JP4718003B2 - 放射線写真におけるインターバル変化を検出する方法 - Google Patents
放射線写真におけるインターバル変化を検出する方法 Download PDFInfo
- Publication number
- JP4718003B2 JP4718003B2 JP2000504546A JP2000504546A JP4718003B2 JP 4718003 B2 JP4718003 B2 JP 4718003B2 JP 2000504546 A JP2000504546 A JP 2000504546A JP 2000504546 A JP2000504546 A JP 2000504546A JP 4718003 B2 JP4718003 B2 JP 4718003B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- images
- digital
- digital images
- shift value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 60
- 230000002123 temporal effect Effects 0.000 claims description 30
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000012935 Averaging Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 210000000038 chest Anatomy 0.000 description 51
- 210000004072 lung Anatomy 0.000 description 22
- 238000001514 detection method Methods 0.000 description 17
- 238000011410 subtraction method Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 9
- 238000004195 computer-aided diagnosis Methods 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000002601 radiography Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000002950 deficient Effects 0.000 description 6
- 238000010606 normalization Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000000205 computational method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 201000003144 pneumothorax Diseases 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 206010025102 Lung infiltration Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000009607 mammography Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/14—Transformations for image registration, e.g. adjusting or mapping for alignment of images
- G06T3/153—Transformations for image registration, e.g. adjusting or mapping for alignment of images using elastic snapping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/254—Analysis of motion involving subtraction of images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Description
【発明の属する技術分野】
本発明は、放射線写真のインターバル変化の検出と自動画像位置合わせに関するコンピュータ支援診断(CAD)技術に関する。また、本発明は、インターバル変化の検出や画像の位置合わせ(マッチング)を必要とするあらゆる方法又はプロセスに関する。
【0002】
【従来の技術】
本発明は、概して、例えば、米国特許第4,839,807号、第4,841,555号、第4,851,984号、第4,875,165号、第4,907,156号、第4,918,534号、第5,072,384号、第5,133,020号、第5,150,292号、第5,224,177号、第5,289,374号、第5,319,549号、第5,343,390号、第5,359,513号、第5,452,367号、第5,463,548号、第5,491,627号、第5,537,485号、第5,598,481号、第5,622,171号、第5,638,458号、第5,657,362号、第5,666,434号、第5,673,332号、第5,668,888号、第5,740,268号、及び、米国特許出願第08/158,388号、第08/173,935号、第08/220,917号、第08/398,307号、第08/428,867号、第08/523,210号、第08/536,149号、第08/536,450号、第08/515,798号、第08/562,087号、第08/757,611号、第08/758,438号、第08/900,191号、第08/900,361号、第08/900,188号、第08/900,192号、第08/900,189号の一つ又は複数のものに開示されるように、デジタル画像中の異常の自動検出のためのCAD技術に関する。本発明は、そこで参照され、そこに記述される種々の技術の使用を含み、それらの全ての内容は、参照によってここに組み込まれる。
【0003】
本発明は、米国特許第5,359,513号の改良であり、そこで参照され、記述される技術の使用を含み、上にリストアップされた特許及び特許出願を含むその全ての内容は、参照によりここに組み込まれる。
【0004】
本発明は、1997年7月25日出願の米国特許出願第08/900,362号の優先権を主張し、その内容は、参照によってここに組み込まれる。
【0005】
コンピュータ支援診断の目的は、潜在的な問題、病変、奇形を指示し及び/又は第2のオプションとして質的情報を提供することによって放射線技師に警告を行うことである。1980年代の半ば以来、多くのCAD用計算形方式が、胸部放射線写真、乳房撮影、血管造影、及び骨の放射線写真のために開発されている。
【0006】
胸部放射線写真において、幾つかの計算形方式は、心肺及び他の侵入型疾病の検出と分類、肺瘤の検出、心臓のサイズの測定、気胸の検出に適用されている(米国特許出願第08/174,175参照)。しかしながら、CADの開発は、まだ初期の段階である。従って、放射線写真に表れる正常及び異常のパターンの画像特徴の理解に基づいて、CADの性能を更に改良することが必要である。
【0007】
胸部放射線写真は、一般に、同じ患者の前の胸部放射線写真に照らして胸部放射線写真を読取ることによって解釈される。現在の胸部放射線写真と前の胸部放射線写真との間で検出された変化は、インターバル変化として知られており、且つ肺浸潤の変化、腫瘍塊のサイズの変化、胸膜滲出の変化、及び心臓サイズと空気流レベルと気胸の量とサイズの変化の決定に高い有効性を有する。A.Kano、K.Doi、H.MacMahon、D.D.Hassell、D.D.Gigerによる1994年の医療物理学、21:453乃至461頁の「インターバル変化の検出のための時間的に連続する胸部画像のデジタル画像減算(Digital image substraction of temporally sequential chest images for detection of interval change)」(以後これをA.Kano等と呼ぶ)、及びM.C.Difazio、H.MacMahon、X.W Xu、P.Tsai、J.shiraishi、S.G.Armato III、及びK.Doiの1977年の放射線学、202:447乃至452頁の「デジタル放射線写真:時間的減算画像の検出精度への効果(Digital chest radiography:Effect of temporal subtraction images on detection accuracy)」(以降M.C.Difazio等と呼ぶ)を参照のこと。しかしながら、障害が肋骨や血管や心臓のような臓器等の解剖学的構造と重なり合う場合があるので、放射線技師が胸部の放射線写真で微妙なインターバル変化を識別することは困難なタスクである。また、普通の呼吸の間の横隔膜の運動のような筋肉運動は、放射線写真におけるインターバル変化の診断をより困難にする。
【0008】
胸部放射線写真を比較する場合、胸部放射線写真における微妙な変化の検出の助けとなる時間的減算は、連続胸部放射線写真間で利用されている(M.C.Difazio等を参照)。現在の時間的減算方法及び方式の性能(A.Kano等を参照)において、理論的に良好な画像が減算画像の約70%において生ずることが示されている(米国特許第5,359,513を参照)。
【0009】
しかしながら、連続する放射線写真間の厳格な位置合わせのミスの結果として、連続する胸部放射線写真におけるインターバル変化の検出における性能低下が生じることがある。既存の時間的減算方式(米国特許第5,359,513を参照)において、現在と前の画像間の二つの座標系における差に対応するグローバルシフト値は、各画像の肺の頂部と胸部の正中線との交差点を評価することによって決定される。従って、胸部の正中線又は肺の頂部を不正確に識別すると、厳格な位置合わせのミスを生じる。
【0010】
【発明が解決しようとする課題】
本発明の目的は、連続する放射線写真の位置合わせのための方法を提供してインターバル変化の検出を改良することである。
【0011】
本発明の他の目的は、低解像度画像を利用して放射線写真の位置合わせを決定することである。
【0012】
本発明の他の目的は、低解像度のガウスぼかしを利用して位置合わせを改良することである。
【0013】
【課題を解決するための手段】
本発明のある局面は、第1と第2のデジタル画像間の時間的変動を検出する方法であって、前記第1、第2のデジタル画像を所定のサイズの第1、第2の低解像度画像に変換する変換ステップと、前記第1、第2の低解像度画像をぼけさせて第1、第2のぼけ画像を生成するステップと、前記第1のぼけ画像のシフトさせた複数の部分について、前記第1のぼけ画像のピクセル値と前記第2のぼけ画像のピクセル値との複数の相関を計算する相関ステップと、前記相関が最大を示す部分に限定して前記第2のデジタル画像に対する前記第1のぼけ画像のシフトを特定し、前記第2のデジタル画像に対する前記第1のデジタル画像のグローバルシフト値を決定するステップと、 前記決定されたグローバルシフト値を使って前記第1のデジタル画像をシフトするステップと、前記第1及び第2のデジタル画像の一方を非線形で歪ませて歪み画像を発生するステップと、記歪み画像と前記第1及び第2のデジタル画像の他方とを差分するステップと、を備える。
【0014】
【発明の実施の形態】
本発明は、現在と前の胸部放射線画像同士間での位置合わせを改良するために、非線形幾何学的ワーピング技術を適用する前にグローバルシフト値を決定する初期画像位置合わせ技術に基づく時間的減算の改良された方法である。本発明の方法は、時間的減算の全体の性能を改良し、胸部放射線写真における微妙な変化の検出を向上する。減算方式により低品質減算となった場合に適用されると、これらの場合の40%以上が、本発明の自動化初期画像位置合わせ技術を適用することによって改良された。
【0015】
幾つかの図に亘って同様な参照番号が同じ又は対応する部分を指す図面を参照し、特に、その図面の図1を参照する。改良された時間的減算方法の動作は、図1に示されるように、ステップ100で開始し、このステップで、胸部放射線写真画像がデジタル化される。デジタル化画像は、例えば、夫々現在の及び前の放射線画像、図3(A)及び図3(B)、である。これらのデジタル化は、画像をスキャナや他のデジタル化デバイスによって、又はフジ計算形放射線撮影法(Fuji Computed Radiography (FCR)システムのような画像生成マシンから直接にデータを検索することによって実行され得る。例えば、M.Sonoda、M.Takano、J.Miyahara、及びH.Katoによる1983年の放射線学、148:833乃至838頁の「スキャンニング誘発ルミネッセンスを利用する計算形放射線写真(Computed−radiography utilizing scanning stimulated luminescence)」を参照のこと。
【0016】
ステップ102において、画像は、濃度及びコントラストに関して正規化される。画像が同様の方法又は同じシステムで生成される場合、濃度及びコントラストの正規化は必要無い。しかしながら、例えば、フィルムタイプの違いやデジタル化処理における違いのようなデジタル化画像が生成される方法に違いがある場合に正規化が必要である。
【0017】
従来のスクリーン/フィルム生成画像の正規化は、そのスクリーン/フィルムシステムのためのHとD曲線及び各放射線写真画像毎に異なるセットのルックアップテーブルを使用する非線形濃度補正技術を使用することによって実行され得る。H.Yoshimura、X.W.Xu、K.Doi、H.MacMahon、K.R.Hoffman、M.L. Giger、及びS.M.Montnerによる1993年の医療物理学、20:179乃至186頁の「レーザーデジタイザを使用する高品質フィルム複写システムの開発:計算形放射線写真との比較(Development of a high quality film duplication system using a lazer digitizer:Comparison with computed radiography)」を参照のこと。FCRのようなシステムは、露光データ認識システムを介して画像の濃度及びコントラストを維持する。H.Takeo、N.Nakajima、M.Ishida、H.Katoによる1994年のSPIEの予稿、2163:98乃至109頁の「神経ネットワークを使用するFCRシステムにおける濃度及びコントラストの自動化調節の改良(Improved automatic adjustment of density and contrast in FCR system using neural network)」を参照のこと。従って、現在及び前の放射線写真画像の各々に対してFCRシステムを利用する場合、濃度及びコントラストの正規化が適用される必要はない。
【0018】
しかしながら、この例では、現在の放射線写真画像、図3(A)、はFCRシステムを使用して生成され、前の放射線写真画像、図3(B)、は、従来のスクリーン/フィルムシステムを介して生成された。従って、正規化は、図3(B)の画像に対して必要とされる。
【0019】
ステップ104において、デジタル化画像は、画像回転によって横方向傾斜が補正される。横方向傾斜は、現在の及び前の放射線写真画像の露光の間の患者の位置決めにおけるばらつきに起因する。補正のために、最初に、正中線が、各画像において決定される。次に、画像(単数又は複数)は、横方向傾斜を修正するために、正中線同士間の角度に等しい量だけ回転される。X.W.Xu、K.Doiによる1995年の医療物理学、22:617乃至627頁の「コンピュータ支援診断のための画像特徴解析:胸部放射線写真における胸郭エッジの正確な決定(Image feature analysis for computer−aided diagnosis:Accurate determination of ribcage boundary in chest radiographs)」(以降、X.W.Xu等と呼ぶ)を参照のこと。
【0020】
ステップ106において、デジタル化画像における胸郭エッジが検出される。胸郭検出は、例えば、画像プロファイル解析(X.W.Xu等を参照)のようなあらゆるエッジ検出方法によって実施され得る。
【0021】
画像同士間で、一つの画像に相対する他の一つの画像のピクセルのx、y座標におけるシフトに対応するグローバルシフト値を決定するために、本発明は、低解像度画像の相互相関に基づく新たな自動化初期画像位置合わせ技術を使用する。このように、ステップ108において、デジタル化画像は、128×128マトリックスへの減少によって低解像度画像に変換される。この変換は、平均化を介して実行される。あらゆる平均化方法が利用できる。128×128マトリックスサイズが選択されたのは、それが更なる処理のために十分な解像度を提供すると共にCPUタイムの解像可能量内で更なる処理が実行できる程度に十分小さいからである。64×64マトリックスサイズ未満の画像解像度は、各画像中の肺の形状を視覚的に歪ませることが発見された。
【0022】
例えば、小さな管、気管支、デバイスワイヤ、及びカテーテルのような肺中の微細構造体が、初期画像位置合わせに対して要求される精度に影響を及ぼさないと仮定する。ステップ110において、低解像度画像の平滑化即ちぼけさせることは、ガウスフィルタを介して実行され、これにより各画像の微細構造が除去される。9×9マトリックスサイズのガウスフィルタが使用されたが、13×13マトリックスもまたテストされ、同様の結果を得た。しかしながら、5×5ガウスフィルタが低解像度画像をぼけさせるために使用された場合、時間的減算画像の品質がわずかに低下した。これは、相互相関値が胸部画像に含まれる微細な解剖学的構造に起因して信頼できなくなるためかもしれない。
【0023】
具体的に、本発明者等は、自動化初期画像位置合わせのために利用される低解像度画像ためのより小さいマトリックスサイズを使用して実験した。64×64マトリックスサイズのぼかされた低解像度画像が128×128マトリックスサイズの画像の代わりに使用された。5×5ガウスフィルタが、より小さな画像サイズに起因して、ぼかすために使用された。減算画像品質は、128×128画像で得られた減算画像よりも劣化した。品質の問題は、64×64画像上の視覚的に歪まされた肺形状を含んだことであり、その結果、誤まった多いグローバルシフト値が得られた。
【0024】
図3(C)と図3(D)は、低解像度画像(128×128)への変換及び9×9ガウスフィルタ使用によるぼかしの後の画像、図3(A)と図3(B)、を示す。図3(C)と図3(D)は、それらはサイズが縮小されている(それらが低解像度画像に変換された時に発生した縮小)ので、図示を明瞭にするために4倍だけ拡大される。
【0025】
ステップ112において、対象となる特徴である肺は、ステップ106で検出された胸郭エッジを使用して低解像度画像からセグメント化される。図4(A)と図4(B)は、夫々上書きされた検出胸郭エッジを有する図3(C)と図3(D)の低解像度画像を示す。
【0026】
セグメント化は、対象となると共に確実な位置決めが最も可能な領域における処理の集中を可能とする。従って、胸郭エッジの外側の領域は、現在と前の画像間の相互相関値の計算を無視する。更に、前の画像の胸部の下部は、初期画像位置合わせに使用されない。理由は、胸部画像の横隔膜の位置が胸部の拡大によって変化する可能性があり、従って、画像位置合わせにとって信頼できないからである。現在及び前の画像の検出胸郭エッジは、ぼかされた低解像度画像、図4(A)と図4(B)上に重ねられた暗い線200によって強調されている。
【0027】
初期画像位置合わせに使用される画像は、図4(C)と図4(D)に示される。図4(D)のセグメント化ぼけ前画像のマトリックスサイズは、100(H)×60(V)である。このセグメント化ぼけ前画像を使用して、相互相関値が図4(C)と図4(D)の二つの画像間の最良の位置合わせ位置を検出するために得られた。
【0028】
ステップ114において、グローバルシフト値が計算される。このグローバルシフト値は、図1(B)に示されるように計算される。ステップ200で、相互相関値は、一つの画像の他の画像に相対する複数のx、yシフトに対するセグメント化ぼけ低解像度画像マトリックス同士間で計算される。相互相関値は、二つの画像がx、yシフト後にどのように良好に位置合わせされたかを表すその二つの画像の平均の画素毎の積である。
【0029】
図5は、x、y相互相関値座標系上の図4(C)と図4(D)の一方の画像の他方の画像に相対する複数のx、yシフトに対して計算された相互相関値をプロットする三次元グラフ300の例である。適切に位置合わせされた即ちオーバーラップされた画像に対応する最良相関位置合わせは、グラフ300上の最大で表される。
【0030】
ステップ202において、最大相互相関値が決定され、最良の相関マッチであると考えられる。図5に示される例において、最良相関マッチは、正中線の前の胸部画像に肺の頂部との交点から右側に4ピクセル上方に5ピクセルのシフトであると決定された。
【0031】
更に、ステップ204において、最良相関マッチのx、y座標は、デジタル化画像が低解像度に変換された時に生じた画像サイズにおける縮小に基づいて補正ファクタによってスケーリングされる。スケーリングされたx、y座標は、低解像度変換に先立つデジタル化画像同士間のグローバルシフト値を表す。グローバルシフト値に従って画像同士を互いにシフトすることによって、初期画像マッチを得る。
【0032】
図1(A)を引き続いて参照して、ステップ118において、非線形幾何学的画像ワーピング技術は、二つの画像の画像位置合わせの更なる位置合わせを行うために実行される。非線形幾何学的画像ワーピングは、前述の研究(A.Kano等を参照)に詳細に記述されており、各画像における多数の対象となる領域(ROI)を選択するステップと、ROIの位置合わせ対間で局所位置合わせを実行するステップと、局所的に位置合わせされたROI間でシフト値をマッピングするステップと、曲線当てはめ技術をマッピングされたシフト値へ適用するステップと、曲線当てはめ技術(米国特許第5,359,513号のステップ41乃至46に対応する直前のステップ)の結果に基づき、二つの画像の一方を非線形ワーピングを行うステップと、を備える。本発明は、ステップ114に決定されたグローバルシフト値だけオフセットされる複数のROIの局所位置合わせに基づき、非線形ワーピングを実行する。
【0033】
例えば、前述の研究において、各画像中の複数のROIは、各画像中に独立して決定された共通の基準点(例えば、画像の正中線の肺の頂部との交点)に相対して選択される。一つのテンプレートROIが一つの画像中に選択され、対応するサーチROIが各画像中に独立して決定された共通の基準点に基づいて、他の画像中に選択される。本発明に従う方法において、複数のテンプレートROIが一つの画像において選択され、複数の対応するサーチ領域ROIが他の画像において選択され、各サーチ領域ROIの対応する中心がグローバルシフト値だけシフトされる。非線形ワーピングに先立ってグローバルシフト値に従って一つの画像を第2の画像に相対してシフトし、次に、従ってグローバルシフト値に従ってすでにシフトされた共通の基準点に従って複数のROIを選択することを含む、グローバルシフト値を考慮する他の方法及びバリエーションで、上記の方法が置き換えられてもよい。
【0034】
上記方法の他の方法又はバリエーションで置き換えられてもよいし、或いは、上述の非線形ワーピング技術に加えて、適用されてもよい。最後に、ステップ120で、画像減算は、位置合わせされたデジタル画像に実行される。
【0035】
図6(A)、図6(B)、図6(C)、及び図6(D)は、肺癌手術からのフォローアップを示す臨床ケースからのものである。図6(A)と図6(B)の各々は、厳格な位置合わせミス誤差の結果生じる低品質減算画像を示す。図6(A)において、ワーピング技術が利用され、図6(B)は、画像ワーピングを行うことなく生成された。
【0036】
図6(C)と図6(D)は、図6(A)と図6(B)と同じケースからの減算画像を示すが、本発明の初期画像位置合わせ技術が適用される。図6(C)はワーピングを伴い、図6(D)はワーピングを伴わない。インターバル変化の改良された明瞭さが肺フィールドの左上及び右上に見られる。前の胸部放射線写真に存在する血腫のサイズが現在の画像で減少されていることを示す第3の胸椎の右エッジ回りのぼんやりした白い陰がある。また、現在の胸部画像で認識され、本ケースでの外科手術の結果として、第2の変化に起因して、柔組織線維形成を示す右上(第3の胸椎の左エッジに近い)の暗い影がある。図6(A)と図6(B)の図6(C)と図6(D)との比較は、本発明の新たな初期画像位置合わせ技術が画像位置合わせ及び時間的減算画像の得られる品質を改良することを示す。
【0037】
図7は、本発明に従って減算画像の従来の時間的減算方式で得られた減算画像に相対する被写体評価を示すチャートである。従来の時間的減算方式で得られた100個の時間的減算画像が評価され、良好な減算画像が16個のケースで得られ、適切な減算画像が37個のケースで得られ、不良の減算画像が47個のケースで得られた。次に、本発明を利用して画像が得られた。
【0038】
本発明者等は、本発明の新たな初期画像位置合わせ技術に基づく100個の時間的減算画像を得た。これらの画像は、独立の観察者(二人の放射線技師と一人の物理学者)によって被写体採点スケールを使用して、5のカテゴリーに分類された。画像の臨床的有用性を表す+2ないし−2の採点スケールが使用された。+2の採点は、減算画像の品質が臨床的有用性において明瞭に改良されている場合に与えられ、+1の採点は、その品質が適度に改良された場合に与えられ、採点0は、その品質に変化が無い場合に与えられた。−1の採点は、減算画像の品質が臨床的有用性において適度に減少する場合に与えられ、−2の採点は、減算画像の品質が臨床的有用性において減少する場合に与えられた。画像の各々に対する最終採点は、各観察者からの採点の平均によって決定された。
【0039】
図7に示されるように、本発明により得られた減算画像の多くは、臨床的有用性に対する品質に関して変化されなかった。しかしながら、図7は、元々低品質減算画像となっていた47個のケースの内の19個のケース(40.4%)が本発明の適用によって改良されたことを示す。
【0040】
テストの間、本発明者等は、スクリーン/フィルムシステム(S/F)とFCRシステムを含む、二つの異なる画像記録システムの三つの異なる組合せによって得られた画像を含む画像データベースを利用した。上述のように、減算画像が異なる画像形成システムから得られる場合、異なるシステムから得られた画像の品質の差に起因して、良好な品質の減算画像を得ることは困難である。例えば、FCRシステムの画像品質は、例えば、FCR画像で利用される不鮮明マスキング技術に起因して、通常スクリーン/フィルムシステムとは全くことなる。
【0041】
また、本発明者等は、二つの異なる画像形成システムの三つの組合せ(即ち、スクリーン/フィルム対スクリーン/フィルム、スクリーン/フィルム対FCR、及びFCR対FCR)から従来の時間的減算方式を利用する多くの減算画像を比較した。比較された画像は、表1に示されるように、三つのグループ、A良好、B適切、C不良に分類された。
【表1】
【0042】
三つの組合せの各々における不良減算画像(Cケース)の割合(42、46及び48%)は同様である。この結果は、本発明を利用する時間的減算方式が使用された画像記録システムに依存しないことを示した。
【0043】
100個のケースのうちの47個のケースが不良分類(Cケース)となった理由は、表2のカテゴリーによって示される。
【表2】
【0044】
手作業による初期画像位置合わせ技術を利用して、時間的減算画像の比較がなされた。この手作業による初期画像位置合わせ技術において、胸部放射線技師は、現在及び前の胸部画像を適切に位置合わせするために、横方向傾斜の補正のための回転角と、水平シフト(x)と垂直シフト(y)を含むグローバルシフト値を決定する。このように、初期画像位置合わせのための各パラメータは、手作業で決定され、次に、「理想的」減算画像が得られる。
【0045】
図8(A)と図8(B)は、夫々ワーピングを伴わない場合とワーピングを伴う手作業による初期画像位置合わせによって得られた結果としての減算画像を示す。ワーピングを伴わない手作業による初期画像位置合わせによる減算画像の品質は、ワーピングを伴わない本発明の自動化初期画像位置合わせによる減算画像よりも僅かに優れている(図8(A)と図8(C)を比較すること)。しかしながら、ワーピングを伴う自動化初期画像位置合わせによって得られた減算画像の品質は、ワーピングを伴う手作業による初期画像位置合わせによって得られた「理想的」減算画像と匹敵する(図8(B)と図6(D))を比較すること)。評価された6つの他のケースにおいて、上述された結果は同様であった。
【0046】
図2は、本発明に従うインターバル検出デバイス10を示すブロック図である。このインターバル検出デバイス10は、図3(A)と図3(B)のような時間的放射線写真画像をデジタイザ12へ入力する。デジタイザ12は、次に正規化器14へ転送されるデジタル画像を生成する。
【0047】
正規化器14は、二つのデジタル化画像同士間の濃度とコントラストを正規化する。次に、正規化された画像は、横方向傾斜を補正するために、正規化された画像の一つ又は複数を回転する位置合わせ装置16へ転送される。位置合わせされた画像は、検出器18、平均化装置20及びシフター28へ入力される。
【0048】
次に、位置合わせされた画像の各々の共通特徴のエッジ(例えば、胸郭エッジ)が検出器18によって検出される。平均化装置20は、128×128マトリックスの低解像度画像を生成する。次に、低解像度画像は、ガウス関数を実行して画像を平滑化するぼやかし装置22によってぼやかされる。次に、セグメント化装置24は、検出器18によって検出されたエッジを利用して画像の各々から対象となる特徴(例えば、肺)をセグメント化する。
【0049】
次に、相互相関装置26は、対象となるセグメント化された領域の各々の領域間で相互相関を実行して、グローバルシフト値を表す最も高い相関の領域を検出する。次に、グローバルシフト値と位置合わせされた画像は、グローバルシフト値を考慮して、更なる位置合わせのために、画像の非線形幾何学的ワーピング(A.Kano等を参照)を実行するワーピング装置30へ入力される。次に、ワーピングされた画像は、図6(D)のような減算画像ハイライト化インターバル変化を生成する減算器30へ入力される。
【0050】
再び図7を参照すると、主観的にCと採点された多くの厳格な位置合わせミスの場合において、新たな初期画像位置合わせ技術を使用することによって改良されたことが理解される。しかしながら、グループAとBにおける少数のケースに対して、減算画像の品質は、新たな初期画像位置合わせ技術を使用する臨床的に有用性において、適度に低下した。本発明者等は、減算画像品質が自動的に推定され得る場合、次に、初期画像位置合わせ技術は、Cと採点されたもののような不良減算ケースに対してのみ利用され得ることを実現した。このように、時間的減算方式の全体の性能が改良され得る。
【0051】
本発明者等は、(上述のA、B及びCの決定において適用された被写体採点の代わりに)物理的尺度に基づいて、被写体画像の品質を推定するための自動化方法を開発した。物理的尺度は、減算画像に対するピクセル値の平均コントラストとヒストグラムの幅である。
【0052】
不良減算画像のコントラストは高い傾向がある(例えば、不良減算画像は、位置合わせミスに起因して部分的に非常に暗い及び/又は明るい領域を部分的に含む)ので、第1の物理的尺度は、減算画像の各肺フィールドにおいて別々にピクセル値を平均化することによって得られた平均コントラストによって決定された。図9と図10は、夫々良好な減算ケースと不良の減算ケースの左右の肺フィールドにおけるヒストグラムを示す。図9と図10に示すように、不良の減算ケースに対するヒストグラム幅は、良好な減算ケースのヒストグラム幅よりの広い。本発明者等は、ヒストグラムの下部が不良減算画像の検出において非常に高感度であることを発見した。従って、最大レベルの10%におけるヒストグラムの幅は、減算画像品質を評価するための他の物理的尺度として決定された。
【0053】
最大値の10%における平均コントラストとヒストグラムは、夫々図11と図12にプロットされている。図11と図12の水平軸と垂直軸は、夫々右と左の肺フィールドの尺度に対応する。良好な減算画像(被写体採点:A)は、図11と図12に示されるように、低い平均コントラストで及びヒストグラムの狭い幅でクラスター化される傾向がある。適切な減算画像(被写体採点:B)に対する平均コントラストの分布とヒストグラムの幅は、これらのグラフにおいて右上領域へ若干シフトする。しかしながら、不良減算画像(被写体採点:C)の平均コントラストとヒストグラム幅は、大きな平均コントラストと幅の広いヒストグラム幅に亘って分布される。
【0054】
図13は、平均コントラストとヒストグラム幅の関係を示す。図13における破線は、不良減算画像の検出のための可能な閾値レベル(55の平均コントラストと150のヒストグラム幅)を示す。このように、時間的減算画像は、不良品質画像の決定のために自動的に評価され得る。
【0055】
図18は、上述の情報に基づいて、新たな時間的減算技術を示すフローチャートである。ステップ300において、第1の減算画像が初期画像位置合わせを行うことなく生成される。ステップ302で、コントラストとヒストグラムデータが第1の減算画像に関して収集され、ステップ304で、第1の減算画像の品質がそれに基づいて評価される。
【0056】
収集されたデータが良好品質(A又はB)を示す場合、第1の減算画像が利用される(ステップ306)。しかしながら、そのデータが不良品質減算画像を示す場合、第2の減算画像が新たな初期画像位置合わせ技術を利用して生成される(ステップ308)。
【0057】
本発明者等は、平均コントラスト値とヒストグラム幅を考慮して、初期画像位置合わせを伴わない場合及びそれを伴う場合の100個の減算画像の品質を研究した。図14と図15は、夫々初期画像位置合わせ技術を伴わない場合とそれを伴う場合の三つのグループの減算画像に対する平均コントラスト値の分布を示す。図16と図17は、夫々初期画像位置合わせ技術を伴わない場合とそれを伴う場合の三つのグループの減算画像に対するヒストグラム幅の分布を示す。初期画像位置合わせを伴わない良好及び適切な減算ケース(被写体採点:AとB)に対する分布は、初期画像位置合わせを伴うケースに対するものと同様である。しかしながら、不良減算ケース(被写体採点:C)に対する分布は、初期画像位置合わせで左にシフトされることに注目することが重要である。従って、新たな初期画像位置合わせ技術の使用は、減算画像の平均コントラストとヒストグラム幅の両方を減少する傾向があり、従って減算画像品質の改良を示す。
【0058】
再び図18を参照して、ステップ310において、第2の減算画像の品質が評価される。第2の減算画像は、評価が良好品質を示す場合に利用される(ステップ312)。しかしながら、減算画像品質初期画像位置合わせがまだ不良である場合に、第2のワーピング技術がステップ314に示されるように使用される。
【0059】
第1の減算画像を作るために利用されるワーピング技術において、X−方向とY−方向に対するシフト値は、表面(曲線)当てはめ技術を使用することによって当てはめられる。当てはめは、全体の肺フィールドに亘って対象となる領域(ROI)の全てに対して得られるシフト値を使用して実行される。しかしながら、第2のワーピング技術において、表面当てはめは、各肺フィールドに対して個別に且つ独立して実行される。この方法は、おそらく表面当てはめ技術が両肺の代わりに各肺フィールドに提供されるようなシフト値の小さな領域(又は少数のデータセット)上により効果的に働くので、僅かに改良された減算画像を提供する。
【0060】
本発明は、コンピュータ技術における熟練技術者には明瞭であるように、本明細書の教示に従ってプログラムされた従来の汎用デジタルコンピュータやマイクロプロセッサを使用して、便利に実施され得る。適切なソフトウエアコーディングは、ソフトウエア技術における熟練者には明瞭であるように、本明細書の開示の教示に基づいて、熟練プログラマーによって容易に準備され得る。また、本発明は、当業者には容易に理解されるように、アプリケーション指定集積回路を準備することによって、或いは従来の構成要素回路の適切なネットワークを接続することによって実施され得る。
【0061】
本発明は、本発明の処理を実行するようにコンピュータをプログラムするために使用できる命令を含む記憶媒体であるコンピュータプログラム製品を含む。この記憶媒体は、本発明を制限するものではないが、フロッピーディスク、光学ディスク、CD−ROM、及び磁気光学ディスク、ROM、RAM、EPROM、EEPROM、磁気カード又は光学カードを含むあらゆるタイプのディスクや電子命令を記憶するための適切なあらゆるタイプの媒体を含むことが出来る。
【0062】
明らかなように、本発明の多くの変更及びバリエーションは、上述の教示に鑑みて可能である。従って、添付の特許請求の範囲内で、本発明は、特にここで記述された以外でも実施出来ることが理解されるべきである。
【図面の簡単な説明】
【図1】 (A)は自動化初期画像位置合わせが組み合わされた時間的減算を利用して胸部放射線写真のインターバル変化を検出する方法のフローチャート、(B)はグローバルシフト値の決定を示すフローチャート。
【図2】 本発明に従うインターバル検出デバイスのブロック図。
【図3】 (A)はフジ計算形放射線撮影法(FCR:Fuji−Computed Radiography)で撮影された現在の胸部画像、(B)は従来のスクリーン/フィルムシステムで撮影された以前の胸部画像、(C)はガウスフィルタを用いてぼけさせた図3(A)の低解像度画像、(D)はガウスフィルタを用いてぼけさせた図3(B)の低解像度画像。
【図4】 (A)は(黒のライン)が上に配された検出された胸郭エッジを有する図3(C)のぼかされた低解像度画像、(B)は(黒のライン)が上に配された検出された胸郭エッジを有する図3(D)のぼかされた低解像度画像、(C)は自動化初期画像位置合わせのために利用される図3(C)のぼかされた低解像度画像からセグメント化された肺画像、(D)は自動化初期画像位置合わせのために利用される図3(D)のぼかされた低解像度画像からセグメント化された肺画像。
【図5】 自動化初期画像位置合わせ方式から得られる相互相関値を示す3次元グラフ。
【図6】 (A)はワーピングを行わない図3(A)の現在の胸部画像と図3(B)の前の胸部画像との間の公知時間的減算によって得られた減算画像を示す従来の技術、(B)はワーピングを行なう図3(A)の現在の胸部画像と図3(B)の前の胸部画像との間の時間的減算によって得られた減算画像を示す従来の技術、(C)はワーピングを行わない本発明に従う自動化初期画像位置合わせを利用する、図3(A)の現在の胸部画像と図3(B)の前の胸部画像との間の時間的減算によって得られた減算画像、(D)はワーピングを行なう本発明に従う自動化初期画像位置合わせを利用する、図3(A)の現在の胸部画像と図3(B)の前の胸部画像との間の時間的減算によって得られた減算画像。
【図7】 従来の時間的減算方式によって得られた減算画像に対する本発明による減算画像の実質的な評点を示すチャート。
【図8】 (A)は従来の時間的減算方式によりワーピングを行わず且つ手作業による初期画像位置合わせを使用して、現在の胸部画像と前の胸部画像との間で得られた減算画像を示す図、(B)は手作業による初期画像位置合わせを使用して、従来の時間的減算方式によって得られたワーピングを伴う減算画像。
【図9】 良好な時間的減算画像の左と右の肺フィールドに対するピクセル値のヒストグラムを示すグラフ。
【図10】 不良な時間的減算画像の左と右の肺フィールドに対するピクセル値のヒストグラムを示すグラフ。
【図11】 100個の減算画像に対する左と右の肺フィールド間の平均コントラストの関係を示すグラフ。
【図12】 右と左の肺フィールドに対する最大値の10%におけるヒストグラム幅の関係を示すグラフ。
【図13】 最大値の10%における減算画像の平均コントラストとヒストグラム幅との間の関係を示すグラフ。
【図14】 従来の減算方式によって得られた減算画像の三つのグルールに対する平均コントラストの分布を示すグラフ。
【図15】 本発明による改良された時間的減算画像によって得られた減算画像の三つのグループに対する平均コントラストの分布を示すグラフ。
【図16】 従来の減算方式によって得られた減算画像の三つのグループに対するヒストグラム幅の分布を示すグラフ。
【図17】 本発明による改良された時間的減算方法によって得られた減算画像の三つのグループに対するヒストグラム幅の分布を示すグラフ。
【図18】 本発明に従う改良された時間的減算方法を示すフローチャート。
Claims (10)
- 第1と第2のデジタル画像間の時間的変動を検出する方法であって、
前記第1、第2のデジタル画像を所定のサイズの第1、第2の低解像度画像に変換する変換ステップと、
前記第1、第2の低解像度画像をぼけさせて第1、第2のぼけ画像を生成するステップと、
前記第1のぼけ画像と前記第2のぼけ画像との間で前記第1、第2のぼけ画像の一方に対する他方の複数のシフトにより複数の相関を計算する相関ステップと、
前記相関が最大を示すシフト基づいて前記第2のデジタル画像に対する前記第1のデジタル画像のグローバルシフト値を決定するステップと、
前記決定されたグローバルシフト値を使って前記第1のデジタル画像をシフトするステップと、
前記シフトされた第1のデジタル画像と前記第2のデジタル画像の一方に非線形ワーピングを実行することによりワーピング画像を発生するステップと、
前記ワーピング画像と前記第1、第2のデジタル画像の他方とを差分するステップと、
を備える方法。 - 前記変換ステップに先立って、更に、
前記第1、第2のデジタル画像同士間の濃度とコントラストを正規化するステップと、
回転を介して前記第1、第2のデジタル画像中に存在する横方向傾斜を補正する補正ステップと、を備え、前記補正ステップは、
前記第1、第2のデジタル画像各々中の基準ラインを識別するステップと、
前記第1、第2のデジタル画像各々中に識別された基準ライン同士間の角度を決定するステップと、
前記角度に従って前記第1、第2のデジタル画像の少なくとも一方を回転して、前記基準ラインを位置合わせするステップと、
を実行する請求項1に記載の方法。 - 前記変換ステップに先立って、前記第1、第2のデジタル画像各々に共通特徴のエッジを検出するステップを備え、
前記エッジの外側の領域は前記相関の計算から除外される
、請求項1に記載の方法。 - 前記変換ステップは、前記第1、第2のデジタル画像を64×64よりも大きいマトリックスサイズを有する前記第1、第2の低解像度画像へ変換する請求項1に記載の方法。
- 前記変換ステップは、前記第1、第2のデジタル画像を平均化によって128×128マトリックスサイズを有する前記第1、第2の低解像度画像へ変換する請求項1に記載の方法。
- 前記ぼけさせるステップは、前記第1、第2の低解像度画像を所定マトリックスサイズのガウスフィルタに入力するサブステップと、
前記ガウスフィルタによって実施されるガウス関数によって前記第1、第2の低解像度画像を平滑化するサブステップと、
を備える、請求項1に記載の方法。 - 前記グローバルシフト値を決定するステップは、前記相関が最大を示すシフト量を、前記第1、第2のデジタル画像が低解像度に変換される時に生じる画像サイズの減少に基づく倍率によりスケーリングすることにより前記グローバルシフト値を決定する請求項1に記載の方法。
- 前記非線形ワーピングを実行するステップは、前記第1と第2のデジタル画像に存在する対応する構造的特徴に関して、前記グローバルシフト値によってオフセットされた、前記第1と第2のデジタル画像の対応する部分を位置合わせすることと、
相互相関マッピングを実行して、前記第1と第2のデジタル画像の対応するピクセル位置に関して、前記第1と第2のデジタル画像の対応する構造的特徴同士間の位置における差を指示する複数のシフト値を生成することと、
前記相互相関マッピングに導入される誤差を補償するために、所定の表面を前記シフト値に機械的に当てはめることと、
前記補正されたシフト値に基づいて、前記第1と第2のデジタル画像の一方に前記構造的特徴をシフトすること、
を備える、請求項1に記載の方法。 - 前記ガウスフィルタは、5×5マトリックスサイズよりも大きいサイズを有する請求項6に記載の方法。
- 前記ガウスフィルタは、9×9マトリックスサイズを有する請求項6に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/900,362 | 1997-07-25 | ||
US08/900,362 US5982915A (en) | 1997-07-25 | 1997-07-25 | Method of detecting interval changes in chest radiographs utilizing temporal subtraction combined with automated initial matching of blurred low resolution images |
PCT/US1998/015171 WO1999005641A1 (en) | 1997-07-25 | 1998-07-24 | Method for detecting interval changes in radiographs |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001511570A JP2001511570A (ja) | 2001-08-14 |
JP4718003B2 true JP4718003B2 (ja) | 2011-07-06 |
Family
ID=25412388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000504546A Expired - Lifetime JP4718003B2 (ja) | 1997-07-25 | 1998-07-24 | 放射線写真におけるインターバル変化を検出する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5982915A (ja) |
EP (1) | EP0998721A4 (ja) |
JP (1) | JP4718003B2 (ja) |
AU (1) | AU8579898A (ja) |
WO (1) | WO1999005641A1 (ja) |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6937696B1 (en) | 1998-10-23 | 2005-08-30 | Varian Medical Systems Technologies, Inc. | Method and system for predictive physiological gating |
US7158610B2 (en) * | 2003-09-05 | 2007-01-02 | Varian Medical Systems Technologies, Inc. | Systems and methods for processing x-ray images |
US7043066B1 (en) * | 1998-11-05 | 2006-05-09 | Arch Development Corporation | System for computerized processing of chest radiographic images |
US6453058B1 (en) * | 1999-06-07 | 2002-09-17 | Siemens Corporate Research, Inc. | Computer-assisted diagnosis method using correspondence checking and change detection of salient features in digital images |
US6711303B1 (en) * | 1999-12-01 | 2004-03-23 | Eastman Kodak Company | Method and computer program for detecting rotation and magnification of images |
AU4311901A (en) * | 1999-12-10 | 2001-06-18 | Michael I. Miller | Method and apparatus for cross modality image registration |
US6836558B2 (en) * | 2000-03-28 | 2004-12-28 | Arch Development Corporation | Method, system and computer readable medium for identifying chest radiographs using image mapping and template matching techniques |
JP4274400B2 (ja) * | 2000-05-12 | 2009-06-03 | 富士フイルム株式会社 | 画像の位置合わせ方法および装置 |
JP4311598B2 (ja) * | 2000-11-20 | 2009-08-12 | 富士フイルム株式会社 | 異常陰影検出方法および装置 |
JP3433928B2 (ja) * | 2000-12-13 | 2003-08-04 | 三菱スペース・ソフトウエア株式会社 | ディジタル胸部画像のリブケイジ境界検出方法及びディジタル胸部画像診断装置 |
US7248726B2 (en) * | 2001-03-21 | 2007-07-24 | Fujifilm Corporation | Energy subtraction processing method and apparatus |
US7103234B2 (en) * | 2001-03-30 | 2006-09-05 | Nec Laboratories America, Inc. | Method for blind cross-spectral image registration |
JP2002324238A (ja) * | 2001-04-26 | 2002-11-08 | Fuji Photo Film Co Ltd | 画像の位置合わせ方法および装置 |
JP4366886B2 (ja) * | 2001-05-24 | 2009-11-18 | コニカミノルタビジネステクノロジーズ株式会社 | 画像認識のための装置と方法 |
US7769430B2 (en) * | 2001-06-26 | 2010-08-03 | Varian Medical Systems, Inc. | Patient visual instruction techniques for synchronizing breathing with a medical procedure |
US7190832B2 (en) | 2001-07-17 | 2007-03-13 | Amnis Corporation | Computational methods for the segmentation of images of objects from background in a flow imaging instrument |
JP4104054B2 (ja) * | 2001-08-27 | 2008-06-18 | 富士フイルム株式会社 | 画像の位置合わせ装置および画像処理装置 |
JP2003078842A (ja) * | 2001-09-05 | 2003-03-14 | Seiko Epson Corp | プロジェクタに供給されるディジタル画像データの台形歪補正を伴う画像処理 |
WO2003045263A2 (en) * | 2001-11-30 | 2003-06-05 | Koninklijke Philips Electronics N.V. | Medical viewing system and method for enhancing structures in noisy images |
EP1459257B1 (en) * | 2001-12-07 | 2016-08-31 | Koninklijke Philips N.V. | Medical viewing system and method for spatially enhancing structures in noisy images |
JP3697233B2 (ja) * | 2002-04-03 | 2005-09-21 | キヤノン株式会社 | 放射線画像処理方法及び放射線画像処理装置 |
JP2004030596A (ja) * | 2002-05-10 | 2004-01-29 | Canon Inc | 画像階調変換方法、画像階調変換装置、システム、プログラム及び記憶媒体 |
US7136191B2 (en) * | 2002-06-24 | 2006-11-14 | Eastman Kodak Company | Method for inspecting prints |
US7620444B2 (en) | 2002-10-05 | 2009-11-17 | General Electric Company | Systems and methods for improving usability of images for medical applications |
US7286697B2 (en) * | 2002-10-18 | 2007-10-23 | Applied Materials, Israel, Ltd. | System for imaging an extended area |
US20050053267A1 (en) * | 2003-09-05 | 2005-03-10 | Varian Medical Systems Technologies, Inc. | Systems and methods for tracking moving targets and monitoring object positions |
US8571639B2 (en) | 2003-09-05 | 2013-10-29 | Varian Medical Systems, Inc. | Systems and methods for gating medical procedures |
US20050105789A1 (en) * | 2003-11-17 | 2005-05-19 | Isaacs Hugh S. | Method and apparatus for detecting, monitoring, and quantifying changes in a visual image over time |
US7260255B2 (en) * | 2003-12-23 | 2007-08-21 | Science Applications International Corporation | Measuring linear separations in digital radiographs |
US7561753B2 (en) * | 2004-01-09 | 2009-07-14 | The Boeing Company | System and method for comparing images with different contrast levels |
US7406187B2 (en) * | 2004-02-23 | 2008-07-29 | Canon Kabushiki Kaisha | Method and system for processing an image |
JP4647360B2 (ja) * | 2004-04-05 | 2011-03-09 | 富士フイルム株式会社 | 差分画像作成装置、差分画像作成方法、及び、そのプログラム |
US7430313B2 (en) * | 2004-05-04 | 2008-09-30 | Zbilut Joseph P | Methods using recurrence quantification analysis to analyze and generate images |
US8111947B2 (en) * | 2004-06-08 | 2012-02-07 | Canon Kabushiki Kaisha | Image processing apparatus and method which match two images based on a shift vector |
US20060018524A1 (en) * | 2004-07-15 | 2006-01-26 | Uc Tech | Computerized scheme for distinction between benign and malignant nodules in thoracic low-dose CT |
US8265354B2 (en) * | 2004-08-24 | 2012-09-11 | Siemens Medical Solutions Usa, Inc. | Feature-based composing for 3D MR angiography images |
FR2885717B1 (fr) * | 2005-05-16 | 2007-08-03 | Gen Electric | Procede d'estimation de correction d'une image et dispositif d'angiographie le mettant en oeuvre |
US20070076929A1 (en) * | 2005-10-05 | 2007-04-05 | General Electric Company | System and method for automatic post processing image generation |
US7769216B2 (en) * | 2005-12-29 | 2010-08-03 | Hologic, Inc. | Facilitating comparison of medical images |
US8275170B2 (en) * | 2006-12-08 | 2012-09-25 | Electronics And Telecommunications Research Institute | Apparatus and method for detecting horizon in sea image |
EP1956552B1 (en) | 2007-02-09 | 2011-06-08 | Agfa-Gevaert | Visual enhancement of interval changes using a temporal subtraction technique |
DE602007002693D1 (de) | 2007-02-09 | 2009-11-19 | Agfa Gevaert | Visuelle Hervorhebung von Intervalländerungen mittels einer Zeitsubtraktionstechnik |
EP1956553B1 (en) * | 2007-02-09 | 2009-08-19 | Agfa-Gevaert | Visual enhancement of interval changes using a temporal subtraction technique. |
US8358820B2 (en) * | 2007-03-12 | 2013-01-22 | Siemens Computer Aided Diagnosis Ltd. | Modifying software to cope with changing machinery |
GB2450351B (en) * | 2007-06-20 | 2012-01-18 | Cozart Bioscience Ltd | Monitoring an Immunoassay |
US8055049B2 (en) * | 2007-07-18 | 2011-11-08 | Xoran Technologies, Inc. | Motion correction for CT using marker projections |
US20090129650A1 (en) * | 2007-11-19 | 2009-05-21 | Carestream Health, Inc. | System for presenting projection image information |
US10667727B2 (en) * | 2008-09-05 | 2020-06-02 | Varian Medical Systems, Inc. | Systems and methods for determining a state of a patient |
US20100061596A1 (en) * | 2008-09-05 | 2010-03-11 | Varian Medical Systems Technologies, Inc. | Video-Based Breathing Monitoring Without Fiducial Tracking |
US20100266188A1 (en) * | 2009-04-17 | 2010-10-21 | Riverain Medical Group, Llc | Chest x-ray registration, subtraction and display |
CN104268849A (zh) * | 2009-06-10 | 2015-01-07 | 三菱电机株式会社 | 图像核对装置以及患者定位装置 |
WO2011044421A1 (en) | 2009-10-08 | 2011-04-14 | C. R. Bard, Inc. | Spacers for use with an ultrasound probe |
JP5645399B2 (ja) * | 2009-12-18 | 2014-12-24 | キヤノン株式会社 | X線画像処理装置、x線画像処理方法、及びコンピュータプログラム |
JP6173402B2 (ja) * | 2010-02-04 | 2017-08-02 | キヤノン株式会社 | 機能情報取得装置、機能情報取得方法、及びプログラム |
WO2011137411A1 (en) | 2010-04-30 | 2011-11-03 | Vucomp, Inc. | Probability density function estimator |
US8675933B2 (en) | 2010-04-30 | 2014-03-18 | Vucomp, Inc. | Breast segmentation in radiographic images |
JP5537262B2 (ja) * | 2010-05-28 | 2014-07-02 | 株式会社東芝 | X線画像診断装置 |
WO2012006318A1 (en) | 2010-07-07 | 2012-01-12 | Vucomp, Inc. | Marking system for computer-aided detection of breast abnormalities |
CN103228219B (zh) | 2010-08-09 | 2016-04-27 | C·R·巴德股份有限公司 | 用于超声探测器头的支撑和覆盖结构 |
EP2535001A1 (en) | 2011-06-14 | 2012-12-19 | Radiology Morphological Solutions B.V. | Method, a system and a computer program product for registration and identification of diagnostic images |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
WO2013070775A1 (en) | 2011-11-07 | 2013-05-16 | C.R. Bard, Inc | Ruggedized ultrasound hydrogel insert |
EP2861153A4 (en) | 2012-06-15 | 2016-10-19 | Bard Inc C R | APPARATUS AND METHODS FOR DETECTION OF A REMOVABLE CAP ON AN ULTRASONIC PROBE |
EP3034000A1 (en) * | 2014-12-16 | 2016-06-22 | Agfa Healthcare | Motion correction method in dual energy radiography |
JP2018149166A (ja) * | 2017-03-14 | 2018-09-27 | コニカミノルタ株式会社 | 放射線画像処理装置 |
US10242446B2 (en) * | 2017-05-10 | 2019-03-26 | Konica Minolta, Inc. | Image processing apparatus and computer-readable recording medium |
US11049606B2 (en) | 2018-04-25 | 2021-06-29 | Sota Precision Optics, Inc. | Dental imaging system utilizing artificial intelligence |
JP6983124B2 (ja) * | 2018-07-26 | 2021-12-17 | 株式会社日立製作所 | 医用画像処理装置及び医用画像処理方法 |
JP2020025786A (ja) * | 2018-08-14 | 2020-02-20 | 富士フイルム株式会社 | 画像処理装置、方法及びプログラム |
JP7551419B2 (ja) | 2020-09-23 | 2024-09-17 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58163338A (ja) * | 1982-03-20 | 1983-09-28 | 富士写真フイルム株式会社 | 放射線画像のサプトラクシヨン処理方法 |
US4468698A (en) * | 1982-07-21 | 1984-08-28 | General Electric Company | Line-locked digital fluorography system |
JPS59137942A (ja) * | 1983-01-28 | 1984-08-08 | Hitachi Ltd | 画像位置合わせ方式 |
US4641352A (en) * | 1984-07-12 | 1987-02-03 | Paul Fenster | Misregistration correction |
US5163101A (en) * | 1985-10-07 | 1992-11-10 | Schlumberger Technologies, Inc. | Bitplane area correlator |
JPS62186381A (ja) * | 1986-02-12 | 1987-08-14 | Hitachi Ltd | 画像位置合わせ方式 |
US5579444A (en) * | 1987-08-28 | 1996-11-26 | Axiom Bildverarbeitungssysteme Gmbh | Adaptive vision-based controller |
US5179441A (en) * | 1991-12-18 | 1993-01-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Near real-time stereo vision system |
US5293574A (en) * | 1992-10-23 | 1994-03-08 | General Electric Company | Digital x-ray imaging system with automatic tracking |
US5359513A (en) * | 1992-11-25 | 1994-10-25 | Arch Development Corporation | Method and system for detection of interval change in temporally sequential chest images |
DE69331982T2 (de) * | 1992-11-27 | 2003-01-23 | Fuji Photo Film Co., Ltd. | Verfahren zur Lageanpassung von Röntgenbildern |
US5604819A (en) * | 1993-03-15 | 1997-02-18 | Schlumberger Technologies Inc. | Determining offset between images of an IC |
US5548326A (en) * | 1993-10-06 | 1996-08-20 | Cognex Corporation | Efficient image registration |
US5611000A (en) | 1994-02-22 | 1997-03-11 | Digital Equipment Corporation | Spline-based image registration |
US5734740A (en) * | 1994-10-31 | 1998-03-31 | University Of Florida | Method for automated radiographic quality assurance |
-
1997
- 1997-07-25 US US08/900,362 patent/US5982915A/en not_active Expired - Lifetime
-
1998
- 1998-07-24 WO PCT/US1998/015171 patent/WO1999005641A1/en active Application Filing
- 1998-07-24 JP JP2000504546A patent/JP4718003B2/ja not_active Expired - Lifetime
- 1998-07-24 AU AU85798/98A patent/AU8579898A/en not_active Abandoned
- 1998-07-24 EP EP98936980A patent/EP0998721A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2001511570A (ja) | 2001-08-14 |
EP0998721A4 (en) | 2003-12-10 |
WO1999005641A1 (en) | 1999-02-04 |
US5982915A (en) | 1999-11-09 |
EP0998721A1 (en) | 2000-05-10 |
AU8579898A (en) | 1999-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4718003B2 (ja) | 放射線写真におけるインターバル変化を検出する方法 | |
US6067373A (en) | Method, system and computer readable medium for iterative image warping prior to temporal subtraction of chest radiographs in the detection of interval changes | |
US5359513A (en) | Method and system for detection of interval change in temporally sequential chest images | |
US6724925B2 (en) | Method and system for the automated delineation of lung regions and costophrenic angles in chest radiographs | |
US5668888A (en) | Method and system for automatic detection of ribs and pneumothorax in digital chest radiographs | |
JP3417595B2 (ja) | ディジタル胸部レントゲン写真の肺小結節自動検出における正常例の誤診を分析する方法およびそのシステム | |
Ishida et al. | Application of temporal subtraction for detection of interval changes on chest radiographs: improvement of subtraction images using automated initial image matching | |
JP5337845B2 (ja) | デジタル画像上での測定の実施法 | |
US9659390B2 (en) | Tomosynthesis reconstruction with rib suppression | |
JP2003512112A (ja) | 弾性的照合を用いる対側性および時間的な減法画像のコンピュータ化処理のための方法、システムおよびコンピュータ可読媒体 | |
JP2012523889A (ja) | 胸部x線写真の重ね合わせ,減算及び表示 | |
US7043066B1 (en) | System for computerized processing of chest radiographic images | |
US9269165B2 (en) | Rib enhancement in radiographic images | |
CN103544690A (zh) | 获取血管造影图像的方法 | |
JPH08103439A (ja) | 画像の位置合わせ処理装置及び画像間処理装置 | |
US20060110022A1 (en) | Automatic image contrast in computer aided diagnosis | |
US20110211743A1 (en) | Change Assessment Method | |
Yoshida | Local contralateral subtraction based on bilateral symmetry of lung for reduction of false positives in computerized detection of pulmonary nodules | |
JPWO2005009242A1 (ja) | 医用画像処理装置及び方法 | |
JP2008173223A (ja) | 時間的に連続する2枚の胸部x線像からの経時変化検出のためのサブトラクション方法 | |
WO2000028466A9 (en) | System for computerized processing of chest radiographic images | |
Behiels et al. | Retrospective correction of the heel effect in hand radiographs | |
WO2010134013A1 (en) | Interactive image registration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090311 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090323 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090417 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100913 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110331 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |