JP4706407B2 - Magnetic encoder device - Google Patents
Magnetic encoder device Download PDFInfo
- Publication number
- JP4706407B2 JP4706407B2 JP2005267166A JP2005267166A JP4706407B2 JP 4706407 B2 JP4706407 B2 JP 4706407B2 JP 2005267166 A JP2005267166 A JP 2005267166A JP 2005267166 A JP2005267166 A JP 2005267166A JP 4706407 B2 JP4706407 B2 JP 4706407B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetic
- encoder device
- magnetic encoder
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
本発明は、回転体の回転位置を検出する磁気式エンコーダ装置に関する。 The present invention relates to a magnetic encoder device that detects a rotational position of a rotating body.
2極に着磁された円板状の永久磁石を用いて回転体の回転位置を検出する磁気式エンコーダは、既に知られている(特許文献1参照)。
特許文献1記載のエンコーダは、回転体に固定され円板状でかつ2極に着磁された永久磁石と、永久磁石の外周側に空隙を介して対向し、固定体に取り付けられた磁界検出素子と、磁界検出素子からのアナログ信号を処理する信号処理回路から構成され、永久磁石として希土類磁石からなる直線異方性のものを用い、磁化の方向を一方向に揃え、固定体をリング状の磁性体で形成し、回転体の絶対位置を検出するものである。 The encoder described in Patent Document 1 is a magnetic field detection that is fixed to a rotating body, is a disk-shaped permanent magnet, and is opposed to the outer periphery of the permanent magnet via a gap, and is attached to the stationary body. Element and a signal processing circuit that processes analog signals from the magnetic field detection element, using a linear anisotropic anisotropic magnet made of a rare earth magnet as the permanent magnet, aligning the magnetization direction in one direction, and fixing the fixed body in a ring shape The absolute position of the rotating body is detected.
上記の従来の磁気式エンコーダは、90度位相の異なる正弦波状に変化するA相、B相信号Va,Vbを用いて回転角度θを決定していた。
すなわち、Va=Vcosθ、Vb=Vsinθの逆正接をとり、
θ=atan(Vb/Va)
を算出していた。
しかし、この三角関数の演算は計算が複雑であり、CPUの計算ステップ数が多くなり、従って演算時間が長くなり、高速回転には対応できないという問題があった。
また、エンコーダを高精度化するには、演算精度をあげる必要があり、そのために多くの演算メモリーを必要とし、さらに演算時間も長くなる問題があった。
さらに、エンコーダはサーボモータ等の回転角度センサーとして用いられているが、モータ部の温度上昇を受けるので、エンコーダの使用温度範囲は−40℃〜100°Cが求められる。しかしながら、永久磁石の残留磁束密度は負の温度特性を有するので、高温になるとエンコーダの出力信号は低下した。
また、エンコーダ精度の低下の要因である、磁気検出素子や電子回路のオフセットが、温度変化に伴い変化し、エンコーダの精度の低下を招く等の問題があった。
In the conventional magnetic encoder described above, the rotation angle θ is determined using the A-phase and B-phase signals Va and Vb that change in a sine wave shape having a phase difference of 90 degrees.
That is, the arc tangent of Va = V cos θ and Vb = V sin θ is taken,
θ = atan (Vb / Va)
Was calculated.
However, the calculation of this trigonometric function has a complicated calculation, and the number of calculation steps of the CPU increases, so that the calculation time becomes long, and there is a problem that it cannot cope with high speed rotation.
In addition, in order to increase the accuracy of the encoder, it is necessary to increase the calculation accuracy, which requires a large amount of calculation memory and further increases the calculation time.
Furthermore, the encoder is used as a rotation angle sensor such as a servo motor. However, since the temperature of the motor unit is increased, the operating temperature range of the encoder is required to be −40 ° C. to 100 ° C. However, since the residual magnetic flux density of the permanent magnet has a negative temperature characteristic, the output signal of the encoder decreases at a high temperature.
In addition, there has been a problem that the offset of the magnetic detection element and the electronic circuit, which is a cause of a decrease in encoder accuracy, changes with a temperature change, leading to a decrease in encoder accuracy.
上記問題を解決するため、請求項1記載の発明は、磁気式エンコーダ装置に係り、回転体に固定され2極に着磁された永久磁石と、前記永久磁石の外周側に空隙を介して対向して固定体に取り付けられた磁界検出素子と、前記磁界検出素子からの信号を処理する信号処理回路とを備え、前記回転体の位置の絶対値を検出するようにしたエンコーダ装置であって、前記永久磁石が一軸磁気異方性磁石であり、かつ前記永久磁石の形状が正方形で対角軸方向に磁化されたものであることを特徴としている。
請求項2記載の発明は、請求項1記載の磁気式エンコーダ装置において、前記信号処理回路が90度位相の異なる前記磁界検出信号の正負判別信号回路と加減演算回路から構成されることを特徴としている。
請求項3記載の発明は、請求項1記載の磁気式エンコーダ装置において、前記固定体が強磁性体で、かつ磁束密度が1.0(T)以下になるように形成したことを特徴としている。
請求項4記載の発明は、請求項1記載の磁気式エンコーダ装置において、前記永久磁石を非磁性のホルダで覆ったことを特徴としている。
請求項5記載の発明は、請求項4記載の磁気式エンコーダ装置において、前記非磁性のホルダが表面に凹凸を形成したことを特徴としている。
請求項6記載の発明は、請求項1〜5のいずれか1項に記載の磁気式エンコーダにおいて前記回転体に固定される前記永久磁石であって、一軸磁気異方性磁石でかつ正方形の形状をし対角軸方向に磁化されたことを特徴としている。
In order to solve the above-mentioned problem, the invention according to claim 1 relates to a magnetic encoder device, wherein a permanent magnet fixed to a rotating body and magnetized in two poles is opposed to an outer peripheral side of the permanent magnet through a gap. An encoder device comprising a magnetic field detection element attached to a fixed body and a signal processing circuit for processing a signal from the magnetic field detection element, and detecting an absolute value of the position of the rotating body, The permanent magnet is a uniaxial magnetic anisotropic magnet, and the shape of the permanent magnet is square and magnetized in a diagonal direction.
According to a second aspect of the present invention, in the magnetic encoder device according to the first aspect, the signal processing circuit includes a positive / negative discrimination signal circuit for the magnetic field detection signal having a phase difference of 90 degrees and an addition / subtraction operation circuit. Yes.
According to a third aspect of the present invention, in the magnetic encoder device according to the first aspect, the fixed body is formed of a ferromagnetic body and has a magnetic flux density of 1.0 (T) or less. .
According to a fourth aspect of the invention, in the magnetic encoder device according to the first aspect, the permanent magnet is covered with a nonmagnetic holder.
According to a fifth aspect of the invention, in the magnetic encoder device according to the fourth aspect of the invention, the non-magnetic holder has irregularities formed on the surface.
A sixth aspect of the present invention is the permanent magnet fixed to the rotating body in the magnetic encoder according to any one of the first to fifth aspects, wherein the permanent magnet is a uniaxial magnetic anisotropic magnet and has a square shape. It is characterized by being magnetized in the diagonal direction.
以上の構成によって、以下の効果が得られる。
(1)磁気検出素子の出力信号が三角波状に変化するため、回転角度は加減算のみの簡単な計算で算出でき、処理回路も簡単になる。また、高速で高精度の演算処理が可能となるので、高速応答、高精度のエンコーダ装置を提供できる。
(2)高価なCPUや大容量のメモリーを必要とせず、低コストで処理回路を製作でき、低コストのエンコーダ装置を提供できる。
(3)また、固定体の形状を磁気飽和しないように、磁束密度が1.0(T)以下になるように形成したので、ギャップ部磁束分布は固定体の磁気飽和の影響を受けず、極めて良好な三角波状の検出信号が得られ、したがってまた、高精度なエンコーダ装置が得られる。
(4)さらに、表面が凹凸形状を有する非磁性ホルダで永久磁石を覆うようにしたので、エンコーダを強制空冷でき、サーボモータの発熱等、周囲の温度変化に影響を受けず、耐環境性に優れたエンコーダが得られる。
以上のように、構造がシンプルな、回転角度の絶対位置を検出する小型、高精度、高速応答、低価格の磁気エンコーダ装置が得られる。
With the above configuration, the following effects can be obtained.
(1) Since the output signal of the magnetic detection element changes in a triangular wave shape, the rotation angle can be calculated by simple calculation with only addition and subtraction, and the processing circuit becomes simple. In addition, since high-speed and high-precision arithmetic processing is possible, a high-speed response and high-precision encoder device can be provided.
(2) A processing circuit can be manufactured at a low cost without requiring an expensive CPU or a large-capacity memory, and a low-cost encoder device can be provided.
(3) Since the magnetic flux density is 1.0 (T) or less so that the shape of the fixed body is not magnetically saturated, the gap magnetic flux distribution is not affected by the magnetic saturation of the fixed body, A very good triangular wave detection signal can be obtained, and thus a highly accurate encoder device can be obtained.
(4) Furthermore, because the permanent magnet is covered with a non-magnetic holder whose surface has an uneven shape, the encoder can be forcibly cooled by air, and it is not affected by ambient temperature changes such as the heat generated by the servo motor. An excellent encoder is obtained.
As described above, a small, high-precision, high-speed response, and low-cost magnetic encoder device that detects the absolute position of the rotation angle with a simple structure can be obtained.
以下、本発明の実施形態について図に基づいて説明する。
(第1実施例)
図1〜図4は本発明の第1実施例を示す図で、図1は回転体の絶対値角度を検出する磁気エンコーダ検出装置の斜視図、図2は第1実施例に係る出力信号波形示す説明図、図3は第1実施例に係る角度検出信号処理回路を示す説明図、図4は本発明の回転角度出力を示す説明図である。
図1において、1はシャフト、2はシャフト1の端部に固定された正方形形状を有する永久磁石である。永久磁石2は10mm角であり、この永久磁石2をシャフト1の端部に接着している。また、永久磁石2は一軸磁気異方性のフェライト系を用い、シャフト1の軸に垂直方向と平行に一方向に磁化されている。3は磁性体からなるリング状の固定体、4は永久磁石2の外周面に対して空隙を介して対向して設けた磁界検出素子で、図では41〜44の4個ある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
1 to 4 are diagrams showing a first embodiment of the present invention. FIG. 1 is a perspective view of a magnetic encoder detecting apparatus for detecting an absolute value angle of a rotating body. FIG. 2 is an output signal waveform according to the first embodiment. FIG. 3 is an explanatory view showing an angle detection signal processing circuit according to the first embodiment, and FIG. 4 is an explanatory view showing a rotation angle output of the present invention.
In FIG. 1, 1 is a shaft, and 2 is a permanent magnet having a square shape fixed to the end of the shaft 1. The permanent magnet 2 is a 10 mm square, and the permanent magnet 2 is bonded to the end of the shaft 1. The permanent magnet 2 uses a uniaxial magnetic anisotropy ferrite system and is magnetized in one direction parallel to the direction perpendicular to the axis of the shaft 1. 3 is a ring-shaped fixed body made of a magnetic material, and 4 is a magnetic field detecting element provided facing the outer peripheral surface of the permanent magnet 2 with a gap, and there are four magnetic detecting elements 41 to 44 in the figure.
次に、第1実施例に係る磁気エンコーダ検出装置の動作について述べる。
シャフト1が回転すると、永久磁石2の磁界の変化により、ホール素子41〜44から信号Va1、Va2およびVb1、Vb2(図3)を出力し、信号Va1、Va2を差動アンプ61に入れ、および信号Vb1、Vb2を差動アンプ62に入れ、それぞれの差動信号VaとVb信号を得る。これがA相信号Va、B相信号Vbとなる。
次に、差動信号VaとVbを次式で規格化し、信号出力の最大値を1.000vに設定する。
Va=Va/(|Va|+|Vb|)
Vb=Vb/(|Va|+|Vb|)
差動信号VaとVbの信号出力波形は図2にA相信号Va、B相信号Vbとして示されている。
図から判るように、差動信号VaとVbの信号出力波形は三角波状に変化している。
Next, the operation of the magnetic encoder detection apparatus according to the first embodiment will be described.
When the shaft 1 rotates, the signals Va1, Va2 and Vb1, Vb2 (FIG. 3) are output from the Hall elements 41 to 44 due to the change in the magnetic field of the permanent magnet 2, the signals Va1, Va2 are input to the
Next, the differential signals Va and Vb are normalized by the following equation, and the maximum value of the signal output is set to 1.000 v.
Va = Va / (| Va | + | Vb |)
Vb = Vb / (| Va | + | Vb |)
The signal output waveforms of the differential signals Va and Vb are shown as an A-phase signal Va and a B-phase signal Vb in FIG.
As can be seen from the figure, the signal output waveforms of the differential signals Va and Vb change in a triangular waveform.
次に、図3において、差動信号VaとVbの正負を正負判別信号回路63で判別し、次の加減演算回路64で、次式の演算により角度信号θを求めている。
(1)Va>=0,Vb>=0、ならば、V(θ)=Va(θ)
(2)Va>0,Vb<0、ならば、V(θ)=1.00 − Vb(θ)
(3)Va<=0,Vb<=0、ならば、V(θ)=2.00 − Va(θ)
(4)Va<0,Vb>0、ならば、V(θ)=3.00 + Vb(θ)
V(θ)は回転角度が360度のとき、4.00vになるが、最大値を3.6vまたは5.0vに規格化し出力値が回転角度に対応するように設定しても良い。
Next, in FIG. 3, the positive / negative discrimination signal circuit 63 discriminates the sign of the differential signals Va and Vb, and the next addition / subtraction operation circuit 64 obtains the angle signal θ by the following equation.
(1) If Va> = 0 and Vb> = 0, then V (θ) = Va (θ)
(2) If Va> 0 and Vb <0, then V (θ) = 1.00−Vb (θ)
(3) If Va <= 0 and Vb <= 0, then V (θ) = 2.00−Va (θ)
(4) If Va <0, Vb> 0, V (θ) = 3.00 + Vb (θ)
V (θ) is 4.00 v when the rotation angle is 360 degrees, but the maximum value may be normalized to 3.6 v or 5.0 v so that the output value corresponds to the rotation angle.
図4は本発明の回転角度対出力を示す説明図で、角度0度で出力0から出発し、角度360度で出力5となる直線特性の磁気エンコーダ装置が得られる。
FIG. 4 is an explanatory diagram showing the rotation angle versus output of the present invention. A linear magnetic encoder device starting from
なお、磁石材質としてフェライト系磁石を用いたが希土類系磁石、あるいは前記材料を複合したボンド磁石で形成しても良い。
また、磁界検出素子としてホール素子を使用したが、磁気抵抗素子、GMRを用いても良い。また、エンコーダの精度は若干低下するが、組立てを簡易にし、ローコストにするために、永久磁石にシャフトを貫通させる構成にしても良い。
In addition, although the ferrite magnet was used as a magnet material, you may form with a rare earth magnet or the bonded magnet which combined the said material.
Further, although the Hall element is used as the magnetic field detection element, a magnetoresistive element or GMR may be used. In addition, although the accuracy of the encoder is slightly lowered, in order to simplify the assembly and reduce the cost, a configuration may be adopted in which the shaft is passed through the permanent magnet.
(第2実施例)
図5は本発明の第2の実施形態の断面図を示している。
第2実施例では、永久磁石2をエポキシ樹脂からなる非磁性のホルダ5で覆うとともに、樹脂表面に凹凸(凹5a、凸5b)を設けているのが特徴である。
このように、永久磁石2を樹脂5でモールドすることにより、機械的衝撃等で永久磁石2が破壊することを簡単に防ぐことができた。
また、ロータが回転すると、樹脂5の表面上の凹凸5a、5bにより空隙部に空気の流れが発生し、永久磁石2、ホール素子4(41〜44)、および信号処理回路6(図3)は強制空冷されることになるので、エンコーダはモータ発熱による温度上昇の影響を受けることなく、周囲温度の変化によってエンコーダの精度が低下する問題が解決する。
(Second embodiment)
FIG. 5 shows a cross-sectional view of a second embodiment of the present invention.
The second embodiment is characterized in that the permanent magnet 2 is covered with a nonmagnetic holder 5 made of an epoxy resin, and unevenness (concave 5a,
Thus, by molding the permanent magnet 2 with the resin 5, it was possible to easily prevent the permanent magnet 2 from being broken due to mechanical impact or the like.
Further, when the rotor rotates, an air flow is generated in the gap due to the
図6は他のホルダ形状を示している。
(a)は永久磁石2をエポキシ樹脂からなる非磁性のホルダ5で覆うとともに、正方形の永久磁石2の辺に対応する外形部分を凹面に形成しているのが特徴である。このように、永久磁石2を樹脂5でモールドすることにより、機械的衝撃等で永久磁石2が破壊することを簡単に防ぐことができると共に、ロータが回転すると、樹脂5の表面上の凹面により空隙部に空気の流れが発生し、永久磁石2、ホール素子4(41〜44)、および信号処理回路6(図3)は強制空冷されることになるので、エンコーダはモータ発熱による温度上昇の影響を受けることなく、周囲温度の変化によってエンコーダの精度が低下する問題が解決する。
(b)は正方形の永久磁石2の角部を環状の非磁性のホルダ5の内部で支えるようにし、正方形の永久磁石2の辺と環状のホルダ5との間に空隙が生じているのが特徴である。このように環状ホルダ5で永久磁石2の4角を支持することにより、機械的衝撃等で永久磁石2が破壊することを簡単に防ぐことができると共に、ロータが回転すると、環状ホルダ5と永久磁石2の辺の間の空隙に空気の流れが発生し、永久磁石2、ホール素子4(41〜44)、および信号処理回路6(図3)は強制空冷されることになるので、エンコーダはモータ発熱による温度上昇の影響を受けることなく、周囲温度の変化によってエンコーダの精度が低下する問題が解決する。
なお、エンコーダの周囲温度が高くならない場合は、ホルダ形状を円筒状に形成し、材質は非磁性の金属を使用しても良い。
また、固定体は磁性材SS41を用いた。固定体内の磁束密度が1.0(T)以上になると、固定体が磁気飽和し、その影響でホール素子の検出磁束密度波形が三角波状から外れ、回転角の検出精度が低下する要因となる。それで、磁束密度が0.9(T)になるよう形状を構成した。また、モータ形状にあわせ外径を角形とした。
FIG. 6 shows another holder shape.
(A) is characterized in that the permanent magnet 2 is covered with a nonmagnetic holder 5 made of an epoxy resin, and an outer portion corresponding to the side of the square permanent magnet 2 is formed in a concave surface. Thus, by molding the permanent magnet 2 with the resin 5, it is possible to easily prevent the permanent magnet 2 from being broken due to mechanical impact or the like, and when the rotor rotates, the concave surface on the surface of the resin 5 An air flow is generated in the gap, and the permanent magnet 2, the Hall element 4 (41 to 44), and the signal processing circuit 6 (FIG. 3) are forcibly air-cooled. The problem that the accuracy of the encoder is lowered due to a change in the ambient temperature is solved without being affected.
(B) is to support the corners of the square permanent magnet 2 inside the annular non-magnetic holder 5, and there is a gap between the side of the square permanent magnet 2 and the annular holder 5. It is a feature. By supporting the four corners of the permanent magnet 2 with the annular holder 5 in this way, it is possible to easily prevent the permanent magnet 2 from being broken due to a mechanical impact or the like. Since an air flow is generated in the gap between the sides of the magnet 2, the permanent magnet 2, the Hall elements 4 (41 to 44), and the signal processing circuit 6 (FIG. 3) are forcibly air-cooled. The problem that the accuracy of the encoder is lowered due to a change in the ambient temperature is solved without being affected by the temperature rise due to the motor heat generation.
When the ambient temperature of the encoder does not increase, the holder shape may be formed in a cylindrical shape, and the material may be a nonmagnetic metal.
Further, a magnetic material SS41 was used as the fixed body. When the magnetic flux density in the fixed body becomes 1.0 (T) or more, the fixed body is magnetically saturated, and the influence causes the detection magnetic flux density waveform of the Hall element to deviate from the triangular wave shape, which causes a decrease in rotation angle detection accuracy. . Therefore, the shape was configured such that the magnetic flux density was 0.9 (T). In addition, the outer diameter is square according to the motor shape.
以上述べたように、本発明の磁気エンコーダ装置は、形状が正方形で、対角軸方向に一方向に磁化した永久磁石を用い、信号処理回路を、90度位相の異なる磁界検出信号の正負判別信号回路と加減演算回路で構成したので以下の効果がある。
(1)磁気検出素子の出力信号は三角波状に変化する。
このため回転角度は加減算のみの簡単な計算で算出でき、処理回路も簡単になる。また高速で高精度の演算処理が可能となるので、高速応答、高精度のエンコーダ装置を提供できる。
(2)高価なCPUや大容量のメモリーを必要とせず、低コストで処理回路を製作でき、低コストのエンコーダ装置を提供できる。
(3)固定体の形状を磁気飽和しないように、磁束密度が1.0(T)以下になるように形成したので、ギャップ部磁束分布が磁気飽和の影響を受けず、極めて良好な三角波状の検出信号が得られる。このため高精度なエンコーダ装置を提供できる。
(4)さらに、表面が凹凸形状を有する非磁性ホルダで永久磁石を覆うようにしたので、エンコーダを強制空冷でき、サーボモータの発熱等、周囲の温度変化に影響を受けず、耐環境性に優れたエンコーダを提供できる。
以上のように、構造がシンプルな、回転角度の絶対位置を検出する小型、高精度、高速応答、低価格の磁気エンコーダ装置を提供できる。
As described above, the magnetic encoder device of the present invention uses a permanent magnet that is square in shape and magnetized in one direction in the diagonal direction, and uses a signal processing circuit to determine whether a magnetic field detection signal is 90 degrees out of phase. Since the signal circuit and the addition / subtraction operation circuit are used, the following effects are obtained.
(1) The output signal of the magnetic detection element changes like a triangular wave.
For this reason, the rotation angle can be calculated by simple calculation with only addition and subtraction, and the processing circuit is also simplified. In addition, since high-speed and high-precision arithmetic processing is possible, a high-speed response and high-precision encoder device can be provided.
(2) A processing circuit can be manufactured at a low cost without requiring an expensive CPU or a large-capacity memory, and a low-cost encoder device can be provided.
(3) Since the magnetic flux density is 1.0 (T) or less so that the shape of the fixed body is not magnetically saturated, the gap portion magnetic flux distribution is not affected by magnetic saturation, and has an extremely good triangular wave shape. The detection signal is obtained. Therefore, a highly accurate encoder device can be provided.
(4) Furthermore, since the permanent magnet is covered with a non-magnetic holder whose surface has an uneven shape, the encoder can be forced to air-cool, and it is not affected by ambient temperature changes such as heat generation of the servo motor, and is environmentally resistant. An excellent encoder can be provided.
As described above, it is possible to provide a small, high-precision, high-speed response, and low-cost magnetic encoder device that detects the absolute position of the rotation angle with a simple structure.
1 回転体(シャフト)
2 永久磁石
3 固定体
4 磁界検出素子
41 A1相検出素子
42 B1相検出素子
43 A2相検出素子
44 B2相検出素子
5 磁石ホルダ
6 角度検出信号処理回路
61、62 差動アンプ
63 正負判別信号回路
64 加減演算回路
7 従来の角度検出信号処理回路
71、72 差動アンプ
73 角度演算回路
1 Rotating body (shaft)
2 permanent magnet 3 fixed
Claims (6)
前記永久磁石は、一軸磁気異方性磁石であり、かつ前記永久磁石の形状が正方形で対角軸方向に磁化されたものであることを特徴とする磁気式エンコーダ装置。 A permanent magnet fixed to a rotating body and magnetized to two poles, a magnetic field detection element attached to the fixed body facing the outer peripheral side of the permanent magnet via a gap, and a signal from the magnetic field detection element A signal processing circuit that detects the absolute value of the position of the rotating body,
The magnetic encoder device, wherein the permanent magnet is a uniaxial magnetic anisotropic magnet, and the permanent magnet has a square shape and is magnetized in a diagonal direction.
6. The permanent magnet fixed to the rotating body in the magnetic encoder according to claim 1, wherein the permanent magnet is a uniaxial magnetic anisotropic magnet and has a square shape and is magnetized in a diagonal direction. A permanent magnet for a magnetic encoder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267166A JP4706407B2 (en) | 2005-09-14 | 2005-09-14 | Magnetic encoder device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267166A JP4706407B2 (en) | 2005-09-14 | 2005-09-14 | Magnetic encoder device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007078534A JP2007078534A (en) | 2007-03-29 |
JP4706407B2 true JP4706407B2 (en) | 2011-06-22 |
Family
ID=37939017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005267166A Expired - Fee Related JP4706407B2 (en) | 2005-09-14 | 2005-09-14 | Magnetic encoder device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4706407B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145076A (en) * | 2007-12-11 | 2009-07-02 | Hitachi Cable Ltd | Rotation angle detector |
JP5105200B2 (en) * | 2008-07-14 | 2012-12-19 | Tdk株式会社 | Angle detection apparatus and angle detection method |
JP5105201B2 (en) * | 2008-07-30 | 2012-12-26 | Tdk株式会社 | Angle detection apparatus and angle detection method |
JP5840374B2 (en) * | 2011-03-31 | 2016-01-06 | オリエンタルモーター株式会社 | Absolute encoder device and motor |
JP6034650B2 (en) * | 2012-10-18 | 2016-11-30 | 浜松光電株式会社 | Rotation angle detector |
JP6384720B2 (en) * | 2014-07-30 | 2018-09-05 | 株式会社デンソー | Rotation angle detector |
CN114729821A (en) * | 2019-11-29 | 2022-07-08 | 三菱电机株式会社 | Magnetism generation unit, rotation angle detection device, and rotating electrical machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6267263U (en) * | 1985-10-17 | 1987-04-27 | ||
WO1999013296A1 (en) * | 1997-09-08 | 1999-03-18 | Kabushiki Kaisha Yaskawa Denki | Magnetic encoder |
-
2005
- 2005-09-14 JP JP2005267166A patent/JP4706407B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6267263U (en) * | 1985-10-17 | 1987-04-27 | ||
WO1999013296A1 (en) * | 1997-09-08 | 1999-03-18 | Kabushiki Kaisha Yaskawa Denki | Magnetic encoder |
Also Published As
Publication number | Publication date |
---|---|
JP2007078534A (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9810551B2 (en) | On-axis magnetic field angle sensors, systems and method | |
JP5666886B2 (en) | Rotary encoder | |
JP5059772B2 (en) | Magnetic angular position sensor with a course of up to 360 ° | |
JP5079816B2 (en) | Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally. | |
JP4324813B2 (en) | Rotation angle detector and rotating machine | |
WO1999013296A1 (en) | Magnetic encoder | |
JP4900835B2 (en) | Angle detection device, valve device and non-contact volume | |
US6777928B2 (en) | Rotary magnetic position sensor having pole differentiated magnets | |
JP5131537B2 (en) | Angle detector | |
JP2010044046A (en) | Angle detecting apparatus and angle detecting method | |
JP2007263585A (en) | Rotation angle detector | |
JP2006126136A (en) | Noncontact type rotation angle detection sensor | |
JP2007040850A (en) | Rotating angle sensor | |
JP6546565B2 (en) | Linear motion rotation detector, linear motion rotation detector unit and linear motion rotation drive device | |
JP4706407B2 (en) | Magnetic encoder device | |
CN110260890B (en) | System for determining at least one rotation parameter of a rotating member | |
JP2000065596A5 (en) | Magnetic encoder and motor with magnetic encoder | |
JP2018048870A (en) | Rotation angle detector | |
JP2009271054A (en) | Position detecting device and rotary linear motion motor with the same | |
JPH11118517A (en) | Sensor for body of rotation | |
JP2003139560A (en) | Rotational position detector | |
JP2001133210A (en) | Mon-contact type position sensor | |
JP2023101216A (en) | Rotation angle detector | |
JP2023122946A (en) | Rotation angle detection device, rotation angle detection method, rotation angle detection program and rotation angle detection system | |
JP2003240602A (en) | Rotation angle sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150325 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |