mechanical properties of were investigated. Moreover, after corroding each steel plate with the nitrite to reveal the structure, the area ratio was obtained by observing 20 fields of view with an optical microscope, and the ferrite structure fraction was examined.

さらに、各鋼板を大入熱溶接した場合の靭性を調べるため、入熱300kJ/mmの条件にてエレクトロガスアーク溶接をおこない、溶接ボンド部にノッチを成形できるように上記と同じシャルピー衝撃試験片採取し、溶接部のボンドの吸収エネルギーを測定した。   Furthermore, in order to investigate the toughness when each steel plate is subjected to high heat input welding, the same Charpy impact test piece as above was taken so that electrogas arc welding was performed under conditions of heat input of 300 kJ / mm and a notch could be formed in the weld bond part. Then, the absorbed energy of the bond in the weld was measured.

表2に試験結果をまとめて示す。   Table 2 summarizes the test results.

なお、母材の強度と靭性の目標はそれぞれYSで450MPa以上、TSで570MPa以上、vTsを−40℃以下とした。また、シャルピー衝撃試験において溶接ボンド部の吸収エネルギーの目標値は−10℃で100J以上とした。   The base material strength and toughness were set to 450 MPa or higher for YS, 570 MPa or higher for TS, and vTs of −40 ° C. or lower. Further, in the Charpy impact test, the target value of the absorbed energy of the weld bond portion was set to 100 J or more at −10 ° C.

表2から明らかなように、本発明例1〜12は全てTSで570MPa以上、YSで450MPa以上の強度と−40℃以下のvTsが得られている。また300kJ/mmの溶接にて−10℃でのエネルギーが100J以上となった。
成分のいずれかが本発明で規定する範囲から外れた比較例の記号X1〜X7は、強度、靭性、溶接性の少なくとも1つが目標に達していなかった。
As is clear from Table 2, Examples 1 to 12 of the present invention all have strengths of 570 MPa or more in TS, 450 MPa or more in YS, and vTs of −40 ° C. or less. Further, the energy at −10 ° C. was 100 J or more by welding at 300 kJ / mm.
As for the symbols X1 to X7 of Comparative Examples in which any of the components deviated from the range defined in the present invention, at least one of strength, toughness, and weldability did not reach the target.

TSが570MPa以上、YSが450MPa以上、JIS Z 2202 に規定の10mm幅、Vノッチシャルピー衝撃試験片を用いた衝撃試験でのvTsが−40℃以下で、300kJ/mmでの溶接時の−10℃での吸収エネルギーが100J以上の鋼が得られ、種々の溶接構造物に用いることができる。
TS of 570 MPa or more, YS of 450 MPa or more, 10 mm width as defined in JIS Z 2202, vTs in an impact test using a V-notch Charpy impact test piece is −40 ° C. or less, and −10 when welding at 300 kJ / mm Steel having an absorption energy at 100 ° C. of 100 J or more can be obtained and used for various welded structures.

Claims (2)

質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:0.5〜2%、Cu:0.8超〜2%、Ti:0.005〜0.025%、N:0.002〜0.008%、sol.Al:0.002〜0.05%、O(酸素):0.0035%以下を含有し、残部はFeおよび不純物からなり、金属組織がベイナイトまたはマルテンサイト組織の50%以上とフェライト組織50%以下からなるものであることを特徴とする、570MPa以上の引張強度を有する超大入熱溶接特性に優れた鋼材。 In mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 0.5-2%, Cu: more than 0.8-2%, Ti: 0.005 -0.025%, N: 0.002-0.008%, sol.Al: 0.002-0.05%, O (oxygen): 0.0035% or less, with the balance being Fe and impurities A steel material excellent in super-high heat input welding characteristics having a tensile strength of 570 MPa or more , wherein the metal structure is composed of 50% or more of a bainite or martensite structure and 50% or less of a ferrite structure. Feの一部に代えて、質量%で、Ni:0.2〜2%、Cr:0.05〜1%、Mo:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.07%のうちの1種以上を含有することを特徴とする請求項1に記載の570MPa以上の引張強度を有する超大入熱溶接特性に優れた鋼材。 Instead of a part of Fe, in mass%, Ni: 0.2-2%, Cr: 0.05-1%, Mo: 0.05-1%, V: 0.01-0.1%, Nb: One or more of 0.005 to 0.07% are contained, The steel material excellent in the super-high heat input welding property which has the tensile strength of 570 Mpa or more of Claim 1 characterized by the above- mentioned.
JP2004230046A 2004-08-06 2004-08-06 Steel material with super large heat input welding characteristics Expired - Fee Related JP4736374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230046A JP4736374B2 (en) 2004-08-06 2004-08-06 Steel material with super large heat input welding characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230046A JP4736374B2 (en) 2004-08-06 2004-08-06 Steel material with super large heat input welding characteristics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001083919A Division JP3852295B2 (en) 2001-03-23 2001-03-23 Steel with excellent super heat input welding characteristics

Publications (2)

Publication Number Publication Date
JP2004360074A JP2004360074A (en) 2004-12-24
JP4736374B2 true JP4736374B2 (en) 2011-07-27

Family

ID=34056448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230046A Expired - Fee Related JP4736374B2 (en) 2004-08-06 2004-08-06 Steel material with super large heat input welding characteristics

Country Status (1)

Country Link
JP (1) JP4736374B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520463B (en) * 2013-08-13 2016-03-30 新日铁住金株式会社 Steel plate
KR102185809B1 (en) 2016-02-03 2020-12-02 제이에프이 스틸 가부시키가이샤 High heat input welding steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125812A (en) * 1988-07-14 1990-05-14 Nippon Steel Corp Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH08209287A (en) * 1995-02-03 1996-08-13 Nippon Steel Corp Steel for high strength line pipe having low yield ratio and excellent in low temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125812A (en) * 1988-07-14 1990-05-14 Nippon Steel Corp Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH08209287A (en) * 1995-02-03 1996-08-13 Nippon Steel Corp Steel for high strength line pipe having low yield ratio and excellent in low temperature toughness

Also Published As

Publication number Publication date
JP2004360074A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP5699798B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method
JP2001335884A (en) High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP3852295B2 (en) Steel with excellent super heat input welding characteristics
JP4736374B2 (en) Steel material with super large heat input welding characteristics
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP7506306B2 (en) High-strength steel plate for large heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees