JP4735552B2 - Manufacturing method of high strength steel plate and high strength plated steel plate - Google Patents
Manufacturing method of high strength steel plate and high strength plated steel plate Download PDFInfo
- Publication number
- JP4735552B2 JP4735552B2 JP2007011832A JP2007011832A JP4735552B2 JP 4735552 B2 JP4735552 B2 JP 4735552B2 JP 2007011832 A JP2007011832 A JP 2007011832A JP 2007011832 A JP2007011832 A JP 2007011832A JP 4735552 B2 JP4735552 B2 JP 4735552B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- annealing
- steel
- cold
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車用鋼板等の使途に供して有用な、引張強度(TS)が540MPa以上の高強度でかつ高r値(r値≧1.2)を有し、さらにr値の面内異方性(Δr)が、絶対値で0.20以下と小さな、深絞り性に優れた高強度鋼板の製造方法に関するものである。
また、本発明は、上記の高強度鋼板に対してめっきを付与した深絞り性に優れた高強度めっき鋼板の製造方法に関するものである。
INDUSTRIAL APPLICABILITY The present invention is useful for use in automobile steel sheets and the like, has a high strength with a tensile strength (TS) of 540 MPa or more, a high r value (r value ≧ 1.2), and an in-plane anisotropic of r value. The present invention relates to a method for producing a high-strength steel sheet excellent in deep drawability, having a small property (Δr) of 0.20 or less in absolute value.
Moreover, this invention relates to the manufacturing method of the high strength plated steel plate excellent in the deep drawability which gave plating with respect to said high strength steel plate.
近年、地球環境保全の観点から、CO2の排出量を規制するために、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するために、自動車車体の衝突特性を中心とした安全性の向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, improvement in safety centered on the collision characteristics of the automobile body is also required. As described above, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted.
自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では、高強度鋼板(高張力鋼板ともいう)が自動車部品に積極的に使用されている。
この軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)が440 MPa以上の鋼板を使用する動向にある。
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to reduce the thickness by increasing the strength of the component materials and reducing the plate thickness within the range where there is no problem with rigidity. High-strength steel plates (also called high-tensile steel plates) are actively used in automobile parts.
This lightening effect increases as the strength of the steel sheet used increases, so the automotive industry, for example, is a trend to use steel sheets with a tensile strength (TS) of 440 MPa or higher as a panel material for inner and outer panels. It is in.
一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性が大きく劣化するため、自動車の軽量化を進める上での課題として、TS≧440 MPa、より好ましくはTS≧540 MPaで、しかも良好な深絞り成形性を兼ね備える鋼板に対する要求が高まっており、深絞り性の評価指標であるランクフォード値(以下、r値という)で、平均r値≧1.2 という高r値の高強度鋼板が要求されている。
さらに、適用部品によっては、その面内異方性が小さいことが、同じ平均r値であっても成形性の向上に寄与するため、面内異方性の低減も要求されている。
On the other hand, since many automotive parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, a high-strength steel sheet is greatly deteriorated in formability, particularly deep drawability, as compared with a normal mild steel sheet. Therefore, TS ≧ 440 MPa, more preferably TS ≧ 540, is an issue in reducing the weight of an automobile. There is a growing demand for steel plates having MPa and also good deep drawability, and rank rford value (hereinafter referred to as r value), which is an evaluation index of deep drawability, has an average r value ≧ 1.2. High strength steel sheets are required.
Further, depending on the applied part, since the in-plane anisotropy is small and contributes to the improvement of the formability even with the same average r value, it is also required to reduce the in-plane anisotropy.
高r値を維持しながら高強度化を図る手段としては、極低炭素鋼を用い、鋼中に固溶する炭素や窒素を固定する量のTiやNbを添加し、IF(Interstitial atom free)化した鋼をベースとして、これにSi,Mn,Pなどの固溶強化元素を添加する手法がある(例えば特許文献1)。
この特許文献1は、C:0.002〜0.015%、Nb:C%×3〜C%×8+0.020%、Si:1.2%以下、Mn:0.04〜0.8%、P:0.03〜0.10%の組成を有する、引張強さが35〜45kgf/mm2級(340〜440 MPa級)の非時効性を有する成形性の優れた高張力冷延鋼板に関する技術である。 This patent document 1 has a composition of C: 0.002 to 0.015%, Nb: C% x 3 to C% x 8 + 0.020%, Si: 1.2% or less, Mn: 0.04 to 0.8%, P: 0.03 to 0.10%. This is a technology relating to a high-tensile cold-rolled steel sheet having excellent formability and having non-aging properties of 35 to 45 kgf / mm 2 class (340 to 440 MPa class).
しかしながら、このような極低炭素鋼を素材とする技術では、引張強さが440 MPa以上の鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観上の問題や、めっき性の劣化、2次加工脆性の顕在化などの問題が生じてくることがわかってきた。また、多量に固溶強化成分を添加すると、r値が劣化するので、高強度化を図るほどr値の水準は低下してしまうという問題があった。
また、C量を極低炭素域まで低減するためには、製鋼工程で真空脱ガスを行う必要性が生じるが、これは製造過程でCO2を多量に発生させることになり、地球環境保全の観点からも最適のものとは言い難い。
However, with such ultra-low carbon steel technology, if an attempt is made to produce a steel sheet with a tensile strength of 440 MPa or higher, the amount of alloying elements added will increase, resulting in surface appearance problems and poor plating properties. It has been found that problems such as the manifestation of secondary processing brittleness arise. Further, when a solid solution strengthening component is added in a large amount, the r value deteriorates, so that there is a problem that the level of the r value decreases as the strength increases.
In addition, in order to reduce the amount of C to an extremely low carbon range, it is necessary to perform vacuum degassing in the steelmaking process, but this will generate a large amount of CO 2 in the manufacturing process, which contributes to global environmental conservation. It is hard to say that it is optimal from the viewpoint.
鋼板の高強度化の方法として、上述したような固溶強化法以外に組織強化法がある。例えば、軟質なフェライト相と硬質なマルテンサイト相からなる複合組織鋼板であるDP(Dual-Phase)鋼板がある。このDP鋼板は、一般的に延性については概ね良好であり、優れた強度−延性バランス(TS×El)を有し、さらに降伏比が低いという特徴、すなわち引張強さの割に降伏応力が低く、プレス成形時の形状凍結性に優れるという特徴があるが、r値が低く深絞り性に劣る。これは、結晶方位的にr値に寄与しないマルテンサイトが存在することの他、マルテンサイト形成に不可欠な固溶Cが、高r値化に有効な{111}再結晶集合組織の形成を阻害するからと言われている。 As a method for increasing the strength of a steel sheet, there is a structure strengthening method other than the solid solution strengthening method described above. For example, there is a DP (Dual-Phase) steel sheet, which is a composite structure steel sheet composed of a soft ferrite phase and a hard martensite phase. This DP steel sheet is generally good in ductility, has an excellent strength-ductility balance (TS x El), and has a low yield ratio, that is, yield stress is low for tensile strength. The shape freezing property during press molding is excellent, but the r value is low and the deep drawability is poor. This is because, in addition to the presence of martensite that does not contribute to the r value in terms of crystal orientation, solid solution C, which is indispensable for martensite formation, inhibits the formation of {111} recrystallized texture effective for increasing the r value. It is said to do.
このような複合組織鋼板のr値を改善する試みとして、例えば特許文献2あるいは特許文献3に開示の技術がある。
特許文献2の技術は、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後複合組織とするため700〜800℃に加熱した後、焼入れ焼戻しを行う方法である。しかしながら、この方法では、連続焼鈍時に焼入れ焼戻しを行うため、製造コストが問題となる。また、箱焼鈍は、連続焼鈍に比べて処理時間や効率の面で劣る。 The technique of Patent Document 2 is a method in which after cold rolling, box annealing is performed at a temperature of the recrystallization temperature to the Ac 3 transformation point, and after that, heating to 700 to 800 ° C. is performed to obtain a composite structure, followed by quenching and tempering. . However, in this method, since the quenching and tempering is performed during the continuous annealing, the manufacturing cost becomes a problem. Further, box annealing is inferior in terms of processing time and efficiency as compared to continuous annealing.
特許文献3の技術は、高r値を得るために、冷間圧延後、まず箱焼鈍を行い、この時の温度をフェライト(α)−オーステナイト(γ)の2相域とし、その後連続焼鈍を行うものである。この技術では、箱焼鈍の均熱時にα相からγ相にMnを濃化させる。このMn濃化相は、その後の連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られるものである。しかしながら、この方法では、Mn濃化のために比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上多くの問題がある。 In order to obtain a high r value, the technique of Patent Document 3 first performs box annealing after cold rolling, sets the temperature at this time to a two-phase region of ferrite (α) -austenite (γ), and then performs continuous annealing. Is what you do. In this technique, Mn is concentrated from the α phase to the γ phase during soaking of the box annealing. This Mn-concentrated phase preferentially becomes a γ phase during the subsequent continuous annealing, and a mixed structure can be obtained even at a cooling rate of the order of a gas jet. However, this method requires a relatively high temperature and long-time box annealing for Mn concentration, and therefore, in the manufacturing process, such as frequent adhesion between steel plates, generation of temper collar, and reduction in the life of the furnace inner cover. There are many problems.
また、特許文献4には、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%(但し、(有効Ti)/(C+N)の原子濃度比を0.4〜0.8)含有する鋼を、熱間圧延し、冷間圧延した後、所定温度に加熱後、急冷する連続焼鈍を施すことを特徴とする深絞り性及び形状凍結性に優れた複合組織型高張力冷延鋼板の製造方法が開示されている。
この特許文献4中には、質量%で、0.012%C−0.32%Si−0.53%Mn−0.03%P−0.051%Tiの組成の鋼を、冷間圧延後、(α−γ)2相域である870℃に加熱後、100℃/sの平均冷却速度で冷却することにより、r値=1.61、TS=482 MPaの複合組織型冷延鋼板が製造可能であることが開示されている。しかしながら、100℃/sという高い冷却速度を得るには水焼入れ設備が必要となる他、水焼入れした鋼板は表面処理性の問題が顕在化するため、製造設備上および材質上の問題が残る。 In this Patent Document 4, a steel having a composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti in cold mass, (α-γ) two-phase region after cold rolling. It is disclosed that a composite cold-rolled steel sheet having an r value = 1.61 and TS = 482 MPa can be manufactured by heating to 870 ° C. and cooling at an average cooling rate of 100 ° C./s. However, in order to obtain a high cooling rate of 100 ° C./s, a water quenching facility is required, and the problem of surface treatment properties of the steel plate that has been subjected to water quenching becomes obvious, and thus there remains a problem in terms of manufacturing facilities and materials.
また、深絞り性に優れた高強度鋼板およびその製造技術として、特許文献5に開示の技術がある。この技術は、所定のC量を含有し、平均r値が1.3以上、かつ組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有する高強度鋼板を得るものであり、その製造方法としては、冷間圧延の圧下率を30〜95%とし、ついでAlとNのクラスターや析出物を形成することによって集合組織を発達させてr値を高めるための焼鈍と、引き続き組織中にベイナイト、マルテンサイト、オーステナイトのうち1種類以上を合計で3%以上有するようにするための熱処理を行うことを特徴とするものである。この方法では、冷間圧延後、良好なr値を得るための焼鈍と、組織を作り込むための熱処理をそれぞれ必要としており、また焼鈍工程では、その保持時間が1時間以上という長時間保持を必要としており、工程的(時間的)に生産性が悪いという問題がある。さらに、得られる組織の第2相分率が比較的高いため、優れた強度−延性バランスを安定的に確保することは難しいという問題がある。なお、r値の面内異方性については、その請求項3において、rL:1.1以上、rD:0.9以上、rC:1.2以上としていることから、面内異方性を積極的に制御する技術とはなっていない。
さらに、深絞り性に優れた複合組織鋼板として、特許文献6では、C:0.010〜0.050%、Si:1.0%以下、Mn:1.0〜3.0%、P:0.005〜0.10%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.01〜0.3%を含有し、かつ鋼中のNbとCの比が(Nb/93)/(C/12)=0.2〜0.7なる関係を満たす鋼組成を有し、面積率で50%以上でのフェライト相と面積率で1%以上のマルテンサイトを含む鋼組織を有し、平均r値が1.2以上であることを特徴とする。
この技術は、特許文献5のように特殊な製造条件を必要とすることなく、高強度の深絞り用鋼板を提供する技術である。しかしながら、本発明者らの研究によれば、この技術では、Nb量と炭素量が高目になると、平均r値は良好であるものの、r値の面内異方性が大きくなる傾向が見られ、高C成分域でのr値の面内異方性が課題となっている。
This technique is a technique for providing a high-strength deep drawing steel sheet without requiring special manufacturing conditions as in
深絞り性に優れる(軟)鋼板を高強度化するに当たり、従来検討されてきた固溶強化による高強度化の方法には、多量のあるいは過剰な合金成分の添加が必要であり、これは、コスト的にも工程的にも、またr値の向上そのものにも課題を抱えるものであった。
また、組織強化を利用する方法では、2回焼鈍(加熱)で長時間加熱が必要であったり、高速冷却設備を必要とするため、製造工程上の問題があった。
さらに、540 MPa以上の高r値を有する高強度鋼板のr値の面内異方性についての制御方法の報告は少なく、r値が高くても異方性が大きいことから、適用用途も限定されるという問題があった。
In order to increase the strength of a (soft) steel sheet having excellent deep drawability, the conventional method of increasing strength by solid solution strengthening requires the addition of a large amount or an excess of alloy components. In terms of cost, process, and improvement of the r value, there are problems.
Moreover, in the method using the structure strengthening, there is a problem in the manufacturing process because heating for a long time is required by twice annealing (heating) or a high-speed cooling facility is required.
Furthermore, there are few reports on the method of controlling the in-plane anisotropy of the r value of high-strength steel sheets having a high r value of 540 MPa or more, and the application is limited because the anisotropy is large even if the r value is high. There was a problem of being.
本発明は、このような従来技術の問題点を有利に解決した、深絞り性が良好でさらにr値の面内異方性の小さい高強度鋼板の安定した製造方法を提案することを目的とする。
また、本発明は、上記の製造方法で得た高強度鋼板に対してめっきを付与した深絞り性に優れ、かつr値の面内異方性の小さい高強度めっき鋼板の製造方法を提案することを目的とする。
An object of the present invention is to propose a stable manufacturing method of a high-strength steel sheet having favorable deep drawability and small r-plane in-plane anisotropy, which advantageously solves the problems of the prior art. To do.
In addition, the present invention proposes a method for producing a high-strength plated steel sheet that is excellent in deep drawability by applying plating to the high-strength steel sheet obtained by the above-described production method and that has a small r-plane in-plane anisotropy. For the purpose.
さて、発明者らは、上記の課題を解決すべく鋭意検討を進めたところ、特別なあるいは過剰な合金成分や特別な設備を用いることなく、スラブ加熱温度を、1200℃以下で、かつ鋼中のC量やNb量に応じて調整することにより、特許文献6のような技術において、C量が高い領域での面内異方性の改善に有効に寄与することを見出した。また、巻取り温度を600℃以上の高温にすること、さらに焼鈍処理においては、加熱速度を焼鈍温度付近において特に徐加熱制御することにより、平均r値が1.2以上で深絞り性に優れ、さらにr値の面内異方性も小さく、しかもフェライトとマルテンサイトを含む鋼組織からなる高強度鋼板が得られることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, the inventors have intensively studied to solve the above-mentioned problems. As a result, the slab heating temperature is 1200 ° C. or less and no steel is used without using special or excessive alloy components or special equipment. It was found that by adjusting according to the amount of C and the amount of Nb, the technique as in Patent Document 6 effectively contributes to improvement of in-plane anisotropy in a region where the amount of C is high. In addition, by making the coiling temperature higher than 600 ° C., and in the annealing process, by controlling the heating rate particularly gradually in the vicinity of the annealing temperature, the average r value is 1.2 or more and the deep drawability is excellent. The in-plane anisotropy of the r value was small, and the knowledge that a high-strength steel sheet made of a steel structure containing ferrite and martensite was obtained was obtained.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.035〜0.05%、
Si:0.01〜1.0%、
Mn:1.5〜3.0%、
P:0.005〜0.1%、
Al:0.005%〜0.1%、
S:0.01%以下、
N:0.01%以下および
Nb:0.05〜0.12%
を含み、かつ鋼中のNbおよびCの含有量が、
(Nb/93)/(C/12)=0.15〜0.45(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、スラブ加熱温度(SRT)が1000℃以上 1200℃以下で、かつC量:[%C]とNb量:[%Nb](質量%)に応じて、次式
SRT ≦ 25000 [%C][%Nb]+1050
の関係を満足する温度域に加熱し、ついで熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:600〜720℃で巻き取って熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施して冷延板とする冷間圧延工程と、該冷延板に700℃までの平均昇温速度:15℃/s以上、700℃から焼鈍温度:800℃以上 950℃以下までの平均昇温速度:0.1〜2℃/sで焼鈍を行い、ついで焼鈍温度から500℃まで平均冷却速度:5℃/s以上で冷却する冷延板焼鈍工程を順次に施すことを特徴とする高強度鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.035 to 0.05%,
Si: 0.01 to 1.0%
Mn: 1.5-3.0%
P: 0.005-0.1%
Al: 0.005% to 0.1%
S: 0.01% or less,
N: 0.01% or less and
Nb: 0.05-0.12%
And the content of Nb and C in the steel is
(Nb / 93) / (C / 12) = 0.15 to 0.45 (where Nb and C are the contents of each element (mass%))
A steel slab containing the composition of Fe and inevitable impurities in the balance satisfying the following relationship: a slab heating temperature (SRT) of 1000 ° C. or higher and 1200 ° C. or lower, and an amount of C: [% C] and Nb Quantity: Depending on [% Nb] (mass%)
SRT ≦ 25000 [% C] [% Nb] +1050
Is heated to a temperature range satisfying the above relationship, and then finish rolling is performed at a finish rolling temperature of 800 ° C. or higher by hot rolling, and a coiling temperature of 600 to 720 ° C. is wound to obtain a hot rolled sheet A hot rolling process, a cold rolling process in which the hot-rolled sheet is pickled and cold-rolled to form a cold-rolled sheet, and an average heating rate up to 700 ° C. of the cold-rolled sheet: 15 ° C./s or more , Annealing temperature: 700 ° C to annealing temperature: 800 ° C to 950 ° C average heating rate: 0.1-2 ° C / s, annealing from annealing temperature to 500 ° C, average cooling rate: 5 ° C / s or more A method for producing a high-strength steel sheet, comprising sequentially performing a cold-rolled sheet annealing process.
2.前記鋼スラブが、前記組成に加えて、さらに質量%で
Ti:0.1%以下および
V:0.1%以下
のうちから選んだ1種または2種を含有し、かつ前記(Nb/93)/(C/12)=0.15〜0.45なる関係に代えて、次式
Ti*>0の場合、Ti*=Ti−1.5S−3.4N(式中のTi,S,Nは各々の元素の含有量(質量%))であり、Ti*≦0の場合、Ti*=0
で表されるTi*とVとNbとCの含有量が、次式
{(Nb/93)+(Ti*/48)+(V/51)}/(C/12)=0.15〜0.45(式中のV,Nb,Cは各々の元素の含有量(質量%))
の関係を満足することを特徴とする上記1に記載の高強度鋼板の製造方法。
2. In addition to the composition, the steel slab is
It contains one or two selected from Ti: 0.1% or less and V: 0.1% or less, and instead of the relationship (Nb / 93) / (C / 12) = 0.15 to 0.45, the following formula
In the case of Ti * > 0, Ti * = Ti-1.5S-3.4N (Ti, S, N in the formula is the content (% by mass) of each element), and when Ti * ≦ 0, Ti * = 0
The content of Ti * , V, Nb and C represented by
{(Nb / 93) + (Ti * / 48) + (V / 51)} / (C / 12) = 0.15 to 0.45 (where V, Nb and C are the contents of each element (mass%) )
2. The method for producing a high-strength steel sheet according to 1 above, wherein the above relationship is satisfied.
3.前記鋼スラブが、前記組成に加えて、さらに質量%で
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする上記1または2に記載の高強度鋼板の製造方法。
3. In addition to the composition, the steel slab is
3. The method for producing a high-strength steel sheet according to 1 or 2 above, comprising a total of one or more selected from Mo, Cu and Ni: 0.5% or less.
4.上記1〜3のいずれか1項に記載の方法で製造した高強度鋼板に対して、さらにめっき処理を施すことを特徴とする高強度めっき鋼板の製造方法。 4). A method for producing a high-strength plated steel sheet, further comprising subjecting the high-strength steel sheet produced by the method according to any one of 1 to 3 above to plating.
本発明によれば、C含有量が0.035〜0.05質量%の範囲において、従来の極低炭素IF鋼のように深絞り性に悪影響をおよぼす固溶Cの低減を完全に行わずに、マルテンサイト形成に必要な程度の固溶Cを残存させた状態下で、スラブ加熱温度の低温化、冷延後の再結晶以降の高温域での徐加熱化により、{111}再結晶集合組織を効果的に発達させて、平均r値≧1.2で、かつその面内異方性が小さく(|Δr|≦0.20)、しかもTS≧540 MPaの高強度鋼板を得ることができる。 According to the present invention, when the C content is in the range of 0.035 to 0.05 mass%, martensite is not completely reduced without reducing the solid solution C that adversely affects the deep drawability as in the conventional ultra-low carbon IF steel. The effect of {111} recrystallization texture is achieved by lowering the slab heating temperature and gradually heating in the high temperature range after recrystallization after cold rolling, with the solid solution C necessary for formation remaining. As a result, it is possible to obtain a high-strength steel sheet having an average r value ≧ 1.2, a small in-plane anisotropy (| Δr | ≦ 0.20), and TS ≧ 540 MPa.
以下、本発明を具体的に説明する。
まず、本発明の解明経緯について説明する。なお、元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
高r値化、すなわち{111}再結晶集合組織を発達させるには、従来軟鋼板においては、冷間圧延および再結晶前の固溶Cを極力低減することや熱延板組織を微細化することなどが有効な手段とされてきた。一方、前述したようなDP鋼板では、マルテンサイト形成に必要な固溶Cを必要とするため、母相の再結晶集合組織が発達せずr値が低かった。しかしながら、本発明では、{111}再結晶集合組織の発達と、マルテンサイトの形成を可能にする絶妙の好適成分範囲が存在することを新たに見出した。
すなわち、従来のDP鋼板(低炭素鋼レベル)よりもC量を低減するものの、極低炭素鋼に比べるとC量が多い低炭素領域の0.035〜0.05%のC含有量とし、このC量に合わせて適切な量のNb添加あるいはさらにTiやV添加を行うことで、{111}再結晶集合組織の発達と、マルテンサイトの形成が行えることを新たに見出した。
Hereinafter, the present invention will be specifically described.
First, the elucidation process of the present invention will be described. The unit of element content is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
In order to increase the r value, that is, to develop the {111} recrystallization texture, in the conventional mild steel sheet, the solute C before cold rolling and recrystallization is reduced as much as possible, and the hot rolled sheet structure is refined. This has been an effective means. On the other hand, in the DP steel sheet as described above, since the solute C necessary for martensite formation is required, the recrystallized texture of the parent phase does not develop and the r value is low. However, in the present invention, it has been newly found that there exists an exquisite preferred component range that enables the development of {111} recrystallization texture and the formation of martensite.
That is, although the C content is reduced as compared with the conventional DP steel sheet (low carbon steel level), the C content is 0.035 to 0.05% in the low carbon region where the C content is larger than that of the ultra low carbon steel. In addition, it was newly found that {111} recrystallization texture development and martensite formation can be achieved by adding an appropriate amount of Nb or further adding Ti or V.
従来から知られているように、Nbは再結晶遅延効果があるため、熱延時の仕上温度を適切に制御することで熱延板組織を微細化することが可能である。また、Nbは鋼中において高い炭化物形成能を有している。本発明では、特に熱延仕上温度を変態点直上の適切な範囲にして熱延板組織を微細化すると同時に、熱延後のコイル巻取り温度も適切にすることで熱延板中にNbCを析出させ、冷延前および再結晶前の固溶Cの低減を図っている。この場合、Ti,Vもその効果はNbほどではないがそれなりにあるので複合して添加することができる。ここで、Nb単独添加の場合は、Nb量をC量との原子比で0.15〜0.4とする。すなわち、
(Nb/93)/(C/12)=0.15〜0.45(式中のNb,Cは各々の元素の含有量(質量%)。以下、同じ)
とすることで、またTiやVを複合添加する場合は、
{(Nb/93)+(Ti*/48)+(V/51)}/(C/12)=0.15〜0.45
ここで、Ti*=Ti−1.5S−3.4N、ただしTi*>0
とすることで、あえてNb,Ti,Vの炭化物として析出しないCを存在させている。
従来、このような、Nb、Ti、Vの炭化物として析出しないCの存在が{111}再結晶集合組織の発達を阻害するとされてきたが、本発明では、全Cの一部をNb,Ti,Vの炭化物として析出させるだけで、高r値化を達成でき、またr値の面内異方性を小さくできると共に、マルテンサイト形成に必要な固溶Cを確保することができる。
As conventionally known, since Nb has a recrystallization delay effect, it is possible to refine the hot rolled sheet structure by appropriately controlling the finishing temperature during hot rolling. Nb has a high carbide forming ability in steel. In the present invention, in particular, the hot rolling finish temperature is set to an appropriate range immediately above the transformation point, and the hot rolled sheet structure is refined, and at the same time, the coil winding temperature after hot rolling is also set appropriately so that NbC is contained in the hot rolled sheet. Precipitation is performed to reduce solid solution C before cold rolling and before recrystallization. In this case, Ti and V are not as effective as Nb, but they can be added in a complex manner. Here, in the case of adding Nb alone, the amount of Nb is set to 0.15 to 0.4 as an atomic ratio with respect to the amount of C. That is,
(Nb / 93) / (C / 12) = 0.15 to 0.45 (Nb and C in the formula are the contents (mass%) of each element. The same applies hereinafter)
When adding Ti and V together,
{(Nb / 93) + (Ti * / 48) + (V / 51)} / (C / 12) = 0.15-0.45
Here, Ti * = Ti−1.5S−3.4N, where Ti * > 0
Therefore, C that does not precipitate as carbides of Nb, Ti, and V is intentionally present.
Conventionally, the presence of C that does not precipitate as carbides of Nb, Ti, and V has been considered to inhibit the development of the {111} recrystallized texture. In the present invention, a part of the total C is converted to Nb, Ti. , V can be achieved simply by precipitating as carbides of V, the in-plane anisotropy of the r value can be reduced, and solid solution C necessary for martensite formation can be secured.
このためには、成分だけでなく、製造条件の高精度制御が重要となる。製造条件として重要な要件は、スラブ加熱温度と巻取り温度および焼鈍時の加熱パターンである。HSLA鋼(High Strength Low Alloyed Steel:析出強化鋼)系においては、スラブ加熱温度を高温にしていたが、本発明では、逆に低温化することで、面内異方性の改善が可能となる。その理由は、熱延板の析出物の粗大化によりΔrが負値で大きくなるのを防ぐ効果があると考えられる。この熱延板の析出物の粗大化という観点からは巻取り温度は600℃以上とする必要がある。 For this purpose, high-precision control of not only the components but also the manufacturing conditions is important. The important requirements as manufacturing conditions are the slab heating temperature and winding temperature, and the heating pattern during annealing. In the HSLA steel (High Strength Low Alloyed Steel) system, the slab heating temperature was high, but in the present invention, the in-plane anisotropy can be improved by lowering the temperature. . The reason is considered that there is an effect of preventing Δr from becoming large as a negative value due to coarsening of precipitates on the hot rolled sheet. From the viewpoint of coarsening the precipitates on the hot-rolled sheet, the coiling temperature needs to be 600 ° C. or higher.
鋼成分が、0.04%C−0.5%Si−2.0%Mn−0.03%P−0.005%S−0.035%Al−0.0020%N−0.06%Nb{(Nb/93)/(C/12)=0.19}の鋼スラブを用いて、スラブ加熱温度(SRT)と巻取り温度(CT)を変化させ、仕上圧延出側温度:870℃として熱延板を製造し、ついで冷延−焼鈍を行った場合のΔrについて調べた結果を、図1に示す。
なお、焼鈍時の焼鈍温度は860℃とし、この焼鈍温度までの昇温は、平均昇温速度:15℃/sで一様に昇温する場合と、700℃までは15℃/sで昇温し、700℃から焼鈍温度までは1.5℃/sで昇温する場合の2種類で行った。また、焼鈍温度から500℃までの平均冷却速度はいずれも15℃/sの一定とした。
Steel composition is 0.04% C-0.5% Si-2.0% Mn-0.03% P-0.005% S-0.035% Al-0.0020% N-0.06% Nb {(Nb / 93) / (C / 12) = 0.19} The steel slab was used to change the slab heating temperature (SRT) and the coiling temperature (CT), to produce a hot-rolled sheet at a finish rolling exit temperature of 870 ° C, and then to cold rolling and annealing. The results of examining Δr are shown in FIG.
The annealing temperature during annealing is set to 860 ° C, and the temperature up to this annealing temperature is increased uniformly at an average rate of increase of 15 ° C / s and up to 700 ° C at 15 ° C / s. The temperature was raised from 700 ° C. to the annealing temperature in two cases where the temperature was raised at 1.5 ° C./s. Further, the average cooling rate from the annealing temperature to 500 ° C. was constant at 15 ° C./s.
同図に示したとおり、加熱温度が1250℃、巻取り温度が550℃で、焼鈍温度までの平均昇温速度:15℃/sで一様に昇温した場合には、Δrは−0.90であった。
これに対し、スラブ加熱温度を低温化すると共に、巻取り温度を高温化した場合には、Δrを−0.30まで小さくすることができた。さらに、焼鈍時に昇温速度制御を行った場合には、Δrの絶対値を0.20以下にまで低減することができた。
As shown in the figure, when the heating temperature is 1250 ° C., the coiling temperature is 550 ° C., and the average temperature rise rate up to the annealing temperature is 15 ° C./s, the Δr is −0.90. there were.
On the other hand, when the slab heating temperature was lowered and the coiling temperature was raised, Δr could be reduced to −0.30. Furthermore, when the temperature increase rate control was performed during annealing, the absolute value of Δr could be reduced to 0.20 or less.
その理由については、まだ定かではないが、700℃以上で徐加熱の効果が現れることを考慮すると、二相組織における再結晶と変態の競合が生じ、変態の効果が強すぎると、冷延の主方位である{100}<110>〜{221}<110>付近が焼鈍後も継承され、Δrが負値で大きくなるものと考える。そのため、変態をある程度抑制するためにも、冷延板に700℃までの平均昇温速度:15℃/s以上、700℃から焼鈍温度:800℃以上 950℃以下までの平均昇温速度を0.1〜2℃/sで焼鈍を行う必要があることが分かった。
また、成分組成と製造条件とを種々検討した結果、後述するように、Δrを小さくできるスラブ加熱温度には、Nb量とC量が関係することも判明した。
The reason for this is not clear yet, but considering that the effect of slow heating appears at 700 ° C or higher, competition between recrystallization and transformation occurs in the two-phase structure, and if the transformation effect is too strong, It is considered that the vicinity of {100} <110> to {221} <110>, which is the main orientation, is inherited even after annealing, and Δr increases with a negative value. Therefore, in order to suppress the transformation to some extent, the average heating rate up to 700 ° C: 15 ° C / s or more on the cold-rolled sheet, and the average heating rate from 700 ° C to annealing temperature: 800 ° C to 950 ° C is 0.1 It has been found that it is necessary to perform annealing at ˜2 ° C./s.
Further, as a result of various investigations on the component composition and the production conditions, it has been found that the Nb amount and the C amount are related to the slab heating temperature at which Δr can be reduced, as will be described later.
その他の高r値化に対する技術的要素としては次の事柄が考えられる。成分的にIF系にしなくても高いr値が得られることは、固溶Cの存在による{111}再結晶集合組織形成に対する負の要因よりも、熱延板組織の微細化に加え、マトリックス中に微細なNbCを析出させることで冷間圧延時に 粒界近傍に歪を蓄積させ粒界からの{111}再結晶粒の発生を促進するという正の要因が大きいためと考えられる。特にマトリックス中にNbCを析出させることの効果は、従来の極低炭素鋼程度のC量では有効ではなく、本発明のC量レベルにおいて初めてその効果を発揮するものと推測され、この領域を見出したことが本発明の技術思想の骨子の一つとなっている。そして、NbC以外のC、その存在形態はおそらくセメンタイト系炭化物あるいは固溶Cであると推測されるが、これらNbCとして固定されなかったCの存在により、焼鈍工程における冷却時にマルテンサイトを形成可能とし高強度化にも成功したものと考えられる。 The following can be considered as other technical elements for increasing the r value. The fact that a high r value can be obtained without using IF as a component is not only a negative factor for the formation of {111} recrystallized texture due to the presence of solute C, but in addition to the refinement of hot rolled sheet structure, This is thought to be due to the large positive factor of precipitating fine NbC and accumulating strain near the grain boundary during cold rolling and promoting the generation of {111} recrystallized grains from the grain boundary. In particular, the effect of precipitating NbC in the matrix is not effective at the C level of conventional ultra-low carbon steel, and is presumed to be effective for the first time at the C level of the present invention. This is one of the gist of the technical idea of the present invention. C other than NbC and its existence form are presumed to be cementite-based carbides or solute C, but the presence of C that is not fixed as NbC makes it possible to form martensite during cooling in the annealing process. It is considered that high strength has been achieved.
次に、本発明に用いる鋼スラブ、すなわち本発明で得ようとする高強度鋼板の成分組成を上記の範囲に限定した理由について説明する。
C:0.035〜0.05%
Cは、後述するNbと共に本発明における重要な元素である。このCは、高強度化に有効であり、フェライトを主相としマルテンサイトを含む第2相を有する複合組織の形成を促進する効果をもつ。また、本発明では、SRTを制御してr値の面内異方性を制御するのにCが有効であることおよび540 MPa以上の強度を確実に確保するために、0.035%以上のCを含有させるものとした。とはいえ、良好なr値を得るためには過剰なC添加は好ましくなく、また面内異方性の制御性を考慮して、上限を0.05%とした。より好ましいC量は、0.038%以上 0.045%以下である。
Next, the reason why the component composition of the steel slab used in the present invention, that is, the high-strength steel sheet to be obtained in the present invention is limited to the above range will be described.
C: 0.035-0.05%
C is an important element in the present invention together with Nb described later. This C is effective in increasing the strength and has the effect of promoting the formation of a composite structure having a second phase containing ferrite as a main phase and containing martensite. Further, in the present invention, in order to control the SRT to control the in-plane anisotropy of the r value, C is effective, and in order to ensure the strength of 540 MPa or more, 0.035% or more of C is used. It was supposed to be included. However, in order to obtain a good r value, excessive addition of C is not preferable, and the upper limit was made 0.05% in consideration of controllability of in-plane anisotropy. A more preferable amount of C is 0.038% or more and 0.045% or less.
Si:0.01〜1.0%
Siは、フェライト変態を促進させ、未変態オーステナイト中のC量を上昇させてフェライトとマルテンサイトの複合組織を形成させ易くする他、固溶強化の効果もある。これらの効果を得るには、Siは0.01%以上含有させる必要があり、より好ましくは0.05%以上である。
一方、Siを1.0%を超えて含有すると、熱延時に赤スケールが発生するため、製品板とした 時の表面外観を悪くする。また、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)を施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si量は1.0%以下とする必要がある。より好ましくは0.7%以下である。
Si: 0.01-1.0%
Si promotes ferrite transformation and increases the amount of C in untransformed austenite to facilitate the formation of a composite structure of ferrite and martensite, and also has an effect of solid solution strengthening. In order to obtain these effects, Si must be contained in an amount of 0.01% or more, and more preferably 0.05% or more.
On the other hand, if the Si content exceeds 1.0%, a red scale is generated during hot rolling, so the surface appearance of the product plate is deteriorated. In addition, when applying hot dip galvanizing (including alloying hot dip galvanizing), the wettability of the plating deteriorates, causing uneven plating, and the plating quality deteriorates. Therefore, the Si content must be 1.0% or less. is there. More preferably, it is 0.7% or less.
Mn:1.5〜3.0%
Mnは、高強度化に有効なだけでなく、マルテンサイト相が得られる臨界冷却速度を低くする作用があり、焼鈍後の冷却時にマルテンサイトの形成を促すために、要求される強度レベルおよび焼鈍後の冷却速度に応じて含有させることが好ましい。また、Mnは、Sによる熱間割れを防止する上でも有効な元素である。このような観点から、Mnは1.5%以上含有させる必要がある。より好ましくは1.8%以上である。一方、3.0%を超える過度の添加はr値および溶接性を劣化させるので、Mn量は3.0%を上限とした。
Mn: 1.5-3.0%
Mn is not only effective for increasing strength, but also has the effect of lowering the critical cooling rate at which a martensite phase is obtained, and the required strength level and annealing to promote the formation of martensite during cooling after annealing. It is preferable to contain it according to the subsequent cooling rate. Mn is an element that is also effective in preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained by 1.5% or more. More preferably, it is 1.8% or more. On the other hand, excessive addition exceeding 3.0% deteriorates the r value and weldability, so the upper limit of the Mn content is 3.0%.
P:0.005〜0.1%
Pは、固溶強化に有効な元素である。しかしながら、P含有量が0.005%未満では、その効果が現れないだけでなく、製鋼工程において脱りんコストの上昇を招く。従って、Pは0.005%以上含有させるものとする。好ましくは0.01%以上である。一方、0.1%を超える過剰な添加は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする場合には、溶融亜鉛めっき後の合金化処理時に、めっき層と鋼板の界面における鋼板からめっき層へのFeの拡散が抑制され、合金化処理性が劣化する。そのため、高温での合金化処理が必要となり、得られるめっき層は、パウダリング、チッピング等のめっき剥離が生じ易いものとなる。従って、P量の上限は0.1%とする。
P: 0.005-0.1%
P is an element effective for solid solution strengthening. However, if the P content is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steel making process. Therefore, P is contained in an amount of 0.005% or more. Preferably it is 0.01% or more. On the other hand, when P is excessively added in excess of 0.1%, P segregates at the grain boundaries and deteriorates the secondary work brittleness resistance and weldability. In addition, when the hot dip galvanized steel sheet is used, diffusion of Fe from the steel sheet to the plated layer at the interface between the plated layer and the steel sheet is suppressed during the alloying process after the hot dip galvanizing, and the alloying processability deteriorates. For this reason, an alloying treatment at a high temperature is required, and the obtained plating layer is likely to undergo plating peeling such as powdering and chipping. Therefore, the upper limit of the P amount is 0.1%.
Al:0.005%〜0.1%
Alは、鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる作用があるため、0.005%以上含有する。しかしながら、0.1%を超える添加は合金コストの上昇を招くだけでなく、表面欠陥を誘発するので、0.1%を上限とした。
Al: 0.005% to 0.1%
In addition to being useful as a deoxidizing element for steel, Al has the effect of fixing solid solution N and improving the normal temperature aging resistance, so it is contained in an amount of 0.005% or more. However, addition exceeding 0.1% not only causes an increase in alloy cost, but also induces surface defects, so 0.1% was made the upper limit.
S:0.01%以下
Sは、不純物であり、熱間割れの原因になるだけでなく、鋼中に介在物として存在し鋼板の諸特性を劣化させるので、極力低減することが好ましいが、0.01%までは許容できるので、上限を0.01%以下とする。
S: 0.01% or less S is an impurity and not only causes hot cracking but also exists as an inclusion in the steel and degrades various properties of the steel sheet. Therefore, it is preferable to reduce it as much as possible, but 0.01% The upper limit is made 0.01% or less.
N:0.01%以下
Nは、多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、極力低減することが好ましいが、0.01%までは許容できるので、上限を0.01%とする。
N: 0.01% or less N is excessively deteriorated at normal temperature aging resistance, and a large amount of Al or Ti needs to be added. Therefore, it is preferable to reduce it as much as possible, but up to 0.01% is acceptable, so the upper limit is 0.01 %.
Nb:0.05〜0.12%で、かつ(Nb/93)/(C/12)=0.15〜0.45
Nbは、本発明において最も重要な元素であり、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、高r値化に寄与する元素である。さらに、SRTの調整によりr値の面内異方性を制御するという効果を発揮させる観点から:Nbは0.05%以上含有させる必要がある。一方で、過剰のNb添加は、r値の面内異方性の制御が困難となる。また、本発明では、焼鈍後の冷却過程でマルテンサイトを形成させるための固溶Cを必要とするが、過剰のNb添加はこれを妨げる傾向にあるため、上限を0.12%とする。
Nb: 0.05 to 0.12% and (Nb / 93) / (C / 12) = 0.15 to 0.45
Nb is the most important element in the present invention, and has the effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and contributes to increasing the r value. Furthermore, from the viewpoint of exerting the effect of controlling the in-plane anisotropy of the r value by adjusting SRT: Nb needs to be contained in an amount of 0.05% or more. On the other hand, excessive addition of Nb makes it difficult to control the in-plane anisotropy of the r value. Further, in the present invention, solid solution C for forming martensite is required in the cooling process after annealing, but excessive Nb addition tends to prevent this, so the upper limit is made 0.12%.
また、Nb添加の効果を奏するには、特にNb含有量とC含有量とが、(Nb/93)/(C/12)=0.15〜0.45の範囲を満足するように、NbとCを含有させることが重要である。なお、ここで、Nb,Cは各々の元素の含有量(質量%)を表し、(Nb/93)/(C/12)はNbとCの原子濃度比を表している。
本発明では、(Nb/93)/(C/12)が0.15未満では、固溶Cの存在量が多く、高r値化に必要な{111}再結晶集合組織の形成が阻害されることになる。一方、(Nb/93)/(C/12)が 0.45を超えると、r値の面内異方性の制御が困難になるだけでなく、マルテンサイトを形成して強度を540 MPa以上を確保するのに必要なC量を鋼中に存在さ せることを妨げられる。従って、Nbは、0.05〜0.12%で、かつ(Nb/93)/(C/12)=0.15〜0.45を満足する範囲で含有させるものとした。
In order to achieve the effect of Nb addition, Nb and C are contained so that the Nb content and the C content satisfy the range of (Nb / 93) / (C / 12) = 0.15 to 0.45. It is important to let Here, Nb and C represent the content (mass%) of each element, and (Nb / 93) / (C / 12) represents the atomic concentration ratio of Nb and C.
In the present invention, if (Nb / 93) / (C / 12) is less than 0.15, the amount of solid solution C is large and the formation of {111} recrystallized texture necessary for high r-value is inhibited. become. On the other hand, if (Nb / 93) / (C / 12) exceeds 0.45, not only is it difficult to control the in-plane anisotropy of the r value, but martensite is formed to ensure a strength of 540 MPa or more. This prevents the amount of C necessary to do so from being present in the steel. Accordingly, Nb is included in the range of 0.05 to 0.12% and (Nb / 93) / (C / 12) = 0.15 to 0.45 is satisfied.
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Ti:0.1%以下およびV:0.1%以下のうちから選んだ1種または2種
TiおよびVは、Nbと同様、熱延板組織の微細化および熱延板中に炭化物としてCを析出固定させる作用を有し、高r値化に寄与する元素である。但し、熱延板の微細化効果はNbの方が大きいので、Nb添加鋼に対して、適宜Ti、Vを添加することが好ましい。このような観点からは、Ti,Vは0.005%以上含有させるのが好ましい。一方で、本発明では、焼鈍後の冷却過程でマルテンサイトを形成させるための固溶Cを必要とするが、Nb添加鋼にさらに過剰のTi,Vを添加した場合はその妨げとになるので、それぞれ0.1%以下で含有させるものとした。
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
One or two selected from Ti: 0.1% or less and V: 0.1% or less
Ti and V, like Nb, are elements that have the effect of refining the hot-rolled sheet structure and precipitating and fixing C as carbides in the hot-rolled sheet and contributing to higher r values. However, since Nb has a greater effect of refinement of the hot-rolled sheet, it is preferable to add Ti and V appropriately to the Nb-added steel. From such a viewpoint, it is preferable to contain 0.005% or more of Ti and V. On the other hand, in the present invention, solid solution C for forming martensite is required in the cooling process after annealing. However, if excessive Ti and V are added to the Nb-added steel, it becomes a hindrance. And 0.1% or less, respectively.
{(Nb/93)+(Ti*/48)+(V/51)}/(C/12)=0.15〜0.45。但し、Ti*>0の場合、Ti*=Ti−1.5S−3.4N、Ti*≦0の場合、Ti*=0
また、NbおよびTi,V添加の効果を奏するには、特にNb、Ti(Ti*)、V含有量とC含有量との比を0.15〜0.45の範囲を満足させる必要がある。{(Nb/93)+(Ti*/48)+(V/51)}/(C/12)が0.15未満では、固溶Cの存在量が多く、高r値化に有効な{111}再結晶集合組織の形成が阻害されることになる。一方、0.4を超えると、マルテンサイトを形成して、強度を540 MPa以上を確保するのに必要なC量が鋼中に存在することが妨げられるので、最終的にマルテンサイト相を含む第2相を有する組織が得られない。従って、Nb、Ti(Ti*)、V含有量とC含有量(質量%)との比については 、0.15〜0.45の範囲を満足させるものとした。
なお、Tiは固溶S,Nの析出固定に効果がある元素であり、鋼中でTiはCよりも先にSやNと結合しやすいため、鋼中のTi含有量からこれらSやNを固定するのに消費されると考えられるTi量を除いて得た有効Ti量(Ti*)をCとの比の計算に用いることとした。また、Ti*≦0の場合、TiはSやNを固定するために消費されてしまい、TiによるCの析出固定が起こらないと考えられるため、Ti*>0の場合のみ、Cとの比の計算に用いることとし、Ti*≦0の場合には、Ti*はCとの比の計算には用いずにTi*=0とした。
{(Nb / 93) + (Ti * / 48) + (V / 51)} / (C / 12) = 0.15 to 0.45. However, when Ti * > 0, Ti * = Ti-1.5S-3.4N, and when Ti * ≦ 0, Ti * = 0
In order to achieve the effect of addition of Nb, Ti, and V, it is necessary to satisfy the ratio of Nb, Ti (Ti * ), V content and C content in the range of 0.15 to 0.45. When {(Nb / 93) + (Ti * / 48) + (V / 51)} / (C / 12) is less than 0.15, there is a large amount of solute C, which is effective for increasing the r value {111} The formation of recrystallized texture will be inhibited. On the other hand, if it exceeds 0.4, martensite is formed and the amount of C necessary to ensure the strength of 540 MPa or more is prevented from being present in the steel. A structure having a phase cannot be obtained. Therefore, the ratio of Nb, Ti (Ti * ), V content and C content (% by mass) satisfies the range of 0.15 to 0.45.
Ti is an element that is effective for precipitation fixation of solute S and N, and Ti in steel easily binds to S and N prior to C. Therefore, from the Ti content in steel, these S and N The effective amount of Ti (Ti * ) obtained by removing the amount of Ti that is considered to be consumed for fixing is used for calculating the ratio with C. In addition, when Ti * ≦ 0, Ti is consumed to fix S and N, and it is considered that precipitation and fixing of C due to Ti does not occur. Therefore, only when Ti * > 0, the ratio with C In the case of Ti * ≦ 0, Ti * is not used in the calculation of the ratio with C, and Ti * = 0.
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
Moは、Mn同様、マルテンサイトが得られる臨界冷却速度を遅くする作用を有し、焼鈍後の冷却時にマルテンサイト形成を促す元素であり、強度レベルの向上に効果がある。また、Cを析出固定させる作用を有し高r値化に寄与する元素でもある。これらの効果を得るためには、Moは0.05%以上含有させることが好ましい。
また、Cu,Niは、Mn同様、マルテンサイトが得られる臨界冷却速度を遅くする作用を有し、焼鈍後の冷却時にマルテンサイト形成を促す元素であり、強度レベル向上に効果がある。また、めっき性に及ぼす影響も小さい。これらの効果を得るためには、Cu,Niはそれぞれ0.05%以上含有させることが好ましい。
しかしながら、過剰のMo,Cu,Ni添加は、これらの効果が飽和するだけでなく、合金コストの上昇を招き、また特にCuは表面性状に悪影響を与えることから、これらの元素は単独使用または併用いずれの場合も合計として0.5%以下で含有させることが好ましい。
Total of one or more selected from Mo, Cu and Ni: 0.5% or less
Mo, like Mn, has the effect of slowing the critical cooling rate at which martensite can be obtained, is an element that promotes martensite formation during cooling after annealing, and is effective in improving the strength level. It is also an element that has the effect of precipitating and fixing C and contributes to an increase in r value. In order to acquire these effects, it is preferable to contain Mo 0.05% or more.
Cu and Ni, like Mn, have the effect of slowing the critical cooling rate at which martensite can be obtained, are elements that promote martensite formation during cooling after annealing, and are effective in improving the strength level. In addition, the influence on the plating property is small. In order to obtain these effects, it is preferable to contain 0.05% or more of Cu and Ni, respectively.
However, excessive addition of Mo, Cu, and Ni not only saturates these effects, but also increases the alloy cost. In particular, Cu adversely affects the surface properties, so these elements can be used alone or in combination. In any case, the total content is preferably 0.5% or less.
本発明では、上記した成分以外の残部はFeおよび不可避的不純物である。
なお、通常の鋼組成範囲内であれば、さらにB,Ca,REM等を含有しても何ら問題はない。例えば、Bは、鋼の焼入性を向上する作用をもつ元素であり、必要に応じて含有させることができる。しかしながら、B含有量が0.003%を超えるとその効果が飽和するため 、0.003%以下とすることが好ましい。また、CaおよびREMは、硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を超えると飽和するので、これ以下とすることが好ましい。
In the present invention, the balance other than the above components is Fe and inevitable impurities.
It should be noted that there is no problem even if B, Ca, REM and the like are further contained within the normal steel composition range. For example, B is an element having an effect of improving the hardenability of steel, and can be contained as necessary. However, when the B content exceeds 0.003%, the effect is saturated, so 0.003% or less is preferable. Moreover, Ca and REM have the effect | action which controls the form of a sulfide type inclusion, and, thereby, prevents the deterioration of the various characteristics of a steel plate. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, and is therefore preferably made less than this.
なお、その他の不可避的不純物としては、例えばSb,Sn,Zn,Co等が挙げられ、これらの含有量の許容範囲については、それぞれSb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。 Other unavoidable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01%, respectively. Hereinafter, Co: 0.1% or less.
次に、本発明に従う高強度鋼板の製造方法について説明する。
本発明では、上記した好適成分組成に調整した鋼スラブを素材とし、該素材を加熱後、熱間圧延を施して熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施して冷延板とする冷間圧延工程と、該冷延板に再結晶と複合組織化を達成する冷延板焼鈍工程とを順次に施すことによって、高強度鋼板を製造することができる。
以下、各処理条件について説明する。
Next, the manufacturing method of the high strength steel plate according to this invention is demonstrated.
In the present invention, a steel slab adjusted to the above-described preferred component composition is used as a raw material, and after the raw material is heated, hot rolling is performed to form a hot rolled sheet, and the hot rolled sheet is pickled and cooled. A high-strength steel sheet is manufactured by sequentially performing a cold rolling process to form a cold-rolled sheet by cold rolling and a cold-rolled sheet annealing process to achieve recrystallization and composite structure on the cold-rolled sheet. Can do.
Hereinafter, each processing condition will be described.
鋼スラブの製造に際しては、成分のマクロ偏析を防止するために連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のまま加熱炉に装入し熱間圧延に供する直送圧延、あるいはわずかの保熱を行った後に直ちに熱間圧延に供する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用することができる。 In producing the steel slab, it is desirable to produce it by a continuous casting method in order to prevent macro segregation of components, but it may be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, it is directly fed into a heating furnace without being cooled and placed in a heating furnace for hot rolling, or a little heat retention Energy saving processes such as direct feed rolling and direct rolling that are immediately subjected to hot rolling after performing the above can be applied without any problem.
スラブ加熱温度(SRT):1000℃以上 1200℃以下 かつ SRT ≦ 25000 [%C][%Nb]+1050
スラブ加熱温度は、析出物を粗大化させて面内異方性を小さくするために低いほうが望ましい。この意味で1200℃以下にする必要がある。しかしながら、加熱温度が1000℃未満では圧延荷重の増大を招き熱間圧延時におけるトラブル発生の危険性が増すので、スラブ加熱温度は1000℃以上とすることが好ましい。
Slab heating temperature (SRT): 1000 ° C or more and 1200 ° C or less and SRT ≤ 25000 [% C] [% Nb] +1050
The slab heating temperature is desirably low in order to coarsen the precipitate and reduce the in-plane anisotropy. In this sense, it must be 1200 ° C or lower. However, if the heating temperature is less than 1000 ° C, the rolling load increases and the risk of trouble occurring during hot rolling increases, so the slab heating temperature is preferably 1000 ° C or higher.
また、析出物は主にNbCであり、その粗大化にはSRTだけでなく、C量およびNb量も影響する。
図2は、C,Nb量とSRTを変化させて、CT:700℃、圧下率:65%で冷間圧延し、ついで700℃まで平均昇温速度:20℃/sで昇温し、引き続き700℃から焼鈍温度:860℃まで平均昇温速度:1.5℃/sで昇温し、860℃で80秒間焼鈍後、焼鈍温度から500℃まで平均冷却温度:1.5℃/sで冷却して得た冷延焼鈍板のΔr値を測定した結果である。
析出量が溶解度積に対応することを考慮して、横軸をC含有量([%C])とNb含有量([%Nb])の積である[%C][%Nb]とすると、C含有量が0.035%以上、Nb含有量が0.05%以上(従って、1000[%C][%Nb]≧1.75)の範囲で、かつ SRT ≦ 25000 [%C][%Nb]+1050の範囲を満足する場合に、Δrの絶対値を0.20以下にすることができる。
そこで、本発明では、スラブ加熱温度(SRT)は、1000℃以上 1200℃以下で、かつSRT ≦ 25000 [%C][%Nb]+1050の関係を満足する範囲に限定したのである。
Further, the precipitate is mainly NbC, and its coarsening is affected not only by SRT but also by the amount of C and Nb.
Fig. 2 shows the amount of C, Nb and SRT changed, cold rolled at CT: 700 ° C, rolling reduction: 65%, then heated up to 700 ° C at an average heating rate: 20 ° C / s. From 700 ° C to annealing temperature: 860 ° C, average heating rate: 1.5 ° C / s, heated at 860 ° C for 80 seconds, and then cooled from annealing temperature to 500 ° C at average cooling temperature: 1.5 ° C / s. It is the result of having measured the Δr value of the cold-rolled annealing plate.
Considering that the precipitation amount corresponds to the solubility product, the horizontal axis is [% C] [% Nb], which is the product of C content ([% C]) and Nb content ([% Nb]). , C content is 0.035% or more, Nb content is 0.05% or more (hence 1000 [% C] [% Nb] ≧ 1.75) and SRT ≦ 25000 [% C] [% Nb] +1050 Can satisfy the absolute value of Δr of 0.20 or less.
Therefore, in the present invention, the slab heating temperature (SRT) is limited to the range satisfying the relationship of SRT ≦ 25000 [% C] [% Nb] +1050 and not less than 1000 ° C. and not more than 1200 ° C.
上記の条件で加熱されたスラブに、粗圧延および仕上げ圧延からなる熱間圧延を施す。ここで、スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱するいわゆるシートバーヒーターを活用することが有効な方法であることは言うまでもない。 The slab heated under the above conditions is subjected to hot rolling consisting of rough rolling and finish rolling. Here, the slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. In addition, it goes without saying that using a so-called sheet bar heater for heating the sheet bar is an effective method from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling.
熱間圧延での仕上圧延出側温度:800℃以上
ついで、シートバーに仕上げ圧延を施して熱延板とする。この際、仕上圧延出側温度(FT)は800℃以上とする必要がある。これは、冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる微細な熱延板組織を得るためである。
FTが800℃未満では、組織が加工組織を有し冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。一方、FTが980℃を超えると組織が粗大化し、これも冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げ高r値の達成を阻害するので、FTは980℃以下にすることが好ましい。
Finishing rolling exit temperature in hot rolling: 800 ° C or higher Next, finish rolling the sheet bar to make a hot rolled sheet. At this time, the finish rolling outlet temperature (FT) needs to be 800 ° C. or higher. This is to obtain a fine hot-rolled sheet structure that provides excellent deep drawability after cold rolling and recrystallization annealing.
If FT is less than 800 ° C., the structure has a processed structure, and not only {111} texture develops after cold rolling annealing, but also the rolling load during hot rolling becomes high. On the other hand, when the FT exceeds 980 ° C., the structure becomes coarse, which also prevents the formation and development of {111} recrystallized texture after the cold rolling annealing, thereby inhibiting the achievement of the high r value. It is preferable to do.
なお、熱間圧延時の圧延荷重を低減するために、仕上げ圧延の一部または全部のパスを潤滑圧延とすることもできる。この潤滑圧延を行うことは鋼板形状の均一化や材質の均質化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上げ圧延に供する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。 In addition, in order to reduce the rolling load at the time of hot rolling, a part or all pass of finish rolling can also be lubricated rolling. This lubrication rolling is effective from the viewpoint of uniforming the shape of the steel sheet and homogenizing the material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined to each other and continuously subjected to finish rolling. It is desirable to apply the continuous rolling process from the viewpoint of the operational stability of hot rolling.
巻取り温度:600〜720℃
コイルの巻取り温度(CT)は600℃以上 720℃以下とする。というのは、この温度範囲が、スラブ加熱時に析出できなかったNb,Ti,V等の炭化物を析出、成長させるのに好適な温度範囲であるだけでなく、特にCTが上限温度を超えると結晶粒が粗大化し強度の低下を招くと共に、冷延焼鈍後の高r値化が妨げられるからである。好ましくは620〜700℃の温度範囲である。
Winding temperature: 600 ~ 720 ℃
The coil winding temperature (CT) shall be 600 ° C or higher and 720 ° C or lower. This is because this temperature range is not only suitable for precipitating and growing carbides such as Nb, Ti, V, etc. that could not be precipitated during slab heating. This is because the grains are coarsened and the strength is lowered, and an increase in r value after cold rolling annealing is hindered. Preferably it is the temperature range of 620-700 degreeC.
ついで、熱延板に酸洗を施したのち、冷間圧延を施して冷延板とする。酸洗は、通常の条件にて行えばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定はされないが、冷間圧延時の圧下率は40%以上とすることが好ましい。より望ましくは50%以上である。
高r値化には、一般に高圧下率での冷延が有効であり、圧下率が40%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる。そして、本発明では、冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を超えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷が高まるため、上限は90%とすることが好ましい。
Next, the hot-rolled sheet is pickled and then cold-rolled to obtain a cold-rolled sheet. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired dimension and shape, but the rolling reduction during cold rolling is preferably 40% or more. More desirably, it is 50% or more.
Generally, cold rolling at a high pressure ratio is effective for increasing the r value. If the reduction ratio is less than 40%, the {111} recrystallized texture does not develop, and it is difficult to obtain excellent deep drawability. Become. In the present invention, the r value increases as the cold rolling reduction is increased up to 90%, but when it exceeds 90%, not only the effect is saturated but also the load on the roll during rolling increases. Therefore, the upper limit is preferably 90%.
700℃までの平均昇温速度:15℃/s以上、700℃から焼鈍温度:800℃以上 950℃以下までの平均昇温速度:0.1〜2℃/s
冷延後の焼鈍では、少なくとも再結晶を行わせる必要がある。このためには、焼鈍の際の最高到達温度である焼鈍温度は800℃以上の温度とすることが最低必要である。一方、950℃を超える高温では再結晶粒が著しく粗大化し、特性の著しい劣化を招くので、焼鈍温度は800℃以上 950℃以下に限定した。なお、焼鈍温度での保持時間、いわゆる焼鈍時間は、特に規定するものではないが、焼鈍を安定して行うという観点から10〜120秒程度とすることが好ましい。
Average heating rate up to 700 ° C: 15 ° C / s or more, Average heating rate from 700 ° C to annealing temperature: 800 ° C or more and 950 ° C or less: 0.1-2 ° C / s
In annealing after cold rolling, it is necessary to at least recrystallize. For this purpose, the annealing temperature, which is the highest temperature achieved during annealing, must be at least 800 ° C. On the other hand, since the recrystallized grains become extremely coarse at a high temperature exceeding 950 ° C. and the characteristics are significantly deteriorated, the annealing temperature is limited to 800 ° C. or more and 950 ° C. or less. The holding time at the annealing temperature, so-called annealing time, is not particularly specified, but is preferably about 10 to 120 seconds from the viewpoint of performing annealing stably.
上記した焼鈍温度までの加熱速度は、本発明の中で重要な要件である。
すなわち、700℃まではある程度速い昇温速度で昇温して、回復をある程度抑制し、再結晶を促す必要がある。そうしないと、それ以上の温度域で変態が優先的に進行し、面内異方性を小さくすることができない。そこで、本発明では、700℃までは平均昇温速度: 15℃/s以上で昇温するものとした。一方、700℃以上の温度域では、徐加熱として、再結晶を促し、r値に好ましい{111}方位の発達と、面内異方性の改善を図る必要がある。このため、この温度域での平均昇温速度は2℃/s以下とする。但し、昇温速度が0.1℃/s未満の超低速での徐加熱は、700℃以上という温度条件および現状の焼鈍設備を考慮すると極めて難しいので、本発明では、700℃から焼鈍温度までの平均昇温速度は0.1〜2℃/sの範囲に限定した。
The heating rate up to the annealing temperature described above is an important requirement in the present invention.
That is, it is necessary to raise the temperature up to 700 ° C. at a somewhat high heating rate, to suppress the recovery to some extent, and to promote recrystallization. Otherwise, the transformation preferentially proceeds in a temperature range higher than that, and the in-plane anisotropy cannot be reduced. Therefore, in the present invention, the temperature is increased up to 700 ° C. at an average rate of temperature increase of 15 ° C./s or more. On the other hand, in the temperature range of 700 ° C. or higher, it is necessary to promote recrystallization as a gradual heating, to develop the {111} orientation preferable for the r value and to improve the in-plane anisotropy. For this reason, the average temperature increase rate in this temperature range is set to 2 ° C./s or less. However, gradual heating at an ultra-low speed with a heating rate of less than 0.1 ° C./s is extremely difficult considering the temperature condition of 700 ° C. or higher and the current annealing equipment. Therefore, in the present invention, the average from 700 ° C. to the annealing temperature is used. The temperature rising rate was limited to a range of 0.1 to 2 ° C./s.
焼鈍温度から500℃まで平均冷却速度:5℃/s以上
上記焼鈍後の冷却処理については、マルテンサイト形成の観点から、焼鈍温度から500℃までの平均冷却速度を5℃/s以上とする必要がある。というのは、該温度域での平均冷却速度が5℃/sに満たないとマルテンサイトが形成されにくくフェライト単相組織となって組織強化が不足することになる。本発明では、マルテンサイトを含む第2相の存在が不可欠であることから、500℃までの平均冷却速度が臨界冷却速度以上であることが要求されるが、これは平均冷却速度を5℃/s以上とすることで達成される。しかしながら、この冷却速度が15℃/s超になると、複合組織にはなるものの、第2相の分率が高くなって延性には好ましくない分布となるため、この温度域での平均冷却速度は15℃/s以下とすることが好ましい。
なお、500℃未満の温度域の冷却については、それまでの冷却によりγ相はある程度安定化するので、特に限定はしないが、引き続き、望ましくは300℃まで5℃/s以上の平均冷却速度で冷却することが好ましい。また、過時効処理を施す場合は、やはり過時効処理温度まで平均冷却速度:5℃/s以上で冷却することが好ましい。
Average cooling rate from annealing temperature to 500 ° C .: 5 ° C./s or more For the cooling treatment after annealing, it is necessary to set the average cooling rate from annealing temperature to 500 ° C. to 5 ° C./s or more from the viewpoint of martensite formation. There is. This is because if the average cooling rate in the temperature range is less than 5 ° C./s, martensite is difficult to form and a ferrite single-phase structure is formed, resulting in insufficient strengthening of the structure. In the present invention, since the presence of the second phase containing martensite is indispensable, the average cooling rate up to 500 ° C. is required to be equal to or higher than the critical cooling rate. This is achieved by setting it to s or more. However, if this cooling rate exceeds 15 ° C / s, although it becomes a composite structure, the fraction of the second phase becomes high and distribution becomes unfavorable for ductility. Therefore, the average cooling rate in this temperature range is It is preferable to set it as 15 degrees C / s or less.
The cooling in the temperature range below 500 ° C. is not particularly limited because the γ phase is stabilized to some extent by the cooling so far. However, preferably, the average cooling rate of 5 ° C./s or more is desirably increased to 300 ° C. It is preferable to cool. Moreover, when performing an overaging treatment, it is preferable to cool to an overaging treatment temperature at an average cooling rate of 5 ° C./s or more.
また、上記の冷延板焼鈍の後に、電気めっき処理や溶融めっき処理などのめっき処理を施して、鋼板表面にめっき層を形成しても良い。また、めっきの種類については、例えば純亜鉛の他、亜鉛を主成分として合金元素を添加した亜鉛系めっき、あるいは純Alや、Alを主成分として合金元素を添加したAl系めっきなどが適用できる。
例えば、めっき処理として、自動車用鋼板に多く用いられる溶融亜鉛めっき処理を行う場合には、上記焼鈍を連続溶融亜鉛めっきラインにて行い、焼鈍後の冷却に引き続いて溶融亜鉛めっき浴に浸漬し、表面に溶融亜鉛めっき層を形成すればよい。さらに、合金化処理を行い、合金化溶融亜鉛めっき鋼板としてもよい。その場合、溶融めっきのポットから出た後、さらには合金化処理した後の冷却においても、300℃までの平均冷却速度を5℃/s以上とすることが好ましい。
Moreover, after the cold-rolled sheet annealing, a plating process such as an electroplating process or a hot dipping process may be performed to form a plating layer on the steel sheet surface. In addition to pure zinc, for example, zinc-based plating in which zinc is the main component and alloying elements are added, or pure Al, Al-based plating in which Al is the main component and alloying elements can be applied. .
For example, when performing hot dip galvanizing treatment often used for automotive steel plates as plating treatment, the annealing is performed in a continuous hot dip galvanizing line, and immersed in a hot dip galvanizing bath following cooling after annealing, A hot dip galvanized layer may be formed on the surface. Further, alloying treatment may be performed to obtain an alloyed hot-dip galvanized steel sheet. In that case, it is preferable that the average cooling rate up to 300 ° C. is 5 ° C./s or more also in cooling after leaving the pot of hot dipping and further alloying.
上記のようにして得た冷延焼鈍板、さらにはめっき処理を施しためっき鋼板には、形状矯正、表面粗度調整等の目的で調質圧延やレベラー加工を施すこともできる。この調質圧延およびレベラー加工は、伸び率で0.2〜15%の範囲とすることが好ましい。0.2%未満では形状矯正、粗度調整の所期の目的が達成できず、一方15%を超えると顕著な延性の低下を招く。なお、調質圧延とレベラー加工では加工形式が相違するが、その効果は両者で大きな差がないことを確認している。そして、これらの調質圧延およびレベラー加工はめっき処理後でも有効である。 The cold-rolled annealed plate obtained as described above, and further, the plated steel plate subjected to the plating treatment can be subjected to temper rolling and leveler processing for the purpose of shape correction, surface roughness adjustment and the like. The temper rolling and leveler processing are preferably performed in the range of 0.2 to 15% in terms of elongation. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. On the other hand, if it exceeds 15%, the ductility is significantly reduced. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference between the two. These temper rolling and leveler processing are effective even after the plating treatment.
次に、上記した本発明の製造方法で得られる鋼板の鋼組織について説明する。
良好な深絞り性を有し、引張強さ≧540 MPaの鋼板とするためには、面積率で50%以上のフェライト相と、面積率で1%以上より好ましくは3%以上のマルテンサイト相を含む鋼組織とする必要がある。フェライト相が少なくなり、面積率で50%未満になると、良好な深絞り性を確保することが困難となり、プレス成形性が低下する傾向にある。より好ましいフェライト相の比率は面積率で70%以上である。また、複合組織の利点を利用するため、フェライト相は99%以下とするのが好ましい。なお、ここでフェライト相とは、ポリゴナルフェライト相や、オーステナイト相から変態した転位密度の高いペイニチックフェライト相を意味する。
Next, the steel structure of the steel plate obtained by the manufacturing method of the present invention described above will be described.
In order to obtain a steel sheet with good deep drawability and a tensile strength of ≧ 540 MPa, a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more, preferably 3% or more. It is necessary to make the steel structure including. When the ferrite phase is reduced and the area ratio is less than 50%, it becomes difficult to ensure good deep drawability, and the press formability tends to decrease. A more preferable ratio of the ferrite phase is 70% or more in terms of area ratio. Further, in order to take advantage of the composite structure, the ferrite phase is preferably 99% or less. Here, the ferrite phase means a polygonal ferrite phase or a painitic ferrite phase having a high dislocation density transformed from an austenite phase.
上述したとおり、本発明では、マルテンサイト相が存在することが必要であり、その相比率は面積率で1%以上より好ましくは3%以上さらに好ましくは5%以上である。マルテンサイト相が1%未満では良好な強度−延性バランスを得ることが難しい。
なお、上記したフェライト相およびマルテンサイト相の他に、パーライト、ベイナイトあるいは残留γ相などを含んだ組織としてもよい。この場合、これらの相の全体の比率は面積率で30%以下とすることが好ましい。
As described above, the present invention requires the presence of a martensite phase, and the phase ratio is 1% or more, preferably 3% or more, and more preferably 5% or more in terms of area ratio. If the martensite phase is less than 1%, it is difficult to obtain a good strength-ductility balance.
In addition to the ferrite phase and martensite phase described above, a structure including pearlite, bainite, or residual γ phase may be used. In this case, the total ratio of these phases is preferably 30% or less in terms of area ratio.
本発明では、上記した成分組成および鋼組織とすることにより、平均r値が1.2以上を達成することができる。
ここで、平均r値とは、JIS Z 2254で求められる平均塑性ひずみ比を意味し、次式で求められる値である。
平均r値=(r0+2r45+r90)/4
なお、r0、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ0 °、45°および90°方向に採取し測定した塑性ひずみ比である。
In the present invention, an average r value of 1.2 or more can be achieved by using the above-described component composition and steel structure.
Here, the average r value means an average plastic strain ratio obtained by JIS Z 2254, and is a value obtained by the following formula.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
Here, r 0 , r 45 and r 90 are plastic strain ratios obtained by measuring test pieces in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction of the plate surface, respectively.
次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱したのち、粗圧延によりシートバーとし、ついで表2に示す条件で仕上圧延を施して熱延板とした。これらの熱延板を、酸洗後、圧下率:65%の冷間圧延を施して板厚:1.2 mmの冷延板とした。引き続き、これら冷延板に、連続焼鈍ラインにて、表2に示す条件で連続焼鈍を施した。なお、焼鈍時間は60〜80秒とした。ついで、得られた冷延焼鈍板に、伸び率:0.5%の調質圧延を施して、製品板とした。
なお、No.16の鋼板は、連続溶融亜鉛めっきラインにて連続焼鈍を施し、その後引き続きインラインで溶融亜鉛めっき(めっき浴温:480℃)を施した溶融亜鉛めっき鋼板を製品板とした。
かくして得られた各製品板の、微視組織、引張特性、r値およびめっき処理性について調査した結果を表2に併記する。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. After heating these steel slabs to 1250 ° C., they were made into sheet bars by rough rolling, and then subjected to finish rolling under the conditions shown in Table 2 to obtain hot rolled sheets. These hot-rolled sheets were pickled and then cold-rolled with a reduction ratio of 65% to obtain cold-rolled sheets with a sheet thickness of 1.2 mm. Subsequently, these cold-rolled sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Table 2. The annealing time was 60 to 80 seconds. Subsequently, the obtained cold-rolled annealed sheet was subjected to temper rolling with an elongation of 0.5% to obtain a product sheet.
The No. 16 steel plate was a product plate made of a hot dip galvanized steel plate that had been subjected to continuous annealing in a continuous hot dip galvanizing line and subsequently subjected to hot dip galvanizing (plating bath temperature: 480 ° C.) in-line.
Table 2 shows the results of investigation on the microstructure, tensile properties, r value and plating processability of each product plate thus obtained.
なお、微視組織および各特性の調査方法は次のとおりである。
(1) 冷延焼鈍板の微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面(L断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて400〜10000倍で微視組織を撮像し、画像解析装置で主相であるフェライトの面積率および第2相の種類と面積率を求めた。
In addition, the investigation method of the microscopic structure and each characteristic is as follows.
(1) Microstructure of cold-rolled annealed plates Specimens were collected from each cold-rolled annealed plate, and the thickness cross section (L cross section) parallel to the rolling direction was measured using an optical microscope or scanning electron microscope. The microscopic tissue was imaged at a magnification, and the area ratio of ferrite as the main phase and the type and area ratio of the second phase were determined by an image analysis apparatus.
(2) 引張特性
得られた各冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度:10mm/minで引張試験を行い、降伏応力(YS)、引張強さ(TS)および伸び(El)を求めた。
(2) Tensile properties JIS No. 5 tensile test specimens were sampled from each of the cold-rolled annealed plates in the 90 ° direction (C direction) with respect to the rolling direction, and the crosshead speed was 10 mm in accordance with the provisions of JIS Z 2241. A tensile test was conducted at / min to determine yield stress (YS), tensile strength (TS), and elongation (El).
(3) r値
得られた各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。 これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を測定し、これらの測定値を用い、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を以下の式から求め、これを平均r値とした。
平均r値=(r0+2r45+r90)/4
なお、r0、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ0 °、45°および90°方向に採取し測定した塑性ひずみ比である。
また、下式からr値の面内異方性(Δr)を求めた。
Δr=(r0+r90−2r45)/2
(3) r value JIS No. 5 tensile specimen from the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and 90 ° direction (C direction) with respect to the rolling direction. Were collected. Measure the width strain and plate thickness strain of each specimen when 10% uniaxial tensile strain was applied to these specimens, and use these measurements to determine the average r value in accordance with JIS Z 2254 regulations. The (average plastic strain ratio) was determined from the following formula, and this was used as the average r value.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
Here, r 0 , r 45 and r 90 are plastic strain ratios obtained by measuring test pieces in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction of the plate surface, respectively.
Further, the in-plane anisotropy (Δr) of the r value was determined from the following equation.
Δr = (r 0 + r 90 −2r 45 ) / 2
(4) めっき処理性
得られた溶融亜鉛めっき鋼板の表面を目視観察し、不めっき欠陥の存在の有無を判定しめっき性を評価した。なお、評価は、不めっき欠陥の全くないもの(めっき性良好)を○、不めっき欠陥が一部発生したもの(めっき性やや良好)を△、不めっき欠陥が多数発生したもの(めっき性不良)を×とした。
(4) Plating treatment property The surface of the obtained hot-dip galvanized steel sheet was visually observed, and the presence or absence of non-plating defects was determined to evaluate the plating property. In addition, the evaluation is ○ when there is no unplating defect (good plating property), △ when some unplating defect occurs (slightly good plating property), and many unplating defects occur (bad plating property) ) Was marked with x.
表2から明らかなとおり、本発明に従い得られた発明例はいずれも、TSが540 MPa以上であり、しかも平均r値が1.2以上の高いr値を有し、かつΔrの絶対値が0.20以下とr値の面内異方性にも優れていた。また、めっき処理性も良好であった。
これに対し、本発明の範囲を外れる条件で製造した比較例で、強度が不足しているか、あるいはr値やその面内異方性が悪い鋼板となっていた。
As is apparent from Table 2, all the inventive examples obtained according to the present invention have a TS of 540 MPa or more, an average r value of 1.2 or more, and an absolute value of Δr of 0.20 or less. And r value in-plane anisotropy were also excellent. Moreover, the plating processability was also good.
On the other hand, in the comparative example manufactured on the conditions out of the range of the present invention, the steel plate was insufficient in strength or poor in r value and in-plane anisotropy.
本発明によれば、TSが540 MPa以上で、しかも平均r値が1.2以上の高r値でかつその面内異方性が小さい深絞り性に優れた高強度鋼板を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。
例えば、本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位についても高強度化が可能となり、自動車車体の衝突安全性および軽量化に十分寄与できるという効果がある。また、自動車部品に限らず家電部品やパイプ用素材としても適用可能である。
According to the present invention, a high-strength steel sheet excellent in deep drawability with a TS of 540 MPa or higher, an average r value of 1.2 or higher, and a small in-plane anisotropy is inexpensive and stable. It becomes possible to manufacture and has an industrially significant effect.
For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of an automobile body. There is. Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.
Claims (4)
C:0.035〜0.05%、
Si:0.01〜1.0%、
Mn:1.5〜3.0%、
P:0.005〜0.1%、
Al:0.005%〜0.1%、
S:0.01%以下、
N:0.01%以下および
Nb:0.05〜0.12%
を含み、かつ鋼中のNbおよびCの含有量が、
(Nb/93)/(C/12)=0.15〜0.45(式中のNb,Cは各々の元素の含有量(質量%))
なる関係を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、スラブ加熱温度(SRT)が1000℃以上 1200℃以下で、かつC量:[%C]とNb量:[%Nb](質量%)に応じて、次式
SRT ≦ 25000 [%C][%Nb]+1050
の関係を満足する温度域に加熱し、ついで熱間圧延にて仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:600〜720℃で巻き取って熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施して冷延板とする冷間圧延工程と、該冷延板に700℃までの平均昇温速度:15℃/s以上、700℃から焼鈍温度:800℃以上 950℃以下までの平均昇温速度:0.1〜2℃/sで焼鈍を行い、ついで焼鈍温度から500℃まで平均冷却速度:5℃/s以上で冷却する冷延板焼鈍工程を順次に施すことを特徴とする高強度鋼板の製造方法。 % By mass
C: 0.035 to 0.05%,
Si: 0.01 to 1.0%
Mn: 1.5-3.0%
P: 0.005-0.1%
Al: 0.005% to 0.1%
S: 0.01% or less,
N: 0.01% or less and
Nb: 0.05-0.12%
And the content of Nb and C in the steel is
(Nb / 93) / (C / 12) = 0.15 to 0.45 (where Nb and C are the contents of each element (mass%))
A steel slab containing the composition of Fe and inevitable impurities in the balance satisfying the following relationship: a slab heating temperature (SRT) of 1000 ° C. or higher and 1200 ° C. or lower, and an amount of C: [% C] and Nb Quantity: Depending on [% Nb] (mass%)
SRT ≦ 25000 [% C] [% Nb] +1050
Is heated to a temperature range satisfying the above relationship, and then finish rolling is performed at a finish rolling temperature of 800 ° C. or higher by hot rolling, and a coiling temperature of 600 to 720 ° C. is wound to obtain a hot rolled sheet A hot rolling process, a cold rolling process in which the hot-rolled sheet is pickled and cold-rolled to form a cold-rolled sheet, and an average heating rate up to 700 ° C. of the cold-rolled sheet: 15 ° C./s or more , Annealing temperature: 700 ° C to annealing temperature: 800 ° C to 950 ° C average heating rate: 0.1-2 ° C / s, annealing from annealing temperature to 500 ° C, average cooling rate: 5 ° C / s or more A method for producing a high-strength steel sheet, comprising sequentially performing a cold-rolled sheet annealing process.
Ti:0.1%以下および
V:0.1%以下
のうちから選んだ1種または2種を含有し、かつ前記(Nb/93)/(C/12)=0.15〜0.45なる関係に代えて、次式
Ti*>0の場合、Ti*=Ti−1.5S−3.4N(式中のTi,S,Nは各々の元素の含有量(質量%))であり、Ti*≦0の場合、Ti*=0
で表されるTi*とVとNbとCの含有量が、次式
{(Nb/93)+(Ti*/48)+(V/51)}/(C/12)=0.15〜0.45(式中のV,Nb,Cは各々の元素の含有量(質量%))
の関係を満足することを特徴とする請求項1に記載の高強度鋼板の製造方法。 In addition to the composition, the steel slab is
It contains one or two selected from Ti: 0.1% or less and V: 0.1% or less, and instead of the relationship (Nb / 93) / (C / 12) = 0.15 to 0.45, the following formula
In the case of Ti * > 0, Ti * = Ti-1.5S-3.4N (Ti, S, N in the formula is the content (% by mass) of each element), and when Ti * ≦ 0, Ti * = 0
The content of Ti * , V, Nb and C represented by
{(Nb / 93) + (Ti * / 48) + (V / 51)} / (C / 12) = 0.15 to 0.45 (where V, Nb and C are the contents of each element (mass%) )
The method for producing a high-strength steel sheet according to claim 1, wherein the relationship is satisfied.
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする請求項1または2に記載の高強度鋼板の製造方法。 In addition to the composition, the steel slab is
The method for producing a high-strength steel sheet according to claim 1 or 2, comprising a total of 0.5% or less of one or more selected from Mo, Cu and Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007011832A JP4735552B2 (en) | 2007-01-22 | 2007-01-22 | Manufacturing method of high strength steel plate and high strength plated steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007011832A JP4735552B2 (en) | 2007-01-22 | 2007-01-22 | Manufacturing method of high strength steel plate and high strength plated steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008174825A JP2008174825A (en) | 2008-07-31 |
JP4735552B2 true JP4735552B2 (en) | 2011-07-27 |
Family
ID=39702046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007011832A Expired - Fee Related JP4735552B2 (en) | 2007-01-22 | 2007-01-22 | Manufacturing method of high strength steel plate and high strength plated steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4735552B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101153485B1 (en) * | 2008-12-24 | 2012-06-11 | 주식회사 포스코 | High-strength colled rolled steel sheet having excellent deep-drawability and yield ratio, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof |
JP5655475B2 (en) * | 2010-03-24 | 2015-01-21 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof |
JP5825481B2 (en) * | 2010-11-05 | 2015-12-02 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method |
JP5532088B2 (en) | 2011-08-26 | 2014-06-25 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof |
JP5408314B2 (en) | 2011-10-13 | 2014-02-05 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same |
KR101344663B1 (en) | 2012-01-31 | 2013-12-24 | 현대제철 주식회사 | Cold-rolled steel sheet and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59143027A (en) * | 1983-02-07 | 1984-08-16 | Kawasaki Steel Corp | Production of high-strength steel plate having good ductility and processability |
JP4010131B2 (en) * | 2000-11-28 | 2007-11-21 | Jfeスチール株式会社 | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof |
JP4407449B2 (en) * | 2003-09-26 | 2010-02-03 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
JP4635525B2 (en) * | 2003-09-26 | 2011-02-23 | Jfeスチール株式会社 | High-strength steel sheet excellent in deep drawability and manufacturing method thereof |
JP4525386B2 (en) * | 2005-02-28 | 2010-08-18 | Jfeスチール株式会社 | Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability |
-
2007
- 2007-01-22 JP JP2007011832A patent/JP4735552B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008174825A (en) | 2008-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
EP2415894B1 (en) | Steel sheet excellent in workability and method for producing the same | |
JP4998757B2 (en) | Manufacturing method of high strength steel sheet with excellent deep drawability | |
JP2013177673A (en) | Hot-dip galvanized steel sheet and prodcing method therefor | |
WO2016021193A1 (en) | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet | |
JP4407449B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4735552B2 (en) | Manufacturing method of high strength steel plate and high strength plated steel plate | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
JP4501699B2 (en) | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP4848958B2 (en) | High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same | |
JP5262372B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP3882679B2 (en) | Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance | |
JP4380353B2 (en) | High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof | |
JP4715637B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet with excellent formability | |
JP5076480B2 (en) | High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same | |
JP4506380B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5251206B2 (en) | High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method | |
JP2004002909A (en) | Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method | |
JP4301045B2 (en) | High-strength steel plate, plated steel plate, and production method thereof | |
JP5655436B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP5151227B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4525386B2 (en) | Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability | |
JP4985494B2 (en) | Manufacturing method of high-strength cold-rolled steel sheets with excellent deep drawability | |
JP2019059963A (en) | Manufacturing method of steel sheet having low yield ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4735552 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |