[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4710783B2 - Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them - Google Patents

Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them Download PDF

Info

Publication number
JP4710783B2
JP4710783B2 JP2006270734A JP2006270734A JP4710783B2 JP 4710783 B2 JP4710783 B2 JP 4710783B2 JP 2006270734 A JP2006270734 A JP 2006270734A JP 2006270734 A JP2006270734 A JP 2006270734A JP 4710783 B2 JP4710783 B2 JP 4710783B2
Authority
JP
Japan
Prior art keywords
electrostatic discharge
electrostatic
fine material
voltage
electrostatically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006270734A
Other languages
Japanese (ja)
Other versions
JP2008088600A (en
Inventor
光弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006270734A priority Critical patent/JP4710783B2/en
Publication of JP2008088600A publication Critical patent/JP2008088600A/en
Application granted granted Critical
Publication of JP4710783B2 publication Critical patent/JP4710783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、静電放出系により1種またはそれ以上の原料材または処理材を帯電した微細材として所定の方向に静電放出し、この静電放出される微細材をそれと電位差を有した対象面上に静電的に付着させて回収や表面処理といった静電作業などに供する静電放出方法と装置、これらを用いた静電作業方法と装置に関するものである。   In the present invention, an electrostatic discharge system electrostatically discharges one or more raw materials or treatment materials in a predetermined direction as a charged fine material, and the electrostatic discharge has an electric potential difference with the target. The present invention relates to an electrostatic discharge method and apparatus that are electrostatically attached to a surface and used for electrostatic work such as recovery and surface treatment, and an electrostatic work method and apparatus using them.

このような静電放出系は、例えば、高分子溶液である原材料や処理材を帯電による静電爆発を伴い必要に応じナノ単位の微細な繊維や粉体、粒子などの微細材として放出できる電子紡糸法や電荷誘導紡糸法などと称される電子紡糸系で代表され、静電放出した微細材は対象面上への静電的な付着堆積によりウエブなどとして回収したり(例えば、特許文献1参照。)、それをさらに製糸に供したり、あるいは対象面を表面処理するといった静電作業に供される(例えば、特許文献2参照。)。   Such an electrostatic discharge system is, for example, an electron that can discharge a raw material or processing material that is a polymer solution as a fine material such as fine fibers, powders, and particles of nano-units, if necessary, accompanied by electrostatic explosion caused by charging. Represented by an electrospinning system called a spinning method or a charge induction spinning method, the electrostatically discharged fine material is collected as a web or the like by electrostatic adhesion deposition on the target surface (for example, Patent Document 1). (See, for example, Patent Document 2).

このような静電的な作業では、ときとして、回収ないしは表面処理する、微細材の付着、堆積の密度分布が均一であることや、原料材や処理材ないしはそれらを静電放出させた微細材が異なった高分子溶液のものである場合の混合比率の分布が均一であることが、重要となったり、強く求められたりする。   In such electrostatic work, sometimes the collection or surface treatment, the adhesion of fine materials, the density distribution of deposition is uniform, the raw materials, the treatment materials or the fine materials from which they are electrostatically discharged. It is important or strongly required that the distribution of the mixing ratio is uniform when the polymer solutions are of different polymer solutions.

直線上に配置した2箇所以上の紡糸原液供給部から静電爆発といわれる電界による延伸を伴い放出した繊維を、これと電位差を有した捕集体上に集積させながら回転するなどして前記配置方向に直交する方向に搬送して繊維集合体、つまりウエブを形成する静電作業において、少なくとも、捕集体の幅方向、つまり搬送方向に直交する方向において、中央部における繊維量が多く両端部における繊維量が少なくなる傾向があることにつき、最も端部に位置する両紡糸原液供給部よりも外側に、絶縁体が存在する環境にて行うことで、この絶縁体が静電放出した繊維が作る電界により帯電して繊維と反発し合い、繊維の集積位置の拡がりを抑えて繊維量が両端部で少なくなるのを防止する技術が既に知られ、搬送方向においても同様なことも行われている(例えば、特許文献3参照。)。   The arrangement direction by rotating the fibers released along with the stretching due to the electric field, which is called electrostatic explosion, from two or more spinning stock supply parts arranged on a straight line while collecting them on a collector having a potential difference. In the electrostatic work of forming a fiber assembly, that is, a web, by transporting in a direction orthogonal to the direction, at least in the width direction of the collection body, that is, in the direction orthogonal to the transport direction, the amount of fibers in the center is large and the fibers in both ends The electric field created by the fibers electrostatically discharged by this insulator is carried out in an environment where the insulator exists outside the two spinning dope supply units located at the extreme ends because the amount tends to decrease. Technology is already known that prevents the amount of fibers from being reduced at both ends by suppressing the spread of the fiber accumulation position by repelling the fibers due to charging, and the same thing can be done in the transport direction. Is (e.g., see Patent Document 3.).

また、ベルトブロー法、ガスジェットによるナノ繊維(NGJ)技術、および電子紡糸ないしは電界紡糸法により、1以上の繊維を含んでなる不織布集合体であって、前記繊維が、接着剤成分、エラストマー成分、及び親水性成分を含む1以上の複合繊維が得られ、医療用の包帯などの不織繊維集成体として材料の組み合わせに応じた複数の性質を発揮させる技術が提案され、これを実現する親水成分、エラストマー成分、及び接着剤成分といった1以上のタイプの繊維形成材料を収容するための複数個のリザーバ、それぞれ独立してリザーバと連通する複数個のバルブ、及び紡糸口金、NGJノズル、および紡糸装置でなる群から選ばれる、バルブと連通する繊維形成装置を包含した装置と共に既に知られている(例えば、特許文献4参照)。ここに、特許文献4は、複数の異なった材料が混合した繊維と、それによる不織布繊維集成体、およびその製造方法ないし装置を開示している。
特開2002−201559号公報 特表2006−507428号公報 特開2005−264353号公報 特表2006−501373号公報
And a nonwoven fabric assembly comprising one or more fibers by a belt blowing method, a nanofiber (NGJ) technique by gas jet, and an electrospinning or electrospinning method, wherein the fibers are an adhesive component, an elastomer component , And one or more composite fibers containing a hydrophilic component are obtained, and a technique for exhibiting a plurality of properties according to a combination of materials as a non-woven fiber assembly such as a medical bandage is proposed, and hydrophilicity is realized. A plurality of reservoirs for containing one or more types of fiber forming materials, such as components, elastomeric components, and adhesive components, a plurality of valves each independently communicating with the reservoir, and a spinneret, NGJ nozzle, and spinning It is already known together with a device including a fiber forming device communicating with a valve selected from the group consisting of devices (for example, see Patent Document 4). . Here, Patent Document 4 discloses a fiber in which a plurality of different materials are mixed, a non-woven fiber assembly formed thereby, and a manufacturing method or apparatus thereof.
JP 2002-201559 A JP-T-2006-507428 JP 2005-264353 A JP-T-2006-501373

しかし、特許文献3に記載の技術では、幅方向に配置した紡糸原液供給部から帯電を伴い静電放出される繊維を捕集体上に集積させながら搬送するのに、搬送方向には繊維の堆積位置を順次に変位させる機能によって堆積密度を搬送方向にある程度均せるのに対し、幅方向には各紡糸原液供給部から静電作業空間へ放出される繊維の密度分布の不均一が反映してしまうことに対し、前記幅方向の両端部において絶縁体の帯電による微細材との反発にて端部紡糸原液供給部からの放出繊維の集積域の拡がりを抑えることで、集積体上で繊維集合体の繊維量が両端部で中央部より少なくなるのを解消する技術と認められるが、個々の紡糸原液供給部から静電放出される繊維の放出域は特許文献3の図2、図3などの平面図に見られるように円形に分布しているために、中央部と両端部での繊維量の大きな違いはある程度解消されるにしても、繊維の放出域の分布に対応した脈動的な堆積密度の違いは解消し切れないものである。このことは、搬送方向において配置した紡糸原液供給部の両端部においても絶縁体による集積域の拡がり抑制の場合もほぼ同様である。また、放出繊維の不均一な密度分布は、回収や表面処理効率の不均一をもたらし、高密度域に対し密度が低い部分ほど回収や表面処理の効率が低くなるともいえる。   However, in the technique described in Patent Document 3, fibers that are electrostatically discharged with charge from the spinning dope supply unit arranged in the width direction are conveyed while being accumulated on the collecting body. While the deposition density is leveled to some extent in the transport direction by the function of sequentially shifting the position, the width direction reflects the non-uniformity of the density distribution of fibers discharged from each spinning dope supply section to the electrostatic working space. On the other hand, at the both ends in the width direction, the rebound from the fine material due to the charging of the insulator suppresses the spread of the collection area of the released fibers from the end spinning dope supply section, thereby collecting the fibers on the aggregate. Although it is recognized as a technique that eliminates the fact that the amount of fiber in the body is less than the central part at both ends, the discharge area of the fibers discharged electrostatically from the individual spinning dope supply parts is shown in FIGS. As seen in the plan view Even if the large difference in the amount of fiber between the center and both ends can be eliminated to some extent, the difference in the pulsating accumulation density corresponding to the distribution of the fiber discharge area cannot be completely eliminated. It is. This is almost the same in the case where the expansion of the accumulation area by the insulator is suppressed at both ends of the spinning dope supply section arranged in the transport direction. Further, the non-uniform density distribution of the released fibers brings about non-uniformity of recovery and surface treatment efficiency, and it can be said that the efficiency of the recovery and surface treatment becomes lower as the density is lower than the high density region.

特許文献3に記載の技術を、静止した捕集体上で繊維を回収し、また表面処理する技術に採用しようとすると、既述のような放出域の分布による付着むら、堆積むらはそのまま反映し残ってしまうし、静電放出する微細材が粉体などの非繊維粒子、ナノ粒子と微細化するほど静電放出の分布密度の不均一が付着密度や堆積密度に反映しやすい。表面処理ではこのようなむらは均一処理の妨げとなる問題があり、同一の紡糸液供給部から静電放出される同一材料よりなる微細材自体に生じる不均一な分布自体が問題となることもあるが、特許文献3に記載の技術では全く対応できない。   If the technique described in Patent Document 3 is applied to a technique for collecting and surface-treating fibers on a stationary collector, the uneven adhesion due to the distribution of the emission area as described above and the uneven deposition are reflected as they are. As the fine material to be electrostatically discharged becomes finer than non-fiber particles such as powder and nanoparticles, the uneven distribution density of electrostatic discharge is more likely to be reflected in the adhesion density and the deposition density. In the surface treatment, there is a problem that such unevenness hinders the uniform treatment, and the uneven distribution itself generated in the fine material itself made of the same material that is electrostatically discharged from the same spinning solution supply unit may also be a problem. However, the technique described in Patent Document 3 cannot cope with it at all.

また、特許文献4に記載のように医療上などの複数の特性を発揮させるために異種材料が混合したウエブを製造したり、表面処理をしたりする場合も、その意図するところから異種材料を特許文献4に記載のように1つの紡糸系から混合状態で紡糸放出するにも、特許文献1に記載のような複数の紡糸系を利用して個別に紡糸放出して混合させるにも、紡糸放出した微細材の密度分布に加え、各部分ごとの混合の均等化を図ることも大事な事項であるが、いずれも特許文献3、4に記載の技術では解決できない。しかも、異種材料の高分子溶液などには溶媒が水である水性のものと、トルエンなどの油性のものとがあり、これらは互いに混合し難くこのような材料同士の組み合わせとしたいような場合は特に強制的な混合技術が必要である。他の油性溶媒としてはジメチルホルムアシド、ジメチルアセトアシドなどがある。1つの実施例を示すと、ポリビニルアルコール樹脂に溶媒として水を用いた水性の高分子溶液と、ポリウレタン樹脂にトルエンとDMFとが混合した溶媒を用いた油性の高分子溶液との組み合わせがある。   In addition, as described in Patent Document 4, when manufacturing a web in which different materials are mixed or performing surface treatment in order to exhibit a plurality of medical properties, the different materials are used from the intended point. Spinning and discharging from one spinning system as described in Patent Document 4 in a mixed state, or using a plurality of spinning systems as described in Patent Document 1 to individually spin and release and mix. In addition to the density distribution of the discharged fine material, it is also important to equalize the mixing of each part, but none of them can be solved by the techniques described in Patent Documents 3 and 4. Moreover, polymer solutions of different materials include water-based ones whose solvent is water and oily ones such as toluene, which are difficult to mix with each other and would like to be a combination of such materials. In particular, forced mixing techniques are required. Other oily solvents include dimethylformaside and dimethylacetoside. As one example, there is a combination of an aqueous polymer solution using water as a solvent for a polyvinyl alcohol resin and an oily polymer solution using a solvent in which toluene and DMF are mixed in a polyurethane resin.

本発明の目的は、原料材や処理材を帯電した微細材として放出し供給する静電環境一般において、放出した微細材の供給密度分布を均一にして、回収や表面処理の効率化や均一化が図れる静電放出方法と装置、これらを用いた静電作業方法と装置を提供することにあり、さらには複数の静電放出系から静電放出する微細材の材料の異同を問わず均一に混合できるようにもする。   The object of the present invention is to make the supply density distribution of the discharged fine material uniform in the electrostatic environment in general, which discharges and supplies the raw material and processing material as a charged fine material, and makes recovery and surface treatment more efficient and uniform. Is to provide an electrostatic discharge method and apparatus, and an electrostatic work method and apparatus using them, and evenly, regardless of the difference in the materials of the fine materials that electrostatic discharge from a plurality of electrostatic discharge systems Also allow mixing.

上記のような目的を達成するために、本発明の第1の態様の静電放出方法によれば、静電放出系により1種またはそれ以上の原料材または処理材を帯電した微細材として静電放出し所定の方向に供給する静電放出方法において、微細材の静電放出経路のまわりに静電的に独立して複数配した導電性部材のそれぞれに、微細材と同極で0V以上で変動する電圧を互いの位相が所定量ずれるように個別に印加して、変動する電界を発生させることにより、静電放出した微細材にそのまわりから静電的な混合変位力を及ぼすことを特徴としている。 In order to achieve the above object, according to the electrostatic discharge method of the first aspect of the present invention, one or more raw materials or treatment materials are statically charged as a fine material charged by an electrostatic discharge system. In the electrostatic discharge method of discharging electricity and supplying it in a predetermined direction, each of a plurality of conductive members electrostatically and independently arranged around the electrostatic discharge path of the fine material has 0V or more in the same polarity as the fine material. By applying a voltage that fluctuates in a step so that the phases of each other are shifted by a predetermined amount and generating a fluctuating electric field, an electrostatic mixed displacement force is exerted on the electrostatically discharged fine material from around it. It is a feature.

このような構成によれば、静電放出系から1種またはそれ以上の原料材または処理材を帯電した微細材として静電放出して所定の方向に供給し、静電的な付着を伴なう回収や表面処理などの静電作業に供するのに、静電放出される微細材が帯電しているのを利用して、そのまわりからの電界による静電的な働きにより、静電放出系から放出される微細材に対しその雰囲気を含む微細材どうしの混合を促進させる変位力を与えられ、雰囲気を含む放出微細材どうしの混合比や密度分布を均一化し、また高めることができる。   According to such a configuration, one or more raw materials or treatment materials are electrostatically discharged from the electrostatic discharge system as charged fine materials and supplied in a predetermined direction, accompanied by electrostatic adhesion. For electrostatic work such as waste collection and surface treatment, the electrostatic discharge system is utilized by the electrostatic action of the electric field from the surroundings using the electrostatically discharged fine material being charged. Displacement force for promoting mixing of fine materials including the atmosphere is given to the fine materials released from the atmosphere, and the mixing ratio and density distribution of the discharged fine materials including the atmosphere can be made uniform and enhanced.

このような方法は、1種またはそれ以上の原料材または処理材を帯電した微細材として静電放出し所定の方向に供給する静電放出系を備え、静電放出系から静電放出した微細材にそのまわりから静電的な混合変位力を及ぼす静電混合手段を有したことを特徴とする本発明の第の態様の静電放出装置によって実現できる。 Such a method includes an electrostatic discharge system that electrostatically discharges one or more raw materials or treatment materials as a charged fine material and supplies the material in a predetermined direction. This can be realized by the electrostatic discharge device according to the seventh aspect of the present invention, characterized in that the material has electrostatic mixing means for applying an electrostatic mixing displacement force to the material from its surroundings.

本発明の第2の態様の静電放出方法によれば、第1の態様において、さらに、前記導電性部材に印加する前記変動する電圧を、交流成分に微細材と同極の直流成分が重畳した0V以上の変動電圧、または、パルス幅を周期的に変更した微細材と同極性の変動電圧とすることを特徴としている。 According to the electrostatic discharge method of the second aspect of the present invention, in the first aspect, the fluctuating voltage applied to the conductive member is further superimposed with a direct current component having the same polarity as the fine material on the alternating current component. The fluctuation voltage is 0 V or more, or the fluctuation voltage has the same polarity as that of the fine material whose pulse width is periodically changed .

の態様の静電放出方法によれば、第1又はの態様のいずれかにおいて、さらに、電界の変動は、各導電性部材に対し一方向回転または正逆方向回転させて与えることを特徴としている。 According to the electrostatic discharge method of the third aspect, in any one of the first and second aspects, the electric field fluctuation is further applied to each conductive member by rotating in one direction or forward and reverse directions. It is characterized by.

このような特徴によれば、第1又はの態様のいずれかの場合に加え、さらに、静電放出される微細材に与える変動する電界による混合変位力が、静電放出される微細材のまわりに一方向回転または正逆方向の旋回成分を持って微細材に働くので、高密度化を伴なう混合比や密度分布の均一化とその効率をさらに高められ、正逆方向の旋回成分を持って働く方が一方向の旋回成分を持って働く場合よりも格段に優れる。 According to such a feature, in addition to the case of either the first or second aspect, the mixed displacement force due to the fluctuating electric field applied to the fine material to be electrostatically discharged is further subjected to electrostatic discharge. Since it works on fine materials with a unidirectional rotation or forward / reverse swirl component around the center, the mixing ratio and density distribution with higher density can be made uniform and its efficiency can be further improved, and the forward / reverse swirl Working with a component is much better than working with a one-way turning component.

本発明の第の態様の静電放出方法によれば、第1〜第の態様において、さらに、静電放出は、高分子溶液の原料材または処理材の静電爆発またはおよび空気爆発を伴い行うことを特徴としている。 According to the electrostatic discharge method of the fourth aspect of the present invention, in the first to third aspects, the electrostatic discharge further includes electrostatic explosion or air explosion of the raw material or the treatment material of the polymer solution. It is characterized by being accompanied.

このような特徴によれば、第1〜第の態様のいずれかの場合に加え、さらに、原料材や処理材を空気爆発を伴い放出すると、静電塗装などの表面処理一般に適用される程度の微細材を供給することができ、静電爆発を伴ない放出すると、ナノ単位といったさらに微細な繊維や粒子を供給することができ、静電爆発および空気爆発を伴い放出すると、静電放出する微細材のさらなる微細化と、混合比、密度分布の均一化を高められるし、微細材の微細度を高めるのに静電爆発単独の場合よりも印加電圧を抑えられる。 According to such a feature, in addition to the case of any of the first to third aspects, when the raw material and the treatment material are released with an air explosion, the degree is generally applied to surface treatment such as electrostatic coating. Of fine materials can be supplied, and when discharged with electrostatic explosion, finer fibers and particles such as nano units can be supplied. When discharged with electrostatic explosion and air explosion, electrostatic discharge is performed. Further refinement of the fine material, uniformity of the mixing ratio and density distribution can be improved, and the applied voltage can be suppressed to increase the fineness of the fine material, compared with the case of electrostatic explosion alone.

このような原料材または処理材の静電爆発および空気爆発による静電放出は、本発明の第の態様の静電放出装置において、さらに、静電放出系は、原料材または処理材を帯電を伴い放出する静電放出流路と、この静電放出流路にて放出させる原料材または処理材を空気爆発させるように空気を供給する空気流路とを備えた2流体ノズルであることを特徴とする第の態様にて実現できる。 Such electrostatic discharge due to electrostatic explosion and air explosion of the raw material or treatment material is performed in the electrostatic discharge device according to the ninth aspect of the present invention. The electrostatic discharge system further charges the raw material or treatment material. A two-fluid nozzle including an electrostatic discharge channel that discharges with air and an air channel that supplies air so that the raw material or treatment material discharged in the electrostatic discharge channel causes air to explode. This can be realized in the eighth aspect.

本発明の第の態様の静電放出方法によれば、第1〜第の態様のいずれかにおいて、さらに、静電放出は、原料材または処理材の種類ごとに異なった静電放出系にて個別に行うことを特徴としている。 According to the electrostatic discharge method of the fifth aspect of the present invention, in any one of the first to fourth aspects, the electrostatic discharge is different for each type of raw material or treatment material. It is characterized by being performed individually.

このような特徴によれば、第1〜第の態様のいずれかの場合に加え、さらに、原料材または処理材の種類ごとに異なった静電放出系にて個別に、従って水性と油性との混合し難い相互の関係に影響なく静電爆発またはおよび空気爆発の静電放出の特徴を活かしたさらなる微細化、分散を図って静電放出させて、既述のように静電的に与える混合変位力の種類に応じた矯正混合が行なえるので、高密度化を伴なう混合比、密度分布の均一化が図れる。特に、各静電放出系からの静電放出域を重ねさせることで静電放出する各々の微細材どうしを一次混合させられるので、さらに好適である。 According to such a feature, in addition to any one of the first to fourth aspects, the electrostatic discharge system is different for each type of raw material or treatment material, and accordingly, aqueous and oily. Electrostatic discharge is achieved by further miniaturization and dispersion utilizing the characteristics of electrostatic discharge of electrostatic explosion and air explosion without affecting the mutual relationship that is difficult to mix, and electrostatically giving as described above Since corrective mixing according to the type of mixing displacement force can be performed, the mixing ratio and density distribution accompanying high density can be made uniform. In particular, it is more preferable that the fine materials to be electrostatically discharged can be primarily mixed by overlapping the electrostatic discharge regions from the respective electrostatic discharge systems.

本発明の第の態様の静電作業方法によれば、第1〜第の態様の静電放出方法のいつれか1つによって放出される微細材を、これと電位差を持った対象面上に静電的に付着させて回収または表面処理を行うことを特徴としている。 According to the electrostatic working method of the sixth aspect of the present invention, the fine material discharged by any one of the electrostatic discharge methods of the first to fifth aspects is applied to the target surface having a potential difference from this. It is characterized by carrying out recovery or surface treatment by electrostatically adhering to the top.

このような構成では、静電放出して供給される微細材の回収、微細材による表面処理が効率よくむらなく行える。   In such a configuration, the fine material supplied by electrostatic discharge can be collected and the surface treatment with the fine material can be performed efficiently and uniformly.

このような方は、本発明の第〜第の態様の静電放出装置のいずれかと、それによって放出される微細材を、これと電位差を持った対象面上に静電的に付着させて回収または表面処理を行うことを特徴とする第10の態様の静電作業装置によって実現する。 Such way is either of the electrostatic discharge apparatus of the seventh to ninth aspect of the present invention, deposition thereby a fine material to be released, electrostatically onto a target surface having a potential difference with this The electrostatic working apparatus according to the tenth aspect is characterized in that recovery or surface treatment is performed.

本発明のそれ以上の目的および特徴は、以下の具体的な説明および図面の記載によって明らかになる。   Further objects and features of the present invention will become apparent from the following specific description and drawings.

本発明によれば、静電放出系から原料材または処理材を帯電した微細材として静電放出し、静電的な付着を伴なう回収や表面処理などの静電作業に供するのに、帯電している微細材にそのまわりから電界による静電的な混合変位力を与えて混合を促進させることにより雰囲気を含む微細材どうしの混合比や密度分布を均一化し、また高めることができる。   According to the present invention, the electrostatic discharge system electrostatically discharges the raw material or the processing material as a charged fine material, and is subjected to electrostatic work such as recovery or surface treatment with electrostatic adhesion. By applying an electrostatic mixing displacement force due to an electric field to the charged fine material from around it to promote mixing, the mixing ratio and density distribution of the fine materials including the atmosphere can be made uniform and enhanced.

以下、本実施の形態に係る静電放出方法と装置、これらを用いた静電作業方法と装置につき図1〜図9を参照しながら説明し、本発明の理解に供する。   Hereinafter, an electrostatic discharge method and apparatus according to the present embodiment, and an electrostatic work method and apparatus using these will be described with reference to FIGS. 1 to 9 for the understanding of the present invention.

本実施の形態は主として、図1に示す例のように原料材や処理材となる高分子溶液1を特許文献1に記載のような電子紡糸タイプの静電放出系2により帯電を伴い繊維、粉体、粒子などの微細材3として放出し、これと電位差を有した対象面8a上に電荷誘導を伴い静電的に付着させて回収や表面処理に供する場合の1例である。微細材3に対する対象面8aの電位差は印加電源9からの微細材3と逆極性に帯電を行うかアースに接続することで得られる。   In the present embodiment, a polymer solution 1 as a raw material or a treatment material is mainly charged with an electrospinning type electrostatic discharge system 2 as described in Patent Document 1 as shown in FIG. This is an example of the case where the fine material 3 such as powder and particles is discharged and electrostatically attached to the target surface 8a having a potential difference from the fine material 3 for collection and surface treatment. The potential difference of the target surface 8a with respect to the fine material 3 can be obtained by charging with a polarity opposite to that of the fine material 3 from the applied power source 9 or by connecting to the ground.

微細材3としての繊維は高分子溶液を容器から自然に、あるいは回転による遠心力を利用して線状に流出させながら静電爆発により延伸させることで得られる。帯電電荷を高めて静電爆発が一次、二次、三次と繰り返し行われるようにするほど微細化し、また長繊維化もでき、その回収過程で特許文献1で知られるような高分子ウエブを製造したり、特許文献2などで既に知られる連続した高分子ファイバ束であるフィラメントや撚りを掛けた糸条に合糸したりすることができる。   The fiber as the fine material 3 can be obtained by stretching a polymer solution from a container naturally or by electrostatic explosion while flowing out linearly using centrifugal force of rotation. The polymer charge is increased so that electrostatic explosion can be repeated repeatedly in the primary, secondary, and tertiary, and the fibers can be made longer. Or a continuous polymer fiber bundle already known in Patent Document 2 or the like, and can be combined with a twisted yarn.

ここに、原料材や処理材となる高分子溶液1としては、特許文献3などにより既に知られる電子紡糸用の各種高分子材料、例えば、ポリフッ化ビニリデン(FVDF)、ポリ(フッ化ビニリデン−コ−ヘキサフルオロプロピレン)、ポリアクリロニトリル、ポリ(アクリロニトリル−コ−メタクリレ−ト、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ(塩化ビニリデン−コ−アクリレート)、ポリエチレン、ポリプロピレン、ナイロン12、ナイロン−4,6などのナイロン系列,アラミド、ポリベンゾイミダゾール、ポリビニルアルコール、セルロ−ス、酢酸セルロ−ス、酢酸酪酸セルロ−ス、ポリビニルピロリドン−酢酸ビニル、ポリ(ビス−(2−メトキシ−エトキシエトキシ)) ホスファゼン(MEEP))、ポリエチレンイミド(PEI)、ポリ(コハク酸エチレン)、ポリ(硫化エチレン)、ポリ(オキシメチレン−オリゴ−オキシエチレン)、ポリ(酸化プロピレン)、ポリ(酢酸ビニル)、ポリアニリン、(ポリテレフタル酸エチレン)、ポリ(ヒドロキシ酪酸)、ポリ(酸化エチレン)、SBSコポリマー、ポリ乳酸、ポリペプチド、タンパク質などのバイオポリマー、コールタールピッチ、石油ピッチなどのピッチ系などの様々な高分子が適用でき、これらの共重合体および混合物なども適用できるほか、特許文献3などで知られる材料、その他を用いることができる。また、溶媒はこれら高分子を溶解する任意の溶媒を適用できる。   Here, as the polymer solution 1 used as a raw material or a treatment material, various polymer materials for electrospinning already known from Patent Document 3, such as polyvinylidene fluoride (FVDF), poly (vinylidene fluoride-co-polymer), are known. -Hexafluoropropylene), polyacrylonitrile, poly (acrylonitrile-co-methacrylate, polymethyl methacrylate, polyvinyl chloride, poly (vinylidene chloride-co-acrylate), polyethylene, polypropylene, nylon 12, nylon-4,6, etc. Nylon series, aramid, polybenzimidazole, polyvinyl alcohol, cellulose, cellulose acetate, cellulose acetate butyrate, polyvinylpyrrolidone-vinyl acetate, poly (bis- (2-methoxy-ethoxyethoxy)) phosphazene (MEEP) )), Polyethyleneimide (PEI), poly ( (Ethylene succinate), poly (ethylene sulfide), poly (oxymethylene-oligo-oxyethylene), poly (propylene oxide), poly (vinyl acetate), polyaniline, (polyethylene terephthalate), poly (hydroxybutyrate), poly Various polymers such as (ethylene oxide), SBS copolymer, biopolymers such as polylactic acid, polypeptide, protein, pitch systems such as coal tar pitch, petroleum pitch, etc., and their copolymers and mixtures are also applicable In addition, materials known from Patent Document 3 and others can be used. As the solvent, any solvent that dissolves these polymers can be used.

しかし、図1に示す例では、帯電を伴い静電放出する微細材3を非繊維形態、つまり粒子状とする場合の1つの具体例である。このような粒子状の微細材3を放出するいわゆる電子紡糸タイプの静電放出系2とし、キャピラリ5にポンプ7により高分子溶液1を加圧供給して帯電を伴い霧化粒子状の微細材3として噴霧し静電爆発を伴い放出する静電放出方式を採用している。また、キャピラリ5をガラス製などの非帯電材料により形成してステンレス線などよりなる電極6を挿入して印加電源4から電圧V1を印加してそこに供給される高分子溶液1への浸漬状態にて帯電させる帯電方式を採用している。これにより、霧化粒子状に放出する微細材3に十分な帯電が及び必要な程度の静電爆発の繰り返しが得られ、微細材3をナノ単位もしくはそれ以下の微粒子にすることができる。   However, the example shown in FIG. 1 is a specific example in which the fine material 3 that is electrostatically discharged with charging is in a non-fiber form, that is, in the form of particles. A so-called electrospinning type electrostatic discharge system 2 that discharges such particulate fine material 3 is supplied to the capillary 5 by pressurizing the polymer solution 1 with a pump 7 and charged with atomized particulate fine material. The electrostatic discharge method of spraying as 3 and discharging with electrostatic explosion is adopted. Further, the capillary 5 is made of a non-charged material such as glass, and an electrode 6 made of stainless steel wire is inserted, and a voltage V1 is applied from an applied power source 4 to be immersed in the polymer solution 1 supplied thereto. The charging method is used for charging at As a result, the fine material 3 released in the form of atomized particles can be sufficiently charged and the required degree of electrostatic explosion can be repeated, so that the fine material 3 can be made into fine particles of nano units or less.

いずれにしても、1つの静電放出系2から静電放出する微細材3は均一な密度で分布しないことにより、対象物8の対象面8aへの電荷誘導を伴なう静電付着により回収や表面処理を行うのにもむらが生じる。また、同極性に帯電している微細材3同士の反発による離散傾向、つまり低密度化傾向を示す上、静電爆発の繰り返し回数が増加するほど微細化が進むものの密度が低下する傾向も手伝って、回収効率、表面処理効率の低下の原因ともなる。   In any case, the fine material 3 that electrostatically discharges from one electrostatic discharge system 2 is not distributed at a uniform density, and thus is recovered by electrostatic adhesion with charge induction to the target surface 8a of the target object 8. And uneven surface treatment. In addition, it shows a discrete tendency due to repulsion between the fine materials 3 charged with the same polarity, that is, a tendency toward a lower density, and also helps the tendency of the density to decrease as the number of repeated electrostatic explosions increases. As a result, the recovery efficiency and surface treatment efficiency may be reduced.

しかし、帯電を伴う微細材3の静電放出において、微細材3に必要な大きさや形態によっては、静電爆発を必要としない場合があり、微細材3の静電爆発に起因した分散は回避できるし、静電爆発を発生させるのに対象面8aと微細材3との電位差は1〜100kV程度の高電圧となるのを軽減することができる。この必要電位差は、図1に示す例のように対象面8aに対し電源9から前記電極6とは逆極性の電荷V3を印加してV1とV3とで得られるが、対象面8aをアースに接続してもよく、この場合V1は必要電位差である例えば1〜100kVの全電圧を満足する必要があり、これを軽減できるほど有利である。   However, in the electrostatic discharge of the fine material 3 accompanied by charging, depending on the size and form required for the fine material 3, an electrostatic explosion may not be required, and dispersion due to the electrostatic explosion of the fine material 3 is avoided. In addition, it is possible to reduce the potential difference between the target surface 8a and the fine material 3 from becoming a high voltage of about 1 to 100 kV in order to generate an electrostatic explosion. This necessary potential difference is obtained by applying a charge V3 having a polarity opposite to that of the electrode 6 from the power source 9 to the target surface 8a as shown in FIG. 1, but the target surface 8a is grounded. In this case, V1 needs to satisfy the total voltage of, for example, 1 to 100 kV, which is a necessary potential difference, and it is advantageous that it can be reduced.

この意味から、高分子溶液1を微細材3として静電放出する方式は、ノズルにより帯電を伴い噴霧するだけの静電爆発を伴なわないで静電放出する方式、図2に示す例の静電放出系のように2流体ノズル11により高分子溶液1の帯電を伴なう噴出に併せ空気を同時噴出させることにより空気爆発により高分子溶液1の微細化を図って静電爆発を伴なわないで静電放出する方式、これらいずれの場合にも静電爆発を伴なわせて静電放出する方式として採用することができる。これら前2者では高電圧の印加が不要となるし、原料材や処理材とする対象材も上記したような高分子溶液1などに限定されない自由度も得られる。後2者では静電爆発を伴なう分だけ微細化しやすく、ナノ単位ないしはそれ以下の微細材3が得られるし、これに空気爆発を併用する場合では、静電爆発を軽減して微細化が図れ、静電爆発を軽減できる分だけ印加電圧を低減することができる。図2に示す例の2流体ノズル11は高分子溶液1を帯電と静電爆発とを伴い噴霧状に静電放出する静電放出流路11aとこのまわりから圧縮空気を空気爆発を伴い噴出させる空気放出路11bとを持ち、高分子溶液1を球状の微細材3として静電放出する。これによれば、溶媒を加えても通常スプレーできない材料も噴霧することができ、10〜50μm程度の行程の空気爆発域12に続いて0.1〜1μm程度の行程の一次静電爆発域13、10〜100nm程度の行程の二次静電爆発域14が順次に生じる空気爆発併用の電子紡糸タイプの静電放出系2としてある。図2では高圧の印加電源4はオン、オフスイッチSW付きのもので示しているが、他の印加電源9、15などと共に制御系からオン、オフ制御するものでよい。   In this sense, the method of electrostatically discharging the polymer solution 1 as the fine material 3 is a method of electrostatically discharging without electrostatic explosion only by spraying with charging by the nozzle, the static of the example shown in FIG. As in the case of the electric discharge system, the air is simultaneously ejected by the two-fluid nozzle 11 together with the ejection accompanied by the charging of the polymer solution 1, thereby minimizing the polymer solution 1 by the air explosion and causing the electrostatic explosion. It can be adopted as a method of electrostatic discharge without any electrostatic discharge, and a method of electrostatic discharge accompanied by electrostatic explosion in any of these cases. The former two do not require the application of a high voltage, and a degree of freedom is also obtained in which the target material used as a raw material or a treatment material is not limited to the polymer solution 1 as described above. The latter two are easy to miniaturize as much as it accompanies an electrostatic explosion, and a fine material 3 with nano-units or less can be obtained, and when this is combined with an air explosion, the electrostatic explosion is reduced and refined. Therefore, the applied voltage can be reduced by the amount that can reduce the electrostatic explosion. The two-fluid nozzle 11 in the example shown in FIG. 2 discharges the polymer solution 1 electrostatically in a spray state with charging and electrostatic explosion, and jets compressed air from the surroundings with air explosion. It has an air discharge path 11b and electrostatically discharges the polymer solution 1 as a spherical fine material 3. According to this, it is possible to spray materials that cannot normally be sprayed even if a solvent is added, and the primary electrostatic explosion region 13 having a stroke of about 0.1 to 1 μm following the air explosion region 12 having a stroke of about 10 to 50 μm. , A secondary electrostatic explosion region 14 having a stroke of about 10 to 100 nm is formed as an electrospinning type electrostatic discharge system 2 used in combination with an air explosion. In FIG. 2, the high-voltage application power source 4 is shown with an on / off switch SW, but it may be controlled on / off from the control system together with other application power sources 9, 15 and the like.

本実施の形態は、特に、これら静電爆発を伴なう図1に示す静電放出系2や図2に示す静電放出系2などのほか、静電爆発を伴なわないものを含む、静電放出系一般から電荷を有して所定の方向に静電放出される微細材3どうしが、雰囲気を含む混合比や密度分布が必ずしも均一になり難いことにつき、図1、図2に示す各例では、静電放出系2により1種またはそれ以上の原料材または処理材である高分子溶液1などを帯電した微細材3として静電放出し所定の方向に供給するのに、静電放出した微細材3にそのまわりから静電的な混合変位力Fを及ぼす静電放出方法を採用している。これにより、静電放出系2から1種またはそれ以上の原料材または処理材を帯電した微細材3として静電放出して所定の方向に供給し、対象面8aへの静電的な付着を伴なう回収や表面処理などの静電作業に供するのに、静電放出される微細材3が帯電しているのを利用して、そのまわりからの電界による静電的な働きにより、静電放出系2から放出される微細材3に対しその雰囲気21を含む微細材3どうしの混合を促進させる混合変位力Fを非接触に与えられ、雰囲気21を含む微細材3どうしの混合比や密度分布を均一化し、また高めることができる。   In particular, the present embodiment includes the electrostatic discharge system 2 shown in FIG. 1 with electrostatic explosion and the electrostatic discharge system 2 shown in FIG. 2 as well as those without electrostatic explosion. FIG. 1 and FIG. 2 show that it is difficult for the fine materials 3 having an electric charge from the general electrostatic discharge system to be electrostatically discharged in a predetermined direction to have a uniform mixing ratio and density distribution including the atmosphere. In each example, electrostatic discharge system 2 electrostatically discharges one or more raw materials or polymer solution 1 as a processing material as charged fine material 3 and supplies it in a predetermined direction. An electrostatic discharge method for applying an electrostatic mixing displacement force F to the discharged fine material 3 from around is adopted. As a result, one or more raw materials or processing materials are electrostatically discharged from the electrostatic discharge system 2 as a charged fine material 3 and supplied in a predetermined direction, and electrostatic adhesion to the target surface 8a is prevented. For the electrostatic work such as recovery and surface treatment that accompanies it, the electrostatically discharged fine material 3 is charged, and the electrostatic action due to the electric field from the surroundings makes the static work. A mixing displacement force F for promoting the mixing of the fine materials 3 including the atmosphere 21 to the fine materials 3 discharged from the electron emission system 2 is applied in a non-contact manner, and the mixing ratio of the fine materials 3 including the atmosphere 21 is determined. The density distribution can be made uniform and enhanced.

これを実現するのに、図1、図2に示す例の静電放出装置22は、1種またはそれ以上の原料材または処理材である高分子溶液1などを帯電した微細材3として静電放出し所定の方向に供給する図1、図2に示すような各静電放出系2を備えるのに加え、各静電放出系2から静電放出した微細材3にそのまわりから静電的な混合変位力Fを及ぼす静電混合手段23を有したものとしている。   In order to realize this, the electrostatic discharge device 22 shown in FIGS. 1 and 2 is electrostatically charged as a fine material 3 charged with one or more raw material materials or a polymer solution 1 as a processing material. In addition to providing each electrostatic discharge system 2 as shown in FIGS. 1 and 2 to discharge and supply in a predetermined direction, the electrostatic material is electrostatically discharged from its surroundings to the fine material 3 electrostatically discharged from each electrostatic discharge system 2. It is assumed that an electrostatic mixing unit 23 that exerts a mixing displacement force F is provided.

このような混合比、分布密度の均一化は、図3に示す例のように図1に示すタイプの静電放出系2の複数から、または、図4に示す例のように図2に示す例の静電放出系2の複数から、それぞれ異なった高分子溶液1A、1B、1Cなどを静電放出した複数の異種材料よりなる微細材3A、3B、3Cに対しても同様に行うことができ、異種材料よりなる微細材3A、3B、3Cの雰囲気21中の空気を含む混合比、密度分布が均一化し、水性の高分子溶媒と油性の高分子溶媒のように難混合性の材料を含む微細材3A、3B、3C同士の混合に特に有効である。なお、図示しないが、各静電放出系2からの放出域24が重なるように微細材3の静電放出方向を同一域に向け供給するように調整することで、静電放出する各々の微細材3どうしを静電放出エネルギを利用して一次混合させられるので、さらに好適である。また、各静電放出系2からの静電放出に際し高分子溶液1などの材料の種類別に印加電源4A、4B、4Cからの印加電圧V1a、V1b、V1cを種々に異ならせることができる。   Such uniform mixing ratio and distribution density are shown in FIG. 2 from a plurality of electrostatic discharge systems 2 of the type shown in FIG. 1 as in the example shown in FIG. 3 or in the example shown in FIG. The same can be applied to the fine materials 3A, 3B, and 3C made of a plurality of different materials from which a plurality of different polymer solutions 1A, 1B, and 1C are electrostatically discharged from a plurality of electrostatic discharge systems 2 in the example. The mixing ratio and density distribution including the air in the atmosphere 21 of the fine materials 3A, 3B, and 3C made of different materials can be made uniform, and difficult-to-mix materials such as an aqueous polymer solvent and an oily polymer solvent can be obtained. It is particularly effective for mixing the fine materials 3A, 3B, 3C to be included. Although not shown in the drawings, each fine material to be electrostatically discharged is adjusted by adjusting the electrostatic discharge direction of the fine material 3 toward the same region so that the discharge regions 24 from the respective electrostatic discharge systems 2 overlap. Since the materials 3 can be primarily mixed using electrostatic discharge energy, it is more preferable. Further, upon electrostatic discharge from each electrostatic discharge system 2, the applied voltages V1a, V1b, and V1c from the applied power sources 4A, 4B, and 4C can be varied depending on the type of material such as the polymer solution 1.

このように複数の静電放出系2を利用する場合、必要数を静電放出装置22に備えればよく、1つの静電放出系2などから静電放出される1種の微細材3自体が異種材料を混合したものであってもよいし、複数の静電放出系2などの幾つか同士、あるいは全てが同じ材料の微細材3を静電放出してもよいのは勿論である。また、複数の静電放出系2などで同時に静電放出する場合、静電放出装置22において、それら静電放出系2に高分子溶液1などの原料材、処理材を供給する経路に電磁弁33A、33B、33Cを設けて、供給する高分子溶液1A、1B、1Cなどの材料に応じて供給量などを調整できるし、ポンプ7A、7B、7Cなどによる供給圧を調整することもできる。   When a plurality of electrostatic discharge systems 2 are used in this way, the necessary number of electrostatic discharge devices 22 may be provided, and one kind of fine material 3 itself discharged electrostatically from one electrostatic discharge system 2 or the like. Of course, a mixture of different materials may be used, or some of the plurality of electrostatic discharge systems 2 or the like, or all of the fine materials 3 of the same material may be discharged electrostatically. Further, when electrostatic discharge is simultaneously performed by a plurality of electrostatic discharge systems 2 or the like, an electromagnetic valve is provided in a path for supplying a raw material material or a processing material such as the polymer solution 1 to the electrostatic discharge system 2 in the electrostatic discharge system 22. 33A, 33B, and 33C are provided, and the supply amount and the like can be adjusted according to the materials such as the polymer solutions 1A, 1B, and 1C to be supplied, and the supply pressure by the pumps 7A, 7B, and 7C can be adjusted.

前記のような電界による混合変位力Fは、図1、図2、図3、図4の各例に示すように静電放出される微細材3のまわりに銅板などの導電性部材31を配置して印加電源15から電圧V2を印加し必要な混合変位力Fをもたらす電界を発生させれば得られる。この場合印加電圧V2は微細材3の帯電電極と同極で0V以上とすることで、混合変位力Fは微細材3の高密度化方向の分力を有して、微細材3の拡散や導電性部材31への静電的な付着を防止するのに併せ、混合比や密度分布の均一化が図れる。また、大きな相互反発はかえって微細材3同士の混合比、密度分布の均一化や静電作業の妨げになり、前記微細材3を帯電させ対象面8a上へ電化誘導するための電位差1〜100kVに対し500V程度以下にするのが好適であり、静電作業条件、環境の違いによって調整できる。   The mixed displacement force F due to the electric field as described above arranges a conductive member 31 such as a copper plate around the fine material 3 to be electrostatically discharged as shown in the examples of FIGS. 1, 2, 3, and 4. Then, the voltage V2 is applied from the applied power source 15 to generate an electric field that provides the necessary mixed displacement force F. In this case, the applied voltage V2 is equal to or more than 0 V with the same polarity as the charging electrode of the fine material 3, and the mixed displacement force F has a component force in the direction of densification of the fine material 3, In addition to preventing electrostatic adhesion to the conductive member 31, the mixing ratio and density distribution can be made uniform. In addition, a large mutual repulsion hinders the mixing ratio and density distribution of the fine materials 3 and the uniform electrostatic distribution and electrostatic work, and a potential difference of 1 to 100 kV for charging the fine material 3 and electrifying it onto the target surface 8a. On the other hand, the voltage is preferably about 500 V or less, and can be adjusted depending on the electrostatic work conditions and the environment.

また、このような静電的な混合変位力Fは、静電放出した微細材3のまわりから変動する電界を及ぼして与えるのが良好である。このようにすると、静電放出される微細材3にそのまわりから静電的に与える混合変位力Fを変動する電界により変動させて、微細材3の混合変位を乱して混合挙動を複雑化し混合作用を高められるので、混合比、密度分布の均一化を高められる。   Such an electrostatic mixed displacement force F is preferably applied by applying an electric field that fluctuates around the fine material 3 that has been electrostatically discharged. In this way, the mixing displacement force F electrostatically applied to the fine material 3 from which it is electrostatically discharged is changed by the changing electric field, thereby disturbing the mixing displacement of the fine material 3 and complicating the mixing behavior. Since the mixing action can be enhanced, the mixing ratio and density distribution can be made uniform.

これを実現するのに、図1、図2、図3、図4に示す各静電放出装置22の静電混合手段23は、静電放出した微細材3のまわりに配した導電性部材31と、この導電性部材31に微細材3と同極性の0V以上で変動する電圧V2を印加して変動する電界を発生させ、それによる変動する混合変位力Fを微細材3に及ぼす電圧印加手段34とを有したものとしている。電圧印加手段34は印加電源15からの電圧を制御に従い変動させて印加する。これにより、電圧印加手段34は単独のあるいは外部機器との組み合わせによる電圧変動機能により、導電性部材31に印加する電圧をどのようにも変動させられる。   In order to realize this, the electrostatic mixing means 23 of each electrostatic discharge device 22 shown in FIGS. 1, 2, 3, and 4 is provided with a conductive member 31 disposed around the fine material 3 discharged electrostatically. And a voltage applying means for generating a varying electric field by applying a voltage V2 varying at 0V or more of the same polarity as that of the fine material 3 to the conductive member 31 and applying a mixed displacement force F caused thereby to the fine material 3. 34. The voltage application means 34 applies the voltage from the application power supply 15 by varying it according to the control. As a result, the voltage application means 34 can vary the voltage applied to the conductive member 31 in any way by a voltage variation function by itself or in combination with an external device.

そこで、電界の変動は、例えば、電圧V2の図5に示すような交流特性や、図6に示すようなパルス幅が周期的に変動するようにパルス幅変調(PWM)されたパルス特性などを利用することができ、既述した微細材3と同極性で0V以上である条件を満足するには、交流特性は図5に示すように交流成分に直流成分を重畳した電圧変化とすればよいし、パルス特性は図6に示すような単純なオン、オフの時間間隔によるパルス幅、パルス間隔の変動などとすればよく、電界が印加する電圧V2の交流成分変化やパルス幅の周期的な変化に従い、静電放出した微細材3に及ぼす変動する電界による混合変位力Fの高密度化方向成分にその周波数やパルス幅の周期的な変化に見合った強弱を与えて、微細材3を内外方向に振動的に拡縮させる挙動が得られるので、高密度化を伴なう混合比、密度分布の均一化をさらに高められる。   Therefore, the fluctuation of the electric field is, for example, the AC characteristic as shown in FIG. 5 of the voltage V2, or the pulse characteristic that is pulse width modulated (PWM) such that the pulse width periodically fluctuates as shown in FIG. In order to satisfy the condition of 0 V or more with the same polarity as that of the fine material 3 described above, the AC characteristic may be a voltage change in which the DC component is superimposed on the AC component as shown in FIG. The pulse characteristics may be a simple change in pulse width and pulse interval depending on the on / off time interval as shown in FIG. 6, and the AC component change of the voltage V2 applied by the electric field and the periodicity of the pulse width. In accordance with the change, the strength of the mixed displacement force F due to the changing electric field exerted on the electrostatically discharged fine material 3 is increased or decreased according to the periodic change in the frequency and pulse width, and the fine material 3 is moved in and out. To expand and contract vibrationally in the direction Since is obtained, accompanied mixing ratio densification is further enhanced uniformity of the density distribution.

特に、このように変動する電圧V2を導電性部材31に印加するのに、図7に示すように静電放出される微細材3のまわりに絶縁材32などにより互いに静電的に独立して配置した各導電性部材31a、31b、31c、31d、31e、31fに対し、電圧印加手段34による印加電圧は、それに有する個別な印加電源15a、15b、15c、15d、15e、15fから個別に印加する変動する電圧V2a、V2b、V2c、V2d、V2e、V2fの位相が、図5、図6に示すように所定量、例えば図示するように60°ずつずれるように制御することができる。これにより、静電放出される微細材3のまわりに配設した複数の導電性部材31を利用して、それらに印加する電圧V2a、V2b、V2c、V2d、V2e、V2fの交流成分による変動やパルス電圧の周期的なパルス幅変調による変動に見合って変化する混合変位力Fが、各導電性部材31a、31b、31c、31d、31e、31fの隣接のものどうしの間では特に所定量の位相のずれを持って働かせて微細材3の混合挙動をより複雑化することになるので、高密度化を伴い混合比や密度分布の均一化とその効率をさらに高められる。   In particular, when the voltage V2 that varies in this way is applied to the conductive member 31, the insulating material 32 and the like are electrostatically independent from each other around the fine material 3 that is electrostatically discharged as shown in FIG. The applied voltage by the voltage applying means 34 is applied individually to the respective conductive members 31a, 31b, 31c, 31d, 31e, and 31f arranged from the individual applied power supplies 15a, 15b, 15c, 15d, 15e, and 15f. The phase of the fluctuating voltages V2a, V2b, V2c, V2d, V2e, and V2f can be controlled so as to shift by a predetermined amount, for example, 60 ° as shown in FIGS. Thereby, by using the plurality of conductive members 31 arranged around the fine material 3 to be electrostatically discharged, fluctuations due to alternating current components of the voltages V2a, V2b, V2c, V2d, V2e, V2f applied to them The mixed displacement force F, which changes in accordance with the fluctuation of the pulse voltage due to the periodic pulse width modulation, has a predetermined amount of phase particularly between adjacent ones of the conductive members 31a, 31b, 31c, 31d, 31e, 31f. Therefore, the mixing behavior of the fine material 3 is further complicated, so that the mixing ratio and the density distribution can be made uniform and the efficiency can be further increased with the increase in the density.

この場合、各導電性部材31に印加する交流成分やパルス変調による変動を持った電圧V2a、V2b、V2c、V2d、V2e、V2fは、見掛け上、図5、図6に示すような一方向回転する位相変化、または図8(a)(b)に示す左回りと右回りとの正逆方向回転に位相変化で、その電圧変動状態を隣接する導電性部材31へ順次に移していくことで、静電放出される微細材3のまわりに図1、図2、図3、図4、図7に示す一方向回転または図9に示す正逆方向回転するように変化させられ、微細材3に与える変動する電界による混合変位力が、静電放出される微細材3のまわりに一方向回転または正逆方向の旋回成分を持って微細材3に働くので、高密度化を伴なう混合比や密度分布の均一化とその効率をさらに高められ、図9に示すように正逆方向の旋回成分を持って働く方が図1〜図4、図7に示す一方向の旋回成分を持って働く場合よりも格段に優れる。   In this case, the voltages V2a, V2b, V2c, V2d, V2e, and V2f having fluctuations due to the AC component and pulse modulation applied to each conductive member 31 are apparently rotated in one direction as shown in FIGS. By changing the phase to the adjacent conductive member 31 in sequence by the phase change in the phase change to the counterclockwise rotation shown in FIGS. 8 (a) and 8 (b). 1, 2, 3, 4, and 7 are rotated around the fine material 3 to be electrostatically discharged, or rotated in the forward and reverse directions shown in FIG. 9. The mixing displacement force caused by the changing electric field applied to the micro material 3 acts on the micro material 3 with a unidirectional rotation or forward / reverse direction swirling component around the electrostatically discharged micro material 3, so that the mixing with high density is performed. The uniformity of the ratio and density distribution and the efficiency can be further improved. Suyo forward and reverse directions of the swirling components got to work it is 1 to 4, the superior remarkably than when working with a one-way swirling component shown in FIG.

ここで、電圧印加手段34による印加電圧は、例えば0V以上で、最大10V程度から1kV程度としてよく、周波数は0.1Hz〜10kHz程度とするのが好ましい。   Here, the voltage applied by the voltage applying unit 34 is, for example, 0 V or more, and may be about 10 V to 1 kV at the maximum, and the frequency is preferably about 0.1 Hz to 10 kHz.

図6、図7に示す静電的に独立して配置した複数の導電性部材31a、31b、31c、31d、31e、31fは、多角形、具体的には角形をなしており、横断形状がほぼ円形に静電放出される微細材3に対する距離が近い中央位置では、遠い両側位置よりも微細材3に及ぼす混合変位力Fが大きくなる傾向を示し、微細材3に混合変位力Fが働くランダム性を高められる。もし仮に、このような多角形形態が混合比、密度分布の均一化に悪影響するのであれば、微細材3の静電噴射形態に相似となる円筒形態に配すればよい。しかし、基本的には最低3角形にて実現できる。   The plurality of conductive members 31a, 31b, 31c, 31d, 31e, and 31f arranged electrostatically and independently shown in FIGS. 6 and 7 are polygons, specifically, squares, and have a transverse shape. At the central position where the distance to the fine material 3 that is electrostatically discharged in a substantially circular shape is short, the mixed displacement force F exerted on the fine material 3 tends to be larger than the far side positions, and the mixed displacement force F acts on the fine material 3. Randomness can be improved. If such a polygonal form adversely affects the mixing ratio and the uniform density distribution, it may be arranged in a cylindrical form similar to the electrostatic spray form of the fine material 3. However, it can basically be realized with at least a triangle.

なお、このような静電放出やこれを用いたせ静電作業を種々な条件設定にて自動的に達成するには、図7で代表して例示するように種々の作業条件を設定する操作を行い、また設定状態や動作状態を表示する操作・表示パネル41と、操作・表示パネル41などからの入力や初期設定を記憶部45で記憶し、記憶した設定条件とプログラム42に従い、電圧V1、V3を調整する電圧調整手段43、電圧印加手段34による電圧V2a、V2b、V2c、V2d、V2e、V2fに所定の変動を与える電圧変動手段44、ポンプ7A、7B、7Cや電磁弁33A、33B、33Cなどの動作制御を司るマイクロコンピュータ46などを備えたせ静電作業装置とすればよく、電圧調整手段43、電圧変動手段44、記憶部45はマイクロコンピュータ46の内部機能としてあるが、これに限らず独立した外部機器とすることもできる。   In order to automatically achieve such electrostatic discharge and electrostatic work using this by setting various conditions, an operation for setting various work conditions is exemplified as shown in FIG. In addition, the operation / display panel 41 for displaying the setting state and the operation state, the input from the operation / display panel 41 and the initial setting are stored in the storage unit 45, and the voltage V1, Voltage adjusting means 43 for adjusting V3, voltage changing means 44 for giving predetermined fluctuations to voltages V2a, V2b, V2c, V2d, V2e, V2f by voltage applying means 34, pumps 7A, 7B, 7C and electromagnetic valves 33A, 33B, It is sufficient to provide an electrostatic working device including a microcomputer 46 that controls the operation of 33C and the like. Although the internal functions of over motor 46 may be a separate external device is not limited thereto.

本発明は、静電紡糸技術に類した帯電を伴い微細材を静電放出して回収や表面加工に供する技術において、微細材の混合比や密度分布を均一化して、回収や表面処理の効率を高め、むらを解消できる。   The present invention is a technique for electrostatically discharging fine materials with charging similar to that of electrostatic spinning technology, and using them for collection and surface processing. The mixing ratio and density distribution of the fine materials are made uniform to improve the efficiency of collection and surface treatment. And can eliminate unevenness.

本発明に係る実施の形態の静電爆発を伴なう静電放出系を利用した静電作業装置の例を示す摸式図である。It is a model diagram which shows the example of the electrostatic working apparatus using the electrostatic discharge | emission system accompanying the electrostatic explosion of embodiment which concerns on this invention. 本発明に係る実施の形態の空気爆発および静電爆発を伴なう1つの静電放出系を利用した静電作業装置の例を示す摸式図である。It is a model which shows the example of the electrostatic working apparatus using one electrostatic discharge | emission system accompanied by the air explosion and electrostatic explosion of embodiment which concerns on this invention. 本発明に係る実施の形態の図1の静電放出系を複数利用した静電作業装置の例を示す摸式図である。It is a model diagram which shows the example of the electrostatic working apparatus using two or more electrostatic discharge systems of FIG. 1 of embodiment which concerns on this invention. 本発明に係る実施の形態の図2の静電放出系を複数利用した静電作業装置の例を示す摸式図である。It is a model which shows the example of the electrostatic working apparatus using two or more electrostatic discharge systems of FIG. 2 of embodiment which concerns on this invention. 変動する電界を発生させるために交流成分に直流成分を重畳した変化を持った電圧を複数の導電性部材に所定量の位相のずれ量を持たせて一方向回転させながら印加する場合の1つの例を示す波形図である。One of cases where a voltage having a change in which a direct current component is superimposed on an alternating current component to generate a fluctuating electric field is applied while rotating in one direction with a predetermined amount of phase shift to a plurality of conductive members. It is a wave form diagram which shows an example. 変動する電界を発生させるためにパルス幅を周期的に変化させた電圧を複数の導電性部材に所定量の位相のずれ量を持たせて一方向回転させながら印加する場合の1つの例を示す波形図である。An example is shown in which a voltage whose pulse width is periodically changed to generate a fluctuating electric field is applied to a plurality of conductive members while rotating in one direction with a predetermined amount of phase shift. It is a waveform diagram. 図5、図6に示す一方向回転する波形の電圧を印加する場合の導電性部材の配置例を示す摸式図である。FIG. 7 is a schematic diagram showing an arrangement example of conductive members when a voltage having a waveform rotating in one direction shown in FIGS. 5 and 6 is applied. 変動する電界を発生させるために交流成分に直流成分を重畳した変化を持った電圧を複数の導電性部材に所定量の位相のずれ量を持たせて正逆方向回転させながら印加する場合の1つの例を示す波形図である。1 in the case where a voltage having a change in which a direct current component is superimposed on an alternating current component is applied to a plurality of conductive members while rotating in the forward and reverse directions with a predetermined amount of phase shift to generate a fluctuating electric field. It is a wave form diagram which shows one example. 図8に示す波形の電圧を印加する場合の導電性部材の配置例を示す摸式図である。FIG. 9 is a schematic diagram illustrating an arrangement example of conductive members when a voltage having a waveform illustrated in FIG. 8 is applied.

符号の説明Explanation of symbols

1、1A、1B、1C 高分子溶液
2 静電放出系
3 微細材
4、4A、4B、4C、9、15 印加電源
5 キャピラリ
7、7A、7B、7C ポンプ
8 対象物
8a 対象面
11 2流体ノズル
12 空気爆発域
13 一次静電爆発域
14 二次静電爆発域
21 雰囲気
22 静電放出装置
23 静電混合手段
24 放出域
31 導電性部材
32 絶縁材
33A、33B、33C 電磁弁
34 電圧印加手段
41 操作・表示パネル
42 プログラム
43 電圧調整手段
44 電圧変動手段
45 記憶部
1, 1A, 1B, 1C Polymer solution 2 Electrostatic discharge system 3 Fine material 4, 4A, 4B, 4C, 9, 15 Applied power supply 5 Capillary 7, 7A, 7B, 7C Pump 8 Object 8a Target surface 11 2 Fluid Nozzle 12 Air explosion zone 13 Primary electrostatic explosion zone 14 Secondary electrostatic explosion zone 21 Atmosphere 22 Electrostatic discharge device 23 Electrostatic mixing means 24 Release zone 31 Conductive member 32 Insulating material 33A, 33B, 33C Solenoid valve 34 Voltage application Means 41 Operation / display panel 42 Program 43 Voltage adjustment means 44 Voltage fluctuation means 45 Storage section

Claims (10)

静電放出系により1種またはそれ以上の原料材または処理材を帯電した微細材として静電放出し所定の方向に供給する静電放出方法において、
微細材の静電放出経路のまわりに静電的に独立して複数配した導電性部材のそれぞれに、微細材と同極で0V以上で変動する電圧を互いの位相が所定量ずれるように個別に印加して、変動する電界を発生させることにより、
静電放出した微細材にそのまわりから静電的な混合変位力を及ぼすことを特徴とする静電放出方法。
In an electrostatic discharge method in which one or more raw materials or treatment materials are electrostatically discharged as a charged fine material by an electrostatic discharge system and supplied in a predetermined direction.
Each of the conductive members arranged electrostatically and independently around the electrostatic discharge path of the fine material is individually arranged so that the phase of the voltage that is the same polarity as that of the fine material and fluctuates at 0 V or more is shifted by a predetermined amount. To generate a fluctuating electric field,
An electrostatic discharge method characterized in that an electrostatic mixed displacement force is exerted on a fine material discharged electrostatically from around it.
前記導電性部材に印加する前記変動する電圧を、交流成分に微細材と同極の直流成分が重畳した0V以上の変動電圧、または、パルス幅を周期的に変更した微細材と同極性の変動電圧とする請求項1に記載の静電放出方法。 The fluctuating voltage applied to the conductive member is a fluctuating voltage of 0 V or more in which a direct current component having the same polarity as that of the fine material is superimposed on an alternating current component, or a fluctuation having the same polarity as that of the fine material in which the pulse width is periodically changed. The electrostatic discharge method according to claim 1, wherein the voltage is a voltage . 電界の変動は、各導電性部材に対し一方向回転または正逆方向回転させて与える請求項1又は2に記載の静電放出方法。 Variation of the electric field, the electrostatic discharge method according to claim 1 or 2 for each conductive member providing by one-way rotation or forward and reverse rotating. 静電放出は、高分子溶液の原料材または処理材の静電爆発またはおよび空気爆発を伴い行う請求項1〜のいずれか1項に記載の静電放出方法。 The electrostatic discharge method according to any one of claims 1 to 3 , wherein the electrostatic discharge is performed with electrostatic explosion or air explosion of a raw material or a treatment material of the polymer solution. 静電放出は、原料材または処理材の種類ごとに異なった静電放出系にて個別に行う請求項1〜のいずれか1項に記載の静電放出方法。 The electrostatic discharge method according to any one of claims 1 to 4 , wherein the electrostatic discharge is performed individually in a different electrostatic discharge system for each type of raw material or treatment material. 請求項1〜のいずれか1項に記載の静電放出方法によって放出される微細材は、これと電位差を持った対象面上に静電的に付着させて回収または表面処理を行う静電作業方法。 The fine material discharged by the electrostatic discharge method according to any one of claims 1 to 5 is electrostatically attached to a target surface having a potential difference from the fine material and is collected or surface-treated. Work method. 1種またはそれ以上の原料材または処理材を帯電した微細材として静電放出し所定の方向に供給する静電放出系を備え、
静電放出系から静電放出した微細材にそのまわりから静電的な混合変位力を及ぼす静電混合手段を有し
前記静電混合手段は、
静電放出した微細材のまわりに配した導電性部材と、
この導電性部材に、微細材と同極性の0V以上で変動する電圧を互いの位相が所定量ずれるように個別に印加して、変動する電界を発生させ、それによる変動する混合変位力を微細材に及ぼす電圧印加手段とを有している
ことを特徴とする静電放出装置。
An electrostatic discharge system that electrostatically discharges one or more raw materials or treatment materials as charged fine materials and supplies them in a predetermined direction;
Electrostatic mixing means that exerts electrostatic mixing displacement force on the fine material electrostatically discharged from the electrostatic discharge system ,
The electrostatic mixing means includes
A conductive member disposed around the electrostatically discharged fine material;
A voltage varying at 0V or more of the same polarity as that of the fine material is individually applied to this conductive member so that the phases thereof are shifted by a predetermined amount to generate a fluctuating electric field. An electrostatic discharge apparatus comprising voltage applying means for exerting an influence on the material .
電圧印加手段は、各導電性部材のそれぞれに、交流成分に微細材と同極の直流成分が重畳した0V以上の変動電圧、または、パルス幅を周期的に変更した微細材と同極性の変動電圧を印加する請求項7に記載の静電放出装置。The voltage applying means is a variable voltage of 0 V or more in which a direct current component having the same polarity as that of the fine material is superimposed on an AC component, or a change of the same polarity as that of the fine material in which the pulse width is periodically changed. The electrostatic discharge device according to claim 7, wherein a voltage is applied. 静電放出系は、原料材または処理材を帯電を伴い放出する静電放出流路と、この静電放出流路にて放出させる原料材または処理材を空気爆発させるように空気を供給する空気流路とを備えた2流体ノズルである請求項に記載の静電放出装置。 The electrostatic discharge system is an electrostatic discharge channel that discharges a raw material or a processing material with charging, and an air that supplies air so that the raw material or the processing material that is discharged through the electrostatic discharge channel is exploded. The electrostatic discharge device according to claim 8 , wherein the electrostatic discharge device is a two-fluid nozzle including a flow path. 請求項のいずれか1項に記載の静電放出装置と、それによって放出される微細材を、これと電位差を持った対象面上に静電的に付着させて回収または表面処理を行う静電作業装置。 The electrostatic discharge device according to any one of claims 7 to 9 and the fine material released thereby are electrostatically attached to a target surface having a potential difference from the electrostatic discharge device, and recovery or surface treatment is performed. Electrostatic working device to perform.
JP2006270734A 2006-10-02 2006-10-02 Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them Active JP4710783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270734A JP4710783B2 (en) 2006-10-02 2006-10-02 Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270734A JP4710783B2 (en) 2006-10-02 2006-10-02 Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them

Publications (2)

Publication Number Publication Date
JP2008088600A JP2008088600A (en) 2008-04-17
JP4710783B2 true JP4710783B2 (en) 2011-06-29

Family

ID=39373039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270734A Active JP4710783B2 (en) 2006-10-02 2006-10-02 Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them

Country Status (1)

Country Link
JP (1) JP4710783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757425A (en) * 2017-03-08 2017-05-31 中原工学院 A kind of electrospinning device and its method for preparing hyperbranched hollow structure eider down

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803113B2 (en) * 2007-05-29 2011-10-26 パナソニック株式会社 Nanofiber compounding method and apparatus
JP4907441B2 (en) * 2007-06-07 2012-03-28 日本バイリーン株式会社 Nonwoven fabric manufacturing apparatus and nonwoven fabric manufacturing method
JP5237712B2 (en) * 2008-07-25 2013-07-17 公立大学法人 滋賀県立大学 Electrostatic spinning device
KR102124716B1 (en) * 2010-02-15 2020-06-19 코넬 유니버시티 Electrospinning apparatus and nanofibers produced therefrom
CN103614791B (en) * 2013-12-19 2017-01-04 苏州大学张家港工业技术研究院 Electromagnetic field couples method prepares the electrostatic spinning apparatus of nanofiber
JP6757641B2 (en) * 2016-10-03 2020-09-23 花王株式会社 Equipment for manufacturing sheet-shaped fiber deposits and method for manufacturing the fiber deposits
JP6840854B2 (en) * 2017-07-25 2021-03-10 富士フイルム株式会社 Nonwoven fabric manufacturing method and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167358A (en) * 1989-11-22 1991-07-19 I C I Japan Kk Fibrous integrated material
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
JPH03167358A (en) * 1989-11-22 1991-07-19 I C I Japan Kk Fibrous integrated material
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757425A (en) * 2017-03-08 2017-05-31 中原工学院 A kind of electrospinning device and its method for preparing hyperbranched hollow structure eider down
CN106757425B (en) * 2017-03-08 2019-01-11 中原工学院 A kind of electrospinning device and its method for preparing hyperbranched hollow structure natural feather

Also Published As

Publication number Publication date
JP2008088600A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP4710783B2 (en) Electrostatic discharge method and apparatus, electrostatic work method and apparatus using them
Rutledge et al. Formation of fibers by electrospinning
CN101688335B (en) Nanofiber spinning method and device
US8524140B2 (en) Process of making nanofibers
JP2008043944A (en) Method and apparatus for producing microparticle
KR20110111368A (en) Electrostatic spinning assembly
JP2002201559A (en) Equipment for producing polymeric web by electrospinning
WO2005042813A1 (en) Electrostatic spinning equipment and method of preparing nano fiber using the same
CN101842167A (en) Electrostatic coating apparatus
US20120091606A1 (en) Method for manufacturing fine polymer, and fine polymer manufacturing apparatus
US20060081729A1 (en) Electrostatic spraying apparatus
JP2008174867A (en) Method and device for producing polymer fiber, and method and apparatus for producing polymer web, using the same
CN103194806B (en) Polymer solution electrostatic spinning component, device and method
JP4862665B2 (en) Nozzle for polymer fiber production
JP4981747B2 (en) Nanofiber manufacturing apparatus and manufacturing method
KR102001006B1 (en) Electrospinning apparatus and filter manufacturing system having the same
JP2011052337A (en) Electrospinning apparatus
CN107532334B (en) The manufacturing method of electrospinning device and accumulation body
JP2008144327A (en) Apparatus and method for producing nonwoven fabric
WO2016147753A1 (en) Nozzle head for nanofiber-manufacturing apparatus and nanofiber-manufacturing apparatus provided with same
JP4872535B2 (en) Method and apparatus for controlling electrostatic action in electrostatic working environment
KR100626090B1 (en) Valve type electrospray apparatus for preparing materials having nano-structure
JP2008303495A (en) Device for producing nanofiber, apparatus for producing nonwoven fabric, and method for producing nanofiber
JP5368504B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2018066092A (en) Manufacturing apparatus for collective structure and manufacturing method for collective structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3