[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4717335B2 - Film forming method, film, and element - Google Patents

Film forming method, film, and element Download PDF

Info

Publication number
JP4717335B2
JP4717335B2 JP2003186525A JP2003186525A JP4717335B2 JP 4717335 B2 JP4717335 B2 JP 4717335B2 JP 2003186525 A JP2003186525 A JP 2003186525A JP 2003186525 A JP2003186525 A JP 2003186525A JP 4717335 B2 JP4717335 B2 JP 4717335B2
Authority
JP
Japan
Prior art keywords
film
forming method
film forming
composition containing
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003186525A
Other languages
Japanese (ja)
Other versions
JP2005026244A (en
Inventor
弘 中山
英明 町田
紀男 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRI Chemical Laboratorories Inc
Original Assignee
TRI Chemical Laboratorories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRI Chemical Laboratorories Inc filed Critical TRI Chemical Laboratorories Inc
Priority to JP2003186525A priority Critical patent/JP4717335B2/en
Publication of JP2005026244A publication Critical patent/JP2005026244A/en
Application granted granted Critical
Publication of JP4717335B2 publication Critical patent/JP4717335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SiとCとNとを含む組成の膜を形成する為の膜形成方法および得られた膜や素子に関する。
【0002】
【発明が解決しようとする課題】
近年、ULSIの配線間の層間絶縁膜は、従来のSiO2膜から低誘電率膜へと変わりつつある。ところで、半導体多層構造の作成過程ではエッチング加工が必要不可欠であるが、このエッチング反応を止めるストッパ層を層間絶縁膜中に設けることがある。当然、このエッチングストッパ層も従来のSiN膜より誘電率が低い膜が要求される。
【0003】
ところで、最近、CとSiとNとを含む膜は、SiN膜より誘電率が低く、低誘電率膜との密着性もSiN膜より高く、より良好なエッチングストッパ層となることが判明して来た。
【0004】
しかしながら、SiとCとNとを含む膜の作成技術は稚拙なものであった。
例えば、(CHSiとNHとを用い、プラズマ化学気相成長(P−CVD)方法により作成する手段が提案されているに過ぎなかった。
【0005】
ところで、この技術は、原料が2元系であることによる問題点が有る。かつ、膜中のSiとCとNとの組成を制御することが困難で有った。更には、膜中の炭素(C)や窒素(N)が分解・酸化・燃焼していることも指摘されている。このようなことから、上記技術は、現実には、採用されることが無かった。
【0006】
そして、膜中の炭素(C)や窒素(N)が分解・酸化・燃焼についての検討が行われている中に、その理由は、プラズマCVDは分解効率が高すぎるが故であることが判って来た。
【0007】
そこで、プラズマのパワーを下げる工夫がなされたものの、未だ、再現性が悪く、プラズマCVDでは、確実に狙った組成の膜の実現が困難で有った。
【0008】
更には、ナノテクノロジー、マイクロマシーンが特に期待され、この分野の技術進展が目覚ましい今日、CとSiとNとを含む薄膜は、その堅さと安定性の点から、従来の半導体分野のみならず、微細加工技術(素子の表面保護膜、表面コーティング)などの広範囲な分野に応用できるであろうと予想されるに至った。
【0009】
従って、本発明が解決しようとする第1の課題は、SiとCとNとを含む組成の膜、特にSiとCとNとを任意の割合で含む膜を形成できる技術を提供することである。
本発明が解決しようとする第2の課題は、SiとCとNとを含む組成の膜、特にSiとCとNとを任意の割合で含む膜をCVDで形成できる技術を提供することである。
本発明が解決しようとする第3の課題は、SiとCとNとを含む組成の膜、特にSiとCとNとを任意の割合で含む狙い通りの混合膜を再現性良く形成できる技術を提供することである。
【0010】
【課題を解決するための手段】
前記の課題は、SiとCとNとを含む組成の膜を設ける方法であって、
加熱体を有する反応室内にアミノシリコン化合物の蒸気を存在させることにより、反応室内に配置された基体上にSiとCとNとを含む組成の膜を設けることを特徴とする膜形成方法によって解決される。
【0011】
特に、Siの原子数とCの原子数とNの原子数との比Si:C:NをX:Y:Zとした場合にXが0.0000001〜99.9999999、Yが0.0000001〜99.9999999、Zが0.0000001〜99.9999999(X+Y+Z=100)の範囲でSiとCとNとを含む組成の膜を設ける方法であって、
温度が800℃以上の加熱体を有する反応室内にアミノシリコン化合物の蒸気を存在させることにより、反応室内に配置された基体上に前記SiとCとNとを含む組成の膜を設けることを特徴とする膜形成方法によって解決される。
【0012】
そして、上記膜形成方法によれば、SiとCとNとを任意の割合で含む混合膜が再現性良く得られる。
【0013】
本発明において、加熱体は融点が1200℃以上の遷移金属の群の中から選ばれる一つ又は二つ以上の金属元素を用いて構成されたものが好ましい。例えば、W,Ta,Ti,Zr,Hf,V,Nb,Cr,Mo,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Ptの群の中から選ばれる一つ又は二つ以上の金属元素を含む材料で構成されたものが好ましい。中でもW及び/又はTaを含む材料で構成されたものが好ましい。そして、このような加熱体は、好ましくは800〜3000℃に加熱であるが、更に好ましくは1500℃以上である。尚、2500℃以下であることが好ましい。勿論、このような温度に加熱しても加熱体は溶融しないことが前提となる。そして、このような加熱体は、膜を形成しようとする基体から1cm以上離れて設置されていることが好ましい。特に、2cm以上、更には10cm以上離れて配置されていることが好ましい。尚、上限値は200cm、すなわち200cm以下であることが好ましい。特に、100cm以下、更には30cm以下しか離れていないことが好ましい。又、膜が形成される基体は800℃以下、中でも200℃以下の温度に保持されていることが好ましい。下限値に格別な制約は無いが、必要以上に低くする必要は無い。この点から、室温以上であれば良い。すなわち、本発明によれば、基体を高温に保持しなくてもSi−C−N膜をCVDにより形成できるのである。この点において、耐熱性が余り無い、或いは高温を避けなければならない基体に対してもSi−C−N膜を形成できることは大きな意義が有る。例えば、半導体素子などの電子素子にSi−C−N膜を設ける技術としては極めて好都合である。
【0014】
本発明において用いられるアミノシリコン化合物は、特に、SiR(NR’4−x(但し、RはH又はアルキル基、R’はアルキル基、xは0から3までの整数)で表される化合物である。中でも、テトラキスジメチルアミノシラン(Si(NMe2)、トリスジメチルアミノシラン(HSi(NMe23)、ビスジメチルアミノシラン(H2Si(NMe22)、ジメチルアミノシラン(H3SiNMe2)は好ましいものである。
【0015】
本発明は、基本的には、アミノシリコン化合物物の蒸気が反応室内に導入される。しかしながら、他にも、例えば水素ガス、窒素ガス、或いは不活性ガスが導入されても良い。特に、水素ガスの導入は好ましい。
【0016】
そして、上記膜形成方法によって得られた膜は、SiとCとNとを含む組成の膜である。これは、特に、表面保護膜として用いられる。中でも、エッチングストッパ層やイオンストッパ層として用いられる。このような点から、この膜は半導体などの電子素子に特に設けられる。
【0017】
【発明の実施の形態】
本発明になる膜形成方法は、SiとCとNとを含む組成の膜を設ける方法であって、加熱体を有する反応室内にアミノシリコン化合物の蒸気を存在させることにより、反応室内に配置された基体上にSiとCとNとを含む組成の膜を設ける方法である。特に、Siの原子数とCの原子数とNの原子数との比Si:C:NをX:Y:Zとした場合にXが0.0000001〜99.9999999、Yが0.0000001〜99.9999999、Zが0.0000001〜99.9999999(X+Y+Z=100)の範囲でSiとCとNとを含む組成の膜を設ける方法であって、温度が800℃以上の加熱体を有する反応室内にアミノシリコン化合物の蒸気を存在させることにより、反応室内に配置された基体上に前記SiとCとNとを含む組成の膜を設ける方法である。この膜形成方法はCVDによるものである。そして、SiとCとNとを任意の割合で含む混合膜を得る方法である。
【0018】
本発明において、加熱体は融点が1200℃以上の遷移金属の群の中から選ばれる一つ又は二つ以上の金属元素を用いて構成される。例えば、W,Ta,Ti,Zr,Hf,V,Nb,Cr,Mo,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Ptの群の中から選ばれる一つ又は二つ以上の金属元素を含む材料で構成される。中でも、W及び/又はTaを含む材料で構成されたものである。
【0019】
本発明において、加熱体は、好ましくは800〜3000℃に加熱される。特に、1500℃以上に加熱される。そして、特に、2500℃以下である。そして、このような加熱体は、膜を形成しようとする基体から1cm以上離れて設置されている。特に、2cm以上、更には10cm以上離れて配置されている。尚、上限値は200cm、すなわち200cm以下である。特に、100cm以下、更には30cm以下である。
【0020】
本発明において、膜が形成される基体は800℃以下、中でも200℃以下の温度に保持される。下限値に格別な制約は無いが、必要以上に低くする必要は無い。この点から、室温以上である。
【0021】
本発明において用いられるアミノシリコン化合物は、特に、SiR(NR’4−x(但し、RはH又はアルキル基、R’はアルキル基、xは0から3までの整数)で表される化合物である。中でも、テトラキスジメチルアミノシラン(Si(NMe2)、トリスジメチルアミノシラン(HSi(NMe23)、ビスジメチルアミノシラン(H2Si(NMe22)、ジメチルアミノシラン(H3SiNMe2)である。
【0022】
本発明は、基本的には、アミノシリコン化合物の蒸気が反応室内に導入される。しかしながら、他にも、例えば水素ガス、窒素ガス、或いは不活性ガスが導入されても良い。特に、水素ガスが導入される
上記方法によって得られた膜は、表面保護膜として用いられる。特に、エッチングストッパ層として用いられる。或いは、イオンストッパ(イオンの通り抜けを遮断)層として用いられる。このような特徴から、上記方法によって得られた膜は、半導体などの電子素子に設けられる。
以下、具体的な実施例を挙げて説明する。
【0023】
【実施例1】
図1のCVD装置を用いた。尚、図1の装置は化学気相成長方法により膜が形成される装置であり、1は反応室、2は加熱体(Ta製フィラメント)、3は基板台、4は基板、5は原料(アミノシリコン化合物)容器、6は原料ガス導入機構、7は流量制御器、8はパイプである。
【0024】
先ず、原料ガス導入機構6により(HSi(NMe23)を反応室1内に送り込んだ。そして、成長時のトリスジメチルアミノシラン分圧は20Paとなるようにした。
基板4としてN型Si(001)を用いた。そして、基板温度は室温で保持した。
加熱体2は、電流を流して、1800℃に保持されている。
【0025】
そして、トリスジメチルアミノシランが加熱体により作用を受け、加熱体2から20cm離れた位置にセットされている基板4上に堆積し、薄膜が形成された。
【0026】
この薄膜は、0.096μm厚で、Si−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0027】
【実施例2】
実施例1において、加熱体として、Ta製フィラメントの代わりにW製フィラメントを用いた以外は同様に行った。
【0028】
その結果、得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0029】
【比較例1,2】
実施例1,2において、加熱体を発熱させずに行なった。但し、基板4を400℃に加熱した。
しかし、基板4上には膜が形成されなかった。
【0030】
【実施例3】
実施例1において、HSi(NMe23の代わりにH2Si(NMe22を用いた以外は同様に行った。
【0031】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0032】
【実施例4】
実施例1において、HSi(NMe23の代わりにHSiNMe2を用いた以外は同様に行った。
【0033】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0034】
【実施例5】
実施例1において、HSi(NMe23の代わりにSi(NMe2を用いた以外は同様に行った。
【0035】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0036】
【実施例6】
実施例1において、反応室1内に5sccmの流量でHを更に送り込んだ以外は同様に行った。
【0037】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。但し、実施例1のものと比べると、C,Nの比率は低いものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0038】
【実施例7】
実施例1において、加熱体の温度を1500℃に設定した以外は同様に行った。
【0039】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0040】
【実施例8】
実施例1において、加熱体の温度を2500℃に設定した以外は同様に行った。
【0041】
その結果得られた薄膜もSi−C−Nの組成のアモルファスなものであった。
そして、この膜に、一般的な層間絶縁膜(低誘電率膜)のドライエッチングガスによるエッチングを施したところ、低誘電率膜と比較してエッチング速度が3倍以上遅いものであった。すなわち、良好なエッチングストッパ膜であることが判る。
更に、誘電率もSiNより低いことも判った。
又、有機基を含むSiO系誘電膜との密着性もSiN膜より優れているものであった。
【0042】
【発明の効果】
エッチングストッパとかイオンストッパ或いは表面保護膜として用いられるSiとCとNとを含む組成の膜を再現性良く形成できる。
【図面の簡単な説明】
【図1】本発明になる膜形成装置(CVD)全体の概略図
【符号の説明】
1 反応室
2 加熱体
3 基板ホルダ
4 基板
5 原料容器
6 原料ガス導入機構
7 流量制御器
8 パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming method for forming a film having a composition containing Si, C, and N, and the obtained film and element.
[0002]
[Problems to be solved by the invention]
In recent years, an interlayer insulating film between ULSI wirings is changing from a conventional SiO 2 film to a low dielectric constant film. Incidentally, an etching process is indispensable in the process of forming the semiconductor multilayer structure, but a stopper layer for stopping the etching reaction may be provided in the interlayer insulating film. Of course, this etching stopper layer is also required to have a lower dielectric constant than the conventional SiN film.
[0003]
Recently, it has been found that a film containing C, Si, and N has a lower dielectric constant than that of a SiN film and has a higher adhesion to a low dielectric constant film than that of a SiN film, thus providing a better etching stopper layer. I came.
[0004]
However, the technique for producing a film containing Si, C, and N has been poor.
For example, only a means of using (CH 3 ) 4 Si and NH 3 and making it by a plasma chemical vapor deposition (P-CVD) method has been proposed.
[0005]
By the way, this technique has a problem that the raw material is a binary system. In addition, it has been difficult to control the composition of Si, C, and N in the film. Furthermore, it is pointed out that carbon (C) and nitrogen (N) in the film are decomposed, oxidized and burned. For this reason, the above technique has not been adopted in reality.
[0006]
And while carbon (C) and nitrogen (N) in the film are being examined for decomposition, oxidation, and combustion, the reason is that plasma CVD is because decomposition efficiency is too high. I came.
[0007]
Thus, although efforts have been made to lower the plasma power, the reproducibility is still poor, and it has been difficult to achieve a film with a targeted composition with plasma CVD.
[0008]
Furthermore, nanotechnology and micromachines are particularly expected today, and the technological progress in this field is remarkable. Today, thin films containing C, Si, and N are not only used in the conventional semiconductor field, but also in terms of their hardness and stability. It came to be expected that it could be applied to a wide range of fields such as microfabrication technology (device surface protection film, surface coating).
[0009]
Therefore, the first problem to be solved by the present invention is to provide a technique capable of forming a film having a composition containing Si, C, and N, particularly a film containing Si, C, and N in an arbitrary ratio. is there.
The second problem to be solved by the present invention is to provide a technique capable of forming a film having a composition containing Si, C, and N, particularly a film containing Si, C, and N in an arbitrary ratio by CVD. is there.
The third problem to be solved by the present invention is a technique capable of forming a film having a composition containing Si, C, and N, particularly a mixed film as intended containing Si, C, and N in an arbitrary ratio with good reproducibility. Is to provide.
[0010]
[Means for Solving the Problems]
The above-described problem is a method of providing a film having a composition containing Si, C, and N,
Solved by a film forming method characterized in that a film of a composition containing Si, C, and N is provided on a substrate disposed in a reaction chamber by allowing an aminosilicon compound vapor to exist in a reaction chamber having a heating element. Is done.
[0011]
In particular, the ratio between the number of Si atoms, the number of C atoms and the number of N atoms, when X: Y: Z is set to Si: C: N, X is 0.0000001 to 99.999999999, and Y is 0.0000001 to 99.9999999, a method of providing a film having a composition containing Si, C, and N in a range of Z from 0.0000001 to 99.9999999 (X + Y + Z = 100),
A film having a composition containing Si, C, and N is provided on a substrate disposed in a reaction chamber by allowing an aminosilicon compound vapor to exist in a reaction chamber having a heating body having a temperature of 800 ° C. or higher. This is solved by the film forming method.
[0012]
And according to the said film formation method, the mixed film containing Si, C, and N in arbitrary ratios is obtained with sufficient reproducibility.
[0013]
In the present invention, the heating element is preferably composed of one or more metal elements selected from the group of transition metals having a melting point of 1200 ° C. or higher. For example, selected from the group of W, Ta, Ti, Zr, Hf, V, Nb, Cr, Mo, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt Those composed of a material containing one or more metal elements are preferred. Among these, those composed of a material containing W and / or Ta are preferable. And such a heating body becomes like this. Preferably it is 800-3000 degreeC, More preferably, it is 1500 degreeC or more. In addition, it is preferable that it is 2500 degrees C or less. Of course, it is assumed that the heating element does not melt even when heated to such a temperature. And it is preferable that such a heating body is installed 1 cm or more away from the base | substrate which is going to form a film | membrane. In particular, it is preferable that they are arranged 2 cm or more, further 10 cm or more apart. In addition, it is preferable that an upper limit is 200 cm, ie, 200 cm or less. In particular, it is preferable that the distance is 100 cm or less, more preferably 30 cm or less. The substrate on which the film is formed is preferably kept at a temperature of 800 ° C. or lower, particularly 200 ° C. or lower. There is no particular restriction on the lower limit, but it is not necessary to make it lower than necessary. From this point, it may be room temperature or higher. That is, according to the present invention, the Si—C—N film can be formed by CVD without keeping the substrate at a high temperature. In this respect, it is significant that an Si—C—N film can be formed even on a substrate that does not have high heat resistance or must avoid high temperatures. For example, it is extremely convenient as a technique for providing a Si—C—N film on an electronic element such as a semiconductor element.
[0014]
The aminosilicon compound used in the present invention is particularly represented by SiR x (NR ′ 2 ) 4-x (where R is H or an alkyl group, R ′ is an alkyl group, and x is an integer from 0 to 3). It is a compound. Of these, tetrakisdimethylaminosilane (Si (NMe 2 ) 4 ), trisdimethylaminosilane (HSi (NMe 2 ) 3 ), bisdimethylaminosilane (H 2 Si (NMe 2 ) 2 ), and dimethylaminosilane (H 3 SiNMe 2 ) are preferable. Is.
[0015]
In the present invention, the vapor of the aminosilicon compound is basically introduced into the reaction chamber. However, for example, hydrogen gas, nitrogen gas, or inert gas may be introduced. In particular, introduction of hydrogen gas is preferable.
[0016]
And the film | membrane obtained by the said film formation method is a film | membrane of the composition containing Si, C, and N. This is used in particular as a surface protective film. Among them, it is used as an etching stopper layer or an ion stopper layer. From this point, this film is particularly provided in an electronic device such as a semiconductor.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The film forming method according to the present invention is a method of providing a film having a composition containing Si, C, and N, and is disposed in a reaction chamber by allowing vapor of an aminosilicon compound to exist in a reaction chamber having a heating body. A film having a composition containing Si, C, and N on a substrate. In particular, the ratio between the number of Si atoms, the number of C atoms and the number of N atoms, when X: Y: Z is set to Si: C: N, X is 0.0000001 to 99.999999999, and Y is 0.0000001 to 99.9999999, a method of providing a film having a composition containing Si, C, and N in a range of Z from 0.0000001 to 99.9999999 (X + Y + Z = 100), and a reaction having a heating body having a temperature of 800 ° C. or higher This is a method of providing a film having a composition containing Si, C, and N on a substrate disposed in a reaction chamber by causing an aminosilicon compound vapor to exist in the chamber. This film forming method is based on CVD. And it is the method of obtaining the mixed film which contains Si, C, and N in arbitrary ratios.
[0018]
In the present invention, the heating element is composed of one or more metal elements selected from the group of transition metals having a melting point of 1200 ° C. or higher. For example, it is selected from the group of W, Ta, Ti, Zr, Hf, V, Nb, Cr, Mo, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt. It is made of a material containing one or more metal elements. Especially, it is comprised with the material containing W and / or Ta.
[0019]
In the present invention, the heating body is preferably heated to 800 to 3000 ° C. In particular, it is heated to 1500 ° C. or higher. And it is 2500 degrees C or less especially. And such a heating body is installed 1 cm or more away from the base | substrate which is going to form a film | membrane. In particular, they are arranged at a distance of 2 cm or more, further 10 cm or more. The upper limit is 200 cm, that is, 200 cm or less. In particular, it is 100 cm or less, and further 30 cm or less.
[0020]
In the present invention, the substrate on which the film is formed is kept at a temperature of 800 ° C. or lower, particularly 200 ° C. or lower. There is no particular restriction on the lower limit, but it is not necessary to make it lower than necessary. From this point, it is room temperature or higher.
[0021]
The aminosilicon compound used in the present invention is particularly represented by SiR x (NR ′ 2 ) 4-x (where R is H or an alkyl group, R ′ is an alkyl group, and x is an integer from 0 to 3). It is a compound. Among them, tetrakisdimethylaminosilane (Si (NMe 2 ) 4 ), trisdimethylaminosilane (HSi (NMe 2 ) 3 ), bisdimethylaminosilane (H 2 Si (NMe 2 ) 2 ), and dimethylaminosilane (H 3 SiNMe 2 ). .
[0022]
In the present invention, basically, a vapor of an aminosilicon compound is introduced into a reaction chamber. However, for example, hydrogen gas, nitrogen gas, or inert gas may be introduced. In particular, the film obtained by the above method in which hydrogen gas is introduced is used as a surface protective film. In particular, it is used as an etching stopper layer. Alternatively, it is used as an ion stopper (blocking ion passage) layer. From such characteristics, the film obtained by the above method is provided in an electronic element such as a semiconductor.
Hereinafter, specific examples will be described.
[0023]
[Example 1]
The CVD apparatus shown in FIG. 1 was used. 1 is an apparatus for forming a film by a chemical vapor deposition method. 1 is a reaction chamber, 2 is a heating body (Ta filament), 3 is a substrate table, 4 is a substrate, 5 is a raw material ( Aminosilicon compound) container, 6 is a raw material gas introduction mechanism, 7 is a flow rate controller, and 8 is a pipe.
[0024]
First, (HSi (NMe 2 ) 3 ) was fed into the reaction chamber 1 by the source gas introduction mechanism 6. The trisdimethylaminosilane partial pressure during growth was set to 20 Pa.
N-type Si (001) was used as the substrate 4. The substrate temperature was kept at room temperature.
The heating element 2 is maintained at 1800 ° C. by passing an electric current.
[0025]
Then, trisdimethylaminosilane was acted on by the heating body and deposited on the substrate 4 set at a position 20 cm away from the heating body 2 to form a thin film.
[0026]
This thin film was 0.096 μm thick and amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0027]
[Example 2]
In Example 1, it carried out similarly except having used the filament made from W instead of the filament made from Ta as a heating body.
[0028]
As a result, the obtained thin film was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0029]
[Comparative Examples 1 and 2]
In Examples 1 and 2, the heating was performed without generating heat. However, the substrate 4 was heated to 400 ° C.
However, no film was formed on the substrate 4.
[0030]
[Example 3]
In Example 1, except for using H 2 Si (NMe 2) 2 in place of HSi (NMe 2) 3 was carried out in the same manner.
[0031]
The thin film obtained as a result was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0032]
[Example 4]
In Example 1, except for using H 3 SiNMe 2 instead of HSi (NMe 2) 3 was carried out in the same manner.
[0033]
The thin film obtained as a result was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0034]
[Example 5]
In Example 1, except for using the Si (NMe 2) 4 instead of HSi (NMe 2) 3 was carried out in the same manner.
[0035]
The thin film obtained as a result was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0036]
[Example 6]
In Example 1, the same procedure was performed except that H 2 was further fed into the reaction chamber 1 at a flow rate of 5 sccm.
[0037]
The thin film obtained as a result was also amorphous with a composition of Si—C—N. However, the ratio of C and N was lower than that of Example 1.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0038]
[Example 7]
In Example 1, it carried out similarly except having set the temperature of the heating body to 1500 degreeC.
[0039]
The thin film obtained as a result was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0040]
[Example 8]
In Example 1, it carried out similarly except having set the temperature of the heating body to 2500 degreeC.
[0041]
The thin film obtained as a result was also amorphous with a composition of Si—C—N.
When this film was etched with a general interlayer insulating film (low dielectric constant film) using a dry etching gas, the etching rate was three times or more slower than that of the low dielectric constant film. That is, it turns out that it is a favorable etching stopper film | membrane.
It was also found that the dielectric constant is lower than SiN.
Further, the adhesion to the SiO-based dielectric film containing an organic group was also superior to that of the SiN film.
[0042]
【The invention's effect】
A film having a composition containing Si, C, and N used as an etching stopper, an ion stopper, or a surface protective film can be formed with good reproducibility.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an entire film forming apparatus (CVD) according to the present invention.
DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Heating body 3 Substrate holder 4 Substrate 5 Raw material container 6 Raw material gas introduction mechanism 7 Flow rate controller 8 Pipe

Claims (13)

SiとCとNとを含む組成の膜を設ける方法であって、
温度が800℃以上の加熱体を有する反応室内に、SiR (NR’ 4−x (但し、RはH又はアルキル基、R’はアルキル基、xは0から3までの整数)で表されるアミノシリコン化合物の蒸気を存在させることにより、反応室内に配置された基体上にSiとCとNとを含む組成の膜を設ける
ことを特徴とする膜形成方法。
A method of providing a film having a composition containing Si, C, and N,
In a reaction chamber having a heating body having a temperature of 800 ° C. or higher , SiR x (NR ′ 2 ) 4-x (where R is H or an alkyl group, R ′ is an alkyl group, x is an integer from 0 to 3) A film forming method comprising: forming a film having a composition containing Si, C, and N on a substrate disposed in a reaction chamber by the presence of a vapor of an aminosilicon compound.
Siの原子数とCの原子数とNの原子数との比Si:C:NをX:Y:Zとした場合にXが0.0000001〜99.9999999、Yが0.0000001〜99.9999999、Zが0.0000001〜99.9999999(X+Y+Z=100)の範囲でSiとCとNとを含む組成の膜を設ける方法である
ことを特徴とする請求項1の膜形成方法。
Ratio between the number of Si atoms, the number of C atoms and the number of N atoms When Si: C: N is X: Y: Z, X is 0.0000001 to 99.9999999, and Y is 0.0000001 to 99.99. The film forming method according to claim 1, wherein the film forming method is a method of providing a film having a composition containing Si, C, and N in a range of 9999999, Z of 0.0000001 to 99.9999999 (X + Y + Z = 100).
化学気相成長方法により膜が形成される
ことを特徴とする請求項1又は請求項2の膜形成方法。
The film forming method according to claim 1 or 2, wherein the film is formed by a chemical vapor deposition method.
加熱体は融点が1200℃以上の遷移金属の群の中から選ばれる一つ又は二つ以上の金属元素からなる
ことを特徴とする請求項1〜請求項3いずれかの膜形成方法。
The film formation according to any one of claims 1 to 3, wherein the heating element is made of one or more metal elements selected from the group of transition metals having a melting point of 1200C or higher. Method.
加熱体がW,Taの中から選ばれる一つ又は二つ以上のものからなる
ことを特徴とする請求項1〜請求項4いずれかの膜形成方法。
The film forming method according to any one of claims 1 to 4 , wherein the heating element is made of one or more selected from W and Ta .
膜が形成される基体は800℃以下の温度で保持される
ことを特徴とする請求項1〜請求項5いずれかの膜形成方法。
The film forming method according to any one of claims 1 to 5, wherein the substrate on which the film is formed is maintained at a temperature of 800C or lower .
アミノシリコン化合物がテトラキスジメチルアミノシラン、トリスジメチルアミノシラン、ビスジメチルアミノシラン、ジメチルアミノシランの群の中から選ばれる一つ又は二つ以上の化合物である
ことを特徴とする請求項1〜請求項6いずれかの膜形成方法。
The aminosilicon compound is one or more compounds selected from the group consisting of tetrakisdimethylaminosilane, trisdimethylaminosilane, bisdimethylaminosilane, and dimethylaminosilane. 6. Any one of the film forming methods.
アミノシリコン化合物の蒸気以外にも水素ガスが加熱体を有する反応室内に導入されることを特徴とする請求項1〜請求項7いずれかの膜形成方法。 8. The film forming method according to claim 1, wherein hydrogen gas other than the aminosilicon compound vapor is introduced into a reaction chamber having a heating element . 表面保護膜として用いられるSiとCとNとを含む組成の膜を設ける方法である
ことを特徴とする請求項1〜請求項8いずれかの膜形成方法。
The film forming method according to any one of claims 1 to 8, characterized in that a film having a composition containing Si, C, and N used as a surface protective film is provided .
エッチングストッパ層として用いられるSiとCとNとを含む組成の膜を設ける方法である
ことを特徴とする請求項1〜請求項9いずれかの膜形成方法。
10. The film forming method according to claim 1, which is a method of providing a film having a composition containing Si, C, and N used as an etching stopper layer.
イオンストッパ層として用いられるSiとCとNとを含む組成の膜を設ける方法であることを特徴とする請求項1〜請求項9いずれかの膜形成方法。  10. The film forming method according to claim 1, which is a method of providing a film having a composition containing Si, C, and N used as an ion stopper layer. 請求項1〜請求項11いずれかの膜形成方法によって形成されてなる
ことを特徴とするSiとCとNとを含む組成の膜
It is formed by the film forming method according to claim 1.
A film having a composition containing Si, C, and N.
請求項1〜請求項11いずれかの膜形成方法によって形成されてなる膜が設けられてなる
ことを特徴とする素子。
An element comprising a film formed by the film forming method according to any one of claims 1 to 11 .
JP2003186525A 2003-06-30 2003-06-30 Film forming method, film, and element Expired - Lifetime JP4717335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186525A JP4717335B2 (en) 2003-06-30 2003-06-30 Film forming method, film, and element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186525A JP4717335B2 (en) 2003-06-30 2003-06-30 Film forming method, film, and element

Publications (2)

Publication Number Publication Date
JP2005026244A JP2005026244A (en) 2005-01-27
JP4717335B2 true JP4717335B2 (en) 2011-07-06

Family

ID=34185626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186525A Expired - Lifetime JP4717335B2 (en) 2003-06-30 2003-06-30 Film forming method, film, and element

Country Status (1)

Country Link
JP (1) JP4717335B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310861A (en) * 2004-04-19 2005-11-04 Mitsui Chemicals Inc Sintered silicon nitride film forming method
JP2006261434A (en) 2005-03-17 2006-09-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method for forming silicon oxide film
US7875556B2 (en) * 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
US7875312B2 (en) * 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US8889235B2 (en) 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132284A (en) * 1992-10-22 1994-05-13 Kawasaki Steel Corp Method for forming protective film of semiconductor device
JP4505073B2 (en) * 1999-03-25 2010-07-14 独立行政法人科学技術振興機構 Chemical vapor deposition equipment
JP2002083870A (en) * 2000-09-11 2002-03-22 Tokyo Electron Ltd Semiconductor device and production method therefor
JP4984367B2 (en) * 2001-09-28 2012-07-25 コニカミノルタホールディングス株式会社 Substrate and display device

Also Published As

Publication number Publication date
JP2005026244A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
TWI743035B (en) Plasma treatment to improve adhesion between hardmask film and silicon oxide film
TWI655309B (en) Metal-aluminum alloy films from metal amidinate precursors and aluminum precursors
EP1061041A1 (en) Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
Ahn et al. Characteristics of TiN thin films grown by ALD using TiCl 4 and NH 3
TWI570128B (en) Nickel allyl amidinate precursors for deposition of nickel-containing films
WO2011006035A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
JP4717335B2 (en) Film forming method, film, and element
JP4581119B2 (en) NiSi film forming material and NiSi film forming method
TWI251620B (en) Process for CVD of Hf and Zr containing oxynitride films
KR20040088110A (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
JP4353371B2 (en) Film formation method
JP3661034B2 (en) Film forming method, film, element, alkyl silicon compound, and film forming apparatus
US20060068103A1 (en) Film forming method
JP5088773B2 (en) Film forming method and film forming material
JP4591917B2 (en) Method for forming conductive molybdenum nitride film
JP3743567B2 (en) Film forming method and film forming apparatus
JP2006097100A (en) Film deposition material, film deposition method and element
WO2024147339A1 (en) Sic-containing film, and method for manufacturing same
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
US20060068101A1 (en) Film forming method
JP3076846B1 (en) Method for producing iron silicide by chemical vapor deposition
JPS61250172A (en) Method for growing tungsten silicide film
TW202338022A (en) Process for selectively depositing highly-conductive metal films
CN116848288A (en) High throughput deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term