JP4702186B2 - Low friction sliding member - Google Patents
Low friction sliding member Download PDFInfo
- Publication number
- JP4702186B2 JP4702186B2 JP2006152388A JP2006152388A JP4702186B2 JP 4702186 B2 JP4702186 B2 JP 4702186B2 JP 2006152388 A JP2006152388 A JP 2006152388A JP 2006152388 A JP2006152388 A JP 2006152388A JP 4702186 B2 JP4702186 B2 JP 4702186B2
- Authority
- JP
- Japan
- Prior art keywords
- sliding member
- groove
- sliding
- friction
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C9/00—Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1065—Grooves on a bearing surface for distributing or collecting the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/22—Internal combustion engines
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Description
本発明は、粘性流体の存在下で相対的に摺動する低摩擦摺動部材に関する。 The present invention relates to a low friction sliding member that slides relatively in the presence of a viscous fluid.
例えば、ピストンおよびシリンダは、一般的に金属でできているため、高速で摺動することによる摺動面の摩擦や摩耗あるいは焼付きが問題となる。このような摩耗などを防止するには、摺動面相互間に粘性流体を介在させる方法があるが、摩擦などの低減は、十分でない。 For example, since pistons and cylinders are generally made of metal, there is a problem of friction, wear or seizure of the sliding surface due to sliding at a high speed. In order to prevent such wear and the like, there is a method of interposing a viscous fluid between the sliding surfaces, but reduction of friction or the like is not sufficient.
更に、摩擦などを低減するために、従来から、摺動面に凹凸面などを形成する方法が行われている。例えば、下記特許文献1では、粘性流体を介して互いに摺動する軸受に所定の深さの多数の潤滑油ポケットをエンボス加工などによりドット状、つまり相互に独立に存在する凹部を形成し、摩擦の低減を図る軸受要素が開示されている。 Furthermore, in order to reduce friction and the like, conventionally, a method of forming an uneven surface on the sliding surface has been performed. For example, in Patent Document 1 below, a large number of lubricating oil pockets having a predetermined depth are formed in a bearing that slides on each other via a viscous fluid by embossing or the like, so that concave portions that exist independently of each other are formed, and friction is generated. A bearing element for reducing the above is disclosed.
しかし、上記のような従来の軸受要素のように、相互に独立した凹部を形成することは成形作業自体が面倒なものとなり、また、軸受要素の品質を保証する上において、凹部自体の深さや大きさのばらつきを管理するには、多大な工数が必要となる。
本発明は、粘性流体の存在下で相対的に摺動する内燃機関用の摺動部材における、摺動面相互間に生じる摩擦や摩耗を低減するために、摺動面に形成する微細な凹部を、簡単に形成でき、深さや大きさに関するばらつきの管理も容易な摩擦低減性能の高い低摩擦摺動部材を提供することを目的とする。 The present invention relates to a minute recess formed on a sliding surface in order to reduce friction and wear generated between the sliding surfaces in a sliding member for an internal combustion engine that slides relatively in the presence of a viscous fluid. It is an object of the present invention to provide a low-friction sliding member having a high friction-reducing performance that can be easily formed and that can easily manage variations in depth and size.
本発明は、粘性流体の存在下で相対的に摺動する摺動部材の少なくとも一方の摺動部材の摺動面に連続波形状の微細凹溝を形成した低摩擦摺動部材であって、摺動部材は一方が軸方向に平坦な円筒体、他方が軸直角方向に膨出した太鼓状をした円筒体からなり、前記他方の摺動部材を前記一方の摺動部材に内接させることにより楕円状をした接触領域が生じるように構成され、前記微細凹溝の伸延方向が前記摺動部材の摺動方向と一致するように形成すると共に、前記接触領域に前記微細凹溝が少なくとも2本以上存在することを特徴とする低摩擦摺動部材である。 The present invention is a low friction sliding member in which a continuous wave-shaped fine concave groove is formed on a sliding surface of at least one sliding member of a sliding member that slides relatively in the presence of a viscous fluid, One of the sliding members is a cylindrical body that is flat in the axial direction, and the other is a drum-shaped cylindrical body that bulges in the direction perpendicular to the axis, and the other sliding member is inscribed in the one sliding member. The contact region is formed into an elliptical shape, and the extending direction of the fine groove is formed to coincide with the sliding direction of the sliding member, and at least 2 of the fine groove are formed in the contact region. It is a low friction sliding member characterized in that there are more than one.
本発明の低摩擦摺動部材では、粘性流体の存在下で相対的に摺動する摺動部材の少なくとも一方の摺動部材の摺動面に連続波形状の微細凹溝を形成し、この微細凹溝の波形の伸延方向が摺動部材の摺動方向と一致するように形成したので、機械加工などにより微細凹溝を極めて簡単に形成でき、深さや大きさのばらつきの管理も容易となる。特に、波形の伸延方向が摺動方向と一致すると、摺動方向への粘性流体、例えば潤滑油の流れが促進されると共に側方へ潤滑油の漏れが抑制されることになり、潤滑油膜を増大させることができる。潤滑油膜が厚くなると、結果として摩擦係数を減少することになる。 In the low-friction sliding member of the present invention, a continuous wave-shaped fine concave groove is formed on the sliding surface of at least one sliding member that slides relatively in the presence of a viscous fluid. since the extending direction of the groove of the waveform is formed so as to coincide with the sliding direction of the sliding member, machining, etc. by can very easily form fine grooves, it is easy to manage the variation of the depth and size . In particular, when the extending direction of the waveform coincides with the sliding direction, the flow of viscous fluid in the sliding direction, for example, the lubricating oil is promoted and the leakage of the lubricating oil to the side is suppressed. Can be increased. As the lubricant film becomes thicker, the coefficient of friction is reduced as a result.
また、波形の伸延方向が摺動方向と一致する連続した微細凹溝とすることで、潤滑油を接触部分に長く滞在させることが可能となり、その結果、低摩擦を発現するという効果がもたらされる。
さらに、接触領域に、少なくとも2本以上の微細凹溝が存在すると、摺動方向への油の流れを効果的に促進できるのみでなく、側方への漏れが抑制され、油膜を増大させる機能をより促進することができる。
Further, by forming the continuous concave groove in which the extending direction of the corrugation coincides with the sliding direction, it becomes possible to make the lubricant stay in the contact portion for a long time, and as a result, the effect of developing low friction is brought about. .
Furthermore, when there are at least two or more fine grooves in the contact area, not only can the oil flow in the sliding direction be effectively promoted, but also the function of increasing the oil film while suppressing lateral leakage. Can be promoted more.
なお、本明細書においては、「微細凹溝」とは、ミクロンオーダーの極めて小さな凹部をいうが、その形状は、摺動部材の表面上で連続的に形成されたサイン波や三角波などのように周期的に変化する波形であればよく、その形状は特に限定されるものではなく、種々の形状を含むものである。 In the present specification, the “fine groove” refers to a very small recess on the order of microns, but its shape is like a sine wave or a triangular wave continuously formed on the surface of the sliding member. As long as the waveform changes periodically, the shape is not particularly limited, and includes various shapes.
以下、本発明に係る低摩擦摺動部材について、詳細に説明する。 Hereinafter, the low-friction sliding member according to the present invention will be described in detail.
図1は本発明の実施形態に係る低摩擦摺動部材が使用されるエンジンの要部を示す概略断面図、図2は摩擦低減メカニズムの説明図、図3は図1の低摩擦摺動部材の要部を示す概略斜視図、図4は同低摩擦摺動部材の微細凹部を示す平面図、図5は図4の5−5線に沿う断面図である。 Figure 1 is a schematic sectional view showing a main part of an engine low-friction sliding member is used according to an embodiment of the present invention, FIG. 2 is an explanatory view of a friction low ghemme mechanisms, FIG. 3 of FIG. 1 low friction sliding FIG. 4 is a schematic perspective view showing a main part of the moving member, FIG. 4 is a plan view showing a fine recess of the low friction sliding member, and FIG. 5 is a cross-sectional view taken along line 5-5 of FIG.
本実施形態に係る低摩擦摺動部材は、例えば、図1に示すようなエンジンのピストン1とシリンダ2、クランクシャフト3とメタル軸受4などのように、粘性流体の存在下で摺動する部分の摩擦や摩耗を大幅に低減するために使用される。 The low-friction sliding member according to the present embodiment is a portion that slides in the presence of a viscous fluid, such as an engine piston 1 and cylinder 2, a crankshaft 3, and a metal bearing 4 as shown in FIG. Used to greatly reduce friction and wear.
まず、摩擦低減のメカニズムを図面について説明する。図2に示すように、一対の摺動部材を潤滑油の存在下で、摺動方向(図中、両矢印で示す)に摺動する場合、少なくとも一方の摺動部材の摺動面に凹凸形状の加工を施し、一方の摺動部材の摺動方向に平行な方向の凸部の長さXが、他方の摺動部材の摺動方向に平行な方向の凹部の長さYよりも大きい場合には、摺動の際、潤滑油を凹部に閉じ込めることができる。これにより、摺動部間に一定の油膜厚さを保持することができ、低摩擦を実現できる。しかし、凹部が大きすぎたり深すぎると、負荷容量が低下し直接接触が生じやすくなる。 First, the mechanism for reducing friction will be described with reference to the drawings. As shown in FIG. 2, when sliding a pair of sliding members in the sliding direction (indicated by double arrows in the figure) in the presence of lubricating oil, the sliding surface of at least one sliding member is uneven. The length X of the convex portion in the direction parallel to the sliding direction of one sliding member is greater than the length Y of the concave portion in the direction parallel to the sliding direction of the other sliding member. In some cases, the lubricating oil can be confined in the recess during sliding. Thereby, a fixed oil film thickness can be maintained between the sliding portions, and low friction can be realized. However, if the recess is too large or too deep, the load capacity decreases and direct contact tends to occur.
このような凹部の形状や凸部の形状は、平面的には長方形状、楕円状、不定形状のあらゆる形状が採用されうるが、特に、凹部の形状を摺動方向と平行に連続して形成すると、摺動方向への油の流れが促進され、側方への漏れが抑制されるため、油膜を増大させることができ、これにより摩擦係数を減少させることができる。 As the shape of the concave portion and the convex portion, all shapes of a rectangular shape, an elliptical shape, and an indefinite shape can be adopted in a plan view. In particular, the shape of the concave portion is continuously formed parallel to the sliding direction. Then, the flow of oil in the sliding direction is promoted and leakage to the side is suppressed, so that the oil film can be increased, thereby reducing the coefficient of friction.
本発明者らは、このような知見に基づき本発明を完成させたものである。つまり、本発明は、摺動方向と一致若しくは平行な方向に伸延するように連続波形状の微細凹溝を形成し、負荷容量に与える影響が小さい状態で、粘性流体の保油性を向上させ、摩擦係数を減少させたものである。 The present inventors have completed the present invention based on such findings. That is, the present invention forms a continuous wave-shaped fine groove so as to extend in a direction that is coincident with or parallel to the sliding direction, and improves the oil retention of the viscous fluid in a state where the influence on the load capacity is small, The friction coefficient is reduced.
低摩擦摺動部材は、概して、図3に示すように、粘性流体の存在下で密着した状態で、両矢印の方向に相対的に摺動する第1の摺動部材10と第2の摺動部材11とからなり、両摺動部材10,11の摺動面10a,11aには、複数の微細凹溝12が形成されている。なお、この微細凹溝12は、両摺動面10a,11aのいずれか一方であってもよい。 As shown in FIG. 3, the low- friction sliding member generally has a first sliding member 10 and a second sliding member that slide relative to each other in the direction of a double-headed arrow in close contact with each other in the presence of a viscous fluid. A plurality of fine grooves 12 are formed on the sliding surfaces 10a and 11a of the sliding members 10 and 11, respectively. The fine groove 12 may be either one of the sliding surfaces 10a and 11a.
本実施形態の微細凹溝12は、図2,3に示すように、摺動部材10,11の摺動方向と波形の伸延方向が平行あるいは一致するように形成している。連続した形状の微細凹溝12を摺動部材10,11の摺動方向と平行あるいは一致に形成すると、摺動に伴って摺動方向への油の流れが促進され、側方への漏れが抑制されることになるため、油膜を増大させることができ、これにより摩擦係数を減少させることができることになる。 As shown in FIGS. 2 and 3, the fine groove 12 of the present embodiment is formed so that the sliding direction of the sliding members 10 and 11 and the extending direction of the waveform are parallel or coincide with each other. If the continuous concave grooves 12 are formed in parallel with or coincident with the sliding direction of the sliding members 10 and 11, the oil flow in the sliding direction is promoted along with the sliding, and side leakage is caused. Therefore, the oil film can be increased, thereby reducing the friction coefficient.
ここにおいて、それぞれ円筒形状をした摺動部材10,11相互の摩擦をより低減させるには、一方は軸方向に平坦な円筒体であっても他方は軸直角方向に膨出した、いわゆる太鼓状をしたものとすることが好ましいが、このように成形すると、他方の摺動部材を一方の摺動部材に内接させることにより両摺動部材10,11間で生じる接触領域は、図4,6に示すように、楕円状の接触領域Cが生じることになる。本実施形態では、このような楕円状の接触領域Cでの微細凹溝12の状態を検証した。 Here, in order to further reduce friction between the sliding members 10 and 11 each having a cylindrical shape, a so-called drum-like shape in which one is a flat cylinder in the axial direction but the other bulges in the direction perpendicular to the axis. Although preferably be provided with a, when molded in this manner, the contact region generated between both sliding members 10 and 11 by inscribing the other slide member on one of the sliding member, FIG. 4, As shown in FIG. 6 , an elliptical contact area C is generated. In the present embodiment, the state of the fine groove 12 in such an elliptical contact region C was verified.
摺動部材10,11が相互に接触する接触領域Cは、長径が2aで短径が2bであるが、本実施形態の微細凹溝12は、この接触領域Cに少なくとも2本以上存在するように形成することが好ましい。 The contact area C where the sliding members 10 and 11 are in contact with each other has a major axis of 2a and a minor axis of 2b. However, there are at least two micro-concave grooves 12 of this embodiment in the contact area C. It is preferable to form.
接触領域Cにおいて、少なくとも2本以上の微細凹溝12を形成すると、摺動方向への油の流れを効果的に促進できるのみでなく、側方への漏れが抑制され、油膜を増大させる機能をより促進することができる。ただし、1本の場合には、この効果が十分に得られない。 When at least two or more fine grooves 12 are formed in the contact region C, not only can the oil flow in the sliding direction be effectively promoted, but also the function of increasing the oil film while suppressing leakage to the side. Can be promoted more. However, in the case of one, this effect can not be obtained sufficiently.
この接触領域Cにおいて、サイン波形あるいは三角波などの周期的に変化する波形は、少なくとも2周期分存在することが好ましい。このようにすれば、さらに潤滑油を接触領域Cに長く滞在させることが可能となり、さらに摩擦を低減できるという効果がもたらされることになり、潤滑油が十分存在しない場合でも焼き付き防止性が向上する。 In the contact region C, it is preferable that a waveform that periodically changes such as a sine waveform or a triangular wave exists for at least two cycles. In this way, it becomes possible to make the lubricating oil stay in the contact region C for a longer time, and the effect of further reducing friction can be obtained, and the seizure prevention property is improved even when the lubricating oil is not sufficiently present. .
摺動部材10,11の摩擦の低減は、溝幅W、溝深さD、摺動部材10,11の微細凹溝12が形成されていない平坦部13の表面粗さRa、あるいは、微細凹溝12が接触領域Cで占有する面積率によっても影響される。 The friction of the sliding members 10 and 11 is reduced by the groove width W, the groove depth D, the surface roughness Ra of the flat portion 13 where the fine concave grooves 12 of the sliding members 10 and 11 are not formed, or the fine concaves. It is also affected by the area ratio that the groove 12 occupies in the contact region C.
微細凹溝12は、図5に示すように、摺動部材10,11の平坦な摺動面10a,11aから切り込まれた断面矩形状の溝あるいは断面三角形状の溝などとして形成されるが、いずれの断面形状の溝であっても、溝深さDは、0.5μm以上20μm以下であることが好ましい。溝深さDが、この範囲であれば、安定して摩擦係数を減少でき、また、耐焼き付き防止性を向上することができることが、実験により判明している。なお、微細凹溝12の深さDの測定は、三次元表面構造解析顕微鏡NewView5032(ザイゴ株式会社製)を用い、非接触三次元白色光位相変調干渉方式などにより測定することができる。 Fine groove 12 is formed as shown in FIG. 5, Tan Taira sliding surface 10a of the sliding members 10 and 11, as such a rectangular cross section of the groove or triangular cross section grooves cut from 11a However, the groove depth D is preferably 0.5 μm or more and 20 μm or less regardless of the groove having any cross-sectional shape. Experiments have shown that when the groove depth D is within this range, the friction coefficient can be stably reduced, and the anti-seizure property can be improved. The depth D of the fine groove 12 can be measured by a non-contact three-dimensional white light phase modulation interference method using a three-dimensional surface structure analysis microscope NewView 5032 (manufactured by Zygo Corporation).
溝幅Wは、200μm以下であることが好ましい。溝幅Wが200μm以下であれば、摩擦低減効果が十分発現するが、200um以上あれば、微細凹溝12へ油が流れ込んでしまい負荷容量が低下する。特に、接触領域Cが小さい場合には問題となる。 The groove width W is preferably 200 μm or less. If the groove width W is 200 μm or less, the friction reducing effect is sufficiently exhibited. If the groove width W is 200 μm or more, the oil flows into the fine groove 12 and the load capacity is reduced. This is particularly problematic when the contact area C is small.
このような微細凹溝12であっても、両摺動部材10,11の接触領域Cでの占有割合{(接触領域Cでの溝本数×溝幅W×溝長さ/πab)×100%)}、つまり面積率が大きすぎても小さすぎても問題となる。微細凹溝12の面積率としては、1%以上15%以下とすれば、安定して摩擦係数を減少でき、焼き付き防止性を向上できる。面積率が1%より小さい場合には、微細凹溝12を形成した効果が十分発現できず、面積率が15%以上の場合には、負荷容量が低下し、金属接触が増加するために、摩擦が増大し、焼きつき性も低下する。なお、面積率は、例えば、マスクブラスト法で用いる凹部微細形状を有する樹脂製マスクから算出することができる。 Even in such a fine groove 12, the occupation ratio of the sliding members 10, 11 in the contact area C {(number of grooves in the contact area C × groove width W × groove length / πab) × 100% )}, That is, it is a problem if the area ratio is too large or too small. If the area ratio of the fine grooves 12 is 1% or more and 15% or less, the friction coefficient can be stably reduced, and the seizure prevention property can be improved. When the area ratio is smaller than 1%, the effect of forming the fine concave grooves 12 cannot be sufficiently exhibited. When the area ratio is 15% or more, the load capacity decreases and the metal contact increases. Friction increases and seizure decreases. The area ratio can be calculated from, for example, a resin mask having a fine concave shape used in the mask blasting method.
摺動部材10,11の微細凹溝12が形成されていない摺動面10a,11aの表面粗さRaは、0.05μm以下とすることが好ましい。表面粗さRaが、0.05μm以上であれば、潤滑油の油膜厚さが小さい場合に、金属接触が増大し、焼き付き防止性が低下するという問題があるが、0.05μm以下であれば、このようなことがなく、安定的な焼き付き防止性が得られる。なお、表面粗さRaは、例えば、触針式表面形状測定装置FormTalysurf−120L(Taylor−Hobson社製)により測定することができる。 Surface roughness Ra of the fine groove 12 is formed have such Isuri sliding surface 10a, 11a of the sliding members 10 and 11 is preferably set to 0.05μm or less. If the surface roughness Ra is 0.05 μm or more, there is a problem that metal contact increases and seizure prevention property decreases when the oil film thickness of the lubricating oil is small, but if it is 0.05 μm or less. Thus, there is no such a thing and a stable burn-in preventing property can be obtained. The surface roughness Ra can be measured by, for example, a stylus type surface shape measuring device FormTalysurf-120L (Taylor-Hobson).
前述した摺動部材10,11を実験により摩擦係数を測定し、種々の溝形状パターンを有するものにつき検証を試みた。 The friction coefficient of the sliding members 10 and 11 described above was measured by experiment, and verification was made on those having various groove shape patterns.
図6は実験で使用する内接2円筒を示す概略斜視図、図7は微細凹溝の溝形状を例示的に示す平面図である。 FIG. 6 is a schematic perspective view showing an inscribed two cylinder used in the experiment, and FIG. 7 is a plan view exemplarily showing the groove shape of the fine groove.
実験に使用した摺動部材10,11としては、図6に示すような、内接2円筒を形成したものを使用した。 As the sliding members 10 and 11 used in the experiment, those having an inscribed two cylinder as shown in FIG. 6 were used.
外円筒15として、外径φ60の鋼製円筒に内径φ45mmのアルミメタルを圧入したものを使用し、内円筒16としては、外径がφ43mmの鋼鉄(SCM435H鋼)の焼き入れ焼き戻し材を使用した。 The outer cylinder 15 is a steel cylinder with an outer diameter of φ60 that is press-fitted with an aluminum metal with an inner diameter of φ45 mm. The inner cylinder 16 is a quenching and tempering material of steel with an outer diameter of φ43 mm (SCM435H steel). did.
内円筒16は、軸方向の曲率半径rが700mmの円弧状外周面となるように成形し、外円筒15との間で楕円状の接触領域Cが生じるようにした。接触領域Cの長径(2a)は2.5mm、短径(2b)は1.9mmである。 The inner cylinder 16 was formed to have an arcuate outer peripheral surface with an axial curvature radius r of 700 mm, and an elliptical contact region C was formed between the inner cylinder 16 and the outer cylinder 15. The major axis (2a) of the contact area C is 2.5 mm, and the minor axis (2b) is 1.9 mm.
いずれの試験片も、端部での塑性変形によりできた盛り上がりやバリを除去する目的で、平均粒径9μmのテ−プラップフィルムを使用して、摺動面10a,11aの表面粗さRaが、0.02μm以下となるように仕上げ加工を行った。 Each test piece uses a tape film having an average particle diameter of 9 μm for the purpose of removing bulges and burrs formed by plastic deformation at the end, and the surface roughness Ra of the sliding surfaces 10a and 11a is Finishing was performed so as to be 0.02 μm or less.
実験は、外円筒15と内円筒16相互間に油膜を形成するため、エンジン油の浴槽に一部浸漬し、エンジン油の油温度は、80℃とした。 In the experiment, in order to form an oil film between the outer cylinder 15 and the inner cylinder 16, a part of the oil was immersed in a bath of engine oil, and the oil temperature of the engine oil was 80 ° C.
そして、ラジアル荷重F(白抜き矢印)として20kgを加え、相対すべり速度Uは6m/sとし、内円筒16の軸16aに取り付けたトルクセンサ17により回転トルクを計測して接線力を算出し、ラジアル荷重Fで除することにより摩擦係数を求めた。 Then, 20 kg is added as the radial load F (open arrow), the relative sliding speed U is 6 m / s, the rotational torque is measured by the torque sensor 17 attached to the shaft 16a of the inner cylinder 16, and the tangential force is calculated. The coefficient of friction was determined by dividing by the radial load F.
本実施形態の微細凹溝12の形状パターンとしては、具体例を挙げると、図7A,B,Fで示すものなど、種々の形状パターンを有するものが考えられるが、試験において使用した試験片としては、図7A,B,C、D,Eの形状パターンを有するものを用いた。 As a shape pattern of the fine groove 12 of the present embodiment, there are various shape patterns such as those shown in FIGS. 7A, 7B, and 7F as specific examples. 7A, B, C, D, and E having the shape pattern were used.
(実施例1)
実施例1の微細凹溝12のパターンは、図7Aで示すものであり、工具刃先曲率半径の異なるc−BN切削工具を用い、内円筒を回転させながら工具を揺動し、内円筒16の外周面にサイン波状の連続溝12を形成した。溝幅Wは50μm、振幅Tは500μm、溝の深さDは3μm、接触領域Cでの山数は3、楕円状の接触領域Cでの溝の本数は3とした。楕円状の接触領域Cでの溝の面積率は、11.1%であった。
(Example 1)
The pattern of the fine groove 12 of Example 1 is shown in FIG. 7A. Using a c-BN cutting tool having a different tool edge curvature radius, the tool is swung while the inner cylinder is rotated, and the inner cylinder 16 is rotated. A sinusoidal continuous groove 12 was formed on the outer peripheral surface. The groove width W was 50 μm, the amplitude T was 500 μm, the groove depth D was 3 μm, the number of peaks in the contact area C was 3, and the number of grooves in the elliptical contact area C was 3. The area ratio of the grooves in the elliptical contact region C was 11.1%.
(実施例2)
実施例2は、微細凹溝12のパターンとして、図7Bで示すものを使用した。実施例1と同様の溝加工を行い、溝幅W、振幅T、溝の深さD、接触領域Cでの山数、楕円状の接触領域Cでの溝の本数及び溝の面積率も同様とした。
(Example 2)
In Example 2, the pattern shown in FIG. The same groove processing as in Example 1 was performed, and the groove width W, amplitude T, groove depth D, number of peaks in the contact area C, number of grooves in the elliptical contact area C, and groove area ratio were also the same. It was.
(実施例3)
実施例3の微細凹溝12は、実施例1と同様のパターン及び溝加工であるが、溝幅Wは100μm、振幅Tは250μmとした。溝の面積率は15.6%であった。
(Example 3)
The fine groove 12 of Example 3 has the same pattern and groove processing as Example 1, but the groove width W was 100 μm and the amplitude T was 250 μm. The area ratio of the grooves was 15.6%.
(実施例4)
実施例4の微細凹溝12は、実施例1と同様のパターン及び溝加工であるが、溝幅Wは190μm、振幅Tは250μm、溝の深さDは1μm、接触領域Cでの山数は2、接触領域Cでの溝の本数は2とした。溝の面積率は18.0%であった。
Example 4
The fine concave groove 12 of Example 4 has the same pattern and groove processing as Example 1, but the groove width W is 190 μm, the amplitude T is 250 μm, the groove depth D is 1 μm, and the number of peaks in the contact region C. 2 and the number of grooves in the contact area C was 2. The area ratio of the grooves was 18.0%.
(実施例5)
実施例5の微細凹溝12も、実施例1と同様のパターン及び溝加工であるが、溝幅Wは30μm、振幅Tは500μm、溝の深さDは18μm、接触領域Cでの山数は2、接触領域Cでの溝の本数は2とした。溝の面積率は3.6%であった。
(Example 5)
The fine concave groove 12 of Example 5 has the same pattern and groove processing as Example 1, but the groove width W is 30 μm, the amplitude T is 500 μm, the groove depth D is 18 μm, and the number of peaks in the contact region C. 2 and the number of grooves in the contact area C was 2. The area ratio of the grooves was 3.6%.
(実施例6)
実施例5の微細凹溝12も、実施例1と同様のパターン及び溝加工であるが、溝幅Wは50μm、振幅Tは250μm、溝の深さDは10μm、接触領域Cでの山数は2、接触領域Cでの溝の本数は2とした。溝の面積率は5.9%であった。
(Example 6)
The fine groove 12 of Example 5 has the same pattern and groove processing as Example 1, but the groove width W is 50 μm, the amplitude T is 250 μm, the groove depth D is 10 μm, and the number of peaks in the contact region C. 2 and the number of grooves in the contact area C was 2. The area ratio of the grooves was 5.9%.
(実施例7)
実施例5の微細凹溝12も、実施例1と同様のパターン及び溝加工であるが、溝幅Wは50μm、振幅Tは500μm、溝の深さDは6μm、接触領域Cでの山数は3、接触領域Cでの溝の本数は3とした。溝の面積率は11.1%であった。
(Example 7)
The fine concave groove 12 of Example 5 has the same pattern and groove processing as Example 1, but the groove width W is 50 μm, the amplitude T is 500 μm, the groove depth D is 6 μm, and the number of peaks in the contact region C. 3 and the number of grooves in the contact area C was 3. The area ratio of the grooves was 11.1%.
(比較例1)
比較例1は、連続溝を形成していないものとした。摺動面10a,11aの表面粗さRaは、実施例1と同様、0.02μm以下とした。他の条件も、全て実施例1と同様とした。
(Comparative Example 1)
In Comparative Example 1, continuous grooves were not formed. Similar to Example 1, the surface roughness Ra of the sliding surfaces 10a and 11a was set to 0.02 μm or less. All other conditions were the same as in Example 1.
(比較例2)
比較例2は、連続溝のパターンを図7Aで示すものとした。溝幅Wは250μm、振幅Tは250μm、溝の深さDは25μm、接触領域Cでの山数は2、接触領域Cでの溝の本数は2とした。溝の面積率は23.7%であった。
(Comparative Example 2)
In Comparative Example 2, the continuous groove pattern is shown in FIG. 7A. The groove width W was 250 μm, the amplitude T was 250 μm, the groove depth D was 25 μm, the number of peaks in the contact area C was 2, and the number of grooves in the contact area C was 2. The area ratio of the grooves was 23.7%.
(比較例3)
比較例3の微細凹溝12は、パターンを図7Aで示すものとした。溝幅Wは30μm、振幅Tは500μm、溝の深さDは0.3μm、接触領域Cでの山数は1、接触領域Cでの溝の本数は1とした。溝の面積率は1.6%であった。
(Comparative Example 3)
The fine groove 12 of Comparative Example 3 has a pattern shown in FIG. 7A. The groove width W was 30 μm, the amplitude T was 500 μm, the groove depth D was 0.3 μm, the number of ridges in the contact area C was 1, and the number of grooves in the contact area C was 1. The area ratio of the grooves was 1.6%.
(比較例4)
比較例4の微細凹溝12は、波形の伸延方向が摺動方向と直交する方向となるように形成した図7Cで示すものとした。この溝は、マスクブラスト処理加工により形成した。すなわち、光リソグラフィのテクニックを利用し、樹脂製マスクに微細形状を形成し、その樹脂マスクを円筒表面およびメタル内面に貼り付けた後、平均粒径25umのセラミックス粒子を投射圧5kg/cm2で所望の深さになるまで、投射し、微細な凹溝を形成した。その後、微細凹溝周辺に形成されたエッジ部の盛り上がりを粒径9μmのテ−プラップフィルムにより除去した。本試験片も、端部での塑性変形によりできた盛り上がりやバリを除去する目的で、平均粒径9μmのテ−プラップフィルムを使用して、摺動面10a,11aの表面粗さRaが、0.02μm以下となるように仕上げ加工を行った。また、内円筒と外円筒の接触幅は、20mmである。
(Comparative Example 4)
The fine groove 12 of Comparative Example 4 was shown in FIG. 7C formed so that the waveform extending direction was a direction orthogonal to the sliding direction. This groove was formed by mask blast processing. That is, using a photolithographic technique, a fine shape is formed on a resin mask, the resin mask is attached to the cylindrical surface and the metal inner surface, and then ceramic particles having an average particle size of 25 um are desired at a projection pressure of 5 kg / cm 2. Projection was performed until a depth of 1 mm was formed, and fine concave grooves were formed. Thereafter, the bulge of the edge portion formed around the fine groove was removed with a tape film having a particle size of 9 μm. This test piece also uses a tape film having an average particle diameter of 9 μm for the purpose of removing bulges and burrs formed by plastic deformation at the end, and the surface roughness Ra of the sliding surfaces 10a and 11a is Finishing was performed to 0.02 μm or less. The contact width between the inner cylinder and the outer cylinder is 20 mm.
比較例4は、溝幅Wが50μm、振幅Tを500μm、溝の深さDが3μm、接触領域Cでの山数を3、接触領域Cでの溝の本数を3、溝の面積率を11.1%であった。 In Comparative Example 4, the groove width W is 50 μm, the amplitude T is 500 μm, the groove depth D is 3 μm, the number of peaks in the contact area C is 3, the number of grooves in the contact area C is 3, and the groove area ratio is 11.1%.
(比較例5)
比較例5は、パターンDのサイン波状の連続溝で、比較例4と同様に、波形の伸延方向が摺動方向と直交する方向にマスクブラスト処理加工により形成し、平均粒径9μmのテ−プラップフィルムを使用して盛り上がりやバリを除去し、表面粗さRaが、0.02μm以下となるように仕上げ加工を行った。
(Comparative Example 5)
Comparative Example 5 is a sinusoidal continuous groove of pattern D, and, like Comparative Example 4, is formed by mask blasting in a direction in which the waveform is extended in a direction perpendicular to the sliding direction, and has a mean particle size of 9 μm. The bulge and burrs were removed using a flap film, and finishing was performed so that the surface roughness Ra was 0.02 μm or less.
比較例5は、溝幅Wが50μm、振幅Tを500μm、溝の深さDが3μm、接触領域Cでの山数を3、接触領域Cでの溝の本数を3、溝の面積率を11.1%であった。 In Comparative Example 5, the groove width W is 50 μm, the amplitude T is 500 μm, the groove depth D is 3 μm, the number of peaks in the contact region C is 3, the number of grooves in the contact region C is 3, and the groove area ratio is 11.1%.
(比較例6)
比較例6は、パターンEの網目状の溝とし、前記比較例4,5と同様、溝幅Wが50μm、振幅Tを500μm、溝の深さDが3μm、接触領域Cでの山数を3、接触領域Cでの溝の本数を3とした。溝の面積率は22.2%であった。
(Comparative Example 6)
Comparative Example 6 is a mesh-like groove of pattern E, and the groove width W is 50 μm, the amplitude T is 500 μm, the groove depth D is 3 μm, and the number of peaks in the contact region C is the same as in Comparative Examples 4 and 5. 3. The number of grooves in the contact area C was 3. The area ratio of the grooves was 22.2%.
比較例1の場合の摩擦係数を「1」とし、各実験例の摩擦係数を、これと比較した結果、下記の表1で示す結果が得られた。なお、簡便のため、各実験例における微細凹溝12のパターンA〜Eも併記している。 As a result of comparing the friction coefficient of each experimental example with this, the friction coefficient in the case of Comparative Example 1 was “1”, and the results shown in Table 1 below were obtained. For convenience, the patterns A to E of the fine grooves 12 in each experimental example are also shown.
表1から明らかなように、本実施例のものは、いずれの場合も、比較例1のものより低い摩擦抵抗係数比を示すが、比較例では、摩擦抵抗係数比が1に近似するかあるいは1以上である。これは、微細凹溝12自体の保油性が摩擦低減効果に大幅に寄与することが分る。 As is clear from Table 1, in this example, the friction coefficient coefficient ratio in each case is lower than that in Comparative Example 1, but in the comparative example, the friction resistance coefficient ratio is close to 1 or 1 or more. This shows that the oil retaining property of the fine groove 12 itself greatly contributes to the friction reduction effect.
このような本発明の低摩擦摺動部材を、粘性流体の存在下で摺動する内燃機関用の摺動部材、例えば、シリンダ、メタル軸受などの、円弧状内面を形成するものに適用すると、微細凹溝12が保油性を向上させる油溜まりの役割を発揮し、これら凹部に入り込む油の量が多くなり、負荷容量の低下や油膜が薄くなる事態を防止し、金属同士の直接接触のない、摩擦抵抗が低減する好ましい内燃機関になる。 When such a low friction sliding member of the present invention is applied to a sliding member for an internal combustion engine that slides in the presence of a viscous fluid, such as a cylinder, a metal bearing, or the like that forms an arcuate inner surface, The fine grooves 12 serve as an oil reservoir that improves oil retention, the amount of oil that enters these recesses increases, prevents a decrease in load capacity and a thin oil film, and there is no direct contact between metals. Therefore, it becomes a preferable internal combustion engine with reduced frictional resistance.
本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、上述した実施形態では、平坦な低摩擦摺動部材に微細凹溝12を形成したものであるが、これのみでなく、他の種々の形状を有するもの、例えば、ある程度湾曲したものあるいは円弧状の面を有するもの、又は球面のものなどにも適用することもできる。また、微細凹溝12は、同一周期で同一波高のサイン波、三角波のみでなく、変形したものあるいは種々の形状をした波形であってもよいこともある。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the above-described embodiment, the fine concave groove 12 is formed on the flat low friction sliding member. However, not only this but also other various shapes such as a curved portion or a circle The present invention can also be applied to an arcuate surface or a spherical surface. Further, the fine groove 12 may be not only a sine wave and a triangular wave with the same period and the same wave height but also a deformed waveform or a waveform having various shapes.
本発明は、粘性流体の存在下で摺動する内燃機関用摺動部材の摺動摩擦の低減を図ることができる。 The present invention can reduce sliding friction of a sliding member for an internal combustion engine that slides in the presence of a viscous fluid.
10,11…摺動部材、
10a,11a…摺動面、
12…微細凹溝、
C…接触領域、
D…溝深さ、
T…周期、
W…溝幅。
10, 11 ... sliding member,
10a, 11a ... sliding surface,
12 ... fine groove,
C ... contact area,
D ... groove depth,
T ... cycle,
W: Groove width.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006152388A JP4702186B2 (en) | 2006-05-31 | 2006-05-31 | Low friction sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006152388A JP4702186B2 (en) | 2006-05-31 | 2006-05-31 | Low friction sliding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007321861A JP2007321861A (en) | 2007-12-13 |
JP4702186B2 true JP4702186B2 (en) | 2011-06-15 |
Family
ID=38854860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006152388A Expired - Fee Related JP4702186B2 (en) | 2006-05-31 | 2006-05-31 | Low friction sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4702186B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6111598B2 (en) * | 2012-10-26 | 2017-04-12 | いすゞ自動車株式会社 | Cylinder block and honing method |
JP6269119B2 (en) * | 2014-02-06 | 2018-01-31 | アイシン精機株式会社 | Seat reclining device |
JP2017133519A (en) * | 2014-04-23 | 2017-08-03 | 株式会社日立製作所 | Molding body formed with structure of cyclic structure and process of manufacture thereof |
GB2565545B (en) * | 2017-08-14 | 2019-10-02 | Ford Global Tech Llc | A bearing assembly |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568996U (en) * | 1979-06-30 | 1981-01-26 | ||
JPS5889614U (en) * | 1982-09-29 | 1983-06-17 | 大同メタル工業株式会社 | bearing metal |
JPS59142514U (en) * | 1983-03-14 | 1984-09-22 | 日本精工株式会社 | Dynamic pressure plain bearing with built-in lubricant |
JPH01220720A (en) * | 1988-02-29 | 1989-09-04 | Nippon Seiko Kk | Rolling bearing and manufacturing method therefor |
JP2000504089A (en) * | 1996-01-30 | 2000-04-04 | グリコ―メタル―ウエルケ・グリコ・ベー・ファウ・ウント・コンパニー・コマンディトゲゼルシャフト | Plain bearing element with lubricating oil pocket |
JP2002155946A (en) * | 2000-11-20 | 2002-05-31 | Daido Metal Co Ltd | Shaft support member |
JP2002267016A (en) * | 2001-03-09 | 2002-09-18 | Toyota Motor Corp | Cylinder with lubricant retaining groove |
JP2002266877A (en) * | 2001-03-07 | 2002-09-18 | Nsk Ltd | Rolling bearing for starter motor |
JP2004084815A (en) * | 2002-08-27 | 2004-03-18 | Komatsu Ltd | Bearing device |
JP2005034968A (en) * | 2003-07-17 | 2005-02-10 | Toyoda Mach Works Ltd | Guide |
JP2005095998A (en) * | 2003-09-22 | 2005-04-14 | Riraiaru:Kk | Method of manufacturing parts for dynamic bearing |
-
2006
- 2006-05-31 JP JP2006152388A patent/JP4702186B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568996U (en) * | 1979-06-30 | 1981-01-26 | ||
JPS5889614U (en) * | 1982-09-29 | 1983-06-17 | 大同メタル工業株式会社 | bearing metal |
JPS59142514U (en) * | 1983-03-14 | 1984-09-22 | 日本精工株式会社 | Dynamic pressure plain bearing with built-in lubricant |
JPH01220720A (en) * | 1988-02-29 | 1989-09-04 | Nippon Seiko Kk | Rolling bearing and manufacturing method therefor |
JP2000504089A (en) * | 1996-01-30 | 2000-04-04 | グリコ―メタル―ウエルケ・グリコ・ベー・ファウ・ウント・コンパニー・コマンディトゲゼルシャフト | Plain bearing element with lubricating oil pocket |
JP2002155946A (en) * | 2000-11-20 | 2002-05-31 | Daido Metal Co Ltd | Shaft support member |
JP2002266877A (en) * | 2001-03-07 | 2002-09-18 | Nsk Ltd | Rolling bearing for starter motor |
JP2002267016A (en) * | 2001-03-09 | 2002-09-18 | Toyota Motor Corp | Cylinder with lubricant retaining groove |
JP2004084815A (en) * | 2002-08-27 | 2004-03-18 | Komatsu Ltd | Bearing device |
JP2005034968A (en) * | 2003-07-17 | 2005-02-10 | Toyoda Mach Works Ltd | Guide |
JP2005095998A (en) * | 2003-09-22 | 2005-04-14 | Riraiaru:Kk | Method of manufacturing parts for dynamic bearing |
Also Published As
Publication number | Publication date |
---|---|
JP2007321861A (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6739238B2 (en) | Sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure | |
Nanbu et al. | Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion | |
JP4779841B2 (en) | Internal combustion engine | |
JP3890495B2 (en) | Sliding part for internal combustion engine and internal combustion engine using the same | |
JP4702186B2 (en) | Low friction sliding member | |
CN109416124A (en) | Compound oil ring | |
JP2016056935A (en) | Oil ring | |
JP2008095721A (en) | Sliding member | |
JPWO2019008780A1 (en) | Combination oil ring | |
EP2577116B1 (en) | Oil control ring of ferrous body for internal combustion engines | |
JP6394773B2 (en) | Oil ring | |
JP2007321860A (en) | Low-friction sliding member | |
JP5429329B2 (en) | Low friction sliding member | |
JP5155924B2 (en) | Cylinder | |
JP6876766B2 (en) | Half bearings and plain bearings | |
JP2019203559A (en) | Half-split bearing and slide bearing | |
JP2016138629A (en) | piston ring | |
JP4994294B2 (en) | Slide bearing for internal combustion engine | |
JP2006017218A (en) | Sliding device | |
JP2019078267A (en) | Cylinder for internal combustion engine and manufacturing method | |
CN107869402A (en) | Casing bore and method with the surface characteristics for improving tribological property | |
JP4956769B2 (en) | Low friction sliding member | |
JP5317376B2 (en) | Bearing device for supporting a crankshaft of an internal combustion engine | |
CN107429842B (en) | Combine oil-control ring | |
CN118188202A (en) | Sliding structure of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110221 |
|
LAPS | Cancellation because of no payment of annual fees |