[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4718397B2 - Manufacturing method of vacuum suction device - Google Patents

Manufacturing method of vacuum suction device Download PDF

Info

Publication number
JP4718397B2
JP4718397B2 JP2006235165A JP2006235165A JP4718397B2 JP 4718397 B2 JP4718397 B2 JP 4718397B2 JP 2006235165 A JP2006235165 A JP 2006235165A JP 2006235165 A JP2006235165 A JP 2006235165A JP 4718397 B2 JP4718397 B2 JP 4718397B2
Authority
JP
Japan
Prior art keywords
mounting
mounting portion
vacuum
wafer
vacuum suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006235165A
Other languages
Japanese (ja)
Other versions
JP2008060307A (en
Inventor
基宏 梅津
伸也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006235165A priority Critical patent/JP4718397B2/en
Publication of JP2008060307A publication Critical patent/JP2008060307A/en
Application granted granted Critical
Publication of JP4718397B2 publication Critical patent/JP4718397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Description

本発明は、半導体ウエハや液晶用ガラス基板の研削加工を行う際に、半導体ウエハ等を吸着保持するための真空吸着装置に関する。 The present invention relates to a vacuum suction device for sucking and holding a semiconductor wafer or the like when grinding a semiconductor wafer or a glass substrate for liquid crystal.

半導体ウエハを搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が用いられており、均一な吸着を行うために、多孔質体により半導体ウエハの全面を吸着保持する真空吸着装置が検討されている。例えば、多孔質体からなる載置部を緻密質体からなる支持部に樹脂またはガラスなどの接着剤により接合してなり、下方の吸気孔より真空吸引することにより、上記載置部の吸着面に半導体ウエハを固定するものが提案されている(例えば特許文献1)。このような載置部と支持部とを接着剤により接合する製法では、接合面を完全に一致させることは不可能であり、また多孔質体である載置部に接着剤が染み込むため、接合部に不可避的に隙間が生じてしまう。そのため、特にウエハの研削・研磨加工に用いられる場合には、砥石の押圧により隙間部で載置部の沈み変形が起こり、半導体ウエハの加工精度が悪くなるという問題があった。そこで、本出願人は、セラミックス粉末と結合材のガラス粉末とからなる多孔質体原料を凹型の支持部に流し込んで成形・焼成する製法により多孔質体と緻密質体とを完全に密着させた真空吸着装置を開発し、接着剤により接合する製法で見られた隙間の問題を解消した(特許文献2)。 When a semiconductor wafer is transported, processed, or inspected, a vacuum suction device using a vacuum pressure is used. In order to perform uniform suction, a vacuum suction device that sucks and holds the entire surface of the semiconductor wafer with a porous body is used. It is being considered. For example, the adsorption portion of the placement portion described above is formed by joining the placement portion made of a porous body to the support portion made of a dense body with an adhesive such as resin or glass, and vacuuming from the lower suction hole. A device for fixing a semiconductor wafer is proposed (for example, Patent Document 1). In such a manufacturing method in which the mounting portion and the support portion are bonded with an adhesive, it is impossible to completely match the bonding surfaces, and the adhesive soaks into the mounting portion that is a porous body. A gap is inevitably generated in the part. For this reason, particularly when used for wafer grinding / polishing, there is a problem that the mounting deformation of the mounting portion occurs in the gap due to the pressing of the grindstone, and the processing accuracy of the semiconductor wafer deteriorates. Therefore, the present applicant completely brought the porous body and the dense body into close contact by a manufacturing method in which a porous body raw material composed of ceramic powder and glass powder of a binder material is poured into a concave support portion and molded and fired. A vacuum suction device was developed to solve the problem of gaps observed in the manufacturing method in which bonding is performed with an adhesive (Patent Document 2).

特開昭53−090871号公報JP-A-53-090871 特開平2005−22027号公報Japanese Patent Laid-Open No. 2005-22027

しかしながら多孔質体と隙間の問題は解消したものの、多孔質体からなる載置部の変形を完全に解消できなかった。これは、多孔質体からなる載置部は強度が低いことから、半導体ウエハを真空吸着して載置部内の真空度が高まると載置面が半導体ウエハを介して大気圧により押されるため、載置面が凹型に沈み込む変形が生じるためである。この変形のためウエハの研削精度が低下する問題があった。 However, although the problem of the porous body and the gap has been solved, the deformation of the mounting portion made of the porous body cannot be completely eliminated. This is because the mounting portion made of a porous body has low strength, and when the vacuum in the mounting portion is increased by vacuum suction of the semiconductor wafer, the mounting surface is pushed by atmospheric pressure through the semiconductor wafer, This is because the mounting surface is deformed to sink into the concave shape. Due to this deformation, there has been a problem that the grinding accuracy of the wafer is lowered.

また、この載置面の変形に対してウエハ研削砥石の軸調整によりウエハの研削精度の向上が図られるが、この作業は実際にウエハの研削をしながら、少しずつ調整していく必要があるため、非常に手間がかかるという問題があった。 In addition, the wafer grinding accuracy can be improved by adjusting the axis of the wafer grinding wheel against the deformation of the mounting surface, but this operation needs to be adjusted little by little while actually grinding the wafer. For this reason, there is a problem that it is very time-consuming.

本発明は、上記課題を解決するために見出されたものであり、載置面を真空吸着時の変形を見越して形成することにより、砥石軸の精密調整等の煩雑な作業をすることなく、高精度でウエハ等の被吸着体の研削を可能にするものである。 The present invention has been found to solve the above problems, and by forming the mounting surface in anticipation of deformation during vacuum suction, without complicated work such as precise adjustment of the grinding wheel shaft. This makes it possible to grind an object to be adsorbed such as a wafer with high accuracy.

本発明の方法により製造される真空吸着装置は、載置面に被吸着体を吸着保持するためのセラミックス多孔質体からなる載置部と、前記載置部の気孔に連通する吸気孔を有する緻密質セラミックスからなる支持部とを備え前記載置部の多孔質構造が前記支持部との境界面まで連続した隙間のない構造を有し、前記載置面がその略中心を頂点とする凸型である。 A vacuum suction device manufactured by the method of the present invention has a mounting portion made of a ceramic porous body for adsorbing and holding an object to be adsorbed on a mounting surface, and an intake hole communicating with the pores of the mounting portion. and a support portion made of dense ceramic, a porous structure of the mounting section has a structure with no continuous gap to the boundary surface between the supporting portion, the mounting surface is an apex substantially at the center Convex type.

本発明の真空吸着装置の載置面が、その略中心を頂点とする凸型であるのは、例えばウエハ等の被吸着物を真空吸着したときに平坦になるようにするためである。すなわち、真空吸着時の載置面の沈み変形は、その略中心で最も大きな沈みを示すため、載置面を予め凸型にすることで平坦化することができる。載置面の沈み変形が外周部よりも中心部で大きくなる理由は、載置部の外周部が大気圧のかからない緻密質体からなる支持部に密着していること、および、ウエハを載置面に載せて真空吸着させたときに外周端部から外気の吸い込みが生じるため外周端部近傍の真空度が中心部に比べて低いことが関係していると思われる。したがって載置面を凸型にすることで実際にウエハを研削・研磨加工する際には、載置面が平坦になりウエハの高精度加工が容易になる。また、砥石軸の精密調整はほとんど不要となり大幅に作業を簡略化できる。さらに真空吸着時の載置面の平坦性が高いため、ウエハ等の被吸着物の加工精度も飛躍的に高めることができる。 The reason why the mounting surface of the vacuum suction device of the present invention is a convex type having the approximate center as the apex is to flatten the object to be adsorbed such as a wafer by vacuum suction. That is, the deformation of the mounting surface during vacuum suction shows the largest sinking at the approximate center, and can be flattened by making the mounting surface convex in advance. The reason why the deformation of the mounting surface is larger at the center than at the outer peripheral portion is that the outer peripheral portion of the mounting portion is in close contact with the support portion made of a dense body that is not exposed to atmospheric pressure, and the wafer is mounted. It is considered that the vacuum level in the vicinity of the outer peripheral end portion is lower than that in the central portion because outside air is sucked from the outer peripheral end portion when placed on the surface and vacuum-adsorbed. Accordingly, when the wafer is actually ground and polished by making the mounting surface convex, the mounting surface becomes flat and high-precision processing of the wafer becomes easy. In addition, the precision adjustment of the grindstone shaft is almost unnecessary, and the operation can be greatly simplified. Furthermore, since the flatness of the mounting surface at the time of vacuum suction is high, the processing accuracy of an object to be sucked such as a wafer can be dramatically improved.

また、被吸着体の真空吸着時における載置面および載置面を取り囲む支持部表面が略同一平面となっていてもよいMoreover, the support surface surrounding the mounting surface and the mounting surface at the time of vacuum suction of the target object may be substantially flush.

載置面とその外周を取り囲む支持部表面とを略同一面に加工するのが通常行われる方法であるが、本発明においては、被吸着体を真空吸着していないときには載置面と支持部表面は略同一面ではなく、載置面が凸型であるのに対して、支持部表面は平面である。従来は、載置面と支持部表面とを略同一面に加工していたので、真空吸着時に載置面のみが変形する結果、ウエハの外周端部と中央部の研削量に差が生じるためにウエハ外周端部と中央部の厚みが異なる問題があったが、本発明によれば真空吸着時に載置面および支持部表面が略同一平面となるので、このような問題は生じない。なお、ここでいう、略同一平面は、厳密に平面度を要求するものではないが、ウエハの研削精度を向上させるためには、できるだけ高い平面度が好ましく、少なくとも載置面およびウエハの外周端部が載置される支持部表面からなる平面の被吸着体の平面度は1μm以下であることが望ましい。 In the present invention, the mounting surface and the support surface that surrounds the outer periphery of the mounting surface are generally processed, but in the present invention, when the object to be adsorbed is not vacuum-adsorbed, the mounting surface and the support portion The surface is not substantially the same surface, and the mounting surface is convex, whereas the support surface is a flat surface. Conventionally, the mounting surface and the support surface have been processed to be substantially the same surface, so that only the mounting surface is deformed during vacuum suction, resulting in a difference in the grinding amount between the outer peripheral edge and the center of the wafer. However, according to the present invention, the mounting surface and the support surface are substantially flush with each other at the time of vacuum suction, so that such a problem does not occur. The substantially identical planes here do not strictly require flatness, but in order to improve the grinding accuracy of the wafer, as high flatness as possible is preferable, at least the mounting surface and the outer peripheral edge of the wafer. It is desirable that the flatness of the planar adsorbent consisting of the surface of the support portion on which the portion is placed is 1 μm or less.

本発明は、前記真空吸着装置の製造方法であって、前記被吸着体が前記載置部表面に密着する程度の真空度で前記被吸着体を前記載置部表面に吸着させたときの前記載置部表面の高さと、当該真空度よりも高い使用真空度で前記被吸着体を前記載置部表面に吸着させたときの前記載置部表面の高さとの差を、複数の点において測定することにより、前記使用真空度における前記載置部表面の位置の相違に応じた当該差の変化態様を表わす沈み量分布を測定する工程と、前記沈み量分布から求めた凹型形状を反転させた凸型形状に前記載置部表面を加工し載置面とする工程とを含むことを特徴とする方法を提供するものである。 The present invention is a method of manufacturing the vacuum suction device, wherein the suction target is adsorbed on the surface of the mounting part at a degree of vacuum such that the target object is in close contact with the surface of the mounting part. The difference between the height of the surface of the mounting portion and the height of the surface of the mounting portion when the adsorbed body is adsorbed to the surface of the mounting portion at a vacuum level higher than the vacuum level in a plurality of points. By measuring, the step of measuring a sinking amount distribution representing a change mode of the difference according to the difference in the position of the surface of the mounting portion in the use vacuum degree, and the concave shape obtained from the sinking amount distribution is inverted. And a step of processing the surface of the mounting portion into a convex shape to form a mounting surface.

予め、使用条件での変形量を測定し、その変形量に対応した形状に加工することで仕様条件下での載置面の平坦性を高めることができる。なお、載置部の物性値からある程度変形量を予測することができるが、実際には同一形状であっても、変形量が異なる場合がある。これは上述のように、載置面の沈み変形は、載置部外周部の支持部との密着性や、ウエハ載置時の気密性等の要因によるためである。 The flatness of the mounting surface under the specified conditions can be improved by measuring the deformation amount under the use conditions in advance and processing into a shape corresponding to the deformation amount. Although the amount of deformation can be predicted to some extent from the physical property value of the mounting portion, the amount of deformation may be different even if the shape is actually the same. This is because, as described above, the sinking deformation of the mounting surface is due to factors such as adhesion to the supporting portion of the outer peripheral portion of the mounting portion and airtightness when the wafer is mounted.

また、本発明の真空吸着装置は、載置部の表層に液体を浸透、固化させて気密化する工程と、前記載置部の内部を使用真空度に保ちながら、載置部表面を加工し載置面とする工程と、前記液体を除去する工程とを含む製造方法によっても得ることができる。 Further, the vacuum suction device of the present invention processes the surface of the mounting unit while maintaining the inside of the mounting unit at a use vacuum degree, and a step of infiltrating and solidifying the liquid into the surface layer of the mounting unit to make it airtight. It can also be obtained by a manufacturing method including a step of setting a mounting surface and a step of removing the liquid.

この製造方法によれば、ウエハを真空吸着するときと同じ条件で載置面を形成することができるため、よりウエハの平坦度を高めることができる。ここで、載置部の表層に浸透固化させる液体としては、アクリル樹脂等の熱硬化性樹脂や、エポキシ樹脂等の熱可塑性樹脂、ろう、ワックス、水等種々の液体を採用できる。液体は載置部の表層に止まるように固形分を多くしたり、増粘剤等を用いたりして粘度を調整する。液体が浸透固化する表層の厚みは、載置部表面の気密が取れる範囲でできるだけ薄くすると良い。厚すぎると載置部の沈み変形が小さくなるため好ましくないためである。したがって、表層の厚みは載置部厚みの20%以下とすることが望ましい。水を使用する場合は載置面の研削時に氷が溶融しないように冷却しながら研削すると良い。表層に固化した液体を除去する方法としては、溶剤に溶かしたり、加熱気化したりする方法が採用できる。 According to this manufacturing method, since the mounting surface can be formed under the same conditions as when the wafer is vacuum-sucked, the flatness of the wafer can be further increased. Here, various liquids such as a thermosetting resin such as an acrylic resin, a thermoplastic resin such as an epoxy resin, wax, wax, and water can be used as the liquid to be infiltrated into the surface layer of the mounting portion. The viscosity of the liquid is adjusted by increasing the solid content or using a thickener or the like so as to remain on the surface layer of the mounting portion. The thickness of the surface layer into which the liquid permeates and solidifies is preferably as thin as possible within a range where the surface of the mounting portion can be hermetically sealed. This is because if the thickness is too thick, the sinking deformation of the mounting portion becomes small, which is not preferable. Therefore, the thickness of the surface layer is desirably 20% or less of the placement portion thickness. When water is used, it is good to grind while cooling so that the ice does not melt when grinding the mounting surface. As a method of removing the liquid solidified on the surface layer, a method of dissolving in a solvent or vaporizing by heating can be employed.

さらに、本発明の真空吸着装置は、セラミックス粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整するスラリー調整工程と、前記スラリーを載置部が形成される凹部を設けた支持部の該凹部に充填するスラリー充填工程と、凹部にスラリーが充填された支持部をガラスの軟化点以上の温度で焼成する焼成工程と、を含む製造方法により作製することが好ましい。 Furthermore, the vacuum suction device of the present invention includes a slurry adjustment step of adjusting slurry by adding water or alcohol to ceramic powder and glass powder, and a support provided with a recess in which the slurry is placed. It is preferable to produce by a manufacturing method including a slurry filling step for filling the concave portion of the portion and a firing step for firing the support portion filled with the slurry in the concave portion at a temperature equal to or higher than the softening point of the glass.

本製法によれば、載置部と支持部との間に局部的な隙間が生じないので、真空吸着時の載置面の変形は一定である。しかも、通常ウエハを真空吸着するときの−50〜−100kPa程度の真空圧(ゲージ圧)において載置面略中心の沈み変形量は5μmを超えることはない。一方、従来の多孔質載置部を緻密質支持部に接合して得られる真空吸着装置における隙間による沈み変形は、隙間の位置が不規則なので一定でなく、変形量が数十μmにもなるため載置面の加工により対応できない。したがって、本発明の真空吸着装置を得るためには、載置部と支持部との間に隙間が生じない本製法を用いることが好ましく、沈み変形を5μm以下に抑えることができるので、載置面の凸型形状の高さは5μm以下とすることが好ましい。また、載置部と支持部との密着性も良好であるため、真空吸着時の載置面の変形は、ほぼ中心部で最も沈み変形が大きく、再現性も良い。 According to this manufacturing method, since a local gap does not occur between the mounting portion and the support portion, the deformation of the mounting surface during vacuum suction is constant. Moreover, the amount of sink deformation at the center of the mounting surface does not exceed 5 μm at a vacuum pressure (gauge pressure) of about −50 to −100 kPa when the wafer is normally vacuum-adsorbed. On the other hand, the deformation due to the gap in the vacuum suction device obtained by joining the conventional porous mounting part to the dense support part is not constant because the position of the gap is irregular, and the deformation amount is several tens of μm. Therefore, it cannot respond by processing the mounting surface. Therefore, in order to obtain the vacuum suction device of the present invention, it is preferable to use the present manufacturing method in which no gap is generated between the mounting portion and the support portion, and the deformation due to sinking can be suppressed to 5 μm or less. The height of the convex shape of the surface is preferably 5 μm or less. In addition, since the adhesion between the placement portion and the support portion is also good, the deformation of the placement surface during vacuum suction is the most sunk deformation at the central portion, and the reproducibility is good.

このように本発明によれば、載置面を真空吸着時の変形を見越して形成することにより、ウエハ研削時の砥石軸の精密調整等の煩雑な作業を簡便化し、かつ高精度のウエハの研削を可能にする。 As described above, according to the present invention, the mounting surface is formed in anticipation of deformation during vacuum suction, thereby simplifying complicated operations such as precise adjustment of the grinding wheel shaft during wafer grinding, and high-precision wafer fabrication. Enables grinding.

以下、図面を参照して、本発明の実施形態について説明する。
図1は本発明の一実施形態に係る真空吸着装置1の概略構成を示す断面図である。真空吸着装置1は、多孔質体からなる載置部2と、該載置部を支持する緻密質体からなる支持部3と、該支持部に形成された吸引部4とを具備し、載置面全体で吸引するために吸気溝5が設けられており、載置面2a上に、被吸着体Wとして例えば半導体ウエハを載置する(図2)。吸気孔4は、載置部の裏面側に支持部3を貫通するように設けられており、吸気孔4を介して図示しない真空ポンプにより吸引することにより、載置面2aに載置された被吸着物である半導体ウエハ等が真空吸着される。載置部2と支持部3との接合界面には載置部の気孔径を超えるような隙間はなく、多孔質構造が支持部との境界面まで連続した構造を有している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a vacuum suction device 1 according to an embodiment of the present invention. The vacuum suction device 1 includes a mounting part 2 made of a porous body, a support part 3 made of a dense body that supports the mounting part, and a suction part 4 formed on the support part. An intake groove 5 is provided for suctioning the entire mounting surface, and a semiconductor wafer, for example, is mounted on the mounting surface 2a as the adsorbed member W (FIG. 2). The suction hole 4 is provided on the back side of the mounting portion so as to penetrate the support portion 3 and is placed on the placement surface 2 a by being sucked by a vacuum pump (not shown) through the suction hole 4. A semiconductor wafer or the like, which is an object to be adsorbed, is adsorbed by vacuum. There is no gap that exceeds the pore diameter of the mounting portion at the bonding interface between the mounting portion 2 and the supporting portion 3, and the porous structure has a continuous structure up to the boundary surface with the supporting portion.

載置面2aは、その略中心2bを頂点とする凸型形状となっており、その高さhは5μm以下となっている。本発明の真空吸着装置の載置面2a上にウエハWを真空吸着載置した概略図(図2)に示したように、ウエハの載置時には、載置面2aは大気圧による押圧により変形し、平坦となる。このとき載置面2aと支持部表面3aとが同一平面となりウエハの外周部を含めた全面について高平坦な加工が可能となる。 The mounting surface 2a has a convex shape with the approximate center 2b as an apex, and its height h is 5 μm or less. As shown in the schematic diagram (FIG. 2) in which the wafer W is placed on the placement surface 2a of the vacuum suction apparatus of the present invention by vacuum suction, the placement surface 2a is deformed by pressing by atmospheric pressure when the wafer is placed. And become flat. At this time, the mounting surface 2a and the support portion surface 3a are flush with each other, and a highly flat process is possible on the entire surface including the outer peripheral portion of the wafer.

真空吸着装置の緻密質支持部3に用いられるセラミックスとしては、アルミナ、窒化珪素、炭化珪素、ジルコニア等が挙げられる。また、載置部2はセラミックス粉末とガラス粉末との複合材からなりセラミックス粉末は、熱膨張の観点から緻密質支持部に用いられたセラミックスと同一のものを用いるのが好ましいが、多孔質体全体としての熱膨張が支持部と同等であれば良いので、これに限定されるものではない。 Examples of ceramics used for the dense support portion 3 of the vacuum suction device include alumina, silicon nitride, silicon carbide, and zirconia. The mounting portion 2 is made of a composite material of ceramic powder and glass powder, and the ceramic powder is preferably the same as the ceramic used for the dense support portion from the viewpoint of thermal expansion. The thermal expansion as a whole is not limited to this as long as it is equivalent to that of the support portion.

ここで、多孔質体からなる載置部2の気孔は連通しており、真空吸着力および載置面2aの面精度の観点から平均気孔径が10〜150μm、気孔率が20〜50%とすることが好ましく、このような気孔径および気孔率を得るためには、前記載置部の構成原料であるセラミックス粉末の平均粒径が30μm〜150μmのものを使用することが好ましい。 Here, the pores of the mounting portion 2 made of a porous body communicate with each other, and the average pore diameter is 10 to 150 μm and the porosity is 20 to 50% from the viewpoint of vacuum adsorption force and surface accuracy of the mounting surface 2a. In order to obtain such a pore diameter and porosity, it is preferable to use a ceramic powder having an average particle diameter of 30 μm to 150 μm as a constituent material of the mounting portion.

次に、前記載置部2の構成成分であるガラスの熱膨張係数が前記支持部および前記載置部のもう一方の構成成分であるセラミックスの熱膨張係数より小さいものを使用することが好ましい。その理由は、低熱膨張のガラスを使用することにより、焼結後の多孔質体と支持部材との界面の隙間をなくすことができ、また、多孔質体において結合材としての役割を有するガラスに圧縮応力が加わった状態が望ましいからである。 Next, it is preferable to use a glass whose thermal expansion coefficient is smaller than that of the ceramics which are the other constituent components of the supporting portion and the mounting portion. The reason for this is that by using low thermal expansion glass, it is possible to eliminate the gap at the interface between the porous body after sintering and the support member, and to the glass having a role as a binder in the porous body. This is because a state where compressive stress is applied is desirable.

また、本発明では、前記載置部の構成原料となるガラス粉末の平均粒子径が前記載置部のもう一方の構成原料であるセラミックス粉末の平均粒子径より小さい方が好ましい。その理由は、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填を阻害するため、ガラス軟化点以上で焼結する際に焼成収縮を起こすからである。ガラスの平均粒径は、好ましくは、セラミックス粉末の平均粒径の1/3以下、さらに好ましくは1/5以下が望ましい。 In the present invention, it is preferable that the average particle diameter of the glass powder as the constituent material of the placement portion is smaller than the average particle diameter of the ceramic powder as the other constituent material of the placement portion. The reason is that if the average particle size of the glass powder is larger than that of the ceramic powder, filling of the ceramic powder is hindered, and thus firing shrinkage occurs when sintering at a glass softening point or higher. The average particle size of the glass is preferably 1/3 or less, more preferably 1/5 or less, of the average particle size of the ceramic powder.

添加するガラス粉末の量は、特に限定しないが、ガラス粉末の粒径が大きい場合と同様に大量に添加するとセラミックス粉末の充填を阻害し、焼成収縮を起こすため、少量が望ましい。ただし、少なすぎるとセラミックス粉末の結合強度が低下し、脱粒や欠けの問題が生じるため、結合強度を発揮するような量が必要である。具体的には、目標とする気孔率、セラミックス粉末の粒度、焼成温度およびガラス粘性等を考慮して調整されるが、概ねセラミックス粉末に対して5%〜30質量%程度添加混合することが望ましい。 The amount of the glass powder to be added is not particularly limited, but a small amount is desirable because when it is added in a large amount as in the case where the particle size of the glass powder is large, filling of the ceramic powder is inhibited and firing shrinkage occurs. However, if the amount is too small, the bonding strength of the ceramic powder is lowered, and problems such as degranulation and chipping occur, so an amount that exhibits the bonding strength is required. Specifically, it is adjusted in consideration of the target porosity, the particle size of the ceramic powder, the firing temperature, the glass viscosity, etc., but it is generally desirable to add and mix about 5% to 30% by mass with respect to the ceramic powder. .

次に、本発明の真空吸着装置1の製造方法について説明する。はじめに載置部2を形成する多孔質体の原料粉末であるアルミナ粉末およびガラス粉末、または、炭化珪素粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整する。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。ここで、水またはアルコール量は特に限定しない。セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるよう水またはアルコールの添加量を調整する。 Next, the manufacturing method of the vacuum suction apparatus 1 of this invention is demonstrated. First, water or alcohol is added to and mixed with alumina powder and glass powder, or silicon carbide powder and glass powder, which are raw material powders of the porous body forming the mounting portion 2, to prepare a slurry. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. Here, the amount of water or alcohol is not particularly limited. In consideration of the particle size of the ceramic powder and the addition amount of the glass powder, the addition amount of water or alcohol is adjusted so as to obtain a desired fluidity.

次に、CIP成形や、鋳込み成形等の公知の成形方法、電気炉焼成や、ホットプレス等の公知の焼成方法、およびダイヤモンド砥石等による公知の研削加工方法により作製したセラミックスの支持部3の載置部が形成される凹部(図示せず)に前記スラリーを充填する。この際、必要に応じて、残留気泡を除去するための真空脱泡や、充填を高めるための振動を加えると良い。また、吸引部4および空隙5は、載置部となる混合物を注ぐ前に、ろう、樹脂等の焼失部材により閉塞しておく。 Next, mounting of the ceramic support 3 produced by a known molding method such as CIP molding or cast molding, a known firing method such as electric furnace firing or hot press, and a known grinding method using a diamond grindstone or the like. The slurry is filled in a recess (not shown) in which the placement portion is formed. At this time, it is advisable to apply vacuum defoaming for removing residual bubbles and vibration for enhancing filling as necessary. Moreover, the suction part 4 and the space | gap 5 are obstruct | occluded by burning-off members, such as a wax and resin, before pouring the mixture used as a mounting part.

次に、凹部にスラリーを充填した支持部を十分に乾燥させた後、ガラスの軟化点以上の温度で焼成する。この際、焼成温度がガラスの軟化点より低いと十分に一体化できないが、反対に焼成温度が高すぎると変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。 Next, after fully drying the support part which filled the slurry with the recessed part, it baked at the temperature more than the softening point of glass. At this time, if the firing temperature is lower than the softening point of the glass, sufficient integration cannot be achieved. On the other hand, if the firing temperature is too high, deformation or shrinkage occurs.

載置部の焼成後、上述した載置部表面および支持部表面の平面研削加工および沈み量分布の測定を行う。載置部表面および支持部表面の研削加工はダイヤモンド砥石等の通常用いる方法を採用できる。沈み量分布の測定は、平面加工を施した載置部表面を使用して、載置部表面の変形に追従する半導体ウエハ、セラミックスダミーウエハ、金属シートまたは樹脂シート等の被吸着体を用いて、被吸着体が載置面に密着する程度の真空度(例えば−5kPa;ゲージ圧)でウエハを吸着させた場合の載置部表面の高さと、ウエハ研削加工時の使用真空度(例えば−100kPa)で吸着させた場合の載置部表面の高さとの差を電気マイクロメータにより任意の点数を計測することにより行うことができる。 After firing the mounting part, the above-mentioned surface of the mounting part and the surface of the support part are subjected to surface grinding and measurement of the sinking amount distribution. For the grinding of the surface of the mounting portion and the surface of the support portion, a commonly used method such as a diamond grindstone can be adopted. The amount of sinking distribution is measured using an adsorbent such as a semiconductor wafer, a ceramic dummy wafer, a metal sheet, or a resin sheet that follows the deformation of the surface of the mounting part using the surface of the mounting part subjected to planar processing. The height of the surface of the mounting portion when the wafer is adsorbed at a degree of vacuum (e.g., -5 kPa; gauge pressure) such that the object to be adsorbed is in close contact with the mounting surface, and the degree of vacuum used during wafer grinding (e.g.,- The difference from the height of the surface of the mounting portion when adsorbed at 100 kPa) can be performed by measuring an arbitrary number of points with an electric micrometer.

次に計測した変形量をマッピングし、これを反転させた形状に載置部表面を平面研削、ラップ盤等、公知の方法により研削・研磨加工して載置面2aを得る。このとき載置部表面の加工を容易にできるように、マッピングデータの平滑化処理を行ってもよい。 Next, the measured deformation amount is mapped, and the surface of the mounting portion is ground and polished by a known method such as surface grinding or lapping to obtain a mounting surface 2a. At this time, the mapping data may be smoothed so that the surface of the mounting portion can be easily processed.

また、上述したように、載置部の表層に液体を浸透、固化させて気密化した後、載置部の内部を使用真空度に保ちながら、載置部表面を研削加工して載置面2aとし、固化した液体を溶剤や加熱により除去することによっても作製できる。 In addition, as described above, the surface of the mounting unit is infiltrated and solidified by liquid, and then the mounting unit surface is ground and the mounting surface is ground while keeping the inside of the mounting unit at a use vacuum degree. It can also be produced by removing the solidified liquid by solvent or heating.

以下、本発明の実施例と比較例により本発明を詳細に説明する。
(実施例1)アルミナ粉末(平均粒径125μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数40×10−7/℃、軟化点800℃)および蒸留水を100:20:20の質量比で混合し、ミキサーを用いて混錬した後、スラリーを外径350mm、高さ20.5mm(凹部内径298mm、深さ5.5mm;削り代およそ0.5mm、吸気孔径および吸気溝幅2mm)の緻密質アルミナ支持部(熱膨張係数8.0×10−6/℃)に注型し、真空脱泡を行った後、振動を加えて沈降充填させた。100℃で乾燥させた後、1000℃にて焼成した。次に表面をダイヤモンド砥石で研削し、載置部表面とした。沈み量分布の測定は、−5kPaの真空度でウエハ(直径300mm、厚さ800μm)を載置部表面に密着させたときと−100kPaの真空度で吸着したときの載置部厚み方向の変位量を電気マイクロメータにより任意の100点を測定し、マッピングした。載置部表面の略中心の沈み量は4.8μmであり、外周にかけて沈み量が減少し、外周端部では沈みが見られなかった。マッピングを基に#800ダイヤモンド砥石を用いて平面研削し略中心部の高さ4.8μmの凸型形状の載置面、平坦形状の支持部表面を得た。得られた真空吸着装置を使用して、ウエハの研削試験を行った。−100kPaの真空度(ゲージ圧)で真空吸着した半導体ウエハ(直径300mm、厚さ800μm)を#800のダイヤモンド砥石を使用して100μm研削加工した後、レーザ干渉式形状測定器を用いてウエハの平坦度を測定した。30枚研削し、平坦度は全て1.0μm以下であった。砥石軸の調整は従来に比べて、非常に容易であった。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples of the present invention.
(Example 1) Alumina powder (average particle size 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 800 ° C.) and distilled water 100: 20 After mixing at a mass ratio of 20 and kneading using a mixer, the slurry was 350 mm in outer diameter and 20.5 mm in height (recess inner diameter 298 mm, depth 5.5 mm; cutting allowance approximately 0.5 mm, intake hole diameter and After casting on a dense alumina support (thermal expansion coefficient: 8.0 × 10 −6 / ° C.) having a suction groove width of 2 mm, vacuum defoaming was performed, and vibration was applied for sedimentation. After drying at 100 ° C., firing was performed at 1000 ° C. Next, the surface was ground with a diamond grindstone to obtain a placement portion surface. The amount of sinking distribution is measured when the wafer (diameter 300 mm, thickness 800 μm) is brought into close contact with the surface of the mounting part at a vacuum level of −5 kPa and when the wafer is adsorbed at a vacuum degree of −100 kPa in the thickness direction of the mounting part. The quantity was measured at an arbitrary 100 points with an electric micrometer and mapped. The sinking amount at the approximate center of the surface of the mounting portion was 4.8 μm, the sinking amount decreased toward the outer periphery, and no sinking was observed at the outer peripheral end. Based on the mapping, surface grinding was performed using a # 800 diamond grindstone to obtain a convex mounting surface having a height of approximately 4.8 μm at the center and a flat support surface. A wafer grinding test was conducted using the obtained vacuum suction device. A semiconductor wafer (diameter: 300 mm, thickness: 800 μm) vacuum-adsorbed at a vacuum level of −100 kPa (diameter: 300 mm, thickness: 800 μm) is ground by 100 μm using a # 800 diamond grindstone, and then the wafer interference is measured using a laser interference type shape measuring instrument. The flatness was measured. 30 sheets were ground and the flatness was 1.0 μm or less. Adjustment of the grindstone shaft was very easy compared to the prior art.

(実施例2)実施例1と同様に、同形状の緻密質アルミナ支持部の凹部に載置部原料を流し込み、焼成した後、研削加工を行って載置部表面を形成した。次に、載置部の表層に常温硬化性のエポキシ樹脂を塗布し、浸透固化させた。載置部内を真空吸引してー100kPaの真空度に保ちながら、#800ダイヤモンド砥石を用いて載置部表面を平坦加工した後、アセトンを用いてエポキシ樹脂を溶解除去した。得られた載置面の形状は、その略中心を頂点とする高さ4.7μmの凸型であった。実施例1と同様にウエハの研削試験を行ったところ、30枚研削し、平坦度は全て1.0μm以下であった。砥石軸の調整は従来に比べて、非常に容易であった。 (Example 2) In the same manner as in Example 1, after placing the raw material for the placement portion into the concave portion of the dense alumina support portion having the same shape and firing, the surface of the placement portion was formed by grinding. Next, a room temperature curable epoxy resin was applied to the surface layer of the mounting portion and allowed to solidify. The surface of the mounting portion was flattened using a # 800 diamond grindstone while vacuuming the inside of the mounting portion to maintain a vacuum degree of −100 kPa, and then the epoxy resin was dissolved and removed using acetone. The shape of the obtained mounting surface was a convex shape having a height of 4.7 μm with the approximate center as the apex. When a wafer grinding test was performed in the same manner as in Example 1, 30 wafers were ground, and the flatness was 1.0 μm or less. Adjustment of the grindstone shaft was very easy compared to the prior art.

(比較例)載置面を除いて実施例と同形状の真空吸着装置を作製した。載置面は凸型とせず、#800ダイヤモンド砥石を用いて載置部表面及び支持部表面の平面研削を行い、平坦な載置面および支持部表面を得た。実施例と同条件でウエハ研削試験を行ったところ、30枚研削し、平坦度は全て1.0μmよりも大きかった。実施例と比べて軸調整に非常に手間がかかった上、ウエハの研削精度も悪かった。 (Comparative Example) A vacuum suction device having the same shape as the example except for the mounting surface was produced. The mounting surface was not convex, and the surface of the mounting portion and the surface of the supporting portion were subjected to surface grinding using a # 800 diamond grindstone to obtain flat mounting surfaces and the surface of the supporting portion. When a wafer grinding test was performed under the same conditions as in the example, 30 wafers were ground, and the flatness was all greater than 1.0 μm. Compared to the embodiment, the axis adjustment took much time and the wafer grinding accuracy was also poor.

本発明の真空吸着装置の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure of the vacuum suction apparatus of this invention. 本発明の真空吸着装置の半導体ウエハ載置時の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure at the time of semiconductor wafer mounting of the vacuum suction apparatus of this invention.

符号の説明Explanation of symbols

1;真空吸着装置
2;載置部
2a;載置面
3;支持部
3a;支持部表面
4;吸気孔
5;吸気溝
2b;載置部略中心部
h;凸型載置面の高さ
W;被吸着体
DESCRIPTION OF SYMBOLS 1; Vacuum suction apparatus 2; Mounting part 2a; Mounting surface 3; Support part 3a; Support part surface 4; Intake hole 5; Intake groove 2b; W: Adsorbent

Claims (2)

載置面に被吸着体を吸着保持するためのセラミックス多孔質体からなる載置部と、前記載置部の気孔に連通する吸気孔を有する緻密質セラミックスからなる支持部とを備え、前記載置部の多孔質構造が前記支持部との境界面まで連続した隙間のない構造を有し、前記載置面がその略中心を頂点とする凸型である真空吸着装置の製造方法であって、
前記被吸着体が前記載置部表面に密着する程度の真空度で前記被吸着体を前記載置部表面に吸着させたときの前記載置部表面の高さと、当該真空度よりも高い使用真空度で前記被吸着体を前記載置部表面に吸着させたときの前記載置部表面の高さとの差を、複数の点において測定することにより、前記使用真空度における前記載置部表面の位置の相違に応じた当該差の変化態様を表わす沈み量分布を測定する工程と、
前記沈み量分布から求めた凹型形状を反転させた凸型形状に前記載置部表面を加工し載置面とする工程とを含むことを特徴とする方法。
The mounting portion includes a mounting portion made of a ceramic porous body for adsorbing and holding an object to be adsorbed on the mounting surface, and a support portion made of dense ceramic having an intake hole communicating with the pores of the mounting portion. The manufacturing method of the vacuum suction device, wherein the porous structure of the mounting portion has a structure without a continuous gap to the boundary surface with the support portion, and the mounting surface is a convex shape having the approximate center at the top. ,
When the adsorbent is adsorbed on the surface of the mounting part at a degree of vacuum such that the adsorbent adheres to the surface of the mounting part, the height of the mounting part surface is higher than the vacuum level. the difference between the height of the mounting table surface when said adsorbed on the mounting table surface the attracted body at a vacuum degree, by measuring at a plurality of points, part surface before described in the use vacuum Measuring a sinking amount distribution representing a change mode of the difference according to a difference in position of
And a step of processing the surface of the mounting portion into a convex shape obtained by inverting the concave shape obtained from the sink amount distribution to form a mounting surface.
請求項1記載の方法において
載置部の表層に液体を浸透、固化させて気密化する工程と、前記載置部の内部を使用真空度に保ちながら、載置部表面を加工し載置面とする工程と、載置部の表層に固化した前記液体を除去する工程とを含むことを特徴とする方法。
The method of claim 1, wherein
A step of infiltrating and solidifying the liquid on the surface layer of the mounting portion to make it airtight; a step of processing the surface of the mounting portion to form a mounting surface while maintaining the inside of the mounting portion at a use vacuum level; Removing the liquid solidified on the surface layer of the part.
JP2006235165A 2006-08-31 2006-08-31 Manufacturing method of vacuum suction device Active JP4718397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235165A JP4718397B2 (en) 2006-08-31 2006-08-31 Manufacturing method of vacuum suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235165A JP4718397B2 (en) 2006-08-31 2006-08-31 Manufacturing method of vacuum suction device

Publications (2)

Publication Number Publication Date
JP2008060307A JP2008060307A (en) 2008-03-13
JP4718397B2 true JP4718397B2 (en) 2011-07-06

Family

ID=39242704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235165A Active JP4718397B2 (en) 2006-08-31 2006-08-31 Manufacturing method of vacuum suction device

Country Status (1)

Country Link
JP (1) JP4718397B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530275B2 (en) * 2010-06-30 2014-06-25 太平洋セメント株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP5943742B2 (en) * 2012-07-04 2016-07-05 三菱電機株式会社 Semiconductor test jig and semiconductor test method using the same
JP6154274B2 (en) * 2013-09-26 2017-06-28 京セラ株式会社 Suction board
KR101550292B1 (en) * 2013-11-04 2015-09-04 코닝정밀소재 주식회사 Apparatus for forming glass substrate
KR102293891B1 (en) * 2014-12-16 2021-08-26 삼성디스플레이 주식회사 Device for fabricating window of display device
JP7178831B2 (en) * 2018-08-30 2022-11-28 日本特殊陶業株式会社 Substrate holding member
CN109333338A (en) * 2018-12-06 2019-02-15 华侨大学 A kind of vacuum adsorption type erratic star wheel fixture and its application method
CN113909965A (en) * 2021-11-16 2022-01-11 福建福特科光电股份有限公司 Tool clamp for ultra-precision machining
CN115070536A (en) * 2022-07-26 2022-09-20 徐州盛科半导体科技有限公司 Thinning machine for processing semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699329A (en) * 1992-09-18 1994-04-12 Toyoda Mach Works Ltd Air leak prevention method for vacuum chuck surface
JPH06114664A (en) * 1992-10-09 1994-04-26 Nippondenso Co Ltd Vacuum suction table

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471638A (en) * 1987-09-11 1989-03-16 Hitachi Seiko Kk Vacuum chuck

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699329A (en) * 1992-09-18 1994-04-12 Toyoda Mach Works Ltd Air leak prevention method for vacuum chuck surface
JPH06114664A (en) * 1992-10-09 1994-04-26 Nippondenso Co Ltd Vacuum suction table

Also Published As

Publication number Publication date
JP2008060307A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5527602B2 (en) Adsorbing member and manufacturing method thereof
JPH10128634A (en) Sucker and its manufacture
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP5261057B2 (en) Suction board and vacuum suction device
JP4336532B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP4405887B2 (en) Vacuum adsorption device
JP4704971B2 (en) Vacuum adsorption device
JPH0513051U (en) Vacuum check
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6179030B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP4519457B2 (en) Substrate fixing device for processing and manufacturing method thereof
JP4468059B2 (en) Hydrostatic bearing device
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5709600B2 (en) Method for manufacturing adsorption member
JP2005279788A (en) Vacuum chuck for grinding/polishing
JP2009148868A (en) Vacuum suction device
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005254412A (en) Vacuum suction device
JP2005212000A (en) Vacuum suction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4718397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250