[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4721554B2 - Method for treating vanadium-containing water - Google Patents

Method for treating vanadium-containing water Download PDF

Info

Publication number
JP4721554B2
JP4721554B2 JP2001155834A JP2001155834A JP4721554B2 JP 4721554 B2 JP4721554 B2 JP 4721554B2 JP 2001155834 A JP2001155834 A JP 2001155834A JP 2001155834 A JP2001155834 A JP 2001155834A JP 4721554 B2 JP4721554 B2 JP 4721554B2
Authority
JP
Japan
Prior art keywords
vanadium
water
exchange resin
cation exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001155834A
Other languages
Japanese (ja)
Other versions
JP2002346559A (en
Inventor
光和 益戸
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001155834A priority Critical patent/JP4721554B2/en
Publication of JP2002346559A publication Critical patent/JP2002346559A/en
Application granted granted Critical
Publication of JP4721554B2 publication Critical patent/JP4721554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はバナジウムを含有する天然水からなる被処理水からバナジウムやその他の不純物を除去するバナジウム含有水の処理方法、特にイオン交換樹脂によりバナジウムやその他の不純物を除去するバナジウム含有水の処理方法に関するものである。
【0002】
【従来の技術】
バナジウムは触媒として使用されており、石炭、石油等の灰分中に含まれるほか、特定の天然水中にも含まれている。バナジウム含有水はその起源に応じていろいろな形のバナジウムを含んでいる。バナジウムは−Iないし+Vの価数に応じて種々の化合物を形成し、それぞれの化合物はバナジウムがカチオンに解離するものとアニオンに解離するものとがある。可溶性塩のようにイオンまたはイオン化可能状態でバナジウムを含む場合には、イオン交換によりバナジウムを除去することが可能である。
【0003】
上記のバナジウム含有水で、含まれるバナジウム化合物がカチオンに解離するものは、カチオン交換によりバナジウムを除去することができる。この場合はカチオン交換樹脂やゼオライトにより、カチオンに解離したバナジウムを交換吸着させて除去することが可能である。
【0004】
上記のようにバナジウム含有水をカチオン交換樹脂により処理すると、交換吸着によりバナジウムは樹脂中に濃縮される。ところがバナジウム化合物は広く触媒として使用されており、バナジウムの価数あるいは化合物の種類によって活性に差があるが、多くのバナジウム化合物は触媒活性を有している。そしてこのような触媒活性を有するバナジウムがカチオン交換樹脂中に濃縮されると、カチオン交換樹脂がその触媒作用により酸化を受けて、カチオン交換樹脂の交換基を含む物質(例えばポリスチレンスルホン酸)が流れ出して劣化を起こし、カチオン交換活性が低下しやすい。
【0005】
【発明が解決しようとする課題】
本発明の課題は、カチオン交換樹脂の劣化を防止し、カチオン交換活性を低下させることなく、カチオン交換によりバナジウムを除去することが可能なバナジウム含有水の処理方法を提案することである。
【0006】
【課題を解決するための手段】
本発明は、酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で0.1〜313μg/L含有する天然水を、カチオン交換樹脂と接触させてバナジウムを除去し、純水または超純水を製造する際、架橋度12〜16%のカチオン交換樹脂と接触させることにより、酸化数+II〜+IVのバナジウムによるカチオン交換樹脂の劣化を防止し、イオン交換によりバナジウムを除去することを特徴とするバナジウム含有水の処理方法である。
【0007】
本発明で処理の対象となるバナジウム含有水は、酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で含む天然水であり、バナジウムをカチオンとして、またはカチオンに解離可能な状態で含む天然水があげられるが、アニオンに解離したバナジウム、アニオンに解離可能なバナジウム化合物、イオン化しないバナジウム化合物、あるいは他の不純物を含んでいてもよい。本発明の処理の対象となるバナジウム含有水は、カチオン交換可能な状態でバナジウムを0.1〜313μg/L含有する天然水である。
【0008】
バナジウムは前述のように−I〜+Vの価数の化合物を形成するが、このうち+IIから+Vまでが普通である。酸化数IIとIIIでは主としてカチオンとして塩をつくるが、酸化数IVでは酸素と結合してVO2+の塩をつくることが多い。酸化数VではVO3+やVO2 +の塩とともにメタバナジウム酸イオンVO3 -の塩を形成する。触媒として広く利用されているV25は水に溶けにくく両性で、酸に溶解するとVO2 +を生成し、アルカリ性水溶液にはメタバナジウム酸イオンを生成してアニオンに解離する。
【0009】
このようにバナジウムは種々の価数の化合物を形成する。天然水にはカチオンに解離するバナジウムを含むものが多い。これに対してバナジウム触媒を使用する系から排出される排水には、pHに応じてカチオンに解離するもの、およびアニオンに解離するものがある。
【0010】
本発明では、酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で0.1〜313μg/L含有する天然水からなるバナジウム含有水をカチオン交換樹脂と接触させて、カチオンに解離したバナジウムを交換吸着させて除去し、純水または超純水を製造する。この場合バナジウム含有水がカチオンのほかにアニオンを含む場合には、カチオン交換樹脂に接触させてカチオンを交換吸着するとともに、さらにアニオン交換樹脂と接触させてアニオンを交換吸着することができる。後者の場合カチオン交換樹脂およびアニオン交換樹脂と別々に接触させてもよく、また混床式等により同時に接触させてもよい。使用するアニオン交換樹脂の架橋度に制限はなく、標準的な架橋度の樹脂でも、高架橋度の樹脂でも構わない(以下、断らない限り「イオン交換」という言葉は「カチオン交換および/またはアニオン交換」を意味する)。
【0011】
本発明で使用するイオン交換樹脂は、水処理において一般的に使用されている粒状やゲル状のイオン交換樹脂を使用することができる。このようなイオン交換樹脂はスチレンとジビニルベンゼンの共重合体を基体樹脂とし、スチレンにカチオン交換基を付けたものがカチオン交換樹脂、アニオン交換基を付けたものがアニオン交換樹脂として使用されている。
【0012】
カチオン交換樹脂には、カチオン交換基としてスルホン基を付けた強酸性カチオン交換樹脂、カルボン酸基を付けた弱酸性カチオン交換樹脂などがあり、いずれも使用可能である。またアニオン交換樹脂には、アニオン交換基として第四アンモニウム基を付けた強塩基性アニオン交換樹脂、第一ないし第三アンモニウム基を付けた弱塩基性アニオン交換樹脂などがあり、いずれも使用可能である。
【0013】
上記の基体樹脂はジビニルベンゼンが架橋剤となって、鎖状構造が架橋されて網目構造の樹脂が形成される。ジビニルベンゼンが多いほど鎖の分岐が多く、密な構造になり、ジビニルベンゼンが少ないと分枝の少ない網目の大きい樹脂が得られる。全仕込モノマーに対するジビニルベンゼンの仕込量の割合(重量%)が架橋度と表示されている。通常の水処理に使用する樹脂は架橋度が8%程度で標準架橋樹脂と呼ばれている。
【0014】
本発明で使用するカチオン交換樹脂は架橋度12〜16%の高架橋度樹脂を用いる。このような高架橋度のカチオン交換樹脂を使用してバナジウム含有水と接触させることにより、バナジウムが樹脂中に濃縮されても樹脂の劣化が防止され、カチオン交換能力が低下しない。
【0015】
バナジウム含有天然水とイオン交換樹脂との接触方法は特に制限されず、イオン交換樹脂をバナジウム含有天然水に浸漬させ攪拌する方法などでもよいが、イオン交換樹脂の充填層にバナジウム含有天然水を通水して接触させる方法が好ましい。このときカチオン交換樹脂およびアニオン交換樹脂を用いてイオン交換を行う場合は、それぞれの樹脂を単独で用いて充填層を形成してもよいが、両樹脂を混合して混床を形成して通水することもできる。
【0016】
通水の条件は通常のイオン交換による処理と同様とすることができる。通水速度は被処理水のバナジウム濃度、水質処理目標値等により異なるが、一般的には5〜100 L/L−Resin/hr、好ましくは10〜30 L/L−Resin/hrとすることができる。通水の終了は処理水中にイオン等が漏出するのを検知して判断することができる。この場合、バナジウム含有天然水がバナジウムの他にナトリウム等の他のカチオンを含む場合は、最初にリークするカチオンがリークを始めた時点で終了する。またバナジウム含有天然水がバナジウムのみを含む場合はバナジウムがリークした時点、あるいはイオン交換樹脂の交換基を含む物質(例えばポリスチレンスルホン酸)が所定量(例えば0.1mg/L)リークした時点で終了することができる。
【0017】
通水の継続によりバナジウムはイオン交換樹脂中に交換吸着されて樹脂に濃縮されるので、上記のイオン等が漏出を始めた時点で通水を停止し、再生に移る。再生は通常のイオン交換の場合と同様に、カチオン交換樹脂の場合は塩酸、硫酸等の酸、アニオン交換樹脂の場合は水酸化ナトリウム等のアルカリを再生剤として通液し、その後押出、水洗等を行って再生を終了する。再生によりカチオン交換樹脂に吸着されたバナジウムやその他のカチオンは溶離して、樹脂はH形等に再生され、アニオン交換樹脂もOH形等に再生されるので、通水再開によりイオン交換による交換吸着が行われる。
【0018】
本発明は酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で0.1〜313μg/L含有する天然水を、架橋度12〜16%のカチオン交換樹脂と接触させることにより、酸化数+II〜+IVのバナジウムによるカチオン交換樹脂の劣化を防止し、イオン交換処理によりバナジウムやその他の不純物を除去することで、純水製造、または超純水製造を行うものである。
【0019】
【発明の効果】
本発明によれば、酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で0.1〜313μg/L含有する天然水を、カチオン交換樹脂と接触させてバナジウムを除去し、純水または超純水を製造する際、架橋度12〜16%の高架橋度のカチオン交換樹脂と接触させることにより、酸化数+II〜+IVのバナジウムによるカチオン交換樹脂の劣化を防止し、イオン交換によりバナジウムを除去するようにしたので、カチオン交換樹脂の劣化を防止し、カチオン交換活性を低下させることなく、イオン交換によりバナジウムを除去することが可能であり、バナジウムを含有する天然水から純水製造または超純水製造を行うことができる。
【0020】
【発明の実施の形態】
以下、本発明を実施例および比較例により説明する。
【0021】
実施例1
高架橋度カチオン交換樹脂(ダイヤイオンSK112、商標、三菱化学(株)製、架橋度12%)を7.5mL充填したカラムに、被処理水としてバナジウム含有水(VOSO4の1mg/L水溶液)を流速1mL/minで通水してバナジウムを除去した。被処理水を500mL通水した時点、および1000mL通水した時点の処理水中のバナジウム濃度は検出されず、バナジウムを除去できていた。更に処理水中のポリスチレンスルホン酸濃度はそれぞれ0.05mg/Lであり、樹脂の劣化はほとんど生じなかった。
【0022】
比較例1
実施例1において、イオン交換樹脂として標準架橋度カチオン交換樹脂(ダイヤイオンSK1B、商標、三菱化学(株)製、架橋度8%)を用いた以外は同様試験したところ、被処理水を500mL通水した時点および1000mL通水した時点の処理水中のバナジウム濃度は検出されず、バナジウムを除去できていた。しかし、処理水中のポリスチレンスルホン酸濃度はそれぞれ2.1mg/Lおよび4.2mg/Lであり、樹脂の劣化が生じた。
【0023】
比較例2
実施例1において、バナジウムを含有しない被処理水を用いた以外同様に試験を行ったところ、1000mL通水した時点の処理水中のポリスチレンスルホン酸濃度は0.05mg/Lであり、実施例1と同等の値となった。
【0024】
以上の結果より、バナジウム含有水を標準架橋度のカチオン交換樹脂で処理するとカチオン交換樹脂が劣化するが、高架橋のカチオン交換樹脂で処理することにより、劣化が防止できることがわかる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating vanadium-containing water that removes vanadium and other impurities from water to be treated comprising natural water containing vanadium, and more particularly to a method for treating vanadium-containing water that removes vanadium and other impurities using an ion exchange resin. Is.
[0002]
[Prior art]
Vanadium is used as a catalyst, and is contained in ash such as coal and petroleum, as well as in certain natural waters. Vanadium-containing water contains various forms of vanadium depending on its origin. Vanadium forms various compounds depending on the valence of -I to + V, and each compound has one in which vanadium dissociates into a cation and one in which it dissociates into an anion. When vanadium is contained in an ionized or ionizable state like a soluble salt, vanadium can be removed by ion exchange.
[0003]
In the above vanadium-containing water, the vanadium compound contained therein dissociates into cations can remove vanadium by cation exchange. In this case, vanadium dissociated into cations can be exchanged and removed by cation exchange resin or zeolite.
[0004]
When vanadium-containing water is treated with a cation exchange resin as described above, vanadium is concentrated in the resin by exchange adsorption. However, vanadium compounds are widely used as catalysts, and there are differences in activity depending on the valence of vanadium or the type of compound, but many vanadium compounds have catalytic activity. When vanadium having such catalytic activity is concentrated in the cation exchange resin, the cation exchange resin is oxidized by the catalytic action, and a substance containing an exchange group of the cation exchange resin (for example, polystyrene sulfonic acid) flows out. The cation exchange activity tends to decrease.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to propose a method for treating vanadium-containing water that can prevent vanadium from being removed by cation exchange without preventing deterioration of the cation exchange resin and reducing cation exchange activity.
[0006]
[Means for Solving the Problems]
The present invention, natural water containing 0.1~313μg / L vanadium capable cation exchange states of oxidation number + II to + IV, in contact with mosquitoes thione exchange resin to remove vanadium, pure water or ultrapure water In the production of a cation exchange resin, it is brought into contact with a cation exchange resin having a crosslinking degree of 12 to 16% to prevent deterioration of the cation exchange resin by vanadium having an oxidation number of + II to + IV, and vanadium is removed by ion exchange. This is a method for treating vanadium-containing water.
[0007]
The vanadium-containing water to be treated in the present invention is natural water containing vanadium having an oxidation number of + II to + IV in a state capable of cation exchange, and natural water containing vanadium as a cation or in a state capable of dissociating into a cation. As examples, vanadium dissociated into anions, vanadium compounds dissociable into anions, vanadium compounds that are not ionized, or other impurities may be contained. The vanadium containing water used as the object of the treatment of the present invention is natural water containing 0.1 to 313 μg / L of vanadium in a cation exchangeable state .
[0008]
As described above, vanadium forms a compound having a valence of −I to + V, and among these, + II to + V is common. Oxidation numbers II and III produce salts mainly as cations, but oxidation numbers IV often combine with oxygen to form VO 2+ salts. At an oxidation number V, a salt of metavanadate ion VO 3 is formed together with a salt of VO 3+ or VO 2 + . V 2 O 5, which is widely used as a catalyst, is amphoteric and hardly soluble in water. When dissolved in an acid, VO 2 + is generated, and metavanadate ions are generated in an alkaline aqueous solution and dissociated into anions.
[0009]
Vanadium thus forms compounds of various valences. Many natural waters contain vanadium that dissociates into cations. In contrast, wastewater discharged from a system using a vanadium catalyst includes those that dissociate into cations and those that dissociate into anions depending on pH.
[0010]
In the present invention, by contacting the vanadium-containing water of natural water to 0.1~313μg / L vanadium of oxidation numbers + II to + IV with a cation exchangeable state mosquito thione exchange resins, vanadium dissociated into cations exchange to adsorb to remove, to produce pure water or ultrapure water. In this case, when the vanadium-containing water contains an anion in addition to the cation, the anion can be exchanged and adsorbed by contacting with the cation exchange resin and further contacting with the anion exchange resin. In the latter case, the cation exchange resin and the anion exchange resin may be contacted separately, or may be contacted simultaneously by a mixed bed type or the like. The degree of crosslinking of the anion exchange resin to be used is not limited, and it may be a resin having a standard degree of crosslinking or a resin having a high degree of crosslinking (hereinafter, unless otherwise specified, the term “ion exchange” means “cation exchange and / or anion exchange”). ”).
[0011]
As the ion exchange resin used in the present invention, a granular or gel ion exchange resin generally used in water treatment can be used. Such an ion exchange resin uses a copolymer of styrene and divinylbenzene as a base resin, a styrene having a cation exchange group is used as a cation exchange resin, and a styrene exchange resin having an anion exchange group is used as an anion exchange resin. .
[0012]
The cation exchange resin includes a strong acid cation exchange resin having a sulfone group as a cation exchange group and a weak acid cation exchange resin having a carboxylic acid group, and any of them can be used. Anion exchange resins include strong basic anion exchange resins with quaternary ammonium groups as anion exchange groups and weak basic anion exchange resins with primary to tertiary ammonium groups, both of which can be used. is there.
[0013]
In the base resin, divinylbenzene serves as a cross-linking agent, and the chain structure is cross-linked to form a network resin. The more divinylbenzene, the more chain branches and the denser the structure, and the smaller the divinylbenzene, the larger the network with less branching. The ratio (% by weight) of the amount of divinylbenzene charged relative to the total amount of monomers charged is indicated as the degree of crosslinking. Resins used for normal water treatment have a degree of crosslinking of about 8% and are called standard crosslinked resins.
[0014]
As the cation exchange resin used in the present invention, a highly crosslinked resin having a crosslinking degree of 12 to 16% is used. By using such a highly crosslinked cation exchange resin and contacting with vanadium-containing water, deterioration of the resin is prevented even when vanadium is concentrated in the resin, and the cation exchange capacity is not lowered.
[0015]
The method for contacting the vanadium-containing natural water with the ion-exchange resin is not particularly limited, and a method of immersing the ion-exchange resin in the vanadium-containing natural water and stirring may be used, but the vanadium-containing natural water is passed through the packed bed of ion-exchange resin. A method of contacting with water is preferred. In this case, when ion exchange is performed using a cation exchange resin and an anion exchange resin, each resin may be used alone to form a packed bed. However, both resins may be mixed to form a mixed bed. Can also be watered.
[0016]
The conditions for water flow can be the same as those for treatment by ordinary ion exchange. The water flow rate varies depending on the vanadium concentration of the water to be treated, the target value for water quality treatment, etc., but generally 5-100 L / L-Resin / hr, preferably 10-30 L / L-Resin / hr Can do. The end of water flow can be determined by detecting the leakage of ions or the like in the treated water. In this case, when the vanadium-containing natural water contains other cations such as sodium in addition to vanadium, it ends when the first leaking cations start leaking. When the vanadium-containing natural water contains only vanadium, it ends when the vanadium leaks or when a substance containing an exchange group of the ion exchange resin (for example, polystyrene sulfonic acid) leaks a predetermined amount (for example, 0.1 mg / L). can do.
[0017]
By continuing the water flow, vanadium is exchanged and adsorbed in the ion exchange resin and concentrated in the resin. Therefore, the water flow is stopped and the regeneration is started when the above-mentioned ions start to leak. For regeneration, as in the case of normal ion exchange, in the case of a cation exchange resin, an acid such as hydrochloric acid or sulfuric acid, and in the case of an anion exchange resin, an alkali such as sodium hydroxide is passed as a regenerant, followed by extrusion, washing, etc. To finish playback. Vanadium and other cations adsorbed on the cation exchange resin by regeneration elute, the resin is regenerated to H form, and the anion exchange resin is also regenerated to OH form. Is done.
[0018]
In the present invention, natural water containing 0.1 to 313 μg / L of vanadium having an oxidation number of + II to + IV in a cation-exchangeable state is brought into contact with a cation exchange resin having a crosslinking degree of 12 to 16%, whereby an oxidation number of + II to By preventing the deterioration of the cation exchange resin by + IV vanadium and removing vanadium and other impurities by ion exchange treatment, pure water production or ultrapure water production is performed.
[0019]
【The invention's effect】
According to the present invention, natural water containing 0.1~313μg / L vanadium capable cation exchange states of oxidation number + II to + IV, in contact with mosquitoes thione exchange resin to remove vanadium, pure water or ultra When pure water is produced , contact with a highly crosslinked cation exchange resin having a crosslinking degree of 12 to 16% prevents the cation exchange resin from being deteriorated by vanadium having an oxidation number of + II to + IV, and vanadium is removed by ion exchange. As described above, it is possible to remove vanadium by ion exchange without preventing deterioration of the cation exchange resin and reducing cation exchange activity, and producing pure water or ultrapure water from natural water containing vanadium. Manufacturing can be performed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[0021]
Example 1
A column packed with 7.5 mL of a highly crosslinked cation exchange resin (Diaion SK112, trademark, manufactured by Mitsubishi Chemical Corporation, with a crosslinking degree of 12%) was charged with vanadium-containing water (VOSO 4 1 mg / L aqueous solution) as water to be treated. Vanadium was removed by passing water at a flow rate of 1 mL / min. Vanadium concentration in the treated water at the time when 500 mL of treated water was passed and at the time when 1000 mL was passed was not detected, and vanadium could be removed. Further, the polystyrenesulfonic acid concentration in the treated water was 0.05 mg / L, respectively, and the resin hardly deteriorated.
[0022]
Comparative Example 1
In Example 1, when tested in the same manner except that a standard crosslinking degree cation exchange resin (Diaion SK1B, trademark, manufactured by Mitsubishi Chemical Co., Ltd., crosslinking degree 8%) was used as the ion exchange resin, 500 mL of water to be treated was used. Vanadium concentration in the treated water at the time of passing water and 1000 ml of water was not detected and vanadium could be removed. However, the polystyrenesulfonic acid concentrations in the treated water were 2.1 mg / L and 4.2 mg / L, respectively, and the resin deteriorated.
[0023]
Comparative Example 2
In Example 1, a test was conducted in the same manner except that the water to be treated containing no vanadium was used. As a result, the polystyrenesulfonic acid concentration in the treated water at the time when 1000 mL was passed was 0.05 mg / L. It became the equivalent value.
[0024]
From the above results, it can be seen that when vanadium-containing water is treated with a cation exchange resin having a standard degree of crosslinking, the cation exchange resin deteriorates, but the treatment can be prevented by treating with a highly crosslinked cation exchange resin.

Claims (1)

酸化数+II〜+IVのバナジウムをカチオン交換可能な状態で0.1〜313μg/L含有する天然水を、カチオン交換樹脂と接触させてバナジウムを除去し、純水または超純水を製造する際、架橋度12〜16%のカチオン交換樹脂と接触させることにより、酸化数+II〜+IVのバナジウムによるカチオン交換樹脂の劣化を防止し、イオン交換によりバナジウムを除去することを特徴とするバナジウム含有水の処理方法。 When a natural water containing 0.1~313μg / L vanadium capable cation exchange states of oxidation number + II to + IV, in contact with mosquitoes thione exchange resin to remove vanadium, to produce pure water or ultrapure water The vanadium-containing water is characterized by preventing vanadium by ion exchange by preventing deterioration of the cation exchange resin by vanadium having an oxidation number of + II to + IV by contacting with a cation exchange resin having a crosslinking degree of 12 to 16% . Processing method.
JP2001155834A 2001-05-24 2001-05-24 Method for treating vanadium-containing water Expired - Lifetime JP4721554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155834A JP4721554B2 (en) 2001-05-24 2001-05-24 Method for treating vanadium-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155834A JP4721554B2 (en) 2001-05-24 2001-05-24 Method for treating vanadium-containing water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010100767A Division JP5093292B2 (en) 2010-04-26 2010-04-26 Method for treating vanadium-containing water

Publications (2)

Publication Number Publication Date
JP2002346559A JP2002346559A (en) 2002-12-03
JP4721554B2 true JP4721554B2 (en) 2011-07-13

Family

ID=18999948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155834A Expired - Lifetime JP4721554B2 (en) 2001-05-24 2001-05-24 Method for treating vanadium-containing water

Country Status (1)

Country Link
JP (1) JP4721554B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948211B (en) * 2010-09-20 2012-04-04 攀钢集团钢铁钒钛股份有限公司 Method for treating vanadium oxide production wastewater

Also Published As

Publication number Publication date
JP2002346559A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
US2470500A (en) Demineralizing
JP3992299B2 (en) Ultrapure water production equipment
JP4721554B2 (en) Method for treating vanadium-containing water
US20010006985A1 (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
JP5093292B2 (en) Method for treating vanadium-containing water
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP3963101B2 (en) Vanadium-containing water ion exchange method and apparatus
JP3963100B2 (en) Method and apparatus for treating vanadium-containing water
JP3918383B2 (en) Pure water production apparatus and pure water production method
JP2002205062A (en) Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
US7727405B2 (en) Method for demineralizing condensate
JP5915683B2 (en) Method and apparatus for treating vanadium-containing water
JPH0371199B2 (en)
JP4411669B2 (en) Regeneration method of cation exchange resin
JP7570249B2 (en) Water treatment system and water treatment method
JP2941988B2 (en) Removal method of nitrate ion in raw water
JP3963599B2 (en) Acid component removal method
JPH0368755B2 (en)
JP2742975B2 (en) Regeneration method of ion exchange device
JP3528287B2 (en) Pure water production method
JPH11216373A (en) Method for regenerating ion exchange resin for desalting condensed water
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JPH01258749A (en) Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070816

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150