[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4727236B2 - Electromagnetic flow meter for molten metal - Google Patents

Electromagnetic flow meter for molten metal Download PDF

Info

Publication number
JP4727236B2
JP4727236B2 JP2005013915A JP2005013915A JP4727236B2 JP 4727236 B2 JP4727236 B2 JP 4727236B2 JP 2005013915 A JP2005013915 A JP 2005013915A JP 2005013915 A JP2005013915 A JP 2005013915A JP 4727236 B2 JP4727236 B2 JP 4727236B2
Authority
JP
Japan
Prior art keywords
duct
molten metal
inner core
electrodes
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005013915A
Other languages
Japanese (ja)
Other versions
JP2006078462A (en
Inventor
邦明 三浦
達也 鬼沢
正雄 手塚
政成 塙
陸浩 冨田
賢司 菊地
滋 斎藤
宏之 大井川
有司 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2005013915A priority Critical patent/JP4727236B2/en
Publication of JP2006078462A publication Critical patent/JP2006078462A/en
Application granted granted Critical
Publication of JP4727236B2 publication Critical patent/JP4727236B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、電磁誘導によりダクト内を移動する溶融金属内に発生する起電力を測定することにより、その溶融金属の流量を計測する電磁流量計に関し、特にダクト内に磁束を通す磁気回路を形成するための内部コアを挿入した溶融金属用電磁流量計に関する。   The present invention relates to an electromagnetic flowmeter that measures the flow rate of molten metal by measuring an electromotive force generated in the molten metal that moves in the duct by electromagnetic induction, and in particular, forms a magnetic circuit that passes magnetic flux in the duct. The present invention relates to an electromagnetic flowmeter for molten metal in which an inner core is inserted.

金属を用いた高速増殖炉や消滅処理用配管内の溶融金属の流量を測定するためには電磁流量計を使用することが考えられる。このような目的で使用される従来の電磁流量計の構成を図6と図7に示す。溶融金属は、筒状のダクト1内を移動する。このダクト1を挟んで一対の磁極6、6がダクト1の中心軸と直交する方向に対向しており、この磁極6、6の間でダクト1内を移動する溶融金属をその移動の方向と直交する方向に切るよう磁束が形成される。さらに、ダクト1の中心軸及び前記磁極6、6が対向した方向と直交する方向に対向して一対の電極2、2が配置されている。この電極2、2にはダクト1内を移動する溶融金属に生じる電圧を測定するための電圧計7が接続されている。   In order to measure the flow rate of the molten metal in the fast breeder reactor using metal or the pipe for extinction treatment, it is conceivable to use an electromagnetic flow meter. The configuration of a conventional electromagnetic flow meter used for such a purpose is shown in FIGS. Molten metal moves in the cylindrical duct 1. A pair of magnetic poles 6 and 6 are opposed to each other in a direction orthogonal to the central axis of the duct 1 across the duct 1, and the molten metal moving in the duct 1 between the magnetic poles 6 and 6 is defined as the direction of movement. Magnetic flux is formed so as to cut in the orthogonal direction. Further, a pair of electrodes 2 and 2 are arranged facing each other in a direction orthogonal to the direction in which the central axis of the duct 1 and the magnetic poles 6 and 6 face each other. The electrodes 2 and 2 are connected to a voltmeter 7 for measuring a voltage generated in the molten metal moving in the duct 1.

このような溶融金属用電磁流量計では、磁極6、6の間に形成される磁束を切るようにダクト1内を溶融金属が流れるとき、いわゆるフレミングの右手の法則に従い、磁束の方向と溶融金属が流れる方向と直交する方向に溶融金属に起電力が生じる。この起電力の電圧の方向は前記電極2、2が対向した方向であり、且つその電圧値は理論上溶融金属の流速に比例する。従って、この電圧を電極2、2により出力し、電圧計7で測定することにより、溶融金属の流速が測定できる。磁極6、6間に形成される磁束が横切る部分のダクト1の断面積と前記溶融金属の流速との積が溶融金属の流量である。   In such an electromagnetic flowmeter for molten metal, when the molten metal flows through the duct 1 so as to cut the magnetic flux formed between the magnetic poles 6 and 6, the direction of the magnetic flux and the molten metal are obeyed according to the so-called Fleming's right hand rule. An electromotive force is generated in the molten metal in a direction perpendicular to the direction in which the metal flows. The direction of the voltage of the electromotive force is the direction in which the electrodes 2 and 2 face each other, and the voltage value is theoretically proportional to the flow rate of the molten metal. Therefore, by outputting this voltage through the electrodes 2 and 2 and measuring it with the voltmeter 7, the flow rate of the molten metal can be measured. The product of the cross-sectional area of the duct 1 where the magnetic flux formed between the magnetic poles 6 and 6 crosses and the flow velocity of the molten metal is the flow rate of the molten metal.

このような溶融金属電磁流量計は、例えば高速増殖炉用の分野においては液体金属ナトリウムの流量測定に使用され、中性子科学用としては溶融Pb−Biの流量測定に使用される。
このような従来の電磁流量計においては、溶融金属による腐食を防止する目的で、ダクト1には、耐酸化特性と耐食性の良い非磁性のオーステナイト系ステンレス鋼が用いられていた。
Such a molten metal electromagnetic flowmeter is used, for example, in the field of fast breeder reactors for measuring the flow rate of liquid metal sodium, and for neutron science, it is used for measuring the flow rate of molten Pb-Bi.
In such a conventional electromagnetic flow meter, non-magnetic austenitic stainless steel having good oxidation resistance and corrosion resistance has been used for the duct 1 for the purpose of preventing corrosion by molten metal.

溶融金属流路を通す溶融金属は多量の酸素が大気中の精錬時に含まれてしまうので、溶融金属中の酸素をHガスバブリングや真空脱気等で除去しておかなければならない。こうしないと溶融金属をダクト内に充填するときにダクト表面に酸化膜が生じてしまうからである。従って、ダクト内に溶融金属を充填する場合は、常にこの脱酸素ガス処理を行う必要がある。 Since the molten metal passing through the molten metal channel contains a large amount of oxygen during refining in the atmosphere, the oxygen in the molten metal must be removed by H 2 gas bubbling or vacuum degassing. Otherwise, an oxide film is formed on the duct surface when the molten metal is filled into the duct. Therefore, when the molten metal is filled in the duct, it is necessary to always perform this deoxygenation gas treatment.

しかしながら、このような溶融金属の脱酸素処理を行い、ダクト内に溶融金属を充填し、なお且つこの非磁性のオーステナイト系ステンレス鋼のダクト内表面の酸化膜を除去してあっても、溶融金属を充填するとき、非酸化ガスのArやNの高温ガス雰囲に含まれるわずかな酸素が取り込まれる。その結果、ダクトの内面やその内部に挿入した部材の表面にCr酸化膜が出来、溶融金属と濡れ性が損なわれる。このため、溶融金属の中に発生する起電力が低下したり、不安定となり、正確な流量測定が出来なくなってしまう。 However, even if such deoxidation treatment of the molten metal is performed, the molten metal is filled in the duct, and the oxide film on the inner surface of the duct of this nonmagnetic austenitic stainless steel is removed, the molten metal When oxygen is filled, a slight amount of oxygen contained in the high-temperature gas atmosphere of non-oxidizing gas Ar or N 2 is taken in. As a result, a Cr oxide film is formed on the inner surface of the duct and the surface of the member inserted in the duct, and the molten metal and wettability are impaired. For this reason, the electromotive force generated in the molten metal decreases or becomes unstable, and accurate flow rate measurement cannot be performed.

このように電磁流量計においては、ダクトや電極と溶融金属との濡れ性の低下に伴う接触抵抗の増加は、電圧出力の低下をもたらし、電磁流量計の出力低下を来す。前記接触抵抗を加味して電極2、2を通して測定される出力E(mV)を計算する場合、次の数1で表される。   As described above, in the electromagnetic flow meter, an increase in contact resistance accompanying a decrease in wettability between the duct or electrode and the molten metal causes a decrease in voltage output, resulting in a decrease in output of the electromagnetic flow meter. When calculating the output E (mV) measured through the electrodes 2 and 2 in consideration of the contact resistance, it is expressed by the following equation (1).

Figure 0004727236
Figure 0004727236

ここで、B=ダクトを通過する磁束密度(Gauss)、v=ダクトを流れる流体の平均速度(cm/s)、d=ダクト内径(cm)、K1=磁極端末係数=f(磁極長さ=L/ダクト外径)、K2=ダクト短絡係数、K3=磁石の温度による磁束低減係数=f(磁石温度)、K4=ダクトの熱膨張補償係数=1+γ・ΔT(γ=管材の線熱膨張係数、ΔT=管壁の使用温度と常温(20℃)との差)である。   Where B = density of magnetic flux passing through the duct (Gauss), v = average velocity (cm / s) of fluid flowing through the duct, d = inner diameter of the duct (cm), K1 = magnetic pole terminal coefficient = f (magnetic pole length = L / duct outer diameter), K2 = duct short circuit coefficient, K3 = magnetic flux reduction coefficient due to magnet temperature = f (magnet temperature), K4 = duct thermal expansion compensation coefficient = 1 + γ · ΔT (γ = linear thermal expansion coefficient of pipe material) ΔT = difference between the use temperature of the tube wall and normal temperature (20 ° C.).

前記の数1において、磁極端末係数K1は使用磁石の寸法が分かれば一義的に決まり、磁石の温度による磁束低減係数K3とダクトの熱膨張補償係数K4は磁石の温度とダクトの温度が決まればこれらも一義的に決まる。他方、ダクト短絡係数K2は、次の数2で表される。ここでD=ダクト外径(cm)、τ=接触抵抗(Ω−cm2)、ρf=管壁の比抵抗(Ω−cm)、ρw=流体の比抵抗(Ω−cm)である。 In Equation 1, the magnetic pole terminal coefficient K1 is uniquely determined if the size of the magnet used is known, and the magnetic flux reduction coefficient K3 and the duct thermal expansion compensation coefficient K4 are determined if the magnet temperature and the duct temperature are determined. These are also determined uniquely. On the other hand, the duct short circuit coefficient K2 is expressed by the following formula 2. Here, D = outer diameter of the duct (cm), τ = contact resistance (Ω-cm 2 ), ρf = specific resistance of the tube wall (Ω-cm), and ρw = specific resistance of the fluid (Ω-cm).

Figure 0004727236
Figure 0004727236

このダクト短絡係数K2には、接触抵抗τを含む項があり、この接触抵抗τの増加によりダクト短絡係数K2が低下し、出力Eが低下することがわかる。このダクト短絡係数K2は接触抵抗τの増加で小さくなり、逆に接触抵抗τが小さくなるとダクト短絡係数K2は増加し、接触抵抗τが0となると、ダクト短絡係数K2はダクトの内径d、ダクトの外径D、流体とダクトの材料の電気抵抗で決定される。   The duct short circuit coefficient K2 includes a term including the contact resistance τ, and it can be seen that the increase in the contact resistance τ decreases the duct short circuit coefficient K2 and decreases the output E. The duct short-circuit coefficient K2 decreases as the contact resistance τ increases. Conversely, when the contact resistance τ decreases, the duct short-circuit coefficient K2 increases. Is determined by the electrical resistance of the fluid and the material of the duct.

以上は、理論を単純化するためダクト1の中に何も配置しない構造の電磁流量計の場合である。実際は、磁極6、6の間に磁気を通すための内部コアを配置したり、さらには配管系をコンパクトにするため、ダクトを二重にした二重管路とすることが一般に行われている。この場合、内部コアの酸化防止のため、内部コアはセラミック等の保護部材で覆われる。この内部コアは内部ダクトの外側や内側に配置される。   The above is the case of an electromagnetic flowmeter having a structure in which nothing is arranged in the duct 1 in order to simplify the theory. Actually, in order to arrange an inner core for passing magnetism between the magnetic poles 6 and 6, and further to make the piping system compact, it is generally performed to make a double pipe with a double duct. . In this case, the inner core is covered with a protective member such as ceramic in order to prevent oxidation of the inner core. The inner core is disposed outside or inside the internal duct.

しかしながら、ダクトの中に配置された内部コアが前記の保護部材や内部ダクトと接触していると、前記数2において、コアや保護部材の分だけ内部ダクトの壁厚が厚くなったのと同じことになり、前記数2におけるd/Dに相当する数値が増大することになる。その結果、ダクト短絡係数K2がその分だけ小さくなり、前記数1で表される出力Eが低下してしまう。さらに、コアと保護部材或いはコアと内部ダクトとの接触状態が不安定であると、前記ダクト短絡係数K2が変動し、前記数1で表される出力Eにバラツキが生じるという課題がある。
特開2003−75215号公報 特開2003−75217号公報 特開平2−213723号公報
However, when the inner core disposed in the duct is in contact with the protective member and the internal duct, the wall thickness of the internal duct is increased by the amount of the core and the protective member in the above formula 2. As a result, the numerical value corresponding to d / D in Equation 2 increases. As a result, the duct short-circuit coefficient K2 is reduced by that amount, and the output E expressed by Equation 1 is lowered. Further, if the contact state between the core and the protective member or the core and the internal duct is unstable, the duct short circuit coefficient K2 varies, and there is a problem that the output E represented by the equation 1 varies.
JP 2003-75215 A JP 2003-75217 A JP-A-2-213723

本発明は、前記従来のダクトの中に内部コアを配置した溶融金属用電磁流量計における課題に鑑み、ダクトその他の部材の見かけの壁厚の増大に伴う電極の間で測定される溶融金属内部の起電力の低下を抑え、且つ電極間で測定される起電力を安定させることが出来る溶金属用電磁流量計を提供することを目的とする。   In view of the problem in the electromagnetic flowmeter for molten metal in which the inner core is disposed in the conventional duct, the present invention provides an interior of the molten metal that is measured between the electrodes as the apparent wall thickness of the duct and other members increases. It is an object of the present invention to provide an electromagnetic flowmeter for molten metal that can suppress a decrease in electromotive force and can stabilize an electromotive force measured between electrodes.

本発明では、前記の目的を達成するため、ダクト11の内部に配置した内部コア21と、それを覆う保護部材24とを絶縁層22で絶縁した。また、ダクト11を外部ダクトとし、その内部に1本以上の内部ダクト18を設けた多重管路構造のものでは、内部コア21と内部ダクト18との間にも絶縁層23を設けた。   In the present invention, in order to achieve the above object, the inner core 21 disposed inside the duct 11 and the protective member 24 covering the inner core 21 are insulated by the insulating layer 22. Further, in the multi-pipe structure in which the duct 11 is an external duct and one or more internal ducts 18 are provided therein, an insulating layer 23 is also provided between the internal core 21 and the internal duct 18.

すなわち、本発明による溶融金属用電磁流量計は、溶融金属を移動させる筒状のダクト11と、このダクト11を挟んで対向して配置され、ダクト11内に磁束を形成する一対の磁極16、16と、前記ダクト11を挟んで対向し、前記磁束を切る方向にダクト11内を移動する溶融金属に生じる電圧を出力する一対の電極12、12とを有する。さらに単一のダクト11の中に、前記磁極16、16の間の磁束を通す内部コア21と、この内部コア21を前記ダクト11により形成される溶融金属の流路19と遮断する保護部材24とを挿入し、これら内部コア21と保護部材24との間に絶縁層22を形成する。 That is, the electromagnetic flowmeter for molten metal according to the present invention is provided with a cylindrical duct 11 that moves the molten metal, and a pair of magnetic poles 16 that are arranged to face each other with the duct 11 interposed therebetween, and form a magnetic flux in the duct 11. 16 and a pair of electrodes 12 and 12 that output a voltage generated in the molten metal that moves in the duct 11 in a direction that cuts the magnetic flux, facing each other with the duct 11 interposed therebetween. Further, an inner core 21 through which the magnetic flux between the magnetic poles 16, 16 passes through a single duct 11, and a protective member 24 that blocks the inner core 21 from a molten metal flow path 19 formed by the duct 11. insert the door, the insulating layer 22 is formed between these inner core 21 and the protective member 24.

このように、内部コア21とそれを覆う保護部材24との間に絶縁層22を形成することにより、内部コア21と保護部材24とが絶縁層22により電気的に絶縁されるため、保護部材24の見かけの厚さが大きくならない。これにより、前述したダクト短絡係数K2が小さくならず、出力Eが低下しない。   Thus, since the inner core 21 and the protective member 24 are electrically insulated by the insulating layer 22 by forming the insulating layer 22 between the inner core 21 and the protective member 24 covering it, the protective member The apparent thickness of 24 does not increase. Thereby, the duct short circuit coefficient K2 mentioned above does not become small, and the output E does not fall.

また、ダクト11の中にさらに前記ダクト11の中に前記内部コア21を内側の溶融金属の流路20と遮断する内部ダクト18を挿入し、ダクト11の中に多重の溶融金属通路を形成したものでは、内部コア21と前記内部ダクト18との間にも絶縁層23を形成する。この場合も同様にして内部コア21と内部ダクト18とが絶縁層23により電気的に絶縁されることにより、内部ダクト18の見かけの厚さが大きくならない。 Further, an internal duct 18 for inserting the inner core 21 from the inner molten metal flow path 20 is inserted into the duct 11 to form a plurality of molten metal passages in the duct 11. As an alternative, an insulating layer 23 is also formed between the inner core 21 and the inner duct 18. In this case as well, the internal core 21 and the internal duct 18 are electrically insulated by the insulating layer 23, so that the apparent thickness of the internal duct 18 does not increase.

絶縁層23としては、内部コア21とそれを覆う保護部材24との間や内部コア21と前記内部ダクト18との間に固体の絶縁材料を挿入しても良いが、特に断熱性に優れ、断熱層も兼ねることが出来る絶縁層22、23とするのがよい。具体的には、絶縁層22、23を空隙とし、その中に空気、より望ましくはNガスやArガス等の不活性ガスを充填するのがよい。 As the insulating layer 23, a solid insulating material may be inserted between the inner core 21 and the protective member 24 covering the inner core 21 or between the inner core 21 and the inner duct 18. The insulating layers 22 and 23 that can also serve as a heat insulating layer are preferable. Specifically, the insulating layers 22 and 23 are made to be voids, and air, more preferably, an inert gas such as N 2 gas or Ar gas is filled therein.

なお、筒状のダクト11には、その内部に磁束に対して90°直角をなす方向に対向して1対の電極12、12が設置されるが、この電極12、12に加え、その両側に対称に同一角度で設置された2対以上の電極12a、12b、12c、12dを設けるとよい。これらの複数対の電極12a、12b、12c、12dで検出される出力である起電力Eの平均値によりダクト11の中の溶融金属の流量を測定する。これにより、後述するようにして、ダクト11の中の溶融金属の流れに偏りが起きても、或いは磁場の空間的偏りが生じても、同ダクト11を流れる溶融金属の流量をより正確に測定することが出来る。   The cylindrical duct 11 is provided with a pair of electrodes 12 and 12 facing the direction perpendicular to the magnetic flux by 90 ° inside, but in addition to the electrodes 12 and 12, It is preferable to provide two or more pairs of electrodes 12a, 12b, 12c, and 12d that are symmetrically installed at the same angle. The flow rate of the molten metal in the duct 11 is measured from the average value of the electromotive force E, which is the output detected by the plurality of pairs of electrodes 12a, 12b, 12c, and 12d. Thereby, as will be described later, even if the flow of the molten metal in the duct 11 is biased or the magnetic field is spatially biased, the flow rate of the molten metal flowing through the duct 11 can be measured more accurately. I can do it.

以上説明した通り、本発明による溶融金属用電磁流量計では、保護部材24や内部ダクト18の見かけの厚さが大きくならず、前述したダクト短絡係数K2が小さくならないことにより、電極12、12の間で検出される出力Eが低下しない。また、内部コア21と保護部材24或いは内部コア21と内部ダクト18との間が常に絶縁された状態にあり、電気的接触状態の変動が無いので、電極12、12の間で検出される出力Eが変動しない。電極12の両側に対称に設置された複数対の電極の平均値を用いることにより、溶融金属の流れの偏り及び磁場の空間的偏りが生じても、出力Eの変動を抑えられる。   As described above, in the electromagnetic flowmeter for molten metal according to the present invention, the apparent thickness of the protective member 24 and the internal duct 18 is not increased, and the above-described duct short circuit coefficient K2 is not decreased. The output E detected between them does not decrease. Further, since the inner core 21 and the protective member 24 or the inner core 21 and the inner duct 18 are always insulated and there is no change in the electrical contact state, the output detected between the electrodes 12 and 12. E does not fluctuate. By using the average value of a plurality of pairs of electrodes arranged symmetrically on both sides of the electrode 12, fluctuations in the output E can be suppressed even when the flow of molten metal is uneven and the magnetic field is spatially uneven.

本発明では、ダクト11の内部に配置した内部コア21とそれを覆う保護部材24との間や内部コア21と内部ダクト18との間に絶縁層22、23を設けることにより、その目的を達成するものである。
以下、このような本発明の実施例について、図面を参照しながら具体例を挙げて詳細に説明する。
In the present invention, the insulating layers 22 and 23 are provided between the inner core 21 disposed inside the duct 11 and the protective member 24 covering the inner core 21 and between the inner core 21 and the inner duct 18 to achieve the object. To do.
Hereinafter, examples of the present invention will be described in detail with specific examples with reference to the drawings.

本発明の一実施形態による溶融金属用電磁流量計の構成を図1と図2に示す。溶融金属は、筒状のダクト11を通して流され、その流量は流速とダクト11の流路断面積との積である。
このダクト11を挟んで一対の磁極16、16がダクト1の中心軸と直交する方向に対向しており、この磁極16、16の間で前記ダクト11内を流れる溶融金属の流れの方向と直交する方向に切るよう磁束が形成される。
The configuration of an electromagnetic flow meter for molten metal according to an embodiment of the present invention is shown in FIGS. Molten metal is flowed through the cylindrical duct 11, and the flow rate is the product of the flow velocity and the flow path cross-sectional area of the duct 11.
A pair of magnetic poles 16, 16 are opposed in a direction orthogonal to the central axis of the duct 1 across the duct 11, and are orthogonal to the direction of the molten metal flowing through the duct 11 between the magnetic poles 16, 16. A magnetic flux is formed so as to cut in the direction of the movement.

さらに、ダクト11の中心軸及び前記磁極16、16が対向した方向と何れも直交する方向に対向して一対の電極12、12が配置され、それら電極12、12の先端部がダクト11の外周面に溶接等の手段により接続・固定されている。この電極12、12にはダクト11内を移動する溶融金属に生じる起電力を測定するための電圧計17が接続されている。   Furthermore, a pair of electrodes 12 and 12 are disposed so as to face each other in a direction orthogonal to the direction in which the central axis of the duct 11 and the magnetic poles 16 and 16 face each other, and the distal ends of these electrodes 12 and 12 are the outer periphery of the duct 11. It is connected and fixed to the surface by means such as welding. A voltmeter 17 for measuring an electromotive force generated in the molten metal moving in the duct 11 is connected to the electrodes 12 and 12.

このダクト11の内周面には、溶融NaやPb−Bi等の溶融金属との濡れ性を改善するために金属コーティングを施す。例えば、金属コーディングとしてRhやIr等の貴金属を塗布する。図2に示すように、この金属コーティングは、ダクト11の内周面の電極12、12と磁極16、16が対向した位置付近の全周であって、且つそれら電極12、12と磁極16、16が対向した位置を中心としてダクト11の軸方向に或る程度の長さの範囲にわたって施す。   A metal coating is applied to the inner peripheral surface of the duct 11 in order to improve wettability with molten metal such as molten Na or Pb-Bi. For example, a noble metal such as Rh or Ir is applied as a metal coating. As shown in FIG. 2, this metal coating is the entire circumference near the position where the electrodes 12, 12 and the magnetic poles 16, 16 on the inner peripheral surface of the duct 11 face each other, and the electrodes 12, 12 and the magnetic poles 16, 16 It is applied over a range of a certain length in the axial direction of the duct 11 around the position where 16 is opposed.

ダクト11の中には、一本以上の内部ダクト18が挿入されている。図示の例では、中心軸が一致するように、一本の内部ダクト18が外部ダクト11の中に同軸状に配置されている。内部ダクト18と外部ダクト11との間の部分は、溶融金属が流れる外側流路19であり、内部ダクト18の内側の部分は、やはり溶融金属が流れる内側流路20である。   One or more internal ducts 18 are inserted into the duct 11. In the illustrated example, one internal duct 18 is coaxially disposed in the external duct 11 so that the central axes coincide. A portion between the inner duct 18 and the outer duct 11 is an outer flow path 19 through which molten metal flows, and a portion inside the inner duct 18 is an inner flow path 20 through which molten metal also flows.

内部ダクト18の外周側であって、前記外部ダクト11が一対の磁極16、16と電極12、12とに挟まれた位置には、内部コア21が配置されている。この内部コア21は、内部ダクト18より径の大きな円筒状の磁性体部材である。この内部ダクト18の一端側の外周にはネジが形成されている。内部コア21の他端側にはそのようなネジは形成されていない。   An inner core 21 is disposed on the outer peripheral side of the inner duct 18 at a position where the outer duct 11 is sandwiched between the pair of magnetic poles 16 and 16 and the electrodes 12 and 12. The inner core 21 is a cylindrical magnetic member having a larger diameter than the inner duct 18. A screw is formed on the outer periphery of one end side of the internal duct 18. Such a screw is not formed on the other end side of the inner core 21.

さらに図2に示すように、内部ダクト18の外周には、間隔をおいて2つの支持金具25、25’が溶接等の手段で固定され、これら一対の支持金具25、25’の端面が内部ダクト18の長手方向に対向している。この支持金具25、25’は、中空円錐形のもので、円錐形の中心軸に沿って形成された中空孔に内部ダクト18を通し、溶接して固定されている。これら一対の支持金具25、25’の対向する端面には円周状の溝26、26’が形成され、このうち図1の右側に示す一方の支持金具25の溝26の外周面側には、雌ネジが切られている。   Further, as shown in FIG. 2, two support fittings 25 and 25 ′ are fixed to the outer periphery of the internal duct 18 at intervals with a means such as welding, and the end surfaces of the pair of support fittings 25 and 25 ′ are inside. It faces the longitudinal direction of the duct 18. The support fittings 25 and 25 ′ have a hollow conical shape, and are fixed by welding through an internal duct 18 through a hollow hole formed along the central axis of the conical shape. Circumferential grooves 26 and 26 ′ are formed on the opposing end surfaces of the pair of support brackets 25 and 25 ′. Of these, on the outer peripheral surface side of the groove 26 of one support bracket 25 shown on the right side of FIG. The female thread is cut.

前記内部コア21の一端のネジは、前記内部ダクト18の外周に固定された一方の支持金具25の雌ネジを有する円周状の溝26にネジ込まれている。また、内部コア21の他端側は、内部ダクト18の外周に固定された他方の支持金具25’の円周状の溝26’に嵌め込まれている。この支持金具25’の円周状の溝26’と内部コア21の端部との間には内部ダクト18の長手方向に余裕が与えられており、この支持金具25’と内部コア21の端部とは内部ダクト18の長手方向に遊動可能となっている。これは、保護部材24、支持金具25、25’及び内部ダクト18の材質が異なるときに、それらの膨張係数の違いにより生じる熱応力の発生を防止するためである。   A screw at one end of the inner core 21 is screwed into a circumferential groove 26 having a female screw of one support fitting 25 fixed to the outer periphery of the inner duct 18. Further, the other end side of the inner core 21 is fitted in a circumferential groove 26 ′ of the other support fitting 25 ′ fixed to the outer periphery of the inner duct 18. A margin is provided in the longitudinal direction of the internal duct 18 between the circumferential groove 26 ′ of the support fitting 25 ′ and the end of the internal core 21, and the end of the support fitting 25 ′ and the internal core 21 is provided. The part is movable in the longitudinal direction of the internal duct 18. This is to prevent the occurrence of thermal stress caused by the difference in the expansion coefficient when the materials of the protection member 24, the support fittings 25, 25 'and the internal duct 18 are different.

前記一対の支持金具25、25’の外周部分には、円筒形の保護部材24が嵌め込まれている。保護部材24の両端部は、支持金具25、25’の外周に密に固定されており、これにより、保護部材24、支持金具25、25’及び内部ダクト18が前記内部コア21を囲んでいる。これにより、内部コア21が収納された空間は、外側通路19と内側通路20と完全に仕切られている。   A cylindrical protective member 24 is fitted into the outer peripheral portion of the pair of support fittings 25, 25 '. Both end portions of the protective member 24 are closely fixed to the outer periphery of the support fittings 25 and 25 ′, so that the protection member 24, the support fittings 25 and 25 ′, and the internal duct 18 surround the inner core 21. . Thereby, the space in which the inner core 21 is accommodated is completely partitioned from the outer passage 19 and the inner passage 20.

内部コア21の内周側と外周側、つまり、内部コア21と保護部材24との間及び内部コア21と内部ダクト18との間は空間になっており、この空間がそれぞれ絶縁層22、23となっている。これらの空隙状の絶縁層22、23の中は、空気が封入されていてもよいが、保護部材24、支持金具25、25’及び内部ダクト18の内面の酸化を防止するためには、その空隙の中にNガスやArガスなどの不活性ガスが封入されていることが好ましい。この絶縁層22、23としては、不活性ガスを充填した空隙が好ましいが、それに代えて、耐熱性の固体の絶縁部材を挿入してもよい。 A space is formed between the inner peripheral side and the outer peripheral side of the inner core 21, that is, between the inner core 21 and the protective member 24 and between the inner core 21 and the inner duct 18, and these spaces are the insulating layers 22, 23, respectively. It has become. In these void-like insulating layers 22 and 23, air may be sealed, but in order to prevent oxidation of the inner surface of the protective member 24, the support fittings 25 and 25 ′ and the internal duct 18, It is preferable that an inert gas such as N 2 gas or Ar gas is sealed in the gap. The insulating layers 22 and 23 are preferably voids filled with an inert gas, but a heat-resistant solid insulating member may be inserted instead.

このような溶融金属用電磁流量計では、磁極16、16の間に形成される磁束を切るようにダクト11内を溶融金属が流れるとき、いわゆるフレミングの右手の法則に従い、磁束の方向と溶融金属が流れる方向と直交する方向に溶融金属に起電力が発生する。この起電力による電圧の方向は前記電極12、12が対向した方向であり、且つその電圧値は理論上溶融金属の流速に比例する。このため、この電圧をダクト11を介して電極12、12から出力し、電圧計17で測定することにより、溶融金属の流速が測定できる。既に述べた通り、磁極16、16間に形成される磁束が横切る部分のダクト11の断面積と前記溶融金属の流速との積が溶融金属の流量であり、これにより溶融金属の流量が測定される。   In such an electromagnetic flowmeter for molten metal, when the molten metal flows through the duct 11 so as to cut the magnetic flux formed between the magnetic poles 16 and 16, the direction of the magnetic flux and the molten metal are in accordance with the so-called Fleming's right hand rule. An electromotive force is generated in the molten metal in a direction perpendicular to the direction in which the metal flows. The direction of the voltage due to the electromotive force is the direction in which the electrodes 12 are opposed to each other, and the voltage value is theoretically proportional to the flow rate of the molten metal. For this reason, the flow rate of the molten metal can be measured by outputting this voltage from the electrodes 12 and 12 through the duct 11 and measuring the voltage with the voltmeter 17. As already described, the product of the cross-sectional area of the duct 11 where the magnetic flux formed between the magnetic poles 16 and 16 crosses and the flow velocity of the molten metal is the flow rate of the molten metal, whereby the flow rate of the molten metal is measured. The

この場合において、前記ダクト11の中に設けた内部コア21が保護部材24、支持金具25、25’及び内部ダクト18により囲まれ、外側通路19を通過する溶融金属に対して完全に遮断されるため、鉄等の磁性体で出来た内部コア21が溶融金属に晒されて腐食することが防止される。さらに、前記の絶縁層22、23により、内部コア21と保護部材24及び内部コア21と内部ダクト18との間が電気的に絶縁されているので、保護部材24や内部ダクト18の見かけの厚さが大きくならない。   In this case, the inner core 21 provided in the duct 11 is surrounded by the protective member 24, the support fittings 25, 25 ′ and the inner duct 18, and is completely cut off from the molten metal passing through the outer passage 19. Therefore, the internal core 21 made of a magnetic material such as iron is prevented from being corroded by being exposed to the molten metal. Further, since the inner core 21 and the protective member 24 and the inner core 21 and the inner duct 18 are electrically insulated by the insulating layers 22 and 23, the apparent thickness of the protective member 24 and the inner duct 18 is increased. Does not grow.

図3は、前記のような内部コアを有する流量測定部15、15を備えた二重管構造のダクト11、18を用い、溶融金属槽14から外側流路19と内側流路20を通して溶融金属を循環させる使用例を示す。流量測定部15、15は、図1と図2により説明したような外側流路19に対して封止された内部コア21を有する構造である。   FIG. 3 shows the use of the double-pipe structure ducts 11 and 18 having the flow rate measuring units 15 and 15 having the inner core as described above, and the molten metal from the molten metal tank 14 through the outer flow path 19 and the inner flow path 20. An example of using this is shown. The flow rate measuring units 15 and 15 have a structure having an inner core 21 sealed with respect to the outer flow path 19 as described with reference to FIGS.

図4と図5は、ダクト11の中に内部ダクトを挿入していない一重管路の溶融金属路の実施例を示す。この場合、支持金具25、25’が無空の立体円錐形であり、それに内部ダクトが通っていないことを除けば、基本的に図1と図2により前述した実施例のものと同じである。この場合も、内部コア21は、支持金具25、25’とその外周部に設けた円筒形の保護部材24により囲まれ、ダクト11内の溶融金属の流路19から完全に遮断されている。 4 and 5 show an embodiment of a single-pipe molten metal path in which no internal duct is inserted into the duct 11. In this case, the support brackets 25, 25 'are basically the same as those of the embodiment described above with reference to FIGS. 1 and 2, except that the support brackets 25, 25' have an empty solid conical shape and no internal duct passes therethrough. . Also in this case, the inner core 21 is surrounded by the support fittings 25, 25 ′ and the cylindrical protective member 24 provided on the outer periphery thereof, and is completely cut off from the molten metal flow path 19 in the duct 11.

また、内部コア21と保護部材24との間に空隙が形成され、この空隙により絶縁層22が形成されていることも、基本的に図1と図2により前述した実施例のものと同じである。その空隙の中にNガスやArガスなどの不活性ガスが封入されていることが好ましいこと、この絶縁層22として、不活性ガスを充填した空隙に代えて、耐熱性の固体の絶縁部材を挿入してもよいこと等も、やはり同様である。 Further, a gap is formed between the inner core 21 and the protective member 24, and the insulating layer 22 is formed by this gap, which is basically the same as in the embodiment described above with reference to FIGS. is there. It is preferable that an inert gas such as N 2 gas or Ar gas is enclosed in the void, and the insulating layer 22 is replaced with a void filled with an inert gas, instead of a heat-resistant solid insulating member. The same may be said of inserting the symbol.

前記のように、筒状のダクト11とその内部に配置した内部コア21との間に環状の流路を形成した環状流路式の電磁流量計では、ダクト内流路の各部分で溶融金属の流速に違いが生じることによる偏流が起こりやすい。この偏流によって、単一の電極12、12では、その間で検出される出力である起電力Eが溶融金属の流速を正確に反映せず、これにより測定に誤差やバラツキが生じることがある。また、磁極6、6によって作用する磁場の空間的偏りが生じる場合にも、測定にバラツキを生じることもある。   As described above, in the annular flow type electromagnetic flow meter in which the annular flow path is formed between the cylindrical duct 11 and the internal core 21 disposed therein, the molten metal is formed in each part of the flow path in the duct. The drift is likely to occur due to the difference in the flow velocity. Due to this drift, the electromotive force E which is the output detected between the single electrodes 12 and 12 does not accurately reflect the flow velocity of the molten metal, which may cause errors and variations in measurement. Also, when the magnetic field acting by the magnetic poles 6 and 6 is spatially biased, the measurement may vary.

そこでこの対策として、図8に示した電磁流量計のように、複数対の電極を設けて、それらの間で検出される起電力の平均値により流量を測定するようにするとよい。例えば、図8に示した電磁流量計では、磁極16、16が対向した方向と直交する方向に対向した正規の電極12、12の他に、この正規の電極12、12を中心としてその両側に±θの角度をなす方向に互いに対向する他の2対の補助的な電極12a、12bと、前記正規の電極12、12を中心としてその両側に±θ’の角度をなす方向に互いに対向するさらに他の2対の補助的な電極12c、12dを設けている。前記正規の電極12、12で測定された起電力の他に、これら補助的な電極12a、12b、12c、12dで測定された起電力をそれぞれ角度θ、θ’における起電力として加算してそれらの平均値をとると、ダクト11の全体の平均的な流量を求めることが出来る。これにより前述した偏流分の影響をキャンセルすることができ、より正確な流量を求めることができる。   Therefore, as a countermeasure, it is preferable to provide a plurality of pairs of electrodes as in the electromagnetic flow meter shown in FIG. 8 and measure the flow rate based on the average value of the electromotive force detected between them. For example, in the electromagnetic flow meter shown in FIG. 8, in addition to the regular electrodes 12 and 12 opposed in the direction orthogonal to the direction in which the magnetic poles 16 and 16 are opposed, The other two pairs of auxiliary electrodes 12a and 12b that face each other in the direction that forms an angle of ± θ are opposed to each other in the direction that forms an angle of ± θ ′ on both sides of the regular electrodes 12 and 12 as a center. Furthermore, two other pairs of auxiliary electrodes 12c and 12d are provided. In addition to the electromotive force measured at the regular electrodes 12 and 12, the electromotive forces measured at these auxiliary electrodes 12a, 12b, 12c and 12d are added as electromotive forces at angles θ and θ ′, respectively. The average flow rate of the entire duct 11 can be obtained. As a result, the influence of the above-described drift current can be canceled, and a more accurate flow rate can be obtained.

より具体的に説明すると、磁束がダクト11を切る方向と直交する方向に対向した正規の電極12、12 で測定される起電力は、前述した数1で与えられる。これに対し、正規の電極12、12が対向した方向と角度±θだけずれた方向に対向した電極12a、12aと電極12b、12bで測定される起電力E’はぞれぞれ次の数3で与えられる。   More specifically, the electromotive force measured by the regular electrodes 12 and 12 facing each other in the direction perpendicular to the direction in which the magnetic flux cuts the duct 11 is given by the above-described equation (1). On the other hand, the electromotive force E ′ measured by the electrodes 12a, 12a and the electrodes 12b, 12b facing each other in a direction shifted by an angle ± θ from the direction in which the regular electrodes 12, 12 face each other is the following number. Is given by 3.

Figure 0004727236
Figure 0004727236

同様にして、正規の電極12、12が対向した方向と角度±θ’だけずれた方向に対向した電極12c、12cと電極12d、12dで測定される起電力E”はぞれぞれ次の数4で与えられる。   Similarly, the electromotive force E ″ measured by the electrodes 12c and 12c and the electrodes 12d and 12d facing each other in a direction shifted by an angle ± θ ′ from the direction in which the regular electrodes 12 and 12 face each other is as follows. It is given by Equation 4.

Figure 0004727236
Figure 0004727236

例えば、正規の電極12、12で測定される起電力をEとし、これに対して両側に角度±θ、±θ´だけずれて対向した4対の電極12aと12a、12bと12b、12cと12c、12dと12dでそれぞれ測定される起電力をE、E、E、Eとしたとき、これらの起電力を次の数5のようにして平均した値は、前述した偏流に起因して生じる起電力Eのバラツキが平準化された値となる。これにより、環状流路中を流れる平均的な流量が求められ、この平均的な流量がより正確な流量を示すことになる。 For example, the electromotive force measured by the regular electrodes 12 and 12 is E 0, and four pairs of electrodes 12a and 12a, 12b and 12b, and 12c that face each other by being shifted by angles ± θ and ± θ ′ on both sides. And 12c, 12d, and 12d, and the measured electromotive forces are E 1 , E 2 , E 3 , and E 4. The variation of the electromotive force E caused by the above becomes a leveled value. Thereby, an average flow rate flowing through the annular flow path is obtained, and this average flow rate indicates a more accurate flow rate.

Figure 0004727236
Figure 0004727236

本発明の一実施例としての溶融金属用電磁流量計を示す縦断側面図である。It is a vertical side view which shows the electromagnetic flowmeter for molten metals as one Example of this invention. 同実施例としての溶融金属用電磁流量計を示す縦断正面図である。It is a vertical front view which shows the electromagnetic flowmeter for molten metals as the Example. 同実施例としての溶融金属用電磁流量計を備えた溶融金属配管の使用例を示す概略縦断側面図である。It is a schematic vertical side view which shows the usage example of molten metal piping provided with the electromagnetic flowmeter for molten metal as the Example. 本発明の他の実施例としての溶融金属用電磁流量計を示す縦断側面図である。It is a vertical side view which shows the electromagnetic flowmeter for molten metals as another Example of this invention. 同実施例としての溶融金属用電磁流量計を示す縦断正面図である。It is a vertical front view which shows the electromagnetic flowmeter for molten metals as the Example. 本発明の従来例としての溶融金属用電磁流量計を示す縦断側面図である。It is a vertical side view which shows the electromagnetic flowmeter for molten metals as a prior art example of this invention. 同従来例としての溶融金属用電磁流量計を示す縦断正面図である。It is a vertical front view which shows the electromagnetic flowmeter for molten metals as the same prior art example. 本発明のさらに他の実施例としての溶融金属用電磁流量計を示す縦断正面図である。It is a vertical front view which shows the electromagnetic flowmeter for molten metals as further another Example of this invention.

符号の説明Explanation of symbols

11 ダクト
12 電極
16 磁極
18 内部ダクト
19 外側流路
20 内側流路
21 内部コア
22 絶縁層
23 絶縁層
12a 電極
12b 電極
12c 電極
12d 電極
11 Duct 12 Electrode 16 Magnetic pole 18 Internal duct 19 Outer channel 20 Inner channel 21 Inner core 22 Insulating layer 23 Insulating layer 12a Electrode 12b Electrode 12c Electrode 12d Electrode

Claims (4)

溶融金属を移動させる筒状のダクト(11)と、このダクト(11)を挟んで対向して配置され、ダクト(11)内に磁束を形成する一対の磁極(16)、(16)と、前記ダクト(11)を挟んで対向し、前記磁束を切る方向にダクト(11)内を移動する溶融金属に生じる電圧を出力する一対の電極(12)、(12)とを有する溶融金属電磁流量計において、単一のダクト(11)の中に、前記磁極(16)、(16)の間の磁束を通す内部コア(21)と、この内部コア(21)を前記ダクト(11)により形成される溶融金属の流路(19)と遮断する保護部材(24)とを挿入し、これら内部コア(21)と保護部材(24)との間に絶縁層(22)を形成したことを特徴とする溶融金属用電磁流量計。 A cylindrical duct (11) for moving the molten metal, and a pair of magnetic poles (16), (16) which are arranged to face each other with the duct (11) interposed therebetween and form a magnetic flux in the duct (11), Molten metal electromagnetic flow rate having a pair of electrodes (12) and (12) that output a voltage generated in the molten metal that is opposed to the duct (11) and moves in the duct (11) in the direction of cutting the magnetic flux. In total, an inner core (21) for passing a magnetic flux between the magnetic poles (16) and (16) is formed in a single duct (11), and the inner core (21) is formed by the duct (11). is the insert and the protective member for blocking the flow path of the molten metal (19) (24), characterized by forming an insulating layer (22) between the protective these inner core (21) member (24) Electromagnetic flowmeter for molten metal. 溶融金属を移動させる筒状のダクト(11)と、このダクト(11)を挟んで対向して配置され、ダクト(11)内に磁束を形成する一対の磁極(16)、(16)と、前記ダクト(11)を挟んで対向し、前記磁束を切る方向にダクト(11)内を移動する溶融金属に生じる電圧を出力する一対の電極(12)、(12)とを有する溶融金属電磁流量計において、前記ダクト(11)の中に、前記磁極(16)、(16)の間の磁束を通す内部コア(21)と、この内部コア(21)を前記ダクト(11)により形成される溶融金属の流路(19)と遮断する保護部材(24)と、前記ダクト(11)の中に多重の通路を形成すると共に、同内部コア(21)を内側の溶融金属の流路(20)と遮断する内部ダクト(18)とを挿入し、これら内部コア(21)と保護部材(24)との間及び内部コア(21)と内部ダクト(18)との間に絶縁層(22)、(23)を形成したことを特徴とする溶融金属用電磁流量計。 A cylindrical duct (11) for moving the molten metal, and a pair of magnetic poles (16), (16) which are arranged to face each other with the duct (11) interposed therebetween and form a magnetic flux in the duct (11), Molten metal electromagnetic flow rate having a pair of electrodes (12) and (12) that output a voltage generated in the molten metal that is opposed to the duct (11) and moves in the duct (11) in the direction of cutting the magnetic flux. In total, the duct (11) is formed with an inner core (21) through which the magnetic flux between the magnetic poles (16) and (16) passes, and the inner core (21) is formed by the duct (11). A protective member (24) blocking the molten metal flow path (19) and a plurality of passages are formed in the duct (11), and the inner core (21) is connected to the inner molten metal flow path (20). ) and inserting the inner duct (18) for blocking, this Insulating layer between and between the inner core (21) and the internal duct (18) between Luo inner core (21) and the protective member (24) (22), the molten metal, characterized in that the formation of the (23) Electromagnetic flow meter. 絶縁層(22)、(23)が空隙部であることを特徴とする請求項1または2に記載の溶融金属用電磁流量計。 The electromagnetic flowmeter for molten metal according to claim 1 or 2, wherein the insulating layers (22) and (23) are voids. 筒状のダクト(11)に磁束に対して90°直角をなす方向に対向して設置された1対の電極(12)、(12)に加え、その両側に対称に同一角度で設置された2対以上の電極(12a)、(12b)、(12c)、(12d)を有することを特徴とする請求項1〜3の何れかに記載の溶融金属用電磁流量計。 In addition to a pair of electrodes (12) and (12) disposed opposite to the cylindrical duct (11) in a direction perpendicular to the magnetic flux by 90 °, they are disposed symmetrically at the same angle on both sides. The electromagnetic flowmeter for molten metal according to any one of claims 1 to 3, comprising two or more pairs of electrodes (12a), (12b), (12c), and (12d).
JP2005013915A 2004-08-09 2005-01-21 Electromagnetic flow meter for molten metal Active JP4727236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013915A JP4727236B2 (en) 2004-08-09 2005-01-21 Electromagnetic flow meter for molten metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004232028 2004-08-09
JP2004232028 2004-08-09
JP2005013915A JP4727236B2 (en) 2004-08-09 2005-01-21 Electromagnetic flow meter for molten metal

Publications (2)

Publication Number Publication Date
JP2006078462A JP2006078462A (en) 2006-03-23
JP4727236B2 true JP4727236B2 (en) 2011-07-20

Family

ID=36158037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013915A Active JP4727236B2 (en) 2004-08-09 2005-01-21 Electromagnetic flow meter for molten metal

Country Status (1)

Country Link
JP (1) JP4727236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523768C1 (en) * 2013-04-11 2014-07-20 Открытое акционерное общество научно-исследовательский институт теплоэнергетического приборостроения "НИИТеплоприбор" Electromagnetic flowmeter of liquid metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989338B2 (en) * 2007-07-03 2012-08-01 助川電気工業株式会社 Inductive circulation gas discharge device for molten metal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142563A (en) * 1974-10-08 1976-04-10 Shimadzu Corp DENJISHIKIRYURYOKE ISOKUSOCHI
JPS5463861A (en) * 1977-10-31 1979-05-23 Toshiba Corp Electromagnetic flow meter
JPH02213723A (en) * 1989-02-14 1990-08-24 Sukegawa Electric Co Ltd Electromagnetic flow meter for conductive fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142563A (en) * 1974-10-08 1976-04-10 Shimadzu Corp DENJISHIKIRYURYOKE ISOKUSOCHI
JPS5463861A (en) * 1977-10-31 1979-05-23 Toshiba Corp Electromagnetic flow meter
JPH02213723A (en) * 1989-02-14 1990-08-24 Sukegawa Electric Co Ltd Electromagnetic flow meter for conductive fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523768C1 (en) * 2013-04-11 2014-07-20 Открытое акционерное общество научно-исследовательский институт теплоэнергетического приборостроения "НИИТеплоприбор" Electromagnetic flowmeter of liquid metals

Also Published As

Publication number Publication date
JP2006078462A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US10429220B2 (en) Magneto-inductive flow measuring device
KR20090105909A (en) Flowmeter
Miyazaki et al. Magneto-hydro-dynamic pressure drop of lithium flow in rectangular ducts
US8826716B2 (en) Electromagnetic flow rate measurement system and calibrator therefor
US7267012B2 (en) Electromagnetic flowmeter including electrodes and magnetic pole placed in proximity on one side of the outer wall
JP4727236B2 (en) Electromagnetic flow meter for molten metal
CN113167613B (en) Magnetic inductive flowmeter
JP3405617B2 (en) Electromagnetic flow meter
US5280726A (en) Apparatus and method for measuring flow rate of molten aluminum through a trough
CN102305669A (en) Thermocouple measurement in a current carrying path
EP3628982B1 (en) Full bore magnetic flowmeter assembly
Cramer et al. Fluid velocity measurements in electro-vortical flows
JP2001147218A (en) Electrodeless sensor
JPS6398519A (en) Liquid metal flow rate measuring device of high speed breeder reactor
TW202043709A (en) Full bore magnetic flowmeter assembly with temperature sensing element
JP4820030B2 (en) Electromagnetic flowmeter for molten Pb-Bi
CN114341596A (en) Magnetic induction flowmeter
JPS6049242B2 (en) electromagnetic flow meter
KR101543278B1 (en) Manufacturing method of mixed-use multipoint thermal mass flowmeter and mixed-use multipoint thermal mass flowmeter using thesame
JPS597933B2 (en) electromagnetic flow meter
JPH04289419A (en) Electromagnetic flowmeter
JPS5839379Y2 (en) electromagnetic flow meter
JPH0613450Y2 (en) Electromagnetic flow meter
JPH0377930B2 (en)
JP2022074623A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250