JP4735766B2 - Oriented electrical steel sheet - Google Patents
Oriented electrical steel sheet Download PDFInfo
- Publication number
- JP4735766B2 JP4735766B2 JP2010171569A JP2010171569A JP4735766B2 JP 4735766 B2 JP4735766 B2 JP 4735766B2 JP 2010171569 A JP2010171569 A JP 2010171569A JP 2010171569 A JP2010171569 A JP 2010171569A JP 4735766 B2 JP4735766 B2 JP 4735766B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- precipitate
- iron loss
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 59
- 239000002244 precipitate Substances 0.000 claims description 59
- 239000010959 steel Substances 0.000 claims description 59
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 22
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 110
- 238000000137 annealing Methods 0.000 description 66
- 238000000034 method Methods 0.000 description 52
- 229910052742 iron Inorganic materials 0.000 description 48
- 238000010008 shearing Methods 0.000 description 34
- 238000001953 recrystallisation Methods 0.000 description 22
- 239000013078 crystal Substances 0.000 description 18
- 230000006866 deterioration Effects 0.000 description 18
- 238000001556 precipitation Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 15
- 238000005520 cutting process Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 238000000746 purification Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 239000003112 inhibitor Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 229910052839 forsterite Inorganic materials 0.000 description 6
- 238000011835 investigation Methods 0.000 description 6
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005475 siliconizing Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、変圧器の鉄心材料等に用いて好適な方向性電磁鋼板に関し、特に剪断加工を施した場合における磁気特性の劣化を軽減しようとするものである。 The present invention relates to a grain-oriented electrical steel sheet suitable for use as a core material of a transformer, and the like, particularly to reduce deterioration of magnetic properties when shearing is performed.
電磁鋼板は、各種変圧器やモータ等の鉄心として広く用いられている材料であり、特に方向性電磁鋼板と呼ばれるものは、その結晶粒の方位がGoss方位と呼ばれる{110}<001>方位に集積している。 Electrical steel sheet is a material that is widely used as iron cores for various transformers and motors. Especially, what is called grain-oriented electrical steel sheet has a {110} <001> orientation whose crystal grain orientation is called the Goss orientation. Accumulated.
このような方向性電磁鋼板を製造するに当っては、インヒビターと呼ばれる析出物を用いて、仕上焼鈍中にGoss方位を有する結晶粒を二次再結晶させることが一般的な技術として使用されている。
例えば、上記のインヒビター成分として、特許文献1にはAlN、MnSを使用する方法が、また特許文献2にはMnS、MnSeを使用する方法がそれぞれ開示され工業的に使用されている。さらに最近では、特許文献3において提案されているように、インヒビター成分を含有しない鋼板であっても、Goss方位結晶粒を二次再結晶の作用によって発達させる技術がある。
In producing such grain-oriented electrical steel sheets, it is a common technique to recrystallize grains having Goss orientation during finish annealing using precipitates called inhibitors. Yes.
For example, Patent Document 1 discloses a method using AlN and MnS, and Patent Document 2 discloses a method using MnS and MnSe as the above inhibitor components, which are used industrially. More recently, as proposed in Patent Document 3, there is a technique for developing Goss-oriented crystal grains by the action of secondary recrystallization even for a steel sheet that does not contain an inhibitor component.
特許文献3に記載の技術は、インヒビター成分等の不純物を極力排除することで、一次再結晶を生じる時の、結晶粒界が持っている粒界エネルギーの粒界方位差角依存性を顕在化させて、インヒビターを用いなくても、Goss方位を有する粒を二次再結晶させる技術である。
この方法では、インヒビター成分が不要なため、インヒビター成分を純化する工程が不必要となる。また、純化焼鈍を高温化する必要がなく、インヒビター成分の鋼中微細分散工程が不必要なため、微細分散のために必須であった高温スラブ加熱も不要となるなど、工程およびコスト面でも、また設備等のメンテナンス面でも大きなメリットを有する方法である。
The technology described in Patent Document 3 reveals the grain boundary orientation angle dependence of the grain boundary energy possessed by the grain boundary when primary recrystallization occurs by eliminating impurities such as inhibitor components as much as possible. Thus, the secondary recrystallization of grains having Goss orientation is possible without using an inhibitor.
In this method, since the inhibitor component is unnecessary, a step of purifying the inhibitor component is unnecessary. In addition, there is no need to increase the temperature of the purification annealing, and the fine dispersion step in the steel of the inhibitor component is unnecessary, so the high-temperature slab heating that is essential for fine dispersion is no longer necessary. In addition, this method has a great merit in terms of maintenance of facilities and the like.
方向性電磁鋼板の諸特性のなかでも、鉄損特性は製品のエネルギーロスに直接つながる特性であり、最も重要とされる。その鉄損特性を改善するためには、W17/50(励磁磁束密度1.7T、励磁周波数50Hzにおけるエネルギー損失)に代表される値を低減することが良いとされる。
また、方向性電磁鋼板が使用されている変圧器においても、この鉄損特性は重視されており、変圧器を作製した後でも、実機での鉄損特性を管理するために、その測定を定期的に実施する必要がある。
Among the characteristics of grain-oriented electrical steel sheets, the iron loss characteristic is the characteristic that directly leads to the energy loss of the product and is regarded as the most important. In order to improve the iron loss characteristic, it is preferable to reduce a value represented by W 17/50 (energy loss at excitation magnetic flux density 1.7 T,
Moreover, even in transformers that use grain-oriented electrical steel sheets, this iron loss characteristic is regarded as important, and even after the transformer is manufactured, its measurement is performed periodically in order to manage the iron loss characteristics in the actual machine. Need to be implemented.
一般に、電磁鋼板の製品はシート状になっており、変圧器を作製する際には、所定の大きさに切断加工する。切断加工の方法としては、はさみのように2枚の刃を上下から押し付け合う(最終的に刃同士はすれ違う)剪断加工(スリット加工とも呼ばれる)方法が一般的である。
このように剪断された鋼板は、その加工面が剪断力により引きちぎられ、鋼板内に歪が多量に導入されることになる。そのため、剪断された電磁鋼板は、導入歪に由来する磁気特性の劣化が生じやすく問題となっていた。
Generally, products of electromagnetic steel sheets are in sheet form, and are cut into a predetermined size when producing a transformer. As a cutting method, a shearing method (also referred to as slit processing) in which two blades are pressed from above and below like scissors (finally the blades pass each other) is generally used.
The processed surface of the steel plate thus sheared is torn off by the shearing force, and a large amount of strain is introduced into the steel plate. For this reason, the sheared electrical steel sheet has been a problem in that it tends to cause deterioration of magnetic properties due to the introduced strain.
この剪断加工に起因した磁気特性劣化を低減する方法として、剪断加工後に700〜900℃で数時間焼鈍する歪取焼鈍を適用する場合がある。しかし、歪取焼鈍を行うのは、大きさ(長さ)が500mm以下の小さい変圧器に限られ、数mの大きさの大型変圧器用の鉄心等に
は適用できなかった。
それ故、数mの大きさの大型変圧器用電磁鋼板においても、剪断加工を行った際の磁気特性劣化を低減できる技術が望まれていた。
As a method of reducing the deterioration of the magnetic characteristics due to the shearing process, there is a case where a strain relief annealing is performed in which annealing is performed at 700 to 900 ° C. for several hours after the shearing process. However, strain relief annealing is limited to small transformers with a size (length) of 500 mm or less, and cannot be applied to iron cores for large transformers with a size of several meters.
Therefore, there is a demand for a technique that can reduce the deterioration of magnetic properties when shearing is performed even in a magnetic steel sheet for large transformers having a size of several meters.
発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、Nb等の元素を微量含有させることによって、前記したような剪断加工の際の鉄損劣化を大幅に低減できることを見出した。
以下、本発明を成功に至らしめた実験について説明する。
As a result of intensive investigations to solve the above problems, the inventors have found that iron loss deterioration during shearing as described above can be significantly reduced by containing a small amount of an element such as Nb. .
Hereinafter, experiments that have made the present invention successful will be described.
<実験1>
質量%で、Si:3.30〜3.34%、Mn:0.06〜0.07%、Sb:0.025〜0.028%およびCr:0.03〜0.04%、を含有し、かつ、質量ppmで、Nbの添加量を各々4ppm(不可避的不純物レベル)、22ppm、48ppm、65ppm、90ppmおよび210ppmとし、残部Feおよび不可避的不純物からなる方向性電磁鋼板を、常法に従い、再結晶焼鈍(一次再結晶焼鈍)から最終仕上焼鈍(純化焼鈍)までの一連の製造方法で作製した。最終仕上焼鈍(純化焼鈍)の際には、最高到達鋼板温度を1200℃とすることで、析出物形成元素(Nb)を一旦固溶させ、その後、900℃から500℃までの冷却速度を平均で20℃/hとして、常温まで降温した。
<Experiment 1>
In mass%, Si: 3.30 to 3.34%, Mn: 0.06 to 0.07%, Sb: 0.025 to 0.028% and Cr: 0.03 to 0.04%, and in addition to mass ppm, the amount of Nb added was 4 ppm ( Inevitable impurity level), 22ppm, 48ppm, 65ppm, 90ppm and 210ppm, the grain-oriented electrical steel sheet consisting of the remaining Fe and unavoidable impurities, from recrystallization annealing (primary recrystallization annealing) to final finish annealing (purification) It was produced by a series of manufacturing methods up to (annealing). At the time of final finish annealing (purification annealing), by setting the maximum steel sheet temperature to 1200 ° C, the precipitate-forming element (Nb) is once dissolved, and then the cooling rate from 900 ° C to 500 ° C is averaged The temperature was lowered to room temperature at 20 ° C / h.
このようにして得られた方向性電磁鋼板を、エプスタイン試験片と呼ばれる30mm×280mmサイズに切断した。このとき、ワイヤーカッターで、ゆっくりと鋼に歪が入らないように切断した場合と、前述したように、一般的な方向性電磁鋼板の切断方法である上刃と下刃を用いる剪断機により切断した場合との2通りの試験片を用意した。得られたサンプルの鉄損をJIS C 2550に記載の方法に従って測定した。 The grain-oriented electrical steel sheet thus obtained was cut into a 30 mm × 280 mm size called an Epstein test piece. At this time, when cutting with a wire cutter slowly so as not to strain the steel, as described above, cutting with a shearing machine using an upper blade and a lower blade, which is a general cutting method of grain-oriented electrical steel sheets Two kinds of test pieces were prepared. The iron loss of the obtained sample was measured according to the method described in JIS C 2550.
図1に、剪断機で切断したサンプルの鉄損値から、ワイヤーカッターで切断したサンプルの鉄損値を引いた値をΔW(以下本発明について同じ)とし、このΔWと、鋼中のNbの含有量との関係について調べた結果を示す。
剪断機で切断した場合は、前述したとおり、鋼板に歪が残存し鉄損が劣化した。一方、ワイヤーカッターによる切断は、時間はかかったものの、ほとんど歪を鋼板に残存させることなく切断できた。
従って、同図に示したΔWは、歪残存により劣化した鉄損量を、ほぼ示していると考えられる。それ故、同図より、Nbを含有させることで剪断により劣化する鉄損量を低減できることが分かる。
In FIG. 1, the value obtained by subtracting the iron loss value of the sample cut with the wire cutter from the iron loss value of the sample cut with the shearing machine is ΔW (hereinafter the same for the present invention), and this ΔW and the Nb in the steel The result of having investigated about the relationship with content is shown.
When cut with a shearing machine, as described above, strain remained in the steel sheet and the iron loss deteriorated. On the other hand, although cutting with a wire cutter took time, it was able to cut with almost no strain remaining on the steel sheet.
Therefore, it is considered that ΔW shown in the figure substantially indicates the iron loss amount deteriorated due to residual strain. Therefore, it can be seen from the figure that the amount of iron loss deteriorated by shearing can be reduced by containing Nb.
上記したように、Nbを含んだサンプルが剪断による鉄損劣化を低減できた理由は必ずしも明らかでないが、発明者らは下記のように考えている。
今回の実験で用いたNb含有材の組織調査を行ったところ、Nbは析出物を形成して、鋼中に分散していることが明らかとなった。その析出物の径は、小さい物で0.02μm程度、大きい物で3μm程度であった。通常の方向性電磁鋼板には、このような鋼中の析出物は、ほとんど存在しないことから、この析出物の存在が剪断による鉄損劣化の低減に寄与したのではないかと推測される。
As described above, the reason why the sample containing Nb was able to reduce the iron loss deterioration due to shearing is not necessarily clear, but the inventors consider as follows.
A structural investigation of the Nb-containing material used in this experiment revealed that Nb formed precipitates and was dispersed in the steel. The diameter of the precipitate was about 0.02 μm for the small one and about 3 μm for the large one. In ordinary grain-oriented electrical steel sheets, there are almost no precipitates in such steel, and it is assumed that the presence of these precipitates contributed to the reduction of iron loss deterioration due to shearing.
一方、剪断により鉄損が劣化するのは、剪断した箇所において歪が蓄積するためである。ここに、歪の蓄積とは、鉄の結晶粒内において、鉄の原子が規則正しく配列されているところに、外部からの応力等が作用して、鉄の原子の配列が、歪むもしくは不規則になる現象である。
しかし、この規則正しく配列している鉄の原子の中に、上記したような析出物が存在すると、剪断加工のような応力がそこに加わって切断される際には、この析出物の周辺に応力集中が生じ、鉄の原子の配列をゆがめる前に亀裂が生じることが考えられる。この機構により上記した歪の蓄積が緩和されると考えれば、上記した現象についての説明ができる。
On the other hand, the iron loss is deteriorated by shearing because strain accumulates at the sheared portion. Here, the accumulation of strain means that the iron atoms are regularly arranged in the iron crystal grains, the stress from the outside acts on the iron atoms and the iron atoms are distorted or irregularly arranged. It is a phenomenon.
However, if a precipitate such as the one described above exists in the regularly arranged iron atoms, when a stress such as shearing is applied to it and the material is cut, a stress is applied around the precipitate. It is possible that concentration occurs and cracks occur before the iron atom arrangement is distorted. If this mechanism is considered to reduce the accumulation of strain, the above phenomenon can be explained.
鋼板中に含有されているNbは、固溶状態と析出物を形成している状態の二種類が考えられるが、上述したとおり、析出物を形成することが重要であると考えられる。そこで、Nbを22質量ppm含有する試料について、Nb析出割合(全Nb含有量に対する析出物中に含まれるNbの含有量の割合)を調査した。 There are two types of Nb contained in the steel sheet, a solid solution state and a state in which precipitates are formed. As described above, it is considered important to form precipitates. Therefore, the Nb precipitation ratio (ratio of Nb content contained in the precipitate with respect to the total Nb content) was investigated for the sample containing 22 mass ppm of Nb.
Nb析出物中のNb析出割合を求めるには、まず全Nb含有量(鋼板における含有量:質量%)を求める必要がある。全Nb含有量は、JIS G 1237記載の誘導結合プラズマ発光分光分析方法(ICP発光分光分析方法)から求めることができる。なお、TaはJIS G 1236、VはJIS G 1221、ZrはJIS G 1232に記載の各方法で含有量が求められる。
一方、析出物中に含まれるNbの含有量(鋼板における含有量:質量%)は、鋼板を電解で溶かして析出物だけ捕捉(ろ過)し、その析出物の中のNb重量を測定し、電解されて減少した鋼板の重量と、その析出物の中のNb重量とから計算することができる。
このような析出物中に含まれるNbの含有量の定量値は、具体的に、以下の方法で求める。
まず、製品板を50mm×20mmの大きさに切断し、85℃に温めた10質量%HCl水溶液に2分間浸漬することで、製品のコーティングや被膜を除去する。その後、重量測定を行い、市販の電解液(10質量%AA液:10質量%アセチルアセトン−1質量%テトラメチルアンモニウムクロライド−メタノール)を用いて約1g程度電解されるまで電解を行う。さらに、電解に供した製品板表面に付着している析出物を剥離させるために、製品板をエタノール溶液に浸漬させて、超音波を付与する。
このエタノール溶液と前記の電解で使用した電解液の中には析出物が含まれており、これらを0.1μmメッシュのろ紙(nmオーダーの析出物まで捕捉可能)を用いてろ過するこ
とで析出物を捕捉する。ろ過後、ろ取された析出物をろ紙ごと白金るつぼに入れて700℃
で1時間加熱し、さらにNa2B4O7とNaCO3を加え900℃で15分間加熱する。これを一旦冷却した後、さらに1000℃で15分間加熱する。
るつぼの中は飴状に固まっているので、るつぼごと25質量%HCl水溶液に加え、そのまま約90℃で30分間加熱し、飴状の物質をすべて溶解する。この溶液をJIS G1237記載のICP発光分光分析方法で分析することにより、析出物の中のNb重量が求められる。
そして、このNb重量を、電解により減少した製品板(鋼板)の重量で除することにより、析出物中に含まれるNbの含有量(質量%)を求める。
このようにして求めた析出物中に含まれるNbの含有量(質量%)を、前記した全Nb含有量(質量%)で除することにより、Nb析出割合を求めることができる。
In order to obtain the Nb precipitation ratio in the Nb precipitate, it is first necessary to obtain the total Nb content (content in the steel sheet: mass%). The total Nb content can be determined from the inductively coupled plasma emission spectroscopic analysis method (ICP emission spectroscopic analysis method) described in JIS G 1237. In addition, content is calculated | required by each method as described in Ta for JIS G 1236, V for JIS G 1221, and Zr for JIS G 1232.
On the other hand, the content of Nb contained in the precipitate (content in the steel plate: mass%) is obtained by dissolving the steel plate by electrolysis and capturing (filtering) only the precipitate, and measuring the Nb weight in the precipitate, It can be calculated from the weight of the steel plate reduced by electrolysis and the Nb weight in the precipitate.
The quantitative value of the content of Nb contained in such a precipitate is specifically determined by the following method.
First, a product plate is cut into a size of 50 mm × 20 mm, and immersed in a 10% by mass HCl aqueous solution heated to 85 ° C. for 2 minutes to remove the product coating or film. Thereafter, the weight is measured, and electrolysis is performed using a commercially available electrolytic solution (10% by mass AA solution: 10% by mass acetylacetone-1% by mass tetramethylammonium chloride-methanol) until about 1 g is electrolyzed. Furthermore, in order to peel the deposit adhering to the product plate surface subjected to electrolysis, the product plate is immersed in an ethanol solution and ultrasonic waves are applied.
This ethanol solution and the electrolyte used in the above electrolysis contain precipitates, which are filtered by using 0.1 μm mesh filter paper (capable of capturing precipitates in the order of nm). To capture. After filtration, deposit the filtered precipitate together with filter paper in a platinum crucible at 700 ° C
Then, add Na 2 B 4 O 7 and NaCO 3 and heat at 900 ° C. for 15 minutes. After cooling this, it is further heated at 1000 ° C. for 15 minutes.
Since the crucible is hardened in a bowl shape, the crucible is added to a 25 mass% HCl aqueous solution and heated at about 90 ° C. for 30 minutes to dissolve all the bowl-like substances. By analyzing this solution by the ICP emission spectroscopic analysis method described in JIS G1237, the weight of Nb in the precipitate is obtained.
And this Nb weight is remove | divided by the weight of the product board (steel plate) decreased by electrolysis, and content (mass%) of Nb contained in a precipitate is calculated | required.
The Nb precipitation ratio can be obtained by dividing the Nb content (mass%) contained in the precipitate thus obtained by the total Nb content (mass%) described above.
前記試料におけるNb析出割合は65%であった。そこで、さらに調査を進めたところ、少なくとも全Nb含有量のうち、その10%が析出していることが、本発明の効果を発現するために必要であることが明らかとなった。 The Nb precipitation ratio in the sample was 65%. As a result of further investigations, it became clear that at least 10% of the total Nb content was deposited in order to exhibit the effects of the present invention.
前述したメカニズムからは、Nbのような析出物形成元素が鋼中に残存する量が多いほど、ΔW特性が良好であるように思えるが、析出物は加工前の素材自体の鉄損特性を劣化させる作用もある。従って、剪断加工による鉄損劣化が小さい範囲で、析出物量は少ないほうが好ましい。本実験では、Nb含有量が65質量ppm以上の素材では素材自体の鉄損が劣化していたことから、含有量は50質量ppm以下に抑える必要があると考えられる。 From the mechanism described above, it seems that the more the amount of precipitate-forming elements such as Nb remaining in the steel, the better the ΔW characteristic, but the precipitate deteriorates the iron loss characteristic of the material itself before processing. There is also an action to make. Therefore, it is preferable that the amount of precipitates is as small as possible in a range where iron loss deterioration due to shearing is small. In this experiment, since the iron loss of the material itself was deteriorated in a material having an Nb content of 65 ppm by mass or more, it is considered that the content needs to be suppressed to 50 ppm by mass or less.
続いて、ΔWに及ぼす2次再結晶粒の結晶粒径の影響について調査した。これは、結晶粒界が多数存在することによっても、上記したような剪断による歪蓄積が緩和されると予想され、したがって、結晶粒径が小さく粒界が多い場合は、そもそも剪断加工による鉄損劣化が小さく、上述の析出物による歪蓄積緩和メカニズムが効果を発現しない可能性があると考えられるからである。 Subsequently, the influence of the crystal grain size of secondary recrystallized grains on ΔW was investigated. This is because the strain accumulation due to shearing as described above is expected to be alleviated by the presence of a large number of crystal grain boundaries. Therefore, when the crystal grain size is small and there are many grain boundaries, the iron loss due to shearing is essentially the case. This is because the deterioration is small and the strain accumulation mitigation mechanism due to the precipitates described above may not be effective.
<実験2>
質量%で、C:0.035%、Si:3.31%、Mn:0.13%、Sb:0.039%、Cr:0.05%、P:0.012%およびN:42質量ppm、S:31質量ppmを含有し、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.7mmの厚さに仕上げた。ついで、1000℃、15秒間の熱延板焼鈍を施した後、冷間圧延により0.30mmの板厚に仕上げた。
さらに、50体積%N2-50体積%H2湿潤雰囲気中にて、800〜880℃の温度範囲で60秒間の均熱条件で、再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、1050〜1230℃の温度範囲で10時間保定する純化焼鈍を行った。
再結晶焼鈍と純化焼鈍の温度を変更したのは、純化焼鈍で起こる2次再結晶の結晶粒径を変化させるためである。
<Experiment 2>
In mass%, C: 0.035%, Si: 3.31%, Mn: 0.13%, Sb: 0.039%, Cr: 0.05%, P: 0.012% and N: 42 mass ppm, S: 31 mass ppm, the balance A steel slab composed of Fe and inevitable impurities was produced by continuous casting, heated at 1250 ° C., and then finished to a thickness of 2.7 mm by hot rolling. Then, after hot-rolled sheet annealing at 1000 ° C. for 15 seconds, the sheet was finished to a thickness of 0.30 mm by cold rolling.
Furthermore, after recrystallization annealing in a 50 volume% N 2 -50 volume% H 2 humidified atmosphere at a temperature range of 800 to 880 ° C. for 60 seconds, annealing separation mainly composed of MgO After applying the agent, purification annealing was performed for 10 hours in the temperature range of 1050 to 1230 ° C.
The reason for changing the temperature of recrystallization annealing and purification annealing is to change the crystal grain size of secondary recrystallization that occurs in purification annealing.
次に、リン酸マグネシウムとほう酸を主体とした張力付与コーティングの形成を兼ねた平坦化焼鈍を、900℃、15秒間の条件で行った。さらに、前記したエプスタイン試験片(30mm×280mm)サイズに切断した。このとき、実験1と同様に、ワイヤーカッター切断と、剪断機による切断とを行った。得られたサンプルの鉄損を、JIS C 2550に記載の方法に従い測定した。 Next, flattening annealing was performed under the conditions of 900 ° C. for 15 seconds, which also served to form a tension-imparting coating mainly composed of magnesium phosphate and boric acid. Furthermore, it cut | disconnected to the above-mentioned Epstein test piece (30 mm x 280 mm) size. At this time, similarly to Experiment 1, wire cutter cutting and shearing were performed. The iron loss of the obtained sample was measured according to the method described in JIS C 2550.
その後、酸洗により地鉄を露出させ、2次再結晶粒の結晶粒径を測定した。結晶粒径は、各条件についてエプスタイン試験片4枚分の粒径を測定し、それを平均した。さらに地鉄の成分分析を行ったところ、質量%で、C:0.0018%、Si:3.30%、Mn:0.13%、Sb:0.039%、Cr:0.05%、P:0.011%、その他元素は検出限界以下であった。また、前述した方法で求めたΔWと結晶粒径の関係を図2に示す。 Thereafter, the base iron was exposed by pickling, and the crystal grain size of the secondary recrystallized grains was measured. For the crystal grain size, the grain sizes of four Epstein test pieces were measured for each condition and averaged. In addition, when the component analysis of the base iron was conducted, it was mass%, C: 0.0018%, Si: 3.30%, Mn: 0.13%, Sb: 0.039%, Cr: 0.05%, P: 0.011%, and other elements were detected. It was the following. Further, FIG. 2 shows the relationship between ΔW obtained by the above-described method and the crystal grain size.
この実験では、Nbのような析出物形成元素が残っていないため、実験1で得られた効果が発揮されず、したがって、平均粒径が大きい場合はΔWが大きい結果となり、平均粒径が小さくなるとΔWが小さくなる結果となった。言い換えると、Nb等の析出物を形成する元素の添加によるΔW低減効果は、2次再結晶粒の平均粒径が5mm以上の場合にその効果を発揮すると言える。 In this experiment, since no precipitate-forming element such as Nb remains, the effect obtained in Experiment 1 is not exhibited. Therefore, when the average particle size is large, ΔW is large, and the average particle size is small. As a result, ΔW was reduced. In other words, it can be said that the ΔW reduction effect due to the addition of an element that forms a precipitate such as Nb is exhibited when the average secondary grain size is 5 mm or more.
以上の実験から、発明者らは、2次再結晶粒の粒径が大きい方向性電磁鋼板の最終製品板に、Nbのような元素を10〜50質量ppm含有させ、かつ少なくともその10%を析出物の形で存在させることによって、剪断加工時における鉄損劣化を抑制できることを知見した。
本発明は上記知見に立脚するものである。
From the above experiments, the inventors have included 10-50 mass ppm of an element such as Nb in the final product plate of the grain-oriented electrical steel sheet having a large secondary recrystallized grain size, and at least 10% of the element is contained. It was found that the iron loss deterioration during the shearing process can be suppressed by making it exist in the form of precipitates.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.005%以下、Si:1.0〜8.0%およびMn:0.005〜1.0%を含有し、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10〜50質量ppm含有し、残部Feおよび不可避的不純物からなり、これらNb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、かつ該析出物の直径(円相当径)が平均で0.02〜3μmであり、さらに鋼板の2次再結晶粒の平均粒径が5mm以上であることを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.005% or less, Si: 1.0 to 8.0% and Mn: 0.005 to 1.0%, and one or more selected from Nb, Ta, V and Zr in total 10 Containing ˜50 ppm by mass, consisting of the balance Fe and inevitable impurities. These Nb, Ta, V and Zr are present as precipitates, and the diameter of the precipitate (equivalent circle diameter) is A grain oriented electrical steel sheet having an average of 0.02 to 3 μm, and further having an average grain size of secondary recrystallized grains of the steel sheet of 5 mm or more.
2.質量%で、さらにNi:0.010〜1.50%、Cr:0.01〜0.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%およびMo:0.005〜0.100%のうちから選んだ少なくとも一種を含有することを特徴とする前記1に記載の方向性電磁鋼板。 2. Further, Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 The grain-oriented electrical steel sheet according to 1 above, containing at least one selected from ˜0.50% and Mo: 0.005 to 0.100%.
3.鋼板表面に、該鋼板の圧延直角方向に対して15°以内の角度で圧延方向と交差し、幅:50〜1000μm 、深さ:10〜50μm の直線状または破線状の溝を有することを特徴とする前記1または2に記載の方向性電磁鋼板。 3. The steel plate has a straight or broken line-shaped groove having a width of 50 to 1000 μm and a depth of 10 to 50 μm that intersects the rolling direction at an angle of 15 ° or less with respect to the direction perpendicular to the rolling direction of the steel plate. The grain-oriented electrical steel sheet according to 1 or 2 above.
本発明によれば、方向性電磁鋼板の剪断加工に起因した磁気特性劣化を効果的に抑制することができ、エネルギー損失の少ない変圧器用の鉄心を作製することができる。 ADVANTAGE OF THE INVENTION According to this invention, the magnetic characteristic deterioration resulting from the shearing process of a grain-oriented electrical steel sheet can be suppressed effectively, and the iron core for transformers with little energy loss can be produced.
以下、本発明を具体的に説明する。
まず、本発明において鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、鋼板成分における%表示およびppm表示は、特に断らない限り、それぞれ質量%および質量ppmを表すものとする。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, the% display and ppm display in a steel plate component shall represent the mass% and the mass ppm, respectively.
C:0.005%以下
Cは、鋼中に不可避的に混入する元素であるが、磁気時効による磁気特性劣化が発生するため極力低減することが望ましい。しかし、完全に除去することは困難であり、製造コスト面からも0.005%以下であれば許容される。好ましくは0.002%以下である。C含有量の下限をとくに限定すべき理由はないが、工業的にはCは零を超えて含まれる。
C: 0.005% or less C is an element inevitably mixed in steel, but it is desirable to reduce it as much as possible because magnetic property deterioration occurs due to magnetic aging. However, it is difficult to remove completely, and 0.005% or less is acceptable from the viewpoint of manufacturing cost. Preferably it is 0.002% or less. Although there is no reason to specifically limit the lower limit of the C content, industrially, C is contained exceeding zero.
Si:1.0〜8.0%
Siは、最終製品板において、鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、1.0%未満ではその効果に乏しい。一方、8.0%を超えた場合には、鋼板の飽和磁束密度が顕著に低下する。したがって、Siは1.0〜8.0%に限定する。Si含有量の好ましい下限は3.0%である。またSi含有量の好ましい上限は3.5%である。
Si: 1.0-8.0%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss in the final product plate, but its effect is poor at less than 1.0%. On the other hand, when it exceeds 8.0%, the saturation magnetic flux density of a steel plate falls remarkably. Therefore, Si is limited to 1.0 to 8.0%. A preferable lower limit of the Si content is 3.0%. Moreover, the upper limit with preferable Si content is 3.5%.
Mn:0.005〜1.0%
Mnは、熱間圧延時の加工性を良くするために必要な元素であるが、添加量が0.005%
未満では加工性改善効果に乏しい。一方、1.0%を超えると二次再結晶が不安定になり磁
気特性が劣化する。したがって、Mnは0.005〜1.0%に限定する。Mn含有量の好ましい下限は0.02%である。またMn含有量の好ましい上限は0.20%である。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving workability during hot rolling, but the amount added is 0.005%.
If it is less than 1, workability improvement effect is poor. On the other hand, if it exceeds 1.0%, secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, Mn is limited to 0.005 to 1.0%. The minimum with preferable Mn content is 0.02%. Moreover, the upper limit with preferable Mn content is 0.20%.
本発明では、析出物形成元素として、Nb、Ta、VおよびZrのうちから選んだ1種または2種以上(以下「Nb等」と呼ぶ)を合計で、10〜50ppmの範囲で含有させることが不可欠である。というのは、Nb等が合計で10ppm未満では、本発明の最大の特徴である、鉄損改善のための析出物が充分に生成しない。一方、Nb等が合計で50ppmを越えると、前述したとおり、素材自体の鉄損特性が劣化してしまうため、50ppmをその上限とする。好ましくは、10〜30ppmの範囲である。 In the present invention, as a precipitate forming element, one or more selected from Nb, Ta, V and Zr (hereinafter referred to as “Nb etc.”) are contained in a total range of 10 to 50 ppm. Is essential. This is because when Nb and the like are less than 10 ppm in total, precipitates for improving iron loss, which is the greatest feature of the present invention, are not sufficiently formed. On the other hand, if Nb and the like exceed 50 ppm in total, the iron loss characteristics of the material itself deteriorate as described above, so 50 ppm is set as the upper limit. Preferably, it is the range of 10-30 ppm.
また、上記したNb等の析出物の存在は10%以上であって、その析出物の平均径(円相
当径)は0.02〜3μmの範囲とすることが必要である。平均径が0.02μm未満であると、析出物が小さすぎて応力集中が起こりにくくなる。一方、3μmを超えると、析出物の存在頻度(個数)が減少して、応力集中が起こる箇所が少なくなる。好ましい析出物の平均径は0.05〜3μmである。より好ましい下限は0.12μm、さらに好ましい下限は0.33μmである。また、より好ましい上限は1.2μm、さらに好ましい上減は0.78μmである。
Nb等の析出物の析出の割合は 20%以上であることが好ましく、31%以上であることがより好ましい。さらに好ましくは48%以上である。上限は定める必要が無く、100%析出していても問題はない。
Nb等の析出物の平均径は、得られたサンプルの断面を走査型電子顕微鏡で観察し、10000倍程度の倍率で10視野程度撮影し、画像解析により円相当径の平均を求めることが好ましい。また、析出物の割合(析出割合)は実験1に記載した方法で測定することができる。
析出物形成元素としてはNb、VおよびZrから選んだ1種又は2種以上が熱間圧延時に鋼板の欠陥をつくりにくいという点から好ましい。とくにNbは、熱間圧延時の欠陥を低減できる点から好ましい。これらの場合にも、含有量は、必須範囲の10〜50ppmまたは好適範囲の10〜30ppmとし、好適な析出物直径および析出の割合も上記と同様である。
Further, the presence of precipitates such as Nb described above is 10% or more, and the average diameter (equivalent circle diameter) of the precipitates needs to be in the range of 0.02 to 3 μm. If the average diameter is less than 0.02 μm, the precipitates are too small to cause stress concentration. On the other hand, if it exceeds 3 μm, the frequency (number) of precipitates decreases and the number of places where stress concentration occurs is reduced. A preferable average diameter of the precipitate is 0.05 to 3 μm. A more preferred lower limit is 0.12 μm, and a still more preferred lower limit is 0.33 μm. Further, the more preferable upper limit is 1.2 μm, and the more preferable upper limit is 0.78 μm.
The rate of precipitation of precipitates such as Nb is preferably 20% or more, and more preferably 31% or more. More preferably, it is 48% or more. There is no need to set an upper limit, and there is no problem even if 100% is deposited.
The average diameter of the precipitates such as Nb is preferably obtained by observing the cross section of the obtained sample with a scanning electron microscope, photographing about 10 fields of view at a magnification of about 10000 times, and obtaining the average equivalent circle diameter by image analysis. . Further, the ratio of precipitates (precipitation ratio) can be measured by the method described in Experiment 1.
As the precipitate forming element, one or more selected from Nb, V, and Zr are preferable from the viewpoint that it is difficult to form defects in the steel sheet during hot rolling. Especially Nb is preferable from the point which can reduce the defect at the time of hot rolling. Also in these cases, the content is set to the essential range of 10 to 50 ppm or the preferable range of 10 to 30 ppm, and the preferable precipitate diameter and precipitation ratio are the same as above.
ここで、Nb等の析出物の径や析出の割合を調整するためには、純化焼鈍時における最高到達鋼板温度、およびその後の900℃から500℃までの冷却速度を制御することが有効である。というのは、これら析出物は、純化焼鈍を高温にして、一旦固溶させ、冷却する時に再析出をさせることによって、その径の大きさや析出割合を調整できるからである。
以上の現象においては、一般の析出現象と同様に、冷却速度が速い場合は、析出物量が少なくなり(一部固溶したまま残る)、かつ析出物の径も小さくなる。一方、冷却速度が遅い場合は、その逆の状態になる傾向にある。
Here, in order to adjust the diameter of Nb and other precipitates and the ratio of precipitation, it is effective to control the maximum steel sheet temperature at the time of purification annealing and the subsequent cooling rate from 900 ° C. to 500 ° C. . The reason for this is that these precipitates can be adjusted in size and ratio by bringing the purification annealing to a high temperature, once forming a solid solution, and reprecipitation when cooled.
In the above phenomenon, as in the general precipitation phenomenon, when the cooling rate is fast, the amount of the precipitate is reduced (partly remains in solid solution), and the diameter of the precipitate is also reduced. On the other hand, when the cooling rate is low, it tends to be reversed.
さらに、前述したように、析出物形成元素添加によるΔW低減効果の発現のためには、素材の2次再結晶粒の平均粒径は、5mm以上とする必要がある。なお、この粒径は、本発明の解決課題でも挙げた、数mの大きさの大型変圧器用電磁鋼板で一般的なものであるが、変圧器の大きさに限らず二次再結晶の昇温速度および雰囲気を制御することで、平均粒径を5mm以上に制御することができる。また、二次再結晶粒の平均粒径は、実験2に記載した方法で測定することが好ましい。
ここで、二次再結晶粒の平均粒径を5mm未満としてΔWを低減する方法も考えられるが、鉄損や磁束密度の絶対値が悪化するなどの問題が生じるため好ましくない。
Furthermore, as described above, in order to achieve the ΔW reduction effect by adding the precipitate-forming element, the average grain size of the secondary recrystallized grains of the material needs to be 5 mm or more. Note that this grain size is generally used for electrical steel sheets for large transformers of several meters, which was also mentioned in the problem to be solved by the present invention. By controlling the temperature rate and atmosphere, the average particle diameter can be controlled to 5 mm or more. Further, the average particle size of the secondary recrystallized grains is preferably measured by the method described in Experiment 2.
Here, a method of reducing ΔW by setting the average grain size of secondary recrystallized grains to less than 5 mm is also possible, but this is not preferable because problems such as deterioration of iron loss and absolute value of magnetic flux density occur.
以上、本発明の基本的な成分構成等を説明した。
本発明では、必要に応じて、以下に述べる元素を適宜含有させることができる。
Ni:0.010〜1.50%
磁気特性を向上させるために、Niを添加することができる。この場合、添加量が0.010%未満では磁気特性の向上幅が小さい。一方、1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するおそれがある。したがって、Niは、0.010〜1.50%の範囲とすることが好ましい。
The basic component configuration of the present invention has been described above.
In this invention, the element described below can be contained suitably as needed.
Ni: 0.010-1.50%
Ni can be added to improve the magnetic properties. In this case, when the addition amount is less than 0.010%, the improvement width of the magnetic characteristics is small. On the other hand, if it exceeds 1.50%, secondary recrystallization may become unstable and the magnetic properties may deteriorate. Therefore, Ni is preferably in the range of 0.010 to 1.50%.
Cr:0.01〜0.50%、Cu:0.01〜0.50%、 P:0.005〜0.50%
鉄損を低減させる目的としては、Cr、CuおよびPのうちの少なくとも一種を添加することができる。
ただし、それぞれの添加量が上記の下限量より少ない場合には、鉄損の低減効果に乏しい。一方、上記の上限量を超えた場合には、二次再結晶粒の発達が抑制され、逆に鉄損が増大する。したがって、それぞれ上記の範囲で含有させることが好ましい。
Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%
For the purpose of reducing the iron loss, at least one of Cr, Cu and P can be added.
However, when each addition amount is less than the above lower limit amount, the effect of reducing iron loss is poor. On the other hand, when the above upper limit is exceeded, the development of secondary recrystallized grains is suppressed, and the iron loss increases. Therefore, it is preferable to make it contain in said range, respectively.
Sn:0.005〜0.50%、 Sb:0.005〜0.50%、 Bi:0.005〜0.50%、Mo:0.005〜0.100%
磁束密度を向上させる目的で、Sn、Sb、BiおよびMoのうち少なくとも一種を添加することができる。
ただし、それぞれの添加量が上記の下限量より少ない場合には、磁気特性の向上効果に乏しい。一方、上記の上限量を超えた場合には、二次再結晶粒の発達が抑制され磁気特性が劣化する。したがって、それぞれ上記の範囲で含有させることが好ましい。
Sn: 0.005-0.50%, Sb: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.100%
For the purpose of improving the magnetic flux density, at least one of Sn, Sb, Bi and Mo can be added.
However, when the amount of each additive is less than the above lower limit, the effect of improving the magnetic properties is poor. On the other hand, when the above upper limit is exceeded, the development of secondary recrystallized grains is suppressed and the magnetic properties are deteriorated. Therefore, it is preferable to make it contain in said range, respectively.
さらに、本発明では、鋼板の表面に、圧延直角方向に対して15°以内の角度であり、圧延方向と交差する方向に、幅:50〜1000μm 、深さ:10〜50μm の直線状または破線状の溝を形成することが好ましい。かかる溝形成により、磁区細分化効果が発揮されて、鉄損の一層の低減が達成される。なお、その溝の間隔(ピッチ)は2〜7mm程度とするのが好ましい。 Furthermore, in the present invention, the surface of the steel sheet has an angle of 15 ° or less with respect to the direction perpendicular to the rolling direction, and the width: 50 to 1000 μm and the depth: 10 to 50 μm in the direction intersecting the rolling direction. It is preferable to form a groove. By such groove formation, the magnetic domain subdivision effect is exhibited, and the iron loss is further reduced. The groove interval (pitch) is preferably about 2 to 7 mm.
つぎに、本発明の方向性電磁鋼板の好適な製造方法について述べる。この製造方法の主要な工程は、通常の方向性電磁鋼板の製造工程を利用することができる。すなわち、所定の成分調整がなされた溶鋼を用いて製造したスラブを、熱間圧延し、得られた熱延板に必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚とし、ついで鋼板に再結晶焼鈍を施した後、純化焼鈍を施し、必要に応じて平坦化焼鈍を行ったのち、コーティングを付与する一連の工程である。 Next, a preferred method for producing the grain-oriented electrical steel sheet of the present invention will be described. The main process of this manufacturing method can utilize the manufacturing process of a normal grain-oriented electrical steel sheet. That is, a slab manufactured using molten steel with a predetermined component adjustment is hot-rolled, and the obtained hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then sandwiched once or intermediately. A series of two or more cold rollings to obtain the final thickness, followed by recrystallization annealing on the steel sheet, followed by purification annealing, flattening annealing as necessary, and then coating. It is a process.
溶鋼での成分調整を行う場合であるが、Cの添加量が0.10%を超えると、以後の工程で磁気時効の起こらない50ppm(0.005%)以下に低減することが困難になるので、溶鋼段階では0.10%以下とすることが望ましい。
また、Siは、最終的に必要な量である1.0〜8.0%を、溶鋼での成分調整の段階で調節しても問題はない。一方、スラブ製造以後の工程で浸珪処理等によりSi量を増加させる方法を利用する場合には、溶鋼でのSi量を最終的に必要な量よりも抑えて添加することもできる。
本発明の主要成分であるNb、Ta、VおよびZrについては、溶鋼段階以後の工程中で添加・削減することが困難であり、上記した溶鋼での成分調整の段階で必要量を添加することが、最も望ましい。
上記以外に、必要に応じてインヒビター成分(AlN形成元素であるAlおよびN、MnS形成元素であるMnおよびS、MnSe形成元素であるMnおよびSe、TiN形成元素であるTiおよびNなど)を少なくとも1組、常法に従って適量を含有させることができる。
This is the case of adjusting the components in molten steel. However, if the amount of C exceeds 0.10%, it will be difficult to reduce it to 50 ppm (0.005%) or less, which does not cause magnetic aging in the subsequent processes. Then, it is desirable to set it as 0.10% or less.
Further, there is no problem even if Si is finally adjusted in an amount of 1.0 to 8.0%, which is a necessary amount, at the stage of component adjustment in molten steel. On the other hand, when using a method of increasing the amount of Si by siliconizing or the like in the process after the slab manufacturing, the amount of Si in the molten steel can be finally suppressed to be less than the necessary amount.
Nb, Ta, V and Zr, which are the main components of the present invention, are difficult to add and reduce in the process after the molten steel stage, and the necessary amount should be added at the stage of component adjustment in the molten steel described above. Is most desirable.
In addition to the above, at least an inhibitor component (Al and N that are AlN forming elements, Mn and S that are MnS forming elements, Mn and Se that are MnSe forming elements, Ti and N that are TiN forming elements) as necessary One set can contain an appropriate amount according to a conventional method.
上記した成分を有する溶鋼は、通常の造塊法、連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。スラブは通常の方法で加熱
して熱間圧延するが、鋳造後加熱せずに直ちに熱延してもよい。薄鋳片の場合には熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
熱間圧延前のスラブ加熱温度としては、インヒビター成分を含む成分系では約1400℃の高温が通常採用される。一方、インヒビター成分を含まない成分系では1250℃以下の低温が通常採用され、コストの面で有利である。
The molten steel having the above-described components may be produced as a slab by a normal ingot-making method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be produced by a direct casting method. The slab is heated and hot-rolled by a normal method, but may be hot-rolled immediately without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
As the slab heating temperature before hot rolling, a high temperature of about 1400 ° C. is usually employed in a component system including an inhibitor component. On the other hand, in a component system that does not contain an inhibitor component, a low temperature of 1250 ° C. or lower is usually employed, which is advantageous in terms of cost.
次いで、必要に応じて熱延板焼鈍を施す。良好な磁性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下が好適である。というのは、熱延板焼鈍温度が800℃未満であると、熱延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難となるため、熱延板焼鈍を施しても二次再結晶の発達を促進する効果が相対的に小さいからである。一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の結晶粒が粗大化してしまう。したがって、この場合にも、整粒した一次再結晶組織を実現することが困難となる。 Next, hot-rolled sheet annealing is performed as necessary. In order to obtain good magnetism, the hot-rolled sheet annealing temperature is preferably 800 ° C or higher and 1150 ° C or lower. This is because when the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in the hot-rolled remains, and it becomes difficult to realize a sized primary recrystallized structure. However, the effect of promoting the development of secondary recrystallization is relatively small. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1150 ° C., the crystal grains after the hot-rolled sheet annealing are coarsened. Therefore, also in this case, it becomes difficult to realize a primary recrystallized structure having a sized particle.
熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷延を施した後、再結晶焼鈍を行う。冷間圧延の温度を100℃〜300℃の範囲とし、また冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うことが、磁気特性をさらに向上させる点で有効である。再結晶焼鈍を施す場合において、脱炭が必要なときには、その雰囲気を湿潤雰囲気とするが、脱炭を必要としないときには、乾燥雰囲気で行っても良い。再結晶焼鈍後は、浸珪法によってSi量を増加させる技術をさらに適用してもよい。 After hot-rolled sheet annealing, re-annealing is performed after performing at least one cold rolling with intermediate annealing as required. It is effective for further improving the magnetic properties that the temperature of the cold rolling is in the range of 100 ° C to 300 ° C and that the aging treatment in the range of 100 to 300 ° C is performed once or multiple times during the cold rolling. It is. In the case of performing recrystallization annealing, when decarburization is necessary, the atmosphere is a wet atmosphere, but when decarburization is not necessary, it may be performed in a dry atmosphere. After recrystallization annealing, a technique for increasing the amount of Si by a silicon immersion method may be further applied.
その後、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を適用した後に仕上焼鈍を施すことにより、2次再結晶組織を発達させると共にフォルステライト被膜を形成させることが可能である。
打ち抜き加工性を重視してフォルステライト被膜を積極的に形成しない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずにシリカやアルミナ等を用いるのがよい。これら焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布を行うことなどが有効である。また耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
Then, when forming a forsterite film with an emphasis on iron loss, a secondary recrystallized structure is developed and a forsterite film is formed by applying a final annealing after applying an annealing separator mainly composed of MgO. It is possible to form.
If the forsterite film is not actively formed with emphasis on punchability, do not use the annealing separator or use silica or alumina without using MgO that forms the forsterite film even if it is applied. It is good. When applying these annealing separators, it is effective to perform electrostatic coating that does not bring in moisture. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used.
仕上焼鈍は2次再結晶が発現する温度であれば充分であるが、800℃以上で行うことが望ましい。また、2次再結晶を完了させる焼鈍条件が望ましく、800℃以上の温度で20時間以上保持することが望ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には、2次再結晶が完了すればよいので保持温度は850〜950℃程度が望ましく、この保持処理までで仕上焼鈍を終了することも可能である。鉄損を重視して、あるいはトランスの騒音を低下させるためにフォルステライト被膜を形成させる場合は、1200℃程度まで昇温させることが有利である。
なお、かかる高温焼鈍の冷却に際し、少なくとも900℃から500℃の温度域については、5〜100℃/hの速度で冷却することが望ましい。900℃未満の保持温度から冷却する際はその保持温度から500℃までの温度域について、5〜100℃/hの速度で冷却することが望ましい。というのは、上記の温度域における冷却速度が、100℃/hを超えると、析出物が細かくなりすぎたり、固溶したまま析出しないおそれがあるからである。一方、5℃/hに満たないと、析出物の径が大きくなりすぎたり、またその冷却時間が長大となり生産性を低下させる等のおそれがある。なお、より好ましい冷却速度の下限は7.8℃/hである。また、より好ましい冷却速度の上限は30℃/hであり、安定した結果を得る観点からさらに好ましい冷却速度の上限は14℃/hである。
The finish annealing is sufficient if it is a temperature at which secondary recrystallization occurs, but it is desirable to perform the annealing at 800 ° C. or higher. Also, annealing conditions for completing the secondary recrystallization are desirable, and it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, secondary recrystallization should be completed, so the holding temperature is preferably about 850-950 ° C, and finish annealing can be completed by this holding treatment. It is. When a forsterite film is formed in order to emphasize iron loss or reduce transformer noise, it is advantageous to raise the temperature to about 1200 ° C.
In cooling the high-temperature annealing, it is desirable to cool at a rate of 5 to 100 ° C./h in a temperature range of at least 900 ° C. to 500 ° C. When cooling from a holding temperature of less than 900 ° C., it is desirable to cool at a rate of 5 to 100 ° C./h in the temperature range from the holding temperature to 500 ° C. This is because if the cooling rate in the above temperature range exceeds 100 ° C./h, the precipitates may become too fine or may not precipitate in a solid solution. On the other hand, if it is less than 5 ° C./h, the diameter of the precipitate becomes too large, or the cooling time becomes long and the productivity may be lowered. A more preferable lower limit of the cooling rate is 7.8 ° C./h. A more preferable upper limit of the cooling rate is 30 ° C./h, and a more preferable upper limit of the cooling rate is 14 ° C./h from the viewpoint of obtaining a stable result.
仕上焼鈍後には、付着した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗を行うことが有用である。その後、平坦化焼鈍を行い形状を矯正することが鉄損低減のために有効である。 After finish annealing, it is useful to perform water washing, brushing, and pickling in order to remove the attached annealing separator. After that, it is effective to reduce the iron loss by performing flattening annealing to correct the shape.
鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。鉄損低減のためには、鋼板に張力を付与できるコーティングが望ましい。バインダーを介した張力コーティング塗布方法や物理蒸着法、化学蒸着法等により、無機物を鋼板表層にコーティングする方法を採用すると、コーティング膜の密着性に優れ、かつ著しい鉄損低減効果があるため、特に望ましい。 In the case where the steel plates are laminated and used, in order to improve iron loss, it is effective to apply an insulating coating to the steel plate surface before or after the flattening annealing. In order to reduce iron loss, a coating that can impart tension to the steel sheet is desirable. Adopting a method of coating the surface of the steel sheet with an inorganic substance by a tension coating application method, physical vapor deposition method, chemical vapor deposition method, etc., through a binder is particularly effective because it has excellent coating film adhesion and a significant iron loss reduction effect. desirable.
鉄損低減のためには、磁区細分化処理を行うことが望ましい。その処理方法としては、一般的に実施されているように、最終製品板に溝をいれたり、レーザーやプラズマにより線状に熱歪や衝撃歪を導入したりする方法や、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれたりする方法が例示される。
本発明の鋼板を用いた好適な鉄心の製造方法としては、例えば、本発明の鋼板を剪断し、歪取焼鈍することなく積層して鉄心を製造する方法が挙げられる。この製造方法はとくに大形(例えば最長辺の長さが500mm超え)の板に剪断して、大型の鉄心を製造する場合、とくに有利である。鋼板の積層数、前記剪断により得る鋼板の寸法・形状、前記溝の有無やその寸法、さらにはコーティングの有無や種類などは、従来の知識に基づき、適宜選択すればよい。
In order to reduce iron loss, it is desirable to perform magnetic domain fragmentation. As the treatment method, as is generally done, a groove is formed in the final product plate, thermal strain or impact strain is introduced linearly by laser or plasma, and the final finished plate thickness is adjusted. An example is a method in which a groove is previously formed in an intermediate product such as a cold-rolled sheet that has been reached.
As a suitable manufacturing method of the iron core using the steel plate of the present invention, for example, a method of manufacturing the iron core by shearing and stacking the steel plates of the present invention without strain relief annealing can be mentioned. This manufacturing method is particularly advantageous when a large iron core is manufactured by shearing into a large plate (for example, the longest side is longer than 500 mm). The number of steel plates stacked, the size and shape of the steel plates obtained by shearing, the presence or absence of the grooves and their dimensions, and the presence and type of coating may be selected as appropriate based on conventional knowledge.
<実施例1>
C:0.065%、Si:3.25%、Mn:0.13%、Al:240ppm、N:70ppm、S:36ppmおよびNb:25ppmを含有し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1400℃でスラブ加熱した後、熱間圧延により2.4mmの厚さに仕上げた。その後1000℃で40秒の熱延板焼鈍を施した後、冷間圧延により1.6mmの板厚とし、さらに900℃の中間焼鈍を施した後、冷間圧延により0.23mm厚に仕上げた。
<Example 1>
A steel slab containing C: 0.065%, Si: 3.25%, Mn: 0.13%, Al: 240ppm, N: 70ppm, S: 36ppm and Nb: 25ppm with the balance Fe and unavoidable impurities in continuous casting After being manufactured and slab heated at 1400 ° C., it was finished to a thickness of 2.4 mm by hot rolling. Thereafter, hot-rolled sheet annealing was performed at 1000 ° C. for 40 seconds, and then a thickness of 1.6 mm was obtained by cold rolling. Further, after intermediate annealing at 900 ° C. was performed, a thickness of 0.23 mm was finished by cold rolling.
その後、60体積%N2-40体積%H2湿潤雰囲気中にて、850℃で90秒間の均熱条件の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布して1220℃で6時間の純化焼鈍を行った。純化焼鈍では900℃から500℃までの冷却速度を表1に示すように制御して、Nb析出物の径やNbの析出割合を変更した。その後、850℃で20秒間の平坦化焼鈍を施した。 Then, after recrystallization annealing under a soaking condition at 850 ° C. for 90 seconds in a 60% by volume N 2 -40% by volume H 2 wet atmosphere, an annealing separator mainly composed of MgO is applied. Purification annealing was performed at 6 ° C. for 6 hours. In the purification annealing, the cooling rate from 900 ° C. to 500 ° C. was controlled as shown in Table 1, and the diameter of Nb precipitates and the Nb precipitation ratio were changed. Thereafter, planarization annealing was performed at 850 ° C. for 20 seconds.
得られたサンプルを30mm×280mmサイズに切断した。このときの切断は、ワイヤーカッター切断と、剪断機による切断と2条件で行った。得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表1に記す。 The obtained sample was cut into a size of 30 mm × 280 mm. The cutting at this time was performed under two conditions: wire cutter cutting and shearing. The magnetic properties of the obtained samples are measured by the method described in JIS C 2550, and the magnetic properties of the samples obtained by cutting with a wire cutter are shown in Table 1.
さらに、2条件の切断方法で各々得られた鉄損について、剪断機で切断したサンプルの鉄損から、ワイヤーカッターによる切断で得られたサンプルの鉄損を引く方法で求めたΔWを、表1に併記する。次に、磁気測定後のサンプルを酸洗処理して被膜を除去し、2次再結晶粒の結晶粒径を測定した。その結果をNbの析出物径および析出割合の調査結果と共に表1に併記する。なお、この酸洗処理後に、被膜を除去したサンプルで鋼板中の成分調査を行った結果は、C:0.0016%、Si:3.24%、Mn:0.13%、Nb:18ppmであり、本発明の要件を満足する成分組成であることが確認された。 Furthermore, for each of the iron losses obtained by the two cutting methods, ΔW obtained by subtracting the iron loss of the sample obtained by cutting with the wire cutter from the iron loss of the sample cut by the shearing machine is shown in Table 1. It is written together. Next, the sample after the magnetic measurement was pickled to remove the film, and the crystal grain size of the secondary recrystallized grains was measured. The results are also shown in Table 1 together with the results of the investigation of the Nb precipitate diameter and the precipitation ratio. In addition, after this pickling process, the result of having investigated the component in a steel plate with the sample which removed the film is C: 0.0016%, Si: 3.24%, Mn: 0.13%, Nb: 18ppm, The requirements of this invention It was confirmed that the component composition satisfies the above.
同表に示したように、結晶粒径、Nbの析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。 As shown in the table, all of the invention examples in which the crystal grain size, the Nb precipitate size and the precipitation ratio satisfy the appropriate range of the present invention have good magnetic properties and have a small ΔW and shearing processing. It can be seen that the iron loss deterioration is small.
<実施例2>
表2記載の成分を含有する方向性電磁鋼板の製品板(板厚:0.23mm)であって、通常の製造方法に従い2次再結晶焼鈍を施し、ついで、純化焼鈍を1150℃で施した後、900℃から500℃までの冷却速度を25℃/hとして得たものを用意した。
この方向性電磁鋼板を、30mm×280mmサイズに切断した。このとき、ワイヤーカッターによる切断した場合と、剪断機による切断の場合との2条件で行った。
<Example 2>
Product sheet of grain-oriented electrical steel sheet containing the components listed in Table 2 (thickness: 0.23 mm), after secondary recrystallization annealing according to the normal manufacturing method, followed by purification annealing at 1150 ° C A product obtained by setting the cooling rate from 900 ° C. to 500 ° C. at 25 ° C./h was prepared.
This grain-oriented electrical steel sheet was cut into a size of 30 mm × 280 mm. At this time, it performed on two conditions, the case where it cut | disconnects with a wire cutter, and the case of the cutting | disconnection by a shearing machine.
得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表2に示す。さらに、実施例1と同様にして求めたΔWを表2に併記する。 The magnetic properties of the obtained sample were measured by the method described in JIS C 2550, and the magnetic properties of the sample obtained by cutting with a wire cutter are shown in Table 2. Further, ΔW obtained in the same manner as in Example 1 is also shown in Table 2.
また、磁気測定後のサンプルを酸洗処理して被膜を除去し、2次再結晶粒の結晶粒径を測定した。その結果をNb等の析出物径および析出割合の調査結果と共に表2に併記する。なお、表2の鋼板中の成分とは、この酸洗処理後に被膜を除去したサンプルで成分測定を行った結果である。
また、析出物の調査を行った結果、平均の析出物径は0.05〜3.34μmであり、析出割合は、0〜79%であった。
Further, the sample after the magnetic measurement was pickled to remove the film, and the crystal grain size of the secondary recrystallized grains was measured. The results are also shown in Table 2 together with the investigation results of the precipitate diameter and the precipitation ratio of Nb and the like. In addition, the component in the steel plate of Table 2 is the result of having measured the component with the sample which removed the film after this pickling process.
Further, as a result of investigating the precipitates, the average precipitate diameter was 0.05 to 3.34 μm, and the precipitation ratio was 0 to 79%.
同表に示したように、結晶粒径、Nb等の析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。 As shown in the table, the examples of the invention in which the crystal grain size, the precipitate size such as Nb, and the precipitation ratio satisfy the appropriate range of the present invention all have good magnetic properties and have a small ΔW and shearing. It can be seen that the iron loss deterioration due to is small.
<実施例3>
C:0.065%、Si:3.25%、Mn:0.13%、Cr:0.05%、Al:240ppm、N:70ppm、S:36ppm、P:0.013%、Sn:0.075%、Sb:0.036%、Mo:0.011%およびNb:25ppmを含有し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1400℃でスラブ加熱した後、熱間圧延により2.4mmの厚さに仕上げた。その後1000℃で40秒の熱延板焼鈍を施した後、冷間圧延により1.6mmの板厚とし、さらに700〜1020℃の温度範囲で中間焼鈍を施した後、冷間圧延により0.23mm厚の鋼板に仕上げた。
<Example 3>
C: 0.065%, Si: 3.25%, Mn: 0.13%, Cr: 0.05%, Al: 240ppm, N: 70ppm, S: 36ppm, P: 0.013%, Sn: 0.075%, Sb: 0.036%, Mo: 0.011 A steel slab containing% and Nb: 25 ppm and comprising the balance Fe and inevitable impurities was manufactured by continuous casting, heated at 1400 ° C., and then finished to a thickness of 2.4 mm by hot rolling. Then, after hot-rolled sheet annealing at 1000 ° C for 40 seconds, it was cold rolled to a thickness of 1.6 mm, and further subjected to intermediate annealing at a temperature range of 700 to 120 ° C, then cold rolled to a thickness of 0.23 mm Finished in steel plate.
つづいて、鋼板表面に局所的電解エッチングで幅:100μm、深さ:25μmの線状溝を
圧延直角方向と10°の角度をなすように8mmピッチで形成した。その後、60体積%N2-40体積%H2湿潤雰囲気中にて、800〜900℃で90秒の均熱条件の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1220℃で6時間の純化焼鈍を行った。その後、900℃から500℃までの冷却速度を10℃/hとして冷却した。
Subsequently, linear grooves having a width of 100 μm and a depth of 25 μm were formed on the steel plate surface at an 8 mm pitch so as to form an angle of 10 ° with the direction perpendicular to the rolling. Then, after recrystallization annealing in a soaking condition at 800-900 ° C for 90 seconds in a 60% by volume N 2 -40% by volume H 2 wet atmosphere, an annealing separator mainly composed of MgO is applied. Then, purification annealing was performed at 1220 ° C. for 6 hours. Then, it cooled by setting the cooling rate from 900 degreeC to 500 degreeC to 10 degreeC / h.
その後、850℃で20秒間の平坦化焼鈍を施した。中間焼鈍温度と再結晶焼鈍温度を種々変更したのは、2次再結晶後の粒径の大きさを変更するためである。得られたサンプルをエプスタイン試験片の30mm×280mmサイズに切断した。このとき、ワイヤーカッター切断した場合と、剪断機による切断の場合との2条件で行った。 Thereafter, planarization annealing was performed at 850 ° C. for 20 seconds. The reason why the intermediate annealing temperature and the recrystallization annealing temperature are variously changed is to change the size of the grain size after the secondary recrystallization. The obtained sample was cut into a 30 mm × 280 mm size of an Epstein test piece. At this time, it performed on two conditions, the case where a wire cutter is cut | disconnected, and the case of the cutting | disconnection by a shearing machine.
得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表3に記す。さらに、実施例1と同様にして求めたΔWを表3に併記する。 The magnetic properties of the obtained samples were measured by the method described in JIS C 2550, and the magnetic properties of the samples obtained by cutting with a wire cutter are shown in Table 3. Further, ΔW obtained in the same manner as in Example 1 is also shown in Table 3.
また、磁気測定後のサンプルを酸洗処理して被膜を除去し、2次再結晶粒の結晶粒径を測定した。その結果をNbの析出物径および析出割合の調査結果と共に表3に併記する。またこの酸洗処理後に、被膜を除去したサンプルで鋼板中の成分調査を行った結果は、C:0.0016%、Si:3.24%、Mn:0.13%、Cr:0.05%、P:0.011%、Sn:0.074%、Sb:0.036%、Mo:0.011%、Nb:18ppmであり、本発明の要件を満足する成分組成であった。 Further, the sample after the magnetic measurement was pickled to remove the film, and the crystal grain size of the secondary recrystallized grains was measured. The results are also shown in Table 3 together with the results of investigation of the Nb precipitate size and precipitation ratio. In addition, after the pickling treatment, the components in the steel sheet were examined with the sample from which the film was removed. The results were as follows: C: 0.0016%, Si: 3.24%, Mn: 0.13%, Cr: 0.05%, P: 0.011%, Sn : 0.074%, Sb: 0.036%, Mo: 0.011%, Nb: 18 ppm, and the component composition satisfied the requirements of the present invention.
同表に示したように、結晶粒径、Nbの析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。 As shown in the table, all of the invention examples in which the crystal grain size, the Nb precipitate size and the precipitation ratio satisfy the appropriate range of the present invention have good magnetic properties and have a small ΔW and shearing processing. It can be seen that the iron loss deterioration is small.
本発明によれば、方向性電磁鋼板の剪断加工時の磁気特性劣化を軽減することができる。その結果、鉄損の少ない鉄心を得ることができ、もって、エネルギー効率の高い大型変圧器等の作製が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the magnetic characteristic degradation at the time of the shearing process of a grain-oriented electrical steel sheet can be reduced. As a result, an iron core with less iron loss can be obtained, and thus a large-scale transformer with high energy efficiency can be manufactured.
Claims (3)
The steel plate has a straight or broken line-shaped groove having a width of 50 to 1000 μm and a depth of 10 to 50 μm that intersects the rolling direction at an angle of 15 ° or less with respect to the direction perpendicular to the rolling direction of the steel plate. The grain-oriented electrical steel sheet according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010171569A JP4735766B2 (en) | 2009-07-31 | 2010-07-30 | Oriented electrical steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009179494 | 2009-07-31 | ||
JP2009179494 | 2009-07-31 | ||
JP2010171569A JP4735766B2 (en) | 2009-07-31 | 2010-07-30 | Oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011047045A JP2011047045A (en) | 2011-03-10 |
JP4735766B2 true JP4735766B2 (en) | 2011-07-27 |
Family
ID=43529499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010171569A Active JP4735766B2 (en) | 2009-07-31 | 2010-07-30 | Oriented electrical steel sheet |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120131982A1 (en) |
EP (1) | EP2460902B1 (en) |
JP (1) | JP4735766B2 (en) |
KR (2) | KR101614593B1 (en) |
CN (1) | CN102471850B (en) |
RU (1) | RU2496905C1 (en) |
WO (1) | WO2011013858A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5871137B2 (en) * | 2012-12-12 | 2016-03-01 | Jfeスチール株式会社 | Oriented electrical steel sheet |
JP5668767B2 (en) * | 2013-02-22 | 2015-02-12 | Jfeスチール株式会社 | Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same |
EP2963130B1 (en) * | 2013-02-27 | 2019-01-09 | JFE Steel Corporation | Method for producing grain-orientated electrical steel sheets |
WO2014132930A1 (en) * | 2013-02-28 | 2014-09-04 | Jfeスチール株式会社 | Production method for grain-oriented electrical steel sheets |
CN107109552B (en) * | 2014-10-06 | 2018-12-28 | 杰富意钢铁株式会社 | Low iron loss orientation electromagnetic steel plate and its manufacturing method |
KR101719231B1 (en) | 2014-12-24 | 2017-04-04 | 주식회사 포스코 | Grain oriented electical steel sheet and method for manufacturing the same |
RU2677561C1 (en) * | 2015-02-13 | 2019-01-17 | ДжФЕ СТИЛ КОРПОРЕЙШН | Sheet from textured electrotechnical steel and method of its manufacture |
JP6350398B2 (en) * | 2015-06-09 | 2018-07-04 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP6424875B2 (en) * | 2015-12-14 | 2018-11-21 | Jfeスチール株式会社 | Directional electromagnetic steel sheet and method of manufacturing the same |
KR102448815B1 (en) | 2018-01-31 | 2022-09-29 | 닛폰세이테츠 가부시키가이샤 | grain-oriented electrical steel sheet |
KR102249920B1 (en) * | 2018-09-27 | 2021-05-07 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5113469B2 (en) | 1972-10-13 | 1976-04-28 | ||
JPS5224116A (en) * | 1975-08-20 | 1977-02-23 | Nippon Steel Corp | Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method |
SE442751B (en) * | 1980-01-04 | 1986-01-27 | Kawasaki Steel Co | SET TO MAKE A CORN ORIENTED SILICONE PLATE |
JPS6474817A (en) | 1987-09-17 | 1989-03-20 | Asahi Glass Co Ltd | Ultrasonic delay line |
DE69030781T3 (en) * | 1989-03-30 | 2001-05-23 | Nippon Steel Corp., Tokio/Tokyo | Process for the production of grain-oriented electrical steel sheets by means of rapid quenching and solidification |
JP2970436B2 (en) * | 1994-11-11 | 1999-11-02 | 住友金属工業株式会社 | Manufacturing method of full process non-oriented electrical steel sheet |
IT1284268B1 (en) * | 1996-08-30 | 1998-05-14 | Acciai Speciali Terni Spa | PROCEDURE FOR THE PRODUCTION OF GRAIN ORIENTED MAGNETIC SHEETS, WITH HIGH MAGNETIC CHARACTERISTICS, STARTING FROM |
JPH10110218A (en) * | 1996-10-04 | 1998-04-28 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet excellent in magnetic property |
BR9800978A (en) * | 1997-03-26 | 2000-05-16 | Kawasaki Steel Co | Electric grain-oriented steel plates with very low iron loss and the production process of the same |
IT1299137B1 (en) * | 1998-03-10 | 2000-02-29 | Acciai Speciali Terni Spa | PROCESS FOR THE CONTROL AND REGULATION OF SECONDARY RECRYSTALLIZATION IN THE PRODUCTION OF GRAIN ORIENTED MAGNETIC SHEETS |
KR19990088437A (en) * | 1998-05-21 | 1999-12-27 | 에모또 간지 | Grain oriented electromagnetic steel sheet and manufacturing method thereof |
JP3707268B2 (en) | 1998-10-28 | 2005-10-19 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
US6309473B1 (en) * | 1998-10-09 | 2001-10-30 | Kawasaki Steel Corporation | Method of making grain-oriented magnetic steel sheet having low iron loss |
IT1316026B1 (en) * | 2000-12-18 | 2003-03-26 | Acciai Speciali Terni Spa | PROCEDURE FOR THE MANUFACTURE OF ORIENTED GRAIN SHEETS. |
JP4810777B2 (en) * | 2001-08-06 | 2011-11-09 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP4718749B2 (en) * | 2002-08-06 | 2011-07-06 | Jfeスチール株式会社 | High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine |
JP4241226B2 (en) * | 2003-07-04 | 2009-03-18 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN1329548C (en) * | 2004-04-27 | 2007-08-01 | 宝山钢铁股份有限公司 | Soft magnetic structural-steel-plate with excellent toughness under low temperature and method for making same |
JP5037796B2 (en) * | 2005-04-15 | 2012-10-03 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN100352963C (en) * | 2005-06-30 | 2007-12-05 | 宝山钢铁股份有限公司 | Soft magnetic structural steel resisting salt fog corrosion and its making process |
WO2007007423A1 (en) * | 2005-07-07 | 2007-01-18 | Sumitomo Metal Industries, Ltd. | Non-oriented electromagnetic steel sheet and process for producing the same |
CN101492791B (en) * | 2008-01-24 | 2012-05-30 | 宝山钢铁股份有限公司 | Electromagnetic steel sheet capable of large heat input welding and method for manufacturing same |
-
2010
- 2010-07-30 US US13/388,082 patent/US20120131982A1/en not_active Abandoned
- 2010-07-30 RU RU2012107393/02A patent/RU2496905C1/en active
- 2010-07-30 WO PCT/JP2010/063343 patent/WO2011013858A1/en active Application Filing
- 2010-07-30 JP JP2010171569A patent/JP4735766B2/en active Active
- 2010-07-30 CN CN201080034100.6A patent/CN102471850B/en active Active
- 2010-07-30 KR KR1020137028959A patent/KR101614593B1/en active IP Right Grant
- 2010-07-30 KR KR1020127002405A patent/KR20120035928A/en active Application Filing
- 2010-07-30 EP EP10804595.6A patent/EP2460902B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2011013858A1 (en) | 2011-02-03 |
KR20120035928A (en) | 2012-04-16 |
EP2460902B1 (en) | 2016-05-04 |
KR20130126751A (en) | 2013-11-20 |
CN102471850A (en) | 2012-05-23 |
KR101614593B1 (en) | 2016-04-21 |
RU2012107393A (en) | 2013-09-10 |
EP2460902A1 (en) | 2012-06-06 |
EP2460902A4 (en) | 2013-02-20 |
JP2011047045A (en) | 2011-03-10 |
US20120131982A1 (en) | 2012-05-31 |
CN102471850B (en) | 2015-01-07 |
RU2496905C1 (en) | 2013-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4735766B2 (en) | Oriented electrical steel sheet | |
KR101620763B1 (en) | Grain-oriented electrical steel sheet and method of producing the same | |
JP5754097B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR102139134B1 (en) | Method of producing grain-oriented electrical steel sheet | |
CN107849656B (en) | Method for producing grain-oriented electromagnetic steel sheet | |
JP2020117808A (en) | Production method of grain-oriented silicon steel sheet, grain-oriented electrical steel sheet and use thereof | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5871137B2 (en) | Oriented electrical steel sheet | |
JP5375694B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5810506B2 (en) | Oriented electrical steel sheet | |
JP6418226B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR102427606B1 (en) | Grain-oriented electrical steel sheet | |
JP5037796B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2004332031A (en) | Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties | |
JP2009155731A (en) | Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss | |
WO2020158893A1 (en) | Grain-oriented electrical steel sheet and iron core using same | |
JP4377477B2 (en) | Method for producing high magnetic flux density unidirectional electrical steel sheet | |
JP7338812B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2011111653A (en) | Method for producing grain-oriented magnetic steel sheet | |
KR20230159875A (en) | Manufacturing method of grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110120 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20110121 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20110209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4735766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |