[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4708078B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP4708078B2
JP4708078B2 JP2005130167A JP2005130167A JP4708078B2 JP 4708078 B2 JP4708078 B2 JP 4708078B2 JP 2005130167 A JP2005130167 A JP 2005130167A JP 2005130167 A JP2005130167 A JP 2005130167A JP 4708078 B2 JP4708078 B2 JP 4708078B2
Authority
JP
Japan
Prior art keywords
magnetic pole
surface forming
pole surface
wound
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005130167A
Other languages
Japanese (ja)
Other versions
JP2006311687A (en
Inventor
聡 杉田
康司 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2005130167A priority Critical patent/JP4708078B2/en
Publication of JP2006311687A publication Critical patent/JP2006311687A/en
Application granted granted Critical
Publication of JP4708078B2 publication Critical patent/JP4708078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、リニアモータに関するものである。   The present invention relates to a linear motor.

特開平2−151256号公報(特許文献1)には、固定子を構成する誘導子と可動子を構成する電機子とを備えたリニアモータが示されている。誘導子は、所定のピッチを持って並んだ複数の歯部からなる歯部列を有している。電機子は、ヨークと、ヨークに沿って所定の間隔を開けて配置されて誘導子の歯部列と対向する磁極面形成部を端部に備える磁極部と、複数の磁極部に巻装された電機子巻線と、複数の磁極面形成部内に配置されて磁極面形成部を通る磁束の磁路を変更する永久磁石とを有している。永久磁石は、磁極面形成部内にそれぞれ配置されて、隣り合う二つの永久磁石の着磁方向が逆になるように所定のピッチを持って配置されている。このリニアモータでは、磁極面形成部内に永久磁石が3個ずつ配置されている。   Japanese Patent Application Laid-Open No. 2-151256 (Patent Document 1) discloses a linear motor including an inductor constituting a stator and an armature constituting a mover. The inductor has a tooth part row composed of a plurality of tooth parts arranged with a predetermined pitch. The armature is wound around a yoke, a magnetic pole portion disposed at a predetermined interval along the yoke, and having a magnetic pole surface forming portion at an end facing the inductor tooth row, and a plurality of magnetic pole portions. Armature windings, and permanent magnets that are arranged in the plurality of magnetic pole surface forming portions and change the magnetic path of the magnetic flux passing through the magnetic pole surface forming portions. The permanent magnets are respectively disposed in the magnetic pole surface forming portion, and are disposed with a predetermined pitch so that the magnetization directions of two adjacent permanent magnets are reversed. In this linear motor, three permanent magnets are arranged in the magnetic pole surface forming portion.

また、特開平2−280655号公報(特許文献2)にも、固定子を構成する誘導子と可動子を構成する電機子とを備えたリニアモータが示されている。誘導子は、所定のピッチを持って並んだ複数の歯部からなる歯部列を有している。電機子は、ヨークと、ヨークに沿って所定の間隔を開けて配置されて誘導子の歯部列と対向する磁極面形成部を端部に備える磁極部と、複数の磁極部に巻装された電機子巻線と、複数の磁極面形成部内に配置されて磁極面形成部を通る磁束の磁路を変更する永久磁石とを有している。永久磁石は、磁極面形成部内にそれぞれ配置されて、隣り合う二つの永久磁石の着磁方向が逆になるように所定のピッチを持って配置されている。このリニアモータでは、磁極面形成部内に永久磁石が1個ずつ配置されている。そして、磁極面形成部に誘導子の歯部列と対向する方向に突出する複数の小歯が形成されている。
特開平2−151256号公報 特開平2−280655号公報
Japanese Patent Application Laid-Open No. 2-280655 (Patent Document 2) also shows a linear motor including an inductor constituting a stator and an armature constituting a mover. The inductor has a tooth part row composed of a plurality of tooth parts arranged with a predetermined pitch. The armature is wound around a yoke, a magnetic pole portion disposed at a predetermined interval along the yoke, and having a magnetic pole surface forming portion at an end facing the inductor tooth row, and a plurality of magnetic pole portions. Armature windings, and permanent magnets that are arranged in the plurality of magnetic pole surface forming portions and change the magnetic path of the magnetic flux passing through the magnetic pole surface forming portions. The permanent magnets are respectively disposed in the magnetic pole surface forming portion, and are disposed with a predetermined pitch so that the magnetization directions of two adjacent permanent magnets are reversed. In this linear motor, one permanent magnet is arranged in the magnetic pole surface forming portion. A plurality of small teeth projecting in a direction opposite to the tooth row of the inductor is formed on the magnetic pole surface forming portion.
JP-A-2-151256 JP-A-2-280655

しかしながら、これらの従来のリニアモータでは、推力を大きくするため誘導子の歯部列の歯部間のピッチを小さくして誘導子と電機子との間の間隔寸法を小さくしなければならない。そのため、駆動周波数が高くなり、速度を高めるには限界があり、誘導子と電機子との位置設定が面倒になるという問題があった。また、誘導子の歯部間のピッチに依存したコギング力が発生するという問題があった。そのため、特に、速度安定性が求められる精密ステージには適さなかった。   However, in these conventional linear motors, in order to increase the thrust, it is necessary to reduce the pitch between the teeth of the inductor teeth row to reduce the distance between the inductor and the armature. For this reason, there is a problem that the drive frequency becomes high and there is a limit to increase the speed, and the position setting of the inductor and the armature becomes troublesome. There is also a problem that a cogging force depending on the pitch between the teeth of the inductor is generated. Therefore, it is not particularly suitable for a precision stage that requires speed stability.

また、特許文献2に示されるリニアモータでは、磁極面形成部に誘導子の歯部列と対向する小歯を形成しなければならず、製造が煩雑であった。また、スロットの開口部が大きいため、推力を高められないという問題があった。   In addition, in the linear motor disclosed in Patent Document 2, small teeth facing the teeth of the inductor must be formed on the magnetic pole surface forming portion, which is complicated to manufacture. Moreover, since the opening of the slot is large, there is a problem that the thrust cannot be increased.

本発明の目的は、速度を高めることができるリニアモータを提供することにある。   An object of the present invention is to provide a linear motor capable of increasing the speed.

本発明の他の目的は、誘導子と電機子との間の間隔寸法を大きくして、誘導子と電機子との位置設定を容易に行えるリニアモータを提供することにある。   Another object of the present invention is to provide a linear motor that can easily set the position of the inductor and the armature by increasing the distance between the inductor and the armature.

本発明の他の目的は、コギング力を小さくできるリニアモータを提供することにある。   Another object of the present invention is to provide a linear motor capable of reducing the cogging force.

本発明が改良の対象とするリニアモータは、誘導子と電機子とを備えている。誘導子は、所定のピッチτpを持って並んだ複数の歯部からなる歯部列を有している。電機子は、複数の歯部が並ぶ方向に延びるヨークと、ヨークに沿って所定の間隔を開けて配置されてヨークに接続された複数の極柱と該複数の極柱の端部にそれぞれ接続されて誘導子の歯部列と対向する磁極面形成部とをそれぞれ備える複数の磁極部と、前記複数の磁極面形成部をそれぞれ励磁する複数の電機子巻線と、複数の磁極面形成部内に配置されて磁極面形成部を通る磁束の磁路を変更する1以上の永久磁石とを有する電機子とを備えている。そして、誘導子及び電機子の一方が可動子となり、他方が固定子となる。本発明では、複数の極柱には、一つおきに電機子巻線が巻装されている。また、複数の磁極面形成部が並ぶ方向の磁極面形成部の幅寸法は、複数の磁極面形成部が並ぶ方向の極柱の幅寸法より大きくなっており、複数の磁極面形成部の隣接する磁極面形成部は相互に結合されている。そして、複数の磁極面形成部の中央部内には、複数の磁極面形成部が並ぶ方向に着磁された1つの永久磁石がそれぞれ配置されており、これらの永久磁石は、隣り合う二つの磁極面形成部内にそれぞれ配置された二つの永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでいる。   The linear motor to be improved by the present invention includes an inductor and an armature. The inductor has a tooth part row composed of a plurality of tooth parts arranged with a predetermined pitch τp. The armature is connected to a yoke extending in a direction in which a plurality of tooth portions are arranged, a plurality of pole columns arranged at predetermined intervals along the yoke and connected to the yoke, and ends of the plurality of pole columns. A plurality of magnetic pole portions each having a magnetic pole surface forming portion opposed to a tooth row of the inductor, a plurality of armature windings respectively exciting the plurality of magnetic pole surface forming portions, and a plurality of magnetic pole surface forming portions And an armature having one or more permanent magnets that change the magnetic path of the magnetic flux passing through the magnetic pole surface forming portion. One of the inductor and the armature is a mover, and the other is a stator. In the present invention, every other pole pole is wound with every other armature winding. Further, the width dimension of the magnetic pole surface forming portion in the direction in which the plurality of magnetic pole surface forming portions are arranged is larger than the width dimension of the pole column in the direction in which the plurality of magnetic pole surface forming portions are arranged, and is adjacent to the plurality of magnetic pole surface forming portions. The magnetic pole face forming portions to be coupled are mutually coupled. And in the center part of a plurality of magnetic pole surface formation parts, one permanent magnet magnetized in the direction where a plurality of magnetic pole surface formation parts are arranged is arranged, respectively, and these permanent magnets are two adjacent magnetic poles. The permanent magnets are arranged with a predetermined pitch τm so that the magnetization directions of the two permanent magnets respectively disposed in the surface forming portion are reversed.

言い換えるならば、複数の磁極部は、電機子巻線が巻装されない非巻装極柱と非巻装極柱に接続される非巻装磁極面形成部とを備える非巻装磁極部と、電機子巻線が巻装される巻装極柱と巻装極柱に接続される巻装磁極面形成部とを備える巻装磁極部とが交互に並んで構成されている。また、複数の磁極面形成部が並ぶ方向の非巻装磁極面形成部の幅寸法は、複数の磁極面形成部が並ぶ方向の非巻装極柱の幅寸法より大きくなっており、複数の磁極面形成部が並ぶ方向の巻装磁極面形成部の幅寸法は、複数の磁極面形成部が並ぶ方向の巻装極柱の幅寸法より大きくなっている。そして、隣接する非巻装磁極面形成部と巻装磁極面形成部は相互に結合されている。また、複数の非巻装磁極面形成部及び複数の巻装磁極面形成部のそれぞれの中央部内には、複数の磁極面形成部が並ぶ方向に着磁された1つの永久磁石がそれぞれ配置されており、これらの永久磁石は、隣り合う非巻装磁極面形成部と巻装磁極面形成部との内部にそれぞれ配置された二つの永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでいる。   In other words, the plurality of magnetic pole portions include a non-winding magnetic pole portion including an unwinding pole column in which the armature winding is not wound and a non-winding magnetic pole surface forming portion connected to the non-winding pole column, A wound magnetic pole portion including a wound pole column around which the armature winding is wound and a wound magnetic pole surface forming portion connected to the wound pole column is arranged alternately. Further, the width dimension of the non-wound pole surface forming part in the direction in which the plurality of magnetic pole surface forming parts are arranged is larger than the width dimension of the non-wound pole column in the direction in which the plurality of magnetic pole surface forming parts are arranged, The width dimension of the wound magnetic pole surface forming portion in the direction in which the magnetic pole surface forming portions are arranged is larger than the width dimension of the wound pole column in the direction in which the plurality of magnetic pole surface forming portions are arranged. The adjacent unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion are coupled to each other. In addition, one permanent magnet magnetized in the direction in which the plurality of magnetic pole surface forming portions are arranged is arranged in the center of each of the plurality of unwrapped magnetic pole surface forming portions and the plurality of wound magnetic pole surface forming portions. These permanent magnets have a predetermined pitch so that the magnetization directions of the two permanent magnets respectively disposed inside the adjacent unwrapped magnetic pole surface forming portion and wound magnetic pole surface forming portion are opposite to each other. They are lined up with τm.

本発明のように、複数の極柱の一つおきに電機子巻線を巻装して(非巻装磁極部と巻装磁極部とを交互に並べて)、隣接する磁極面形成部(隣接する非巻装磁極面形成部と巻装磁極面形成部)を相互に結合すれば、スロットによる開口部が閉塞されて誘導子と対向する電機子の磁極面の面積が大きくなる。また、永久磁石を複数の磁極面形成部(非巻装磁極面形成部及び巻装磁極面形成部)のそれぞれに1つ配置すれば、非巻装磁極部と巻装磁極部と電機子巻線の寸法を適宜に設定することにより、永久磁石の等間隔なピッチを比較的自由に設定することができる。そのため、電機子の大きさに対するモータの推力を高くすることができ、リニアモータの速度を高めることができる。また、誘導子と電機子との間の間隔寸法に比べ、誘導子の歯部のピッチ及び永久磁石のピッチを大きくすることで、誘導子と電機子との間の間隔寸法を大きくしても、推力の減少は小さくなる。そのため、誘導子と電機子との位置設定を容易に行える。   As in the present invention, every other pole pole is wound with armature windings (unwrapped magnetic pole portions and wound magnetic pole portions are arranged alternately), and adjacent magnetic pole surface forming portions (adjacent If the unwrapped magnetic pole surface forming part and the wound magnetic pole surface forming part) are coupled to each other, the opening by the slot is closed and the area of the magnetic pole surface of the armature facing the inductor is increased. Further, if one permanent magnet is arranged in each of the plurality of magnetic pole surface forming portions (the unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion), the unwrapped magnetic pole portion, the wound magnetic pole portion, and the armature winding By setting the dimensions of the lines appropriately, the pitch of the permanent magnets at regular intervals can be set relatively freely. Therefore, the thrust of the motor with respect to the size of the armature can be increased, and the speed of the linear motor can be increased. Also, by increasing the pitch of the teeth of the inductor and the pitch of the permanent magnets compared to the distance between the inductor and the armature, the distance between the inductor and the armature can be increased. The decrease in thrust becomes smaller. Therefore, it is possible to easily set the position of the inductor and the armature.

また、本発明では、複数の磁極面形成部が並ぶ方向の非巻装磁極面形成部の幅寸法を複数の磁極面形成部が並ぶ方向の非巻装極柱の幅寸法より大きくし、複数の磁極面形成部が並ぶ方向の巻装磁極面形成部の幅寸法を複数の磁極面形成部が並ぶ方向の巻装極柱の幅寸法より大きくするので、磁気抵抗を低下させずに、電機子巻線の占有体積を増やすことができ、電機子巻線の発熱量を抑制することができる。   Further, in the present invention, the width dimension of the non-wound magnetic pole surface forming part in the direction in which the plurality of magnetic pole surface forming parts are arranged is larger than the width dimension of the non-wound pole column in the direction in which the plurality of magnetic pole surface forming parts are arranged. The width dimension of the wound magnetic pole surface forming portion in the direction in which the magnetic pole surface forming portions are arranged is made larger than the width dimension of the wound magnetic pole column in the direction in which the plurality of magnetic pole surface forming portions are arranged. The occupied volume of the child winding can be increased, and the amount of heat generated by the armature winding can be suppressed.

歯部列のピッチτpと永久磁石列のピッチτmとは、τm=τp×(6n±1)/(6n)(nは自然数)の関係に設定することができる。このように設定すれば、誘導子の歯部列のピッチτpに対する永久磁石列のピッチτmが微妙にずれることによって、各誘導子の歯部によって生じるコギング力が打ち消されて、電機子全体のコギング力を小さくできる。   The pitch τp of the tooth row and the pitch τm of the permanent magnet row can be set to a relationship of τm = τp × (6n ± 1) / (6n) (n is a natural number). By setting in this way, the pitch τm of the permanent magnet array with respect to the pitch τp of the teeth section of the inductor is slightly shifted, so that the cogging force generated by the teeth of each inductor is canceled and the cogging of the entire armature The power can be reduced.

複数の電機子巻線の数は、N相×M(Nは2以上の整数、Mは1以上の整数)とすることができる。   The number of armature windings may be N phases × M (N is an integer of 2 or more, M is an integer of 1 or more).

電機子は、電機子ユニットと複数の巻装部材とを有するように構成できる。この場合、電機子ユニットは、ヨークと、非巻装極柱と非巻装磁極面形成部と巻装磁極面形成部とを一体に構成し、巻装部材は、巻装極柱と巻装極柱に巻装された電機子巻線とを有するように構成する。そして、巻装部材を、ヨークと巻装磁極面形成部とに嵌合して電機子ユニットに取付ければよい。このようにすれば、巻装部材を嵌合により電機子ユニットに取付るだけで、非巻装磁極部と巻装磁極部とが交互に並び且つ隣接する非巻装磁極部と巻装磁極面形成部とが結合した電機子を容易に形成することができる。   The armature can be configured to have an armature unit and a plurality of winding members. In this case, the armature unit comprises a yoke, an unwound pole column, an unwound magnetic pole surface forming portion, and a wound magnetic pole surface forming portion, and the winding member is wound with the wound pole column and the winding pole. The armature winding is wound around the pole column. Then, the winding member may be fitted to the armature unit by being fitted to the yoke and the winding magnetic pole surface forming portion. In this way, the unwrapped magnetic pole portions and the wound magnetic pole portions are alternately arranged and adjacent to each other by simply attaching the wound member to the armature unit by fitting. An armature combined with the forming portion can be easily formed.

電機子巻線と非巻装磁極面形成部と巻装磁極面形成部との間に間隙をそれぞれ形成し、この間隙内と非巻装磁極面形成部の表面と前記磁極面形成部の表面とには、電機子巻線を冷却する冷却管をつづら折りの状態で配置することができる。このようにすれば、間隙及び冷却管の形状及び寸法を適宜に設定することにより、冷却管を電機子ユニットに取付けた後に複数の巻装部材を電機子ユニットに取付ることができる。そのため、冷却管及び電機子ユニットの脱着を容易に行うことができる。   A gap is formed between the armature winding, the unwound magnetic pole surface forming portion, and the wound magnetic pole surface forming portion, and the inside of the gap, the surface of the unwrapped magnetic pole surface forming portion, and the surface of the magnetic pole surface forming portion In addition, a cooling pipe for cooling the armature winding can be arranged in a folded state. If it does in this way, a plurality of winding members can be attached to an armature unit after attaching a cooling pipe to an armature unit by setting a gap and a shape and size of a cooling pipe suitably. Therefore, the cooling pipe and the armature unit can be easily attached and detached.

誘導子の歯部列は、スキューさせることができる。即ち、歯部列の歯部の長手方向を、可動子の移動方向と直交する方向に対して傾斜させることができる。このようにすれば、リニアモータのコギング力をさらに小さくできる。   The inductor tooth row can be skewed. That is, the longitudinal direction of the tooth part of the tooth part row can be inclined with respect to the direction orthogonal to the moving direction of the mover. In this way, the cogging force of the linear motor can be further reduced.

巻装部材の電機子巻線が巻装される方向の長手方向の長さ寸法は、非巻装極柱の電機子巻線と隣接する部分の長さ寸法より短かくするのが好ましい。このようにすれば、電機子巻線が電機子ユニットから突出する寸法を小さくすることができる。   It is preferable that the length dimension of the winding member in the longitudinal direction in which the armature winding is wound is shorter than the length dimension of the portion adjacent to the armature winding of the unwound pole column. In this way, the dimension by which the armature winding protrudes from the armature unit can be reduced.

本願の他の発明が改良の対象とするリニアモータは、一対の誘導子と電機子とを備えている。一対の誘導子は、所定のピッチτpを持って並んだ複数の歯部からなる歯部列をそれぞれ有している。電機子は、1対の誘導子の対向する方向に延びる複数の極柱と該複数の極柱の両端部に接続されて1対の誘導子の歯部列とそれぞれ対向する複数の一対の磁極面形成部とをそれぞれ備える複数の磁極部と、複数の一対の磁極面形成部をそれぞれ励磁する複数の電機子巻線と、複数の一対の磁極面形成部内にそれぞれ配置されて磁極面形成部を通る磁束の磁路を変更する1以上の永久磁石とを有している。そして、誘導子及び電機子の一方が可動子となり、他方が固定子となる。本発明では、複数の極柱には一つおきに電機子巻線が巻装されている。また、複数の一対の磁極面形成部が並ぶ方向の磁極面形成部の幅寸法は、複数の磁極面形成部が並ぶ方向の極柱の幅寸法より大きくなっている。そして、複数の一対の磁極面形成部の一方の複数の磁極面形成部の隣接する磁極面形成部は相互に結合されており、複数の一対の磁極面形成部の他方の複数の磁極面形成部の隣接する磁極面形成部は相互に結合されている。そして、複数の一対の非巻装磁極面形成部及び複数の一対の巻装磁極面形成部のそれぞれの中央部内には、複数の一対の磁極面形成部が並ぶ方向に着磁された1つの永久磁石がそれぞれ配置されており、これらの永久磁石は、隣り合う二つの磁極面形成部内にそれぞれ配置された二つの永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでいる。   A linear motor to be improved by another invention of the present application includes a pair of inductors and an armature. Each of the pair of inductors has a tooth part row composed of a plurality of tooth parts arranged with a predetermined pitch τp. The armature includes a plurality of pole poles extending in a direction in which a pair of inductors face each other and a plurality of pairs of magnetic poles that are connected to both ends of the pole poles and respectively face a tooth row of the pair of inductors. A plurality of magnetic pole portions each having a surface forming portion; a plurality of armature windings for exciting the plurality of pairs of magnetic pole surface forming portions; and a magnetic pole surface forming portion disposed in each of the plurality of pairs of magnetic pole surface forming portions. And one or more permanent magnets that change the magnetic path of the magnetic flux passing through. One of the inductor and the armature is a mover, and the other is a stator. In the present invention, every other pole pole is wound with every other armature winding. Further, the width dimension of the magnetic pole surface forming portion in the direction in which the plurality of pairs of magnetic pole surface forming portions are arranged is larger than the width dimension of the pole column in the direction in which the plurality of magnetic pole surface forming portions are arranged. The adjacent magnetic pole surface forming portions of one of the plurality of magnetic pole surface forming portions of the plurality of pairs of magnetic pole surface forming portions are coupled to each other to form the other magnetic pole surface of the other of the plurality of pairs of magnetic pole surface forming portions. Adjacent magnetic pole face forming portions are connected to each other. And in each center part of a plurality of a pair of unwinding magnetic pole surface formation parts and a plurality of a pair of winding magnetic pole surface formation parts, one magnetized in the direction in which a plurality of a pair of magnetic pole surface formation parts are arranged Permanent magnets are respectively arranged, and these permanent magnets are arranged with a predetermined pitch τm so that the magnetization directions of the two permanent magnets respectively disposed in two adjacent magnetic pole surface forming portions are reversed. It is out.

言い換えるならば、複数の磁極部は、1対の誘導子の対向する方向に延びて電機子巻線が巻装されない非巻装極柱と非巻装極柱の両端に接続される一対の非巻装磁極面形成部とを備える非巻装磁極部と、1対の誘導子の対向する方向に延びて電機子巻線が巻装される巻装極柱と巻装極柱の両端に接続される一対の巻装磁極面形成部とを備える巻装磁極部とが交互に並んで構成されている。また、複数の一対の磁極面形成部が並ぶ方向の一対の非巻装磁極面形成部の幅寸法は、複数の一対の磁極面形成部が並ぶ方向の非巻装極柱の幅寸法より大きくなっており、複数の一対の磁極面形成部が並ぶ方向の一対の巻装磁極面形成部の幅寸法は、複数の一対の磁極面形成部が並ぶ方向の巻装極柱の幅寸法より大きくなっている。そして、一対の非巻装磁極面形成部の一方の非巻装磁極面形成部と該非巻装磁極面形成部に隣接する一対の巻装磁極面形成部の一方の巻装磁極面形成部とが相互に結合されており、一対の非巻装磁極面形成部の他方の非巻装磁極面形成部と該非巻装磁極面形成部に隣接する一対の巻装磁極面形成部の他方の巻装磁極面形成部とが相互に結合されている。そして、複数の一対の非巻装磁極面形成部及び複数の一対の非巻装磁極面形成部のそれぞれの中央部内には、複数の一対の磁極面形成部が並ぶ方向に着磁された1つの永久磁石がそれぞれ配置されており、これらの永久磁石は、隣り合う非巻装磁極面形成部と巻装磁極面形成部との内部にそれぞれ配置された二つの永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでいる。   In other words, the plurality of magnetic pole portions extend in the direction in which the pair of inductors face each other, and a pair of non-winding pole columns where the armature winding is not wound and a pair of non-winding pole columns connected to both ends of the non-winding pole columns. Connected to both ends of a non-winding magnetic pole portion provided with a winding magnetic pole surface forming portion, a winding pole column that extends in the opposing direction of a pair of inductors, and in which an armature winding is wound, and the winding pole column Winding magnetic pole portions including a pair of wound magnetic pole surface forming portions are alternately arranged. In addition, the width dimension of the pair of unwound magnetic pole surface forming parts in the direction in which the plurality of pairs of magnetic pole surface forming parts are arranged is larger than the width dimension of the unwound pole column in the direction in which the plurality of pairs of magnetic pole surface forming parts are arranged. The width dimension of the pair of wound magnetic pole surface forming portions in the direction in which the plurality of pairs of magnetic pole surface forming portions are arranged is larger than the width dimension of the wound pole column in the direction in which the plurality of pairs of magnetic pole surface forming portions are aligned. It has become. And, one unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and one wound magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions adjacent to the unwrapped magnetic pole surface forming portion, Are coupled to each other, and the other unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and the other winding of the pair of wound magnetic pole surface forming portions adjacent to the unwrapped magnetic pole surface forming portion. The magnetic pole surface forming portion is coupled to each other. In the center of each of the plurality of pairs of unwrapped magnetic pole surface forming portions and the plurality of pairs of unwrapped magnetic pole surface forming portions, 1 is magnetized in the direction in which the plurality of pairs of magnetic pole surface forming portions are aligned. Each of the permanent magnets is arranged, and these permanent magnets are opposite to each other in the magnetization direction of the two permanent magnets respectively arranged inside the adjacent non-wound magnetic pole surface forming portion and the wound magnetic pole surface forming portion. Are arranged with a predetermined pitch τm.

本発明によれば、上述したリニアモータと同様に、電機子の大きさに対するモータの推力を高くすることができ、リニアモータの速度を高めることができる。また、誘導子と電機子との間の間隔寸法に比べ、誘導子の歯部のピッチ及び永久磁石のピッチを大きくすることで、誘導子と電機子との間の間隔寸法を大きくしても、推力の減少は小さくなる。そのため、誘導子と電機子との位置設定を容易に行える。また、磁気抵抗を低下させずに、巻線の占有体積を増やすことができ、巻線の発熱量を抑制することができる。   According to the present invention, similarly to the linear motor described above, the thrust of the motor with respect to the size of the armature can be increased, and the speed of the linear motor can be increased. Also, by increasing the pitch of the teeth of the inductor and the pitch of the permanent magnets compared to the distance between the inductor and the armature, the distance between the inductor and the armature can be increased. The decrease in thrust becomes smaller. Therefore, it is possible to easily set the position of the inductor and the armature. In addition, the volume occupied by the winding can be increased without reducing the magnetic resistance, and the amount of heat generated by the winding can be suppressed.

また、本発明のリニアモータでは、電機子の水平方向に一対の誘導子を配置することができるため、電機子と一対の誘導子との間の磁気吸引力を打ち消すことができ、電機子を安定して一対の誘導子の間に配置することができる。   In the linear motor of the present invention, since a pair of inductors can be arranged in the horizontal direction of the armature, the magnetic attractive force between the armature and the pair of inductors can be canceled, and the armature It can be stably disposed between a pair of inductors.

このようなリニアモータでも、ピッチτpと前記ピッチτmとを、τm=τp×(6n±1)/(6n)(nは自然数)の関係を有しているように設定すれば、誘導子の歯部列のピッチτpに対する永久磁石列のピッチτmが微妙にずれることによって、各誘導子の歯部によって生じるコギング力が打ち消されて、電機子全体のコギング力を小さくできる。   Even in such a linear motor, if the pitch τp and the pitch τm are set to have a relationship of τm = τp × (6n ± 1) / (6n) (n is a natural number), When the pitch τm of the permanent magnet row slightly deviates from the pitch τp of the tooth portion row, the cogging force generated by the tooth portion of each inductor is canceled, and the cogging force of the entire armature can be reduced.

複数の電機子巻線の数は、N相×M(Nは2以上の整数、Mは1以上の整数)とすることができる。   The number of armature windings may be N phases × M (N is an integer of 2 or more, M is an integer of 1 or more).

電機子は、電機子ユニットと複数の巻装部材とを有するように構成できる。この場合、電機子ユニットは、非巻装極柱と一対の非巻装磁極面形成部と一対の巻装磁極面形成部とを一体に構成し、巻装部材は、巻装極柱と巻装極柱に巻装された電機子巻線とを有するように構成する。そして、巻装部材を一対の巻装磁極面形成部に嵌合して電機子ユニットに取付ければよい。このようにすれば、巻装部材を嵌合により電機子ユニットに取付るだけで、非巻装磁極部と巻装磁極部とが交互に並び且つ隣接する非巻装磁極部と巻装磁極面形成部とが結合した電機子を容易に形成することができる。   The armature can be configured to have an armature unit and a plurality of winding members. In this case, the armature unit integrally configures the unwound pole column, the pair of unwound magnetic pole surface forming portions, and the pair of wound magnetic pole surface forming portions. The armature winding is wound around the pole pole. And a winding member should just be fitted to an armature unit by fitting to a pair of winding magnetic pole surface formation part. In this way, the unwrapped magnetic pole portions and the wound magnetic pole portions are alternately arranged and adjacent to each other by simply attaching the wound member to the armature unit by fitting. An armature combined with the forming portion can be easily formed.

電機子巻線と一対の非巻装磁極面形成部の一方の非巻装磁極面形成部と一対の巻装磁極面形成部の一方の巻装磁極面形成部との間に間隙をそれぞれ形成し、この間隙内と一方の非巻装磁極面形成部の表面と一方の巻装磁極面形成部の表面とには、電機子巻線を冷却する第1の冷却管をつづら折りの状態で配置することができる。また、電機子巻線と一対の非巻装磁極面形成部の他方の非巻装磁極面形成部と一対の巻装磁極面形成部の他方の巻装磁極面形成部との間に間隙をそれぞれ形成し、この間隙内と他方の非巻装磁極面形成部の表面と他方の巻装磁極面形成部の表面とには、電機子巻線を冷却する第2の冷却管をつづら折りの状態で配置することができる。このようにすれば、間隙、第1の冷却管及び第2の冷却管の形状及び寸法を適宜に設定することにより、第1の冷却管及び第2の冷却管を電機子ユニットに取付けた後に複数の巻装部材を電機子ユニットに取付ることができる。そのため、冷却管及び電機子ユニットの脱着を容易に行うことができる。   A gap is formed between the armature winding and one unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and one wound magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions. The first cooling pipe for cooling the armature winding is arranged in a zigzag folded state in the gap, on the surface of the one non-winding magnetic pole surface forming portion, and on the surface of the one winding magnetic pole surface forming portion. can do. In addition, there is a gap between the armature winding and the other unwound magnetic pole surface forming part of the pair of unwound magnetic pole surface forming parts and the other wound magnetic pole surface forming part of the pair of wound magnetic pole surface forming parts. A second cooling pipe for cooling the armature winding is formed in a folded state in the gap, on the surface of the other non-winding magnetic pole surface forming portion, and on the surface of the other winding magnetic pole surface forming portion. Can be arranged. In this way, after attaching the first cooling pipe and the second cooling pipe to the armature unit by appropriately setting the shape and dimensions of the gap, the first cooling pipe and the second cooling pipe. A plurality of winding members can be attached to the armature unit. Therefore, the cooling pipe and the armature unit can be easily attached and detached.

一対の誘導子の歯部列は、それぞれ異なる方向にスキューさせることができる。即ち、一方の誘導子の歯部の長手方向を可動子の移動方向と直交する方向に対してそれぞれ異なる方向に傾斜させることができる。このようにすれば、スキューによって生じるピッチング方向のコギング力を相殺でき、可動子を支持するガイド部材に加わる力を軽減できる。   The teeth of the pair of inductors can be skewed in different directions. That is, the longitudinal direction of the tooth portion of one inductor can be inclined in different directions with respect to the direction orthogonal to the moving direction of the mover. In this way, the cogging force in the pitching direction caused by the skew can be offset, and the force applied to the guide member that supports the mover can be reduced.

巻装部材の電機子巻線が巻装される方向の長手方向の長さ寸法は、非巻装極柱の前記電機子巻線と隣接する部分の長さ寸法より短かくするのが好ましい。このようにすれば、電機子巻線が電機子ユニットから突出する寸法を小さくすることができる。   The length dimension in the longitudinal direction in which the armature winding of the winding member is wound is preferably shorter than the length dimension of the portion adjacent to the armature winding of the unwound pole column. In this way, the dimension by which the armature winding protrudes from the armature unit can be reduced.

本発明によれば、複数の極柱の一つおきに電機子巻線を巻装して(非巻装磁極部と巻装磁極部とを交互に並べて)、隣接する磁極面形成部(非巻装磁極面形成部と巻装磁極面形成部)を相互に結合するので、スロットによる開口部が閉塞されて誘導子と対向する電機子の磁極面の面積が大きくなる。また、永久磁石を複数の磁極面形成部(非巻装磁極面形成部及び巻装磁極面形成部)のそれぞれに1つ配置するので、巻装磁極部と非巻装磁極部と電機子巻線の寸法を適宜に設定することにより、永久磁石の等間隔なピッチを比較的自由に設定することができる。そのため、電機子の大きさに対するモータの推力を高くすることができ、リニアモータの速度を高めることができる。また、誘導子と電機子との間の間隔寸法に比べ、誘導子の歯部のピッチ及び永久磁石のピッチを大きくすることで、誘導子と電機子との間の間隔寸法を大きくしても、推力の減少は小さくなる。そのため、誘導子と電機子との位置設定を容易に行える。   According to the present invention, armature windings are wound every other plurality of pole poles (unwrapped magnetic pole portions and wound magnetic pole portions are arranged alternately), and adjacent magnetic pole surface forming portions (non-winding portions) Since the winding magnetic pole surface forming portion and the winding magnetic pole surface forming portion are coupled to each other, the opening by the slot is closed, and the area of the magnetic pole surface of the armature facing the inductor is increased. In addition, since one permanent magnet is disposed in each of the plurality of magnetic pole surface forming portions (the unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion), the wound magnetic pole portion, the unwrapped magnetic pole portion, and the armature winding By setting the dimensions of the lines appropriately, the pitch of the permanent magnets at regular intervals can be set relatively freely. Therefore, the thrust of the motor with respect to the size of the armature can be increased, and the speed of the linear motor can be increased. Also, by increasing the pitch of the teeth of the inductor and the pitch of the permanent magnets compared to the distance between the inductor and the armature, the distance between the inductor and the armature can be increased. The decrease in thrust becomes smaller. Therefore, it is possible to easily set the position of the inductor and the armature.

また、本発明では、複数の磁極面形成部が並ぶ方向の非巻装磁極面形成部の幅寸法を複数の磁極面形成部が並ぶ方向の非巻装極柱の幅寸法より大きくし、複数の磁極面形成部が並ぶ方向の巻装磁極面形成部の幅寸法を複数の磁極面形成部が並ぶ方向の巻装極柱の幅寸法より大きくするので、磁気抵抗を低下させずに、電機子巻線の占有体積を増やすことができ、電機子巻線の発熱量を抑制することができる。   Further, in the present invention, the width dimension of the non-wound magnetic pole surface forming part in the direction in which the plurality of magnetic pole surface forming parts are arranged is larger than the width dimension of the non-wound pole column in the direction in which the plurality of magnetic pole surface forming parts are arranged. The width dimension of the wound magnetic pole surface forming portion in the direction in which the magnetic pole surface forming portions are arranged is made larger than the width dimension of the wound magnetic pole column in the direction in which the plurality of magnetic pole surface forming portions are arranged. The occupied volume of the child winding can be increased, and the amount of heat generated by the armature winding can be suppressed.

以下、図面を参照して本発明を実施するための最良の形態について説明する。図1は、本発明の第1の実施の形態のリニアモータの側面図である。図1に示すように、本例のリニアモータは、固定子を構成する誘導子1と可動子を構成する電機子3と可動ステージ5と基台7とを有している。誘導子1は、電機子3の移動方向(矢印D)に所定のピッチτpを持って並んだ複数の歯部9からなる歯部列11を有しており、磁性材料からなる複数の鋼板が積層されて構成されている。図2に示すように、誘導子1の歯部列11は、スキューしている。即ち、歯部列11の歯部9の長手方向は、電機子3の移動方向と直交する方向(図2の上下方向)に対して傾斜している。なお、図2は、可動ステージ5を取り除いて図1の上方からみたリニアモータの平面図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a side view of a linear motor according to a first embodiment of the present invention. As shown in FIG. 1, the linear motor of this example includes an inductor 1 that constitutes a stator, an armature 3 that constitutes a mover, a movable stage 5, and a base 7. The inductor 1 has a tooth row 11 composed of a plurality of tooth portions 9 arranged with a predetermined pitch τp in the moving direction of the armature 3 (arrow D), and a plurality of steel plates made of a magnetic material are provided. It is configured by stacking. As shown in FIG. 2, the tooth row 11 of the inductor 1 is skewed. That is, the longitudinal direction of the tooth portion 9 of the tooth row 11 is inclined with respect to a direction (vertical direction in FIG. 2) orthogonal to the moving direction of the armature 3. 2 is a plan view of the linear motor as viewed from above in FIG. 1 with the movable stage 5 removed.

電機子3は、図1及び図2に示すように、電機子ユニット13と6つの巻装部材15と永久磁石列17とを有している。図3に示すように、電機子ユニット13は、ヨーク21と7つの非巻装極柱23と7つの非巻装磁極面形成部25と6つの巻装磁極面形成部27とが一体になって構成されている。ヨーク21は、歯部列11と同じ方向に延びる直方体を有している。このヨーク21には、歯部列11と直交する方向に延びて上方に開口する断面がT字型の3つの溝21aが等間隔で形成されている。図1に示すように、3つの溝21aには、可動ステージ5が嵌合構造により固定されている。この可動ステージ5は、誘導子1の両側に配置された基台7の一対の側壁7aに摺動可能に支持されている。なお、図1では、一対の側壁7aの内、一方の側壁7aのみを表している。このような構成により、電機子3は、誘導子1に対して所定の間隔を隔てて移動可能に配置されることになる。   As shown in FIGS. 1 and 2, the armature 3 includes an armature unit 13, six winding members 15, and a permanent magnet row 17. As shown in FIG. 3, the armature unit 13 includes a yoke 21, seven unwound pole columns 23, seven unwound magnetic pole surface forming portions 25, and six wound magnetic pole surface forming portions 27. Configured. The yoke 21 has a rectangular parallelepiped extending in the same direction as the tooth row 11. In this yoke 21, three grooves 21a having a T-shaped cross section extending in a direction orthogonal to the tooth row 11 and opening upward are formed at equal intervals. As shown in FIG. 1, the movable stage 5 is fixed to the three grooves 21a by a fitting structure. The movable stage 5 is slidably supported on a pair of side walls 7 a of a base 7 disposed on both sides of the inductor 1. In FIG. 1, only one side wall 7a of the pair of side walls 7a is shown. With such a configuration, the armature 3 is arranged to be movable with a predetermined interval with respect to the inductor 1.

図3に戻って説明すると、7つの非巻装極柱23は、後述する電機子巻線16A〜16Fが巻装されない極柱であり、ヨーク21に沿って等間隔に接続されている。7つの非巻装磁極面形成部25は、7つの非巻装極柱23の端部にそれぞれ接続されており、歯部列11と対向するように配置されている。非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向の非巻装磁極面形成部25の幅寸法は、非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向の非巻装極柱23の幅寸法より大きくなっている。   Returning to FIG. 3, the seven non-winding pole columns 23 are pole columns on which armature windings 16 </ b> A to 16 </ b> F (described later) are not wound, and are connected along the yoke 21 at equal intervals. The seven unwrapped magnetic pole surface forming portions 25 are connected to the ends of the seven unwrapped pole columns 23, respectively, and are disposed so as to face the tooth row 11. The width dimension of the non-winding magnetic pole surface forming portion 25 in the direction in which the non-winding magnetic pole surface forming portion 25 and the winding magnetic pole surface forming portion 27 are arranged is such that the non-winding magnetic pole surface forming portion 25 and the winding magnetic pole surface forming portion 27 are aligned. It is larger than the width dimension of the unwound pole column 23 in the direction of alignment.

6つの巻装磁極面形成部27は、7つの非巻装磁極面形成部25と交互に隣接するように配置されている。非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向の巻装磁極面形成部27の幅寸法は、非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向の後述する巻装極柱39の幅寸法より大きくなっている。そして、6つの巻装磁極面形成部27のそれぞれは、隣接する非巻装磁極面形成部25と相互に結合されている。これにより、ヨーク21と隣接する2つの非巻装極柱23と巻装磁極面形成部27との間には、空隙29が形成されることになる。非巻装磁極面形成部25と巻装磁極面形成部27との間には、電機子ユニット13を構成する複数の電磁鋼板を束ねる図示しない螺子が挿入される孔31が空隙29と連通するように形成されている。この孔31は、後述する巻装磁極面形成部27と誘導子1との間に発生する磁束及び非巻装磁極面形成部25と誘導子1との間に発生する磁束の流れを妨げない形状及び寸法を有している。   The six wound magnetic pole surface forming portions 27 are arranged so as to be alternately adjacent to the seven unwrapped magnetic pole surface forming portions 25. The width dimension of the wound magnetic pole surface forming portion 27 in the direction in which the unwrapped magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27 are arranged is the same as that of the unwrapped magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27. The direction is larger than the width dimension of a wound pole column 39 to be described later. Each of the six wound magnetic pole surface forming portions 27 is coupled to the adjacent non-wound magnetic pole surface forming portion 25. As a result, a gap 29 is formed between the two unwound pole columns 23 adjacent to the yoke 21 and the wound magnetic pole surface forming portion 27. Between the unwrapped magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27, a hole 31 into which a screw (not shown) for bundling a plurality of electromagnetic steel plates constituting the armature unit 13 is inserted communicates with the air gap 29. It is formed as follows. This hole 31 does not hinder the magnetic flux generated between the wound magnetic pole surface forming portion 27 and the inductor 1 described later and the flow of magnetic flux generated between the non-wrapped magnetic pole surface forming portion 25 and the inductor 1. Has shape and dimensions.

また、非巻装磁極面形成部25及び巻装磁極面形成部27のそれぞれの中央部内には、誘導子1と対向する面と非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向と直交する方向に開口する永久磁石嵌合溝35が一つずつ形成されている。図1に示すように、複数の永久磁石嵌合溝35内には、非巻装磁極面形成部25及び巻装磁極面形成部27が並ぶ方向に着磁された複数の永久磁石37がそれぞれ嵌合されている。複数の永久磁石37により永久磁石列17が形成されている。これらの永久磁石37は、隣り合う非巻装磁極面形成部25及び巻装磁極面形成部27内にそれぞれ配置された二つの永久磁石37の着磁方向が逆になるように所定のピッチτmを持って並んでいる。本例では、歯部列11のピッチτpと永久磁石列17のピッチτmとは、τm=τp×(6n±1)/(6n)(nは自然数)の関係を有している。   In addition, in the respective central portions of the unwrapped magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27, the surface facing the inductor 1, the unwrapped magnetic pole surface forming portion 25, and the wound magnetic pole surface forming portion 27. Permanent magnet fitting grooves 35 that are open in a direction orthogonal to the direction in which the magnets are arranged are formed one by one. As shown in FIG. 1, a plurality of permanent magnets 37 magnetized in the direction in which the non-wound magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27 are arranged in the plurality of permanent magnet fitting grooves 35, respectively. It is mated. A permanent magnet row 17 is formed by a plurality of permanent magnets 37. These permanent magnets 37 have a predetermined pitch τm so that the magnetization directions of the two permanent magnets 37 disposed in the adjacent unwrapped magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27 are opposite to each other. Are lined up. In this example, the pitch τp of the tooth row 11 and the pitch τm of the permanent magnet row 17 have a relationship of τm = τp × (6n ± 1) / (6n) (n is a natural number).

図4に示すように、6つの巻装部材15は、巻装極柱39と電機子巻線16A〜16Fとをそれぞれ有している。巻装極柱39は、ほぼ直方体の極柱本体39aと極柱本体39aの両端に設けられた一対の嵌合部39bとを一体に有している。極柱本体39aには、電機子巻線16A〜16Fがそれぞれ巻装されている。嵌合部39bは、極柱本体39aから離れるにしたがって断面積が大きくなる形状を有している。6つの巻装部材15は、空隙29内にそれぞれ配置された状態で電機子ユニット13に取付られている。具体的には、巻装部材15の一対の嵌合部39bの一方の嵌合部39bがヨーク21に形成された被嵌合溝21bに嵌合し、他方の嵌合部39bが巻装磁極面形成部27に形成された被嵌合溝27aに嵌合することにより、巻装部材15は電機子ユニット13に取付られている。また、図2に示すように巻装部材15の巻装極柱39の電機子巻線16A〜16Fが巻装される方向の長手方向の長さ寸法L1は、非巻装極柱23の電機子巻線16A〜16Fと隣接する部分の長さ寸法L2より短かくなっている。このため、本例では、電機子巻線16A〜16Fが電機子ユニット13から突出する寸法L3を小さくすることができる。本例では、図1に示すように、非巻装極柱23と非巻装磁極面形成部25とにより非巻装磁極部41が構成され、巻装極柱39と巻装磁極面形成部27とにより巻装磁極部43が構成されている。これにより、電機子3は、非巻装磁極部41と巻装磁極部43とが交互に並ぶ構成を有することになる。言い換えるならば、磁極部(41,43)の一つおきの磁極部(43)に電機子巻線16A〜16Fがそれぞれ巻装されることになる。   As shown in FIG. 4, the six winding members 15 each have a winding pole 39 and armature windings 16A to 16F. The wound pole column 39 integrally includes a substantially rectangular parallelepiped pole body 39a and a pair of fitting portions 39b provided at both ends of the pole column body 39a. Armature windings 16A to 16F are respectively wound around the pole body 39a. The fitting part 39b has a shape in which the cross-sectional area increases as the distance from the pole body 39a increases. The six winding members 15 are attached to the armature unit 13 in a state of being disposed in the gap 29. Specifically, one fitting portion 39b of the pair of fitting portions 39b of the winding member 15 is fitted into the fitting groove 21b formed in the yoke 21, and the other fitting portion 39b is the winding magnetic pole. The winding member 15 is attached to the armature unit 13 by being fitted into a fitting groove 27 a formed in the surface forming portion 27. Further, as shown in FIG. 2, the length dimension L <b> 1 in the longitudinal direction in the direction in which the armature windings 16 </ b> A to 16 </ b> F of the wound pole column 39 of the winding member 15 are wound is the electric machine of the unwound pole column 23. It is shorter than the length dimension L2 of the part adjacent to the child windings 16A to 16F. For this reason, in this example, the dimension L3 in which the armature windings 16A to 16F protrude from the armature unit 13 can be reduced. In this example, as shown in FIG. 1, the non-winding pole column 23 and the non-winding magnetic pole surface forming portion 25 constitute an unwinding magnetic pole portion 41, and the winding pole column 39 and the winding magnetic pole surface forming portion. 27 constitutes a wound magnetic pole portion 43. As a result, the armature 3 has a configuration in which the unwrapped magnetic pole portions 41 and the wound magnetic pole portions 43 are alternately arranged. In other words, the armature windings 16A to 16F are respectively wound around every other magnetic pole part (43) of the magnetic pole parts (41, 43).

また、電機子巻線16A〜16Fと非巻装磁極面形成部25と巻装磁極面形成部27との間(孔31と空隙29とが連通する部分)には、三角形の断面の間隙45がそれぞれ形成されることになる。これらの間隙45内と非巻装磁極面形成部25の表面と巻装磁極面形成部27の表面とには、電機子巻線16A〜16Fを冷却する冷却管47がつづら折りの状態で配置されている。   Further, between the armature windings 16 </ b> A to 16 </ b> F, the unwound magnetic pole surface forming portion 25, and the wound magnetic pole surface forming portion 27 (a portion where the hole 31 and the air gap 29 communicate with each other), a gap 45 having a triangular cross section is provided. Will be formed respectively. Cooling pipes 47 for cooling the armature windings 16A to 16F are arranged in a zigzag manner in the gaps 45, on the surface of the unwrapped magnetic pole surface forming portion 25, and on the surface of the wound magnetic pole surface forming portion 27. ing.

図5に示すように、冷却管47は、歯部列11と同じ方向に延びる複数の管部分47aと歯部列11が延びる方向と直交する方向に延びる管部分47bと管部分47aと平行な方向に延びる管部分47cとを有している。そして、管部分47aが巻装磁極面形成部27の表面に位置し、管部分47bが間隙45内に位置し、管部分47cが非巻装磁極面形成部25の表面に位置するように、冷却管47は配置されている。   As shown in FIG. 5, the cooling pipe 47 includes a plurality of pipe portions 47 a extending in the same direction as the tooth row 11, a pipe portion 47 b extending in a direction perpendicular to the direction in which the tooth row 11 extends, and a pipe portion 47 a. And a tube portion 47c extending in the direction. The tube portion 47a is positioned on the surface of the wound magnetic pole surface forming portion 27, the tube portion 47b is positioned in the gap 45, and the tube portion 47c is positioned on the surface of the unwrapped magnetic pole surface forming portion 25. The cooling pipe 47 is arranged.

本例では、次のようにして冷却管47及び巻装部材15を電機子ユニット13に取り付けた。まず、電機子ユニット13の空隙29内に管部分47bが位置するように、冷却管47を管部分47bが延びる方向(矢印Aの方向)に移動して空隙29の一方の開口部29a(図2参照)から空隙29内に挿入する。次に、冷却管47を管部分47bが延びる方向と直交する方向(矢印Aと直交する方向)に移動して、管部分47aを巻装磁極面形成部27の表面に位置させ、管部分47bを間隙45内に位置させ、管部分47cを非巻装磁極面形成部25の表面に位置させる。次に、巻装部材15を空隙29の一方の開口部29aから空隙29内に挿入して、巻装部材15の一対の嵌合部39bをヨーク21の被嵌合溝21b及び巻装磁極面形成部27の被嵌合溝27aにそれぞれ嵌合して、冷却管47及び巻装部材15の取り付けを完了する。本例によれば、冷却管47及び巻装部材15の脱着を嵌合構造により容易に行うことができる。   In this example, the cooling pipe 47 and the winding member 15 were attached to the armature unit 13 as follows. First, the cooling pipe 47 is moved in the direction in which the pipe part 47b extends (in the direction of arrow A) so that the pipe part 47b is positioned in the gap 29 of the armature unit 13, and one opening 29a (see FIG. 2) to be inserted into the gap 29. Next, the cooling pipe 47 is moved in a direction perpendicular to the direction in which the pipe portion 47b extends (direction perpendicular to the arrow A), the pipe portion 47a is positioned on the surface of the winding magnetic pole surface forming portion 27, and the pipe portion 47b. Is positioned in the gap 45, and the tube portion 47c is positioned on the surface of the non-winding magnetic pole surface forming portion 25. Next, the winding member 15 is inserted into the gap 29 from one opening 29 a of the gap 29, and the pair of fitting portions 39 b of the winding member 15 are inserted into the fitted grooves 21 b of the yoke 21 and the winding pole surface. The fitting of the cooling pipe 47 and the winding member 15 is completed by fitting into the fitted grooves 27a of the forming portion 27, respectively. According to this example, the cooling pipe 47 and the winding member 15 can be easily attached and detached by the fitting structure.

本例のリニアモータでは、2つおきに並ぶ電機子巻線16Aと電機子巻線16Dとに相互に逆方向のU相の電流が流れ、2つおきに並ぶ電機子巻線16Cと電機子巻線16Fとに相互に逆方向のV相の電流が流れ、2つおきに並ぶ電機子巻線16Bと電機子巻線16Eとに相互に逆方向のW相の電流が流れる。そして、例えば、電機子巻線16Aの周囲では、図6に示すように、巻装磁極面形成部27内の永久磁石37→誘導子1の歯部9→図面向かって左側に隣接する歯部9→非巻装磁極面形成部25内の永久磁石37→非巻装極柱23→巻装部材15→巻装磁極面形成部27内の永久磁石37と磁束M1が流れる。また、巻装磁極面形成部27内の永久磁石37→誘導子1の歯部9→図面向かって右側に隣接する歯部9→非巻装磁極面形成部25内の永久磁石37→非巻装極柱23→巻装部材15→巻装磁極面形成部27内の永久磁石37と磁束M2が流れる。そして、図7に示すように、各磁極部41,43で発生する磁束に変化が生じて矢印F1の方向に推力が発生して、電機子は誘導子1に対して往復動を行う。なお、図7では、比較的強い磁束を実線で表わし、比較的弱い磁束を破線で表わしている。 In the linear motor of this example, U-phase currents in opposite directions flow through every other two armature windings 16A and 16D, and every other two armature windings 16C and armatures. A V-phase current in the opposite direction flows through the winding 16F, and a W-phase current in the opposite direction flows through every other two armature windings 16B and 16E. And, for example, around the armature winding 16A, as shown in FIG. 6, the permanent magnet 37 in the wound magnetic pole surface forming portion 27 → the tooth portion 9 of the inductor 1 → the tooth portion adjacent to the left side in the drawing. 9 → Permanent magnet 37 in non-winding magnetic pole surface forming portion 25 → Non-winding pole column 23 → Wound member 15 → Permanent magnet 37 in winding magnetic pole surface forming portion 27 and magnetic flux M1 flow. Further, the permanent magnet 37 in the wound magnetic pole surface forming portion 27 → the tooth portion 9 of the inductor 1 → the tooth portion 9 adjacent to the right side in the drawing → the permanent magnet 37 in the unwrapped magnetic pole surface forming portion 25 → unwinding. The permanent magnet 37 and the magnetic flux M2 flow in the pole pole 23 → the winding member 15 → the wound magnetic pole surface forming portion 27. Then, as shown in FIG. 7, a change occurs in the magnetic flux generated in each magnetic pole portion 41, 43 and thrust is generated in the direction of arrow F <b> 1, and the armature 3 reciprocates with respect to the inductor 1. In FIG. 7, a relatively strong magnetic flux is indicated by a solid line, and a relatively weak magnetic flux is indicated by a broken line.

本例のリニアモータによれば、非巻装磁極部41と巻装磁極部43とを交互に並べて、隣接する非巻装磁極面形成部25と巻装磁極面形成部27とを相互に結合するので、スロットによる開口部が閉塞されて誘導子1と対向する電機子3の磁極面の面積が大きくなる。また、永久磁石37を非巻装磁極面形成部25及び巻装磁極面形成部27のそれぞれに1つずつ配置するので、非巻装磁極部41と巻装磁極部43と電機子巻線16A〜16Fの寸法を適宜に設定することにより、永久磁石列の永久磁石の等間隔なピッチを比較的自由に設定することができる。そのため、電機子3の大きさに対するモータの推力を高くすることができ、リニアモータの速度を高めることができる。また、誘導子1と電機子3との間の間隔寸法に比べ、誘導子1の歯部9のピッチτp及び永久磁石のピッチτmを大きくすることで、誘導子1と電機子3との間の間隔寸法を大きくしても、推力の減少は小さくなる。そのため、誘導子1と電機子3との位置設定を容易に行える。   According to the linear motor of this example, the non-wound magnetic pole portions 41 and the wound magnetic pole portions 43 are alternately arranged, and the adjacent non-winding magnetic pole surface forming portions 25 and the wound magnetic pole surface forming portions 27 are coupled to each other. Therefore, the opening by the slot is closed, and the area of the magnetic pole surface of the armature 3 facing the inductor 1 is increased. Since one permanent magnet 37 is disposed in each of the non-winding magnetic pole surface forming portion 25 and the wound magnetic pole surface forming portion 27, the non-winding magnetic pole portion 41, the winding magnetic pole portion 43, and the armature winding 16A. By appropriately setting the dimensions of ˜16F, the equally spaced pitches of the permanent magnets in the permanent magnet row can be set relatively freely. Therefore, the thrust of the motor with respect to the size of the armature 3 can be increased, and the speed of the linear motor can be increased. Further, by increasing the pitch τp of the tooth portion 9 of the inductor 1 and the pitch τm of the permanent magnet as compared with the distance between the inductor 1 and the armature 3, the space between the inductor 1 and the armature 3 is increased. Even if the distance between the two is increased, the reduction in thrust is reduced. Therefore, the position setting of the inductor 1 and the armature 3 can be easily performed.

また、本例のリニアモータでは、非巻装磁極面形成部25の歯部列11の延びる方向の幅寸法を非巻装極柱23の歯部列11の延びる方向の幅寸法より大きくし、巻装磁極面形成部27の歯部列11の延びる方向の幅寸法を巻装極柱39の歯部列11の延びる方向の幅寸法より大きくするので、磁気抵抗を低下させずに、電機子巻線16A〜16Fの占有体積を増やすことができ、電機子巻線16A〜16Fの発熱量を抑制することができる。 図8は、本発明の第2の実施の形態のリニアモータの正面図であり、図9は、リニアモータの要部の平面図(図8をIX−IX線から見た図)であり、図10は、リニアモータの要部を側面から見た模式図(図8をX−X線から見た模式図)である。各図に示すように、本例のリニアモータは、固定子を構成する一対の誘導子101A,101Bと可動子を構成する電機子103と可動ステージ105と基台107と位置検出装置108とを有している。一対の誘導子101A,101Bは、電機子103の移動方向(図9の矢印D)に所定のピッチτpを持って並んだ複数の歯部109からなる歯部列111をそれぞれ有しており、磁性材料からなる複数の鋼板が積層されて構成されている。図10に示すように、一対の誘導子101A,101Bのそれぞれの歯部列111は、それぞれ異なる方向にスキューしている。即ち、一方の誘導子101Aの歯部109の長手方向は、電機子103の移動方向と直交する方向に対して傾斜している。また他方の誘導子101Bの歯部109の長手方向は、一方の誘導子101Aの歯部109とは異なる方向に傾斜している。本例では、歯部列111がスキューしていないと仮定した場合の歯部列111の歯部109の端部が、実際にスキューした場合に歯部109の歯部列111の延びる方向にずれる長さがτp/6n(nは自然数)となっている。   Further, in the linear motor of this example, the width dimension in the extending direction of the tooth part row 11 of the non-winding magnetic pole surface forming portion 25 is made larger than the width dimension in the extending direction of the tooth part row 11 of the non-winding pole column 23, Since the width dimension of the winding magnetic pole surface forming part 27 in the extending direction of the tooth row 11 is made larger than the width dimension of the winding pole column 39 in the extending direction of the tooth row 11, the armature is not reduced without reducing the magnetic resistance. The occupied volume of the windings 16A to 16F can be increased, and the amount of heat generated by the armature windings 16A to 16F can be suppressed. FIG. 8 is a front view of the linear motor according to the second embodiment of the present invention, and FIG. 9 is a plan view of the main part of the linear motor (a view of FIG. 8 taken along line IX-IX). FIG. 10 is a schematic view of the main part of the linear motor as seen from the side surface (schematic view of FIG. 8 as seen from line XX). As shown in each figure, the linear motor of this example includes a pair of inductors 101A and 101B that constitute a stator, an armature 103 that constitutes a mover, a movable stage 105, a base 107, and a position detection device 108. Have. Each of the pair of inductors 101A and 101B has a tooth portion row 111 composed of a plurality of tooth portions 109 arranged with a predetermined pitch τp in the moving direction of the armature 103 (arrow D in FIG. 9). A plurality of steel plates made of a magnetic material are laminated. As shown in FIG. 10, each tooth row 111 of the pair of inductors 101A and 101B is skewed in different directions. That is, the longitudinal direction of the tooth portion 109 of one inductor 101 </ b> A is inclined with respect to the direction orthogonal to the moving direction of the armature 103. The longitudinal direction of the tooth portion 109 of the other inductor 101B is inclined in a direction different from that of the tooth portion 109 of the one inductor 101A. In this example, when it is assumed that the tooth portion row 111 is not skewed, the end portion of the tooth portion 109 of the tooth portion row 111 is shifted in the extending direction of the tooth portion row 111 of the tooth portion 109 when the tooth portion row 111 is actually skewed. The length is τp / 6n (n is a natural number).

電機子103は、図9に示すように、電機子ユニット113と6つの巻装部材115と一対の永久磁石列117A,117Bとを有している。図11に示すように、電機子ユニット113は、7つの非巻装極柱119と7つの一対の非巻装磁極面形成部121A,121Bと7つの一対の巻装磁極面形成部123A,123Bとが一体になって構成されている。7つの非巻装極柱119は、後述する電機子巻線が巻装されない極柱であり、歯部列111が延びる方向に等間隔で配置されている。7つの一対の非巻装磁極面形成部121A,121Bは、7つの非巻装極柱119の両端にそれぞれ接続されている。7つの一対の非巻装磁極面形成部121A,121Bの内、7つの一方の非巻装磁極面形成部121Aは、一対の誘導子101A,101Bの一方の誘導子101Aの歯部列111と対向するように配置されている。7つの一対の非巻装磁極面形成部121A,121Bの内、7つの他方の非巻装磁極面形成部121Bは、一対の誘導子101A,101Bの他方の誘導子101Bの歯部列111と対向するように配置されている。一対の非巻装磁極面形成部121A,121Bが並ぶ方向の該一対の非巻装磁極面形成部121A,121Bのそれぞれの幅寸法は、一対の非巻装磁極面形成部121A,121Bが並ぶ方向の非巻装極柱119の幅寸法より大きくなっている。   As shown in FIG. 9, the armature 103 includes an armature unit 113, six winding members 115, and a pair of permanent magnet rows 117 </ b> A and 117 </ b> B. As shown in FIG. 11, the armature unit 113 includes seven unwrapped pole columns 119, seven pairs of unwrapped magnetic pole surface forming portions 121A and 121B, and seven pairs of wound magnetic pole surface forming portions 123A and 123B. And are integrated. The seven non-wound pole columns 119 are pole columns on which an armature winding described later is not wound, and are arranged at equal intervals in the direction in which the tooth portion row 111 extends. The seven pairs of unwrapped magnetic pole surface forming portions 121A and 121B are connected to both ends of the seven unwrapped pole columns 119, respectively. Of the seven pairs of non-winding magnetic pole surface forming portions 121A and 121B, one of the seven non-winding magnetic pole surface forming portions 121A and the tooth portion row 111 of one inductor 101A of the pair of inductors 101A and 101B It arrange | positions so that it may oppose. Of the seven pairs of non-winding magnetic pole surface forming portions 121A and 121B, the seven other non-winding magnetic pole surface forming portions 121B are connected to the tooth row 111 of the other inductor 101B of the pair of inductors 101A and 101B. It arrange | positions so that it may oppose. The width dimension of each of the pair of non-winding magnetic pole surface forming portions 121A and 121B in the direction in which the pair of non-winding magnetic pole surface forming portions 121A and 121B is arranged is such that the pair of non-winding magnetic pole surface forming portions 121A and 121B are aligned. It is larger than the width dimension of the unwound pole column 119 in the direction.

6つの一対の巻装磁極面形成部123A,123Bは、一対の誘導子101A,101Bのそれぞれの歯部列111と対向するように配置されている。また、6つの一対の巻装磁極面形成部123A,123Bが並ぶ方向の該一対の巻装磁極面形成部123A,123Bの幅寸法は、6つの一対の巻装磁極面形成部123A,123Bが並ぶ方向の後述する巻装極柱139の幅寸法より大きくなっている。6つの一対の巻装磁極面形成部123A,123Bの内、6つの一方の巻装磁極面形成部123Aは、一方の非巻装磁極面形成部121Aと交互に隣接するように配置されている。そして、6つの一方の巻装磁極面形成部123Aは、隣接する一方の非巻装磁極面形成部121Aと相互に結合されている。6つの一対の巻装磁極面形成部123A,123Bの内、6つの他方の巻装磁極面形成部123Bは、他方の非巻装磁極面形成部121Bと交互に隣接するように配置されている。そして、6つの他方の巻装磁極面形成部12Bは、隣接する他方の巻装磁極面形成部12Bと相互に結合されている。 The six pairs of wound magnetic pole surface forming portions 123A and 123B are arranged so as to oppose the respective tooth row 111 of the pair of inductors 101A and 101B. Further, the width dimension of the pair of wound magnetic pole surface forming portions 123A and 123B in the direction in which the six pairs of wound magnetic pole surface forming portions 123A and 123B are arranged is the same as that of the six pairs of wound magnetic pole surface forming portions 123A and 123B. It is larger than the width dimension of a wound pole column 139 described later in the direction of alignment. Of the six pairs of wound magnetic pole surface forming portions 123A and 123B, one of the six wound magnetic pole surface forming portions 123A is arranged so as to be alternately adjacent to one non-wound magnetic pole surface forming portion 121A. . Then, one of the six wound magnetic pole surface forming portions 123A is coupled to one adjacent non-wound magnetic pole surface forming portion 121A. Of the six pairs of wound magnetic pole surface forming portions 123A and 123B, the six other wound magnetic pole surface forming portions 123B are arranged alternately adjacent to the other non-wound magnetic pole surface forming portion 121B. . The six other wound magnetic pole surface forming portion 12 3 B is bonded to the adjacent non-wound magnetic pole surface forming portion 12 1 B and mutual other.

以上の構成により、隣接する2つの非巻装極柱119と一対の巻装磁極面形成部123A,123Bとの間には、空隙125が形成されることになる。また、一方の非巻装磁極面形成部121Aと一方の巻装磁極面形成部123Aとの間、及び他方の非巻装磁極面形成部121Bと他方の巻装磁極面形成部123Bとの間には、孔127が空隙125と連通するようにそれぞれ形成されている。図8に示すように孔127が延びる電機子ユニット113の両端には、螺子取付具129が配置されている。螺子取付具129内には孔127に連通する貫通孔129aが形成されている。電機子ユニット113は、孔127及び貫通孔129aを貫通する螺子131により、可動ステージ105に固定されている。この可動ステージ105は、一対の誘導子101A,101Bの両側に配置された基台107の一対の側壁107aに滑車133を介して摺動可能に支持されている。このため、電機子103は、一対の誘導子101A,101Bと所定の間隔を隔てて、一対の誘導子101A,101Bに対して移動可能に配置されることになる。また、本例では、一対の側壁107aの一方の側壁に位置検出装置108の検出器108aを配置し、可動ステージ105に検出器108aと所定の間隔を隔てて対向する被検出器108bを配置している。これにより、電機子103の位置検出を行っている。 With the above configuration, a gap 125 is formed between the two adjacent unwound pole columns 119 and the pair of wound magnetic pole surface forming portions 123A and 123B. Further, between one unwrapped magnetic pole surface forming portion 121A and one wound magnetic pole surface forming portion 123A, and between the other unwrapped magnetic pole surface forming portion 121B and the other wound magnetic pole surface forming portion 123B. Each of the holes 127 is formed so as to communicate with the gap 125. As shown in FIG. 8, screw attachment tools 129 are arranged at both ends of the armature unit 113 from which the hole 127 extends. A through hole 129 a communicating with the hole 127 is formed in the screw attachment 129. The armature unit 113 is fixed to the movable stage 105 by a screw 131 that passes through the hole 127 and the through hole 129a. The movable stage 105 is slidably supported via a pulley 133 on a pair of side walls 107a of a base 107 disposed on both sides of the pair of inductors 101A and 101B. For this reason, the armature 103 is arranged to be movable with respect to the pair of inductors 101A and 101B at a predetermined interval from the pair of inductors 101A and 101B. In this example, the detector 108a of the position detection device 108 is arranged on one side wall of the pair of side walls 107a, and the detector 108b facing the detector 108a with a predetermined interval is arranged on the movable stage 105. ing. Thereby, the position of the armature 103 is detected.

図11に戻って説明すると、一方の非巻装磁極面形成部121Aと一方の巻装磁極面形成部123Aのそれぞれの中央部には、一方の誘導子101Aと対向する面と一方の非巻装磁極面形成部121A及び一方の巻装磁極面形成部123Aが並ぶ方向と直交する方向に開口する永久磁石嵌合溝135が一つずつ形成されている。図9に示すように、複数の永久磁石嵌合溝135内には、一方の非巻装磁極面形成部121A及び一方の巻装磁極面形成部123Aが並ぶ方向に着磁された複数の永久磁石137がそれぞれ嵌合されている。これらの永久磁石137は、隣り合う一方の非巻装磁極面形成部121Aと一方の巻装磁極面形成部123A内にそれぞれ配置された二つの永久磁石137の着磁方向が逆になるように所定のピッチτmを持って並んでいる。また、他方の非巻装磁極面形成部121Bと他方の巻装磁極面形成部123Bのそれぞれの中央部にも、他方の誘導子101Aと対向する面と他方の非巻装磁極面形成部121B及び他方の巻装磁極面形成部123Bが並ぶ方向と直交する方向に開口する永久磁石嵌合溝135が一つずつ形成されている。複数の永久磁石嵌合溝135内には、他方の非巻装磁極面形成部121B及び他方の巻装磁極面形成部123Bが並ぶ方向に着磁された複数の永久磁石137がそれぞれ嵌合されている。これらの永久磁石137は、隣り合う他方の非巻装磁極面形成部121Bと他方の巻装磁極面形成部123B内にそれぞれ配置された二つの永久磁石137の着磁方向が逆になるように所定のピッチτmを持って並んでいる。本例では、歯部列111のピッチτpと永久磁石列117のピッチτmとは、τm=τp×(6n±1)/(6n)(nは自然数)の関係を有している。   Returning to FIG. 11, at the center of each of the one unwrapped magnetic pole surface forming portion 121A and the one wound magnetic pole surface forming portion 123A, there is a surface facing one inductor 101A and one unwinding portion. Permanent magnet fitting grooves 135 are formed one by one so as to open in a direction perpendicular to the direction in which the magnetic pole surface forming portion 121A and one winding magnetic pole surface forming portion 123A are arranged. As shown in FIG. 9, in the plurality of permanent magnet fitting grooves 135, a plurality of permanent magnets magnetized in the direction in which one non-winding magnetic pole surface forming portion 121A and one winding magnetic pole surface forming portion 123A are arranged. Magnets 137 are respectively fitted. These permanent magnets 137 are arranged such that the magnetization directions of the two permanent magnets 137 arranged in one adjacent unwrapped magnetic pole surface forming portion 121A and one wound magnetic pole surface forming portion 123A are opposite to each other. They are arranged with a predetermined pitch τm. In addition, the center of each of the other non-winding magnetic pole surface forming portion 121B and the other winding magnetic pole surface forming portion 123B is also provided with a surface facing the other inductor 101A and the other non-winding magnetic pole surface forming portion 121B. And the permanent magnet fitting groove | channel 135 opened in the direction orthogonal to the direction where the other winding magnetic pole surface formation part 123B is located in a line is formed one by one. In the plurality of permanent magnet fitting grooves 135, a plurality of permanent magnets 137 magnetized in the direction in which the other non-winding magnetic pole surface forming portion 121B and the other winding magnetic pole surface forming portion 123B are aligned are respectively fitted. ing. These permanent magnets 137 are arranged such that the magnetization directions of the two permanent magnets 137 arranged in the other non-wound magnetic pole surface forming portion 121B and the other wound magnetic pole surface forming portion 123B are opposite to each other. They are arranged with a predetermined pitch τm. In this example, the pitch τp of the tooth row 111 and the pitch τm of the permanent magnet row 117 have a relationship of τm = τp × (6n ± 1) / (6n) (n is a natural number).

図12に示すように、6つの巻装部材115は、巻装極柱139と電機子巻線141A〜141Fとをそれぞれ有している。巻装極柱139は、ほぼ直方体の極柱本体139aと極柱本体139aの両端に設けられた一対の嵌合部139bとを一体に有している。極柱本体139aには、電機子巻線141A〜141Fがそれぞれ巻装されている。嵌合部139bは、極柱本体139aから離れるにしたがって断面積が大きくなる形状を有している。6つの巻装部材115は、空隙125内にそれぞれ配置された状態で電機子ユニット113に取付られている。具体的には、巻装部材115の一対の嵌合部139bの一方の嵌合部139bが一方の巻装磁極面形成部123Aに形成された被嵌合溝123aに嵌合し、他方の嵌合部139bが他方の巻装磁極面形成部123Bに形成された被嵌合溝123aに嵌合することにより、巻装部材115は電機子ユニット113に取付られている。また、図8に示すように巻装部材115の巻装極柱139の電機子巻線141A〜141Fが巻装される方向の長手方向の長さ寸法L5は、非巻装極柱119の電機子巻線141A〜141Fと隣接する部分の長さ寸法L6より短かくなっている。このため、本例では、電機子巻線141A〜141Fが電機子ユニット113から突出する寸法L7を小さくすることができる。本例では、図9に示すように、非巻装極柱119と一対の非巻装磁極面形成部121A,121Bとにより非巻装磁極部143が構成され、巻装極柱139と一対の巻装磁極面形成部123A,123Bとにより巻装磁極部145が構成されている。これにより、電機子103は、非巻装磁極部143と巻装磁極部145とが交互に並ぶ構成を有することになる。言い換えるならば、磁極部(143,145)の一つおきの磁極部(145)に電機子巻線141A〜141Fがそれぞれ巻装されることになる。   As shown in FIG. 12, each of the six winding members 115 has a winding pole 139 and armature windings 141A to 141F. The wound pole 139 integrally has a substantially rectangular parallelepiped pole body 139a and a pair of fitting portions 139b provided at both ends of the pole body 139a. Armature windings 141 </ b> A to 141 </ b> F are wound around the pole body 139 a. The fitting portion 139b has a shape in which the cross-sectional area increases as the distance from the pole body 139a increases. The six winding members 115 are attached to the armature unit 113 in a state of being disposed in the gap 125. Specifically, one fitting portion 139b of the pair of fitting portions 139b of the winding member 115 is fitted into the fitting groove 123a formed in one winding magnetic pole surface forming portion 123A, and the other fitting is performed. The winding member 115 is attached to the armature unit 113 by fitting the joint portion 139b into the fitting groove 123a formed in the other winding magnetic pole surface forming portion 123B. Further, as shown in FIG. 8, the length dimension L5 in the longitudinal direction in the direction in which the armature windings 141A to 141F of the wound pole column 139 of the winding member 115 are wound is equal to that of the unwound pole column 119. It is shorter than the length dimension L6 of the portion adjacent to the child windings 141A to 141F. For this reason, in this example, the dimension L7 in which the armature windings 141A to 141F protrude from the armature unit 113 can be reduced. In this example, as shown in FIG. 9, the non-winding pole column 119 and the pair of non-winding magnetic pole surface forming portions 121A and 121B form an unwinding magnetic pole portion 143, and the winding pole column 139 and the pair of non-winding pole columns 139 A wound magnetic pole portion 145 is configured by the wound magnetic pole surface forming portions 123A and 123B. As a result, the armature 103 has a configuration in which the unwrapped magnetic pole portions 143 and the wound magnetic pole portions 145 are alternately arranged. In other words, the armature windings 141A to 141F are respectively wound around every other magnetic pole part (145) of the magnetic pole parts (143, 145).

また、電機子巻線141A〜141Fと一対の非巻装磁極面形成部121A,121Bの一方の非巻装磁極面形成部121Aと一対の巻装磁極面形成部123A,123Bの一方の巻装磁極面形成部123Aとの間(孔127と空隙125とが連通する部分)には、三角形の断面の間隙147Aがそれぞれ形成されることになる。これらの間隙147A内と一方の非巻装磁極面形成部121Aの表面と一方の巻装磁極面形成部123Aの表面とには、電機子巻線141A〜141Fを冷却する第1の冷却管149Aがつづら折りの状態で配置されている。また、電機子巻線141A〜141Fと一対の非巻装磁極面形成部121A,121Bの他方の非巻装磁極面形成部121Bと一対の巻装磁極面形成部123A,123Bの他方の巻装磁極面形成部123Bとの間(孔127と空隙125とが連通する部分)にも、三角形の断面の間隙147Bがそれぞれ形成されることになる。これらの間隙147B内と他方の非巻装磁極面形成部121Bの表面と他方の巻装磁極面形成部123Bの表面とには、電機子巻線141A〜141Fを冷却する第2の冷却管149Bがつづら折りの状態で配置されている。第1及び第2の冷却管149A,149Bは、図5に示す冷却管47と基本的には同じ構造を有している。そして、第1の実施の形態と同様にして、第1及び第2の冷却管149A,149Bを取り付けた後に巻装部材115の取り付けることにより、第1及び第2の冷却管149A,149B及び巻装部材115の脱着を容易に行うことができる。   In addition, the armature windings 141A to 141F and one of the pair of unwound magnetic pole surface forming portions 121A and 121B, one of the unwrapped magnetic pole surface forming portions 121A and one of the pair of wound magnetic pole surface forming portions 123A and 123B are wound. A gap 147A having a triangular cross section is formed between the magnetic pole surface forming portion 123A (a portion where the hole 127 and the gap 125 communicate with each other). A first cooling pipe 149A for cooling the armature windings 141A to 141F is formed in the gap 147A, the surface of one non-winding magnetic pole surface forming portion 121A, and the surface of one winding magnetic pole surface forming portion 123A. Are arranged in a folded state. Further, the other windings of the armature windings 141A to 141F, the other non-winding magnetic pole surface forming portions 121A and 121B, the other non-winding magnetic pole surface forming portion 121B, and the pair of wound magnetic pole surface forming portions 123A and 123B. A gap 147B having a triangular cross section is also formed between the magnetic pole surface forming portion 123B (a portion where the hole 127 and the gap 125 communicate with each other). A second cooling pipe 149B for cooling the armature windings 141A to 141F is formed in the gap 147B, the surface of the other non-wound magnetic pole surface forming portion 121B, and the surface of the other wound magnetic pole surface forming portion 123B. Are arranged in a folded state. The first and second cooling pipes 149A and 149B have basically the same structure as the cooling pipe 47 shown in FIG. In the same manner as in the first embodiment, the first and second cooling pipes 149A and 149B are attached, and then the winding member 115 is attached, whereby the first and second cooling pipes 149A and 149B and the windings are attached. The mounting member 115 can be easily detached.

本例のリニアモータでは、2つおきに並ぶ電機子巻線141Aと電機子巻線141Dとに相互に逆方向のU相の電流が流れ、2つおきに並ぶ電機子巻線141Cと電機子巻線141Fとに相互に逆方向のV相の電流が流れ、2つおきに並ぶ電機子巻線141Bと電機子巻線141Eとに相互に逆方向のW相の電流が流れる。そして、図13に示すように、非巻装磁極面形成部121A内の永久磁石137→誘導子101Aの歯部109→図面向かって右側に隣接する歯部109→巻装磁極面形成部123A内の永久磁石137→巻装磁極面形成部123B内の永久磁石137→誘導子101Bの歯部109→図面向かって左側に隣接する歯部109→非巻装磁極面形成部121B内の永久磁石137→非巻装磁極面形成部121A内の永久磁石137と磁束M11が流れる。また、非巻装磁極面形成部12A内の永久磁石137→誘導子101Aの歯部109→図面向かって側に隣接する歯部109→巻装磁極面形成部12A内の永久磁石137→巻装磁極面形成部12B内の永久磁石137→誘導子101Bの歯部109→図面向かって側に隣接する歯部109→非巻装磁極面形成部12B内の永久磁石137→非巻装磁極面形成部12A内の永久磁石137と磁束M12が流れる。これにより、矢印F2,F3の方向に推力が発生して、電機子103は一対の誘導子101A,101Bに対して往復動を行う。 In the linear motor of this example, U-phase currents in opposite directions flow through every other armature winding 141A and armature winding 141D, and every second armature winding 141C and armature. A V-phase current in the opposite direction flows through the winding 141F, and a W-phase current in the opposite direction flows through every other two armature windings 141B and 141E. As shown in FIG. 13, the permanent magnet 137 in the non-winding magnetic pole surface forming portion 121A → the tooth portion 109 of the inductor 101A → the tooth portion 109 adjacent to the right side in the drawing → the inside of the winding magnetic pole surface forming portion 123A Permanent magnet 137 → permanent magnet 137 in wound magnetic pole surface forming portion 123B → tooth portion 109 of inductor 101B → tooth portion 109 adjacent to the left side in the drawing → permanent magnet 137 in unwrapped magnetic pole surface forming portion 121B → The permanent magnet 137 and the magnetic flux M11 in the non-winding magnetic pole surface forming portion 121A flow. Also, permanent non-wound instrumentation magnetic pole surface forming portion 12 first permanent magnet 137 → the inductor 101A teeth 109 → wound magnetic pole surface forming portion 12 3 A of teeth 109 → towards drawing adjacent to the left side of the A magnet 137 → wound magnetic pole surface forming portions 12 3 teeth 109 → non-wound instrumentation magnetic pole surface forming portion 12 1 in B which is adjacent to the right side toward the tooth portion 109 → drawing of the permanent magnet 137 → inductor 101B in B Permanent magnet 137 → permanent magnet 137 and magnetic flux M12 in unwrapped magnetic pole surface forming portion 12 1 A flow. Thereby, thrust is generated in the directions of arrows F2 and F3, and the armature 103 reciprocates with respect to the pair of inductors 101A and 101B.

本例のリニアモータによれば、電機子103の水平方向に一対の誘導子101A,101Bを配置することができるため、電機子103と一対の誘導子101A,101Bとの間の磁気吸引力を打ち消すことができ、電機子103を安定して一対の誘導子101A,101Bの間に配置することができる。   According to the linear motor of this example, since the pair of inductors 101A and 101B can be arranged in the horizontal direction of the armature 103, the magnetic attraction force between the armature 103 and the pair of inductors 101A and 101B is increased. The armature 103 can be stably disposed between the pair of inductors 101A and 101B.

なお、上記例では、電機子103は、1つの電機子ユニット113を備えているが、図14に示すように電機子は、複数(この例では3つ)の電機子ユニット213,313A,313Bを備えて構成することもできる。この場合、電機子ユニット213の隣接する電機子ユニット313A,313Bと対向する面に嵌合凸部213aと被嵌合凹部213bを形成する。また、電機子ユニット313A,313Bの隣接する電機子ユニット213と対向するそれぞれの面に嵌合凸部313aと被嵌合凹部313bを形成する。嵌合凸部213a及び嵌合凸部313aは、隣接する電機子ユニットに向かうにしたがって断面積が大きくなる形状を有している。被嵌合凹部213b及び被嵌合凹部313bは、嵌合凸部313a及び嵌合凸部213aとそれぞれ嵌合可能な形状を有している。そして、嵌合凸部313aと被嵌合凹部213bとを嵌合し、嵌合凸部213aと被嵌合凹部313bとを嵌合して、3つの電機子ユニット213,313A,313Bを連結する。このようにすれば、複数の電機子ユニットを用意することにより、所望の磁極数の電機子を容易に形成することができる。 In the above example, the armature 103 includes one armature unit 113. However, as shown in FIG. 14, the armature includes a plurality (three in this example) of armature units 213, 313A, and 313B. It can also comprise. In this case, the fitting convex portion 213a and the fitting concave portion 213b are formed on the surface of the armature unit 213 facing the adjacent armature units 313A and 313B. In addition, a fitting convex portion 313a and a fitting concave portion 313b are formed on each surface of the armature units 313A and 313B facing the adjacent armature unit 213 . The fitting convex part 213a and the fitting convex part 313a have a shape in which the cross-sectional area increases toward the adjacent armature unit. The to-be-fitted concave portion 213b and the to-be-fitted concave portion 313b have shapes that can be fitted to the fitting convex portion 313a and the fitting convex portion 213a, respectively. And the fitting convex part 313a and the to-be-fitted recessed part 213b are fitted, the fitting convex part 213a and the to-be-fitted recessed part 313b are fitted, and three armature units 213, 313A, and 313B are connected. . In this way, an armature having a desired number of magnetic poles can be easily formed by preparing a plurality of armature units.

本発明の第1の実施の形態のリニアモータの側面図である。1 is a side view of a linear motor according to a first embodiment of the present invention. 可動ステージを取り除いて図1の上方からみたリニアモータの平面図である。It is the top view of the linear motor which removed the movable stage and was seen from the upper direction of FIG. 図1に示すリニアモータに用いる電機子ユニットの側面図である。It is a side view of the armature unit used for the linear motor shown in FIG. 図1に示すリニアモータに用いる巻装部材の側面図である。It is a side view of the winding member used for the linear motor shown in FIG. 図1に示すリニアモータに用いる冷却管の平面図である。It is a top view of the cooling pipe used for the linear motor shown in FIG. 図1に示すリニアモータの磁束の流れを説明するために用いる図である。It is a figure used in order to demonstrate the flow of the magnetic flux of the linear motor shown in FIG. 図1に示すリニアモータの磁束の流れ及びリニアモータの動きを説明するために用いる図である。It is a figure used in order to demonstrate the flow of the magnetic flux of the linear motor shown in FIG. 1, and the motion of a linear motor. 本発明の第2の実施の形態のリニアモータの正面図である。It is a front view of the linear motor of the 2nd Embodiment of this invention. 図8に示すリニアモータの要部の平面図(図8をIX−IX線から見た図)である。It is a top view (figure which looked at FIG. 8 from the IX-IX line) of the principal part of the linear motor shown in FIG. 図8に示すリニアモータの要部を側面から見た模式図(図8をX−X線から見た模式図)である。It is the schematic diagram which looked at the principal part of the linear motor shown in FIG. 8 from the side (schematic diagram which looked at FIG. 8 from the XX line). 図8に示すリニアモータに用いる電機子ユニットの平面図である。It is a top view of the armature unit used for the linear motor shown in FIG. 図8に示すリニアモータに用いる巻装部材の平面図である。It is a top view of the winding member used for the linear motor shown in FIG. 図8に示すリニアモータの磁束の流れを説明するために用いる図である。It is a figure used in order to explain the flow of magnetic flux of the linear motor shown in FIG. 電機子を複数の電機子ユニットを備えて構成する場合を説明するために用いる図である。It is a figure used in order to explain the case where an armature is provided with a plurality of armature units.

1 誘導子
3 電機子
9 歯部
11 歯部列
13 電機子ユニット
15 巻装部材
16A〜16F 電機子巻線
17 永久磁石列
21 ヨーク
23 非巻装極柱
25 非巻装磁極面形成部
27 巻装磁極面形成部
37 永久磁石
39 巻装極柱
41 非巻装磁極部
43 巻装磁極部
47 冷却管
101A,101B 一対の誘導子
103 電機子
109 歯部
111 歯部列
113 電機子ユニット
115 巻装部材
117A,117B 一対の永久磁石列
119 非巻装極柱
121A,121B 一対の非巻装磁極面形成部
123A,123B 一対の巻装磁極面形成部
137 永久磁石
139 巻装極柱
141A〜141F 電機子巻線
143 非巻装磁極部
145 巻装磁極部
149A 第1の冷却管
149B 第2の冷却管
DESCRIPTION OF SYMBOLS 1 Inductor 3 Armature 9 Tooth part 11 Tooth part row | line | column 13 Armature unit 15 Winding member 16A-16F Armature winding 17 Permanent magnet row | line | column 21 Yoke 23 Unwound pole pole 25 Unwound pole surface formation part 27 Winding Mounted pole surface forming portion 37 Permanent magnet 39 Wound pole column 41 Unwrapped magnetic pole portion 43 Wound magnetic pole portion 47 Cooling pipes 101A, 101B A pair of inductors 103 Armature 109 Tooth portion 111 Tooth portion row 113 Armature unit 115 Winding Mounting members 117A, 117B A pair of permanent magnet rows 119 Unwrapped pole columns 121A, 121B A pair of unwrapped magnetic pole surface forming portions 123A, 123B A pair of wound magnetic pole surface forming portions 137 Permanent magnets 139 Wound pole columns 141A-141F Armature winding 143 Unwinding magnetic pole part 145 Winding magnetic pole part 149A First cooling pipe 149B Second cooling pipe

Claims (14)

所定のピッチτpを持って並んだ複数の歯部からなる歯部列を有する誘導子と、
前記複数の歯部が並ぶ方向に延びるヨークと、前記ヨークに沿って所定の間隔を開けて配置されて前記ヨークに接続された複数の極柱と前記複数の極柱の端部にそれぞれ接続されて前記誘導子の歯部列と対向する複数の磁極面形成部とをそれぞれ備える複数の磁極部と、前記複数の磁極面形成部をそれぞれ励磁する複数の電機子巻線と、前記複数の磁極面形成部内に配置されて前記磁極面形成部を通る磁束の磁路を変更する1以上の永久磁石とを有する電機子とを備え、
前記誘導子及び前記電機子の一方が可動子となり、他方が固定子となるリニアモータであって、
前記複数の磁極部は、前記電機子巻線が巻装されない非巻装極柱と前記非巻装極柱に接続される非巻装磁極面形成部とを備える非巻装磁極部と、前記電機子巻線が巻装される巻装極柱と前記巻装極柱に接続される巻装磁極面形成部とを備える巻装磁極部とが交互に並んで構成されており、
前記複数の磁極面形成部が並ぶ方向の前記非巻装磁極面形成部の幅寸法は、前記複数の磁極面形成部が並ぶ方向の前記非巻装極柱の幅寸法より大きくなっており、
前記複数の磁極面形成部が並ぶ方向の前記巻装磁極面形成部の幅寸法は、前記複数の磁極面形成部が並ぶ方向の前記巻装極柱の幅寸法より大きくなっており、
隣接する前記非巻装磁極面形成部と前記巻装磁極面形成部は相互に結合されており、
前記複数の非巻装磁極面形成部及び前記複数の巻装磁極面形成部のそれぞれの中央部内には、前記複数の磁極面形成部が並ぶ方向に着磁された1つの前記永久磁石がそれぞれ配置されており、
前記永久磁石は、隣り合う前記非巻装磁極面形成部と前記巻装磁極面形成部との内部にそれぞれ配置された二つの前記永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでおり、
前記電機子は、電機子ユニットと複数の巻装部材とを有しており、
前記電機子ユニットは、前記ヨークと、前記非巻装極柱と前記非巻装磁極面形成部と前記巻装磁極面形成部とが一体になって構成されており、
前記巻装部材は、前記巻装極柱と前記巻装極柱に巻装された前記電機子巻線とを有しており、
前記巻装部材は、前記ヨークと前記巻装磁極面形成部とに嵌合されて前記電機子ユニットに取付けられていることを特徴とするリニアモータ。
An inductor having a tooth row composed of a plurality of teeth arranged with a predetermined pitch τp;
The yoke extending in the direction in which the plurality of tooth portions are arranged, the plurality of pole columns arranged at predetermined intervals along the yoke and connected to the yoke and the ends of the plurality of pole columns, respectively. A plurality of magnetic pole portions each having a plurality of magnetic pole surface forming portions opposed to the tooth row of the inductor, a plurality of armature windings respectively exciting the magnetic pole surface forming portions, and the plurality of magnetic poles An armature having one or more permanent magnets arranged in a surface forming portion to change a magnetic path of a magnetic flux passing through the magnetic pole surface forming portion;
A linear motor in which one of the inductor and the armature is a mover and the other is a stator,
The plurality of magnetic pole portions include a non-winding magnetic pole portion including an unwinding pole column around which the armature winding is not wound and a non-winding magnetic pole surface forming portion connected to the non-winding pole column, A wound magnetic pole portion including a wound pole column around which the armature winding is wound and a wound magnetic pole surface forming portion connected to the wound pole column is configured to be alternately arranged,
The width dimension of the non-winding magnetic pole surface forming part in the direction in which the plurality of magnetic pole surface forming parts are arranged is larger than the width dimension of the unwinding pole column in the direction in which the plurality of magnetic pole surface forming parts are arranged,
The width dimension of the wound magnetic pole face forming portion in the direction in which the plurality of magnetic pole face forming portions are arranged is larger than the width dimension of the wound pole column in the direction in which the plurality of magnetic pole face forming portions are arranged,
The adjacent unwrapped magnetic pole surface forming part and the wound magnetic pole surface forming part are coupled to each other,
Each of the permanent magnets magnetized in the direction in which the plurality of magnetic pole surface forming portions are arranged in the center of each of the plurality of unwrapped magnetic pole surface forming portions and the plurality of wound magnetic pole surface forming portions, respectively. Has been placed,
The permanent magnet has a predetermined pitch τm so that the magnetization directions of the two permanent magnets respectively disposed inside the adjacent unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion are opposite to each other. are aligned with,
The armature has an armature unit and a plurality of winding members,
The armature unit is configured such that the yoke, the unwound pole column, the unwound magnetic pole surface forming portion, and the wound magnetic pole surface forming portion are integrated.
The wound member has the wound pole pole and the armature winding wound around the wound pole pole,
The linear motor , wherein the winding member is fitted to the yoke and the winding magnetic pole surface forming portion and attached to the armature unit .
前記電機子ユニットは、複数の電磁鋼板が積層されて形成されており、The armature unit is formed by laminating a plurality of electromagnetic steel plates,
前記非巻装磁極面形成部と前記巻装磁極面形成部との間には、前記電機子ユニットを構成する前記複数の電磁鋼板を束ねる螺子が挿入される孔が形成され、該孔が前記巻装磁極面形成部と前記誘導子との間に発生する磁束及び前記非巻装磁極面形成部と前記誘導子との間に発生する磁束の流れを妨げない形状及び寸法を有していることを特徴とする請求項1に記載のリニアモータ。Between the unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion, a hole is formed into which a screw for bundling the plurality of electromagnetic steel sheets constituting the armature unit is inserted, and the hole is It has a shape and size that do not hinder the flow of magnetic flux generated between the wound magnetic pole surface forming portion and the inductor and the flow of magnetic flux generated between the unwrapped magnetic pole surface forming portion and the inductor. The linear motor according to claim 1.
前記ピッチτpと前記ピッチτmとは、τm=τp×(6n±1)/(6n)(nは自然数)の関係を有している請求項1または2に記載のリニアモータ。   The linear motor according to claim 1, wherein the pitch τp and the pitch τm have a relationship of τm = τp × (6n ± 1) / (6n) (n is a natural number). 前記複数の電機子巻線の個数は、N相×M(Nは2以上の整数、Mは1以上の整数)からなる請求項1または2に記載のリニアモータ。   3. The linear motor according to claim 1, wherein the number of the plurality of armature windings is N phase × M (N is an integer of 2 or more, M is an integer of 1 or more). 前記電機子巻線と前記非巻装磁極面形成部と前記巻装磁極面形成部との間には、間隙がそれぞれ形成されており、
前記間隙内と前記非巻装磁極面形成部の表面と前記巻装磁極面形成部の表面とには、前記電機子巻線を冷却する冷却管がつづら折りの状態で配置されており、
前記間隙及び前記冷却管は、前記冷却管を前記電機子ユニットに取付けた後に前記複数の巻装部材を前記電機子ユニットに取付ることができる形状及び寸法を有していることを特徴とする請求項に記載のリニアモータ。
A gap is formed between the armature winding, the unwrapped magnetic pole surface forming portion, and the wound magnetic pole surface forming portion,
A cooling pipe for cooling the armature winding is arranged in a zigzag state in the gap, the surface of the non-winding magnetic pole surface forming portion, and the surface of the winding magnetic pole surface forming portion,
The gap and the cooling pipe have shapes and dimensions that allow the plurality of winding members to be attached to the armature unit after the cooling pipe is attached to the armature unit. The linear motor according to claim 1 .
前記誘導子の前記歯部列は、スキューしていることを特徴とする請求項に記載のリニアモータ。 The linear motor according to claim 1 , wherein the tooth row of the inductor is skewed. 前記巻装部材の前記電機子巻線が巻装される方向の長手方向の長さ寸法は、前記非巻装極柱の前記電機子巻線と隣接する部分の長さ寸法より短いことを特徴とする請求項に記載のリニアモータ。 A length dimension in a longitudinal direction of the winding member in a direction in which the armature winding is wound is shorter than a length dimension of a portion adjacent to the armature winding of the unwound pole pole. The linear motor according to claim 1 . 所定のピッチτpを持って並んだ複数の歯部からなる歯部列をそれぞれ有する一対の誘導子と、
前記1対の誘導子の対向する方向に延びる複数の極柱と該複数の前記極柱の両端部に接続されて前記1対の誘導子の歯部列とそれぞれ対向する複数の一対の磁極面形成部とをそれぞれ備える複数の磁極部と、前記複数の一対の磁極面形成部をそれぞれ励磁する複数の電機子巻線と、前記複数の一対の磁極面形成部内にそれぞれ配置されて前記磁極面形成部を通る磁束の磁路を変更する1以上の永久磁石とを有する電機子とを備え、
前記誘導子及び前記電機子の一方が可動子となり、他方が固定子となるリニアモータであって、
前記複数の磁極部は、前記1対の誘導子の対向する方向に延びて前記電機子巻線が巻装されない非巻装極柱と前記非巻装極柱の両端に接続される一対の非巻装磁極面形成部とを備える非巻装磁極部と、前記1対の誘導子の対向する方向に延びて前記電機子巻線が巻装される巻装極柱と前記巻装極柱の両端に接続される一対の巻装磁極面形成部とを備える巻装磁極部とが交互に並んで構成されており、
前記複数の一対の磁極面形成部が並ぶ方向の前記一対の非巻装磁極面形成部の幅寸法は、前記複数の一対の磁極面形成部が並ぶ方向の前記非巻装極柱の幅寸法より大きくなっており、
前記複数の一対の磁極面形成部が並ぶ方向の前記一対の巻装磁極面形成部の幅寸法は、前記複数の一対の磁極面形成部が並ぶ方向の前記巻装極柱の幅寸法より大きくなっており、
前記一対の非巻装磁極面形成部の一方の非巻装磁極面形成部と該非巻装磁極面形成部に隣接する前記一対の巻装磁極面形成部の一方の巻装磁極面形成部とが相互に結合されており、
前記一対の非巻装磁極面形成部の他方の非巻装磁極面形成部と該非巻装磁極面形成部に隣接する前記一対の巻装磁極面形成部の他方の巻装磁極面形成部とが相互に結合されており、
前記複数の一対の非巻装磁極面形成部及び前記複数の一対の巻装磁極面形成部のそれぞれの中央部内には、前記複数の一対の磁極面形成部が並ぶ方向に着磁された1つの前記永久磁石がそれぞれ配置されており、
前記永久磁石は、隣り合う前記非巻装磁極面形成部と前記巻装磁極面形成部との内部にそれぞれ配置された二つの前記永久磁石の着磁方向が逆になるように所定のピッチτmを持って並んでおり、
前記電機子は、電機子ユニットと複数の巻装部材とを有しており、
前記電機子ユニットは、前記非巻装極柱と前記一対の非巻装磁極面形成部と前記一対の巻装磁極面形成部とが一体になって構成されており、
前記巻装部材は、前記巻装極柱と前記巻装極柱に巻装された前記電機子巻線とを有しており、
前記巻装部材は、前記一対の巻装磁極面形成部に嵌合されて前記電機子ユニットに取付られていることを特徴とするリニアモータ。
A pair of inductors each having a tooth row composed of a plurality of teeth arranged with a predetermined pitch τp;
A plurality of pole columns extending in opposite directions of the pair of inductors and a plurality of pairs of magnetic pole surfaces connected to both ends of the plurality of pole columns and respectively facing the tooth row of the pair of inductors A plurality of magnetic pole portions each having a forming portion; a plurality of armature windings for exciting the plurality of pairs of magnetic pole surface forming portions; and the magnetic pole surfaces disposed in the pair of magnetic pole surface forming portions, respectively. An armature having one or more permanent magnets that change the magnetic path of the magnetic flux passing through the forming portion;
A linear motor in which one of the inductor and the armature is a mover and the other is a stator,
The plurality of magnetic pole portions extend in a direction in which the pair of inductors face each other, and a pair of non-winding pole columns that are not wound with the armature winding and are connected to both ends of the non-winding pole columns. A non-winding magnetic pole portion including a wound magnetic pole surface forming portion, a wound pole column extending in a direction in which the pair of inductors face each other and wound with the armature winding, and the wound pole column A winding magnetic pole portion including a pair of winding magnetic pole surface forming portions connected to both ends is arranged alternately.
The width dimension of the pair of unwrapped magnetic pole surface forming portions in the direction in which the plurality of pairs of magnetic pole surface forming portions are aligned is the width dimension of the unwrapped pole column in the direction in which the plurality of pairs of magnetic pole surface forming portions are aligned. It ’s bigger,
The width dimension of the pair of wound magnetic pole surface forming portions in the direction in which the plurality of pairs of magnetic pole surface forming portions are arranged is larger than the width dimension of the wound pole column in the direction in which the plurality of pairs of magnetic pole surface forming portions are arranged. And
One unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and one wound magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions adjacent to the unwrapped magnetic pole surface forming portion; Are connected to each other,
The other non-winding magnetic pole surface forming portion of the pair of non-winding magnetic pole surface forming portions and the other winding magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions adjacent to the non-winding magnetic pole surface forming portion. Are connected to each other,
1 is magnetized in the direction in which the plurality of pairs of magnetic pole surface forming portions are arranged in the center of each of the plurality of pairs of unwrapped magnetic pole surface forming portions and the plurality of pairs of wound magnetic pole surface forming portions. Each of the two permanent magnets is arranged,
The permanent magnet has a predetermined pitch τm so that the magnetization directions of the two permanent magnets respectively disposed inside the adjacent unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion are opposite to each other. are aligned with,
The armature has an armature unit and a plurality of winding members,
The armature unit is configured such that the unwrapped pole column, the pair of unwrapped magnetic pole surface forming portions, and the pair of wound magnetic pole surface forming portions are integrated.
The wound member has the wound pole pole and the armature winding wound around the wound pole pole,
The linear motor , wherein the winding member is fitted to the armature unit by being fitted to the pair of winding magnetic pole surface forming portions .
前記電機子ユニットは、複数の電磁鋼板が積層されて形成され、The armature unit is formed by laminating a plurality of electromagnetic steel plates,
前記非巻装磁極面形成部と前記巻装磁極面形成部との間には、前記電機子ユニットを構成する前記複数の電磁鋼板を束ねる螺子を挿入される孔が形成され、該孔が前記巻装磁極面形成部と前記誘導子との間に発生する磁束及び前記非巻装磁極面形成部と前記誘導子との間に発生する磁束の流れを妨げない形状及び寸法を有していることを特徴とする請求項8に記載のリニアモータ。Between the unwrapped magnetic pole surface forming portion and the wound magnetic pole surface forming portion, a hole is formed into which a screw that bundles the plurality of electromagnetic steel plates constituting the armature unit is inserted, and the hole is It has a shape and size that do not hinder the flow of magnetic flux generated between the wound magnetic pole surface forming portion and the inductor and the flow of magnetic flux generated between the unwrapped magnetic pole surface forming portion and the inductor. The linear motor according to claim 8.
前記ピッチτpと前記ピッチτmとは、τm=τp×(6n±1)/(6n)(nは自然数)の関係を有している請求項またはに記載のリニアモータ。 Wherein the pitch .tau.p said pitch τm, τm = τp × (6n ± 1) / (6n) (n is a natural number) linear motor according to claim 8 or 9 has a relationship. 前記複数の電機子巻線の個数は、N相×M(Nは2以上の整数、Mは1以上の整数)からなる請求項またはに記載のリニアモータ。 The number of the plurality of armature windings, N-phase × M (N is an integer of 2 or more, M is an integer of 1 or more) linear motor according to claim 8 or 9 consisting of. 前記電機子巻線と前記一対の非巻装磁極面形成部の一方の非巻装磁極面形成部と前記一対の巻装磁極面形成部の一方の巻装磁極面形成部との間には、間隙がそれぞれ形成されており、
前記間隙内と前記一方の非巻装磁極面形成部の表面と前記一方の巻装磁極面形成部の表面とには、前記電機子巻線を冷却する第1の冷却管がつづら折りの状態で配置されており、
前記電機子巻線と前記一対の非巻装磁極面形成部の他方の非巻装磁極面形成部と前記一対の巻装磁極面形成部の他方の巻装磁極面形成部との間には、間隙がそれぞれ形成されており、
前記間隙内と前記他方の非巻装磁極面形成部の表面と前記他方の巻装磁極面形成部の表面とには、前記電機子巻線を冷却する第2の冷却管がつづら折りの状態で配置されており、
前記間隙、前記第1の冷却管及び前記第2の冷却管は、前記第1の冷却管及び前記第2の冷却管を前記電機子ユニットに取付けた後に前記複数の巻装部材を前記電機子ユニットに取付ることができる形状及び寸法を有していることを特徴とする請求項に記載のリニアモータ。
Between the armature winding and one unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and one wound magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions. , Each gap is formed,
A first cooling pipe for cooling the armature winding is in a zigzag folded state in the gap, the surface of the one non-winding magnetic pole surface forming portion, and the surface of the one winding magnetic pole surface forming portion. Has been placed,
Between the armature winding and the other unwrapped magnetic pole surface forming portion of the pair of unwrapped magnetic pole surface forming portions and the other wound magnetic pole surface forming portion of the pair of wound magnetic pole surface forming portions. , Each gap is formed,
A second cooling pipe for cooling the armature winding is in a zigzag folded state in the gap, the surface of the other non-winding magnetic pole surface forming portion, and the surface of the other winding magnetic pole surface forming portion. Has been placed,
The gap, the first cooling pipe, and the second cooling pipe are connected to the armature after the first cooling pipe and the second cooling pipe are attached to the armature unit. The linear motor according to claim 8 , wherein the linear motor has a shape and a dimension that can be attached to the unit.
前記一対の誘導子の前記歯部列は、それぞれ異なる方向にスキューしていることを特徴とする請求項に記載のリニアモータ。 The linear motor according to claim 8 , wherein the tooth row of the pair of inductors is skewed in different directions. 前記巻装部材の前記電機子巻線が巻装される方向の長手方向の長さ寸法は、前記非巻装極柱の前記電機子巻線と隣接する部分の長さ寸法より短いことを特徴とする請求項に記載のリニアモータ。 A length dimension in a longitudinal direction of the winding member in a direction in which the armature winding is wound is shorter than a length dimension of a portion adjacent to the armature winding of the unwound pole pole. The linear motor according to claim 8 .
JP2005130167A 2005-04-27 2005-04-27 Linear motor Expired - Fee Related JP4708078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130167A JP4708078B2 (en) 2005-04-27 2005-04-27 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130167A JP4708078B2 (en) 2005-04-27 2005-04-27 Linear motor

Publications (2)

Publication Number Publication Date
JP2006311687A JP2006311687A (en) 2006-11-09
JP4708078B2 true JP4708078B2 (en) 2011-06-22

Family

ID=37477885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130167A Expired - Fee Related JP4708078B2 (en) 2005-04-27 2005-04-27 Linear motor

Country Status (1)

Country Link
JP (1) JP4708078B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739254B2 (en) * 2011-07-08 2015-06-24 オークマ株式会社 Control device for synchronous motor
JP6125267B2 (en) * 2013-02-20 2017-05-10 山洋電気株式会社 Embedded magnet type inductor linear motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191474A (en) * 1983-04-12 1984-10-30 Amada Co Ltd Linear hybrid motor and its using method
JPH02151256A (en) * 1988-11-29 1990-06-11 Shinko Electric Co Ltd Pulse motor
JPH02280655A (en) * 1989-04-20 1990-11-16 Shinko Electric Co Ltd Pulse motor
JP2001095225A (en) * 1999-09-20 2001-04-06 Yaskawa Electric Corp Linear motor
JP2001119919A (en) * 1999-10-20 2001-04-27 Yaskawa Electric Corp Linear motor
JP2002176762A (en) * 2000-09-29 2002-06-21 Sanyo Denki Co Ltd Armature for linear motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191474A (en) * 1983-04-12 1984-10-30 Amada Co Ltd Linear hybrid motor and its using method
JPH02151256A (en) * 1988-11-29 1990-06-11 Shinko Electric Co Ltd Pulse motor
JPH02280655A (en) * 1989-04-20 1990-11-16 Shinko Electric Co Ltd Pulse motor
JP2001095225A (en) * 1999-09-20 2001-04-06 Yaskawa Electric Corp Linear motor
JP2001119919A (en) * 1999-10-20 2001-04-27 Yaskawa Electric Corp Linear motor
JP2002176762A (en) * 2000-09-29 2002-06-21 Sanyo Denki Co Ltd Armature for linear motor

Also Published As

Publication number Publication date
JP2006311687A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP6584619B2 (en) Linear motor
US8810082B2 (en) Linear motor
JP4938355B2 (en) Linear motor
JP5956993B2 (en) Linear motor
JP6269895B2 (en) Linear motor
JP5434917B2 (en) Armature and linear motor
JP3360606B2 (en) Linear motor
JP2010141978A (en) Thrust generation mechanism
JP2009219199A (en) Linear motor
JP7151698B2 (en) linear motor
WO2014141887A1 (en) Linear motor
JP5678025B2 (en) Thrust generating mechanism
JP4708078B2 (en) Linear motor
KR101798548B1 (en) Linear motor
JP2001119919A (en) Linear motor
JP6056571B2 (en) Linear motor
JP2006527576A (en) Linear brushless DC motor with an iron core with reduced detent power
JP4402948B2 (en) Linear motor
JP3824060B2 (en) Linear motor
JP2006034016A (en) Linear motor for machine tool
JP6001828B2 (en) Linear motor stator
JP2007209175A (en) Three-phase linear motor
JP2007143398A (en) Linear motor
JP2005295708A (en) Claw-pole type three-phase linear motor
JP2006136156A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees