[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4701147B2 - 2-stage absorption refrigerator - Google Patents

2-stage absorption refrigerator Download PDF

Info

Publication number
JP4701147B2
JP4701147B2 JP2006274577A JP2006274577A JP4701147B2 JP 4701147 B2 JP4701147 B2 JP 4701147B2 JP 2006274577 A JP2006274577 A JP 2006274577A JP 2006274577 A JP2006274577 A JP 2006274577A JP 4701147 B2 JP4701147 B2 JP 4701147B2
Authority
JP
Japan
Prior art keywords
heat transfer
temperature
low
absorber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006274577A
Other languages
Japanese (ja)
Other versions
JP2008095976A5 (en
JP2008095976A (en
Inventor
達郎 藤居
浩伸 川村
章 西口
伸之 武田
義孝 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006274577A priority Critical patent/JP4701147B2/en
Priority to DE102007034710.5A priority patent/DE102007034710B4/en
Publication of JP2008095976A publication Critical patent/JP2008095976A/en
Publication of JP2008095976A5 publication Critical patent/JP2008095976A5/ja
Application granted granted Critical
Publication of JP4701147B2 publication Critical patent/JP4701147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、2組の蒸発器と吸収器を有し、高圧側の蒸発器によって低圧側の吸収器を冷却する構成とした2段吸収冷凍機に関する。   The present invention relates to a two-stage absorption refrigerator having two sets of evaporators and absorbers and configured to cool a low-pressure side absorber by a high-pressure side evaporator.

本発明に関わる背景技術としては、例えば特許文献1の公知技術が挙げられる。特許文献1では、2組の蒸発器と吸収器を有し、高温側(第2)蒸発器を低温側(第1)吸収器の吸収熱で加熱する2段吸収式ヒートポンプにおいて、上,下両端面を閉じた垂直な内筒を設け、その内部を上部端板,溶液分散端板および下部端板で上,下に仕切り、上部端板上方に設けた上室と下部端板下方に設けた下室とを垂直な複数の伝熱管で接続して高温側蒸発器を形成している。   As a background art relating to the present invention, for example, a known technique of Patent Document 1 is cited. In Patent Document 1, in a two-stage absorption heat pump having two sets of evaporators and absorbers and heating the high temperature side (second) evaporator with the absorption heat of the low temperature side (first) absorber, A vertical inner cylinder with closed end faces is provided, and the interior is divided into upper and lower ends by an upper end plate, a solution dispersion end plate, and a lower end plate, and the upper chamber is provided above the upper end plate and below the lower end plate. The lower chamber is connected by a plurality of vertical heat transfer tubes to form a high temperature side evaporator.

また、溶液分散端板と下部端板との間に、垂直伝熱管群の管外を吸収伝熱面として低温側吸収器を形成し、上部端板と溶液分散端板との間に形成した中間室から垂直な伝熱管群の外表面に沿って溶液が膜状に流下させるようにしている。   In addition, a low-temperature side absorber is formed between the solution dispersion end plate and the lower end plate with the outside of the vertical heat transfer tube group as an absorption heat transfer surface, and is formed between the upper end plate and the solution dispersion end plate. The solution is allowed to flow down in the form of a film along the outer surface of the vertical heat transfer tube group from the intermediate chamber.

さらに本公知例では、垂直な伝熱管群の管内に供給する冷媒液を、下室すなわち管群の下部に設けている。   Furthermore, in this known example, the refrigerant liquid supplied into the tubes of the vertical heat transfer tube group is provided in the lower chamber, that is, the lower portion of the tube group.

また本発明に関わる他の背景技術としては、特許文献2の公知技術が挙げられる。本公知例では、2組の蒸発器と吸収器を有し、低温側(第2)蒸発器,低温側吸収器,高温側(第1)蒸発器,高温側吸収器の順に隣り合わせて同一の缶体で構成し、高温側蒸発器と低温側吸収器とは伝熱面を介して隣り合っており、高温側蒸発器の伝熱面の近傍に液冷媒を散布する液冷媒散布手段を、低温側吸収器の伝熱面の近傍に溶液を散布する溶液散布手段をそれぞれ配設し、液冷媒散布手段を溶液散布手段よりも上方に位置させている。   Further, as another background technique related to the present invention, a known technique of Patent Document 2 is cited. In this publicly known example, there are two sets of evaporators and absorbers, and the low temperature side (second) evaporator, the low temperature side absorber, the high temperature side (first) evaporator, and the high temperature side absorber are adjacent to each other in the same order. It is composed of a can body, the high temperature side evaporator and the low temperature side absorber are adjacent to each other via the heat transfer surface, and a liquid refrigerant spraying means for spraying liquid refrigerant in the vicinity of the heat transfer surface of the high temperature side evaporator, Solution spraying means for spraying the solution is disposed in the vicinity of the heat transfer surface of the low temperature side absorber, and the liquid refrigerant spraying means is positioned above the solution spraying means.

そして上記の構成により、低温側吸収器の吸収熱が前記伝熱面を通して直接高温側蒸発器の前記伝熱面上を流れる冷媒に伝達されることによって、循環水などの中間媒体を用いる場合と比べて熱輸送における温度差を小さくし、サイクル性能を向上している。   And by the above configuration, the absorption heat of the low-temperature side absorber is directly transmitted through the heat transfer surface to the refrigerant flowing on the heat transfer surface of the high-temperature side evaporator, thereby using an intermediate medium such as circulating water. Compared with this, the temperature difference in heat transport is reduced and the cycle performance is improved.

特公昭63−37301号公報 第3図Japanese Patent Publication No. 63-37301 Fig. 3 特許第3591356号 図2Japanese Patent No. 3591356 FIG.

特許文献1の従来技術では、垂直管群の各伝熱管内の下部から冷媒液を供給し、伝熱管の上部開口部から管内で蒸発した冷媒蒸気を吸収器に導く、再循環経路を省略した貫流ボイラのような構成となっている。この構成では、伝熱管下部の冷媒入口は冷媒液の単相流となり、供給された冷媒液は伝熱管内で加熱されて沸騰蒸発しながら管内を上昇する。このため、伝熱管内に摩擦による圧力損失の大きい気泡流,スラグ流の領域が発生し、この領域において管内で二相となっている冷媒の質量が加算されて大きな圧力分布が生じ、圧力に対して決定する蒸発温度にも分布が生じる。この場合、上流側すなわち伝熱管の下部では管内の圧力と蒸発温度が高いため、管外の吸収温度との温度差が小さくなって伝熱面が有効に作用しないという課題があった。   In the prior art of Patent Document 1, the refrigerant liquid is supplied from the lower part of each heat transfer tube of the vertical tube group, and the recirculation path for guiding the refrigerant vapor evaporated in the pipe from the upper opening of the heat transfer tube to the absorber is omitted. It is configured like a once-through boiler. In this configuration, the refrigerant inlet at the lower part of the heat transfer tube becomes a single-phase flow of the refrigerant liquid, and the supplied refrigerant liquid is heated in the heat transfer pipe and rises in the pipe while evaporating to the boil. For this reason, a bubble flow and slag flow region with large pressure loss due to friction is generated in the heat transfer tube, and in this region, the mass of the refrigerant that is two-phase in the tube is added to generate a large pressure distribution. On the other hand, a distribution also occurs in the evaporation temperature determined. In this case, since the pressure inside the pipe and the evaporation temperature are high on the upstream side, that is, the lower part of the heat transfer pipe, there is a problem that the temperature difference from the absorption temperature outside the pipe becomes small and the heat transfer surface does not work effectively.

また本従来技術では、管内で冷媒を沸騰させる構成となっているため、熱輸送における温度差が大きく、作動温度,COP等のサイクル性能が低下するという課題もあった。   Moreover, in this prior art, since the refrigerant is boiled in the pipe, there is a problem that the temperature difference in heat transport is large, and the cycle performance such as operating temperature and COP is lowered.

さらに本従来技術では、吸収温度が高く熱伝達量が大きい場合に、伝熱管内において冷媒のドライアウトが生じて伝熱面が有効に作用しなくなりやすいという課題もあった。なお特許文献1では、上室の内部に液面が形成されてドライアウトが生じにくい状態となっているが、この場合は伝熱管内が満液式蒸発器の状態となり、上述の圧力損失および冷媒の質量による圧力分布が顕著になるという課題が生じる。   Furthermore, in this prior art, when the absorption temperature is high and the amount of heat transfer is large, there is also a problem that the heat transfer surface tends not to function effectively due to dry out of the refrigerant in the heat transfer tube. In Patent Document 1, the liquid level is formed inside the upper chamber and it is difficult for dry out to occur. In this case, the heat transfer tube is in a full-liquid evaporator, and the pressure loss and The subject that the pressure distribution by the mass of a refrigerant | coolant becomes remarkable arises.

本発明の目的は、伝熱面が有効に作用することによってして良好な作動温度とCOPで動作する2段吸収冷凍機を提供することにある。   It is an object of the present invention to provide a two-stage absorption refrigerator that operates at a good operating temperature and COP by effectively operating a heat transfer surface.

上記目的を達成するために、本発明の第1の特徴は、高温蒸発器と低温吸収器を垂直管群で構成して管内を高温蒸発器,管外を低温吸収器とすると共に、管内に供給する冷媒液を管群の上部に設けた冷媒分配室から流入させ、この冷媒分配室を複数の領域に分割したことにある。   In order to achieve the above object, the first feature of the present invention is that a high-temperature evaporator and a low-temperature absorber are composed of a group of vertical tubes, and the inside of the tube is a high-temperature evaporator and the outside of the tube is a low-temperature absorber. The refrigerant liquid to be supplied is caused to flow from a refrigerant distribution chamber provided in the upper part of the tube group, and the refrigerant distribution chamber is divided into a plurality of regions.

そして好ましくは、この冷媒分配室の底面から垂直伝熱管群を上方に突き出し、各伝熱管の上端部に冷媒流入用の切り欠きを設けたものである。また、高温蒸発器と低温吸収器を構成する垂直管群を、外面または内面に同心円あるいはらせん状の溝を設けた伝熱管で構成したものである。   Preferably, the vertical heat transfer tube group protrudes upward from the bottom surface of the refrigerant distribution chamber, and a notch for inflow of refrigerant is provided at the upper end of each heat transfer tube. Further, the vertical tube group constituting the high temperature evaporator and the low temperature absorber is constituted by a heat transfer tube provided with concentric or spiral grooves on the outer surface or the inner surface.

上記目的を達成するために、本発明の第2の特徴は、低温蒸発器,低温吸収器,高温蒸発器,高温吸収器を同一の容器で構成し、該容器内に分割壁を垂直に設け、片側に低温蒸発器,反対側に高温吸収器を設けるとともに、低温吸収器および前記高温蒸発器を複数の扁平管から構成し、この扁平管群を、前記分割壁の低温蒸発器側に、断面の長方向を垂直にして片側を前記低温蒸発器の方向に、反対側を前記高温吸収器の方向に向けて横方向に並べて設置し、各扁平管の前記低温蒸発器側の端面を閉じ、反対側の端面は前記分割壁に接続し、分割壁には、各扁平管の接続部にこの扁平管の断面形状に対応した開口部を設けることによって、前記扁平管群の内部空間を該分割壁の高温吸収器側に開口したことにある。   In order to achieve the above object, the second feature of the present invention is that a low-temperature evaporator, a low-temperature absorber, a high-temperature evaporator, and a high-temperature absorber are configured in the same container, and a dividing wall is provided vertically in the container. In addition to providing a low temperature evaporator on one side and a high temperature absorber on the opposite side, the low temperature absorber and the high temperature evaporator are composed of a plurality of flat tubes, and this flat tube group is arranged on the low temperature evaporator side of the dividing wall. Set the side of the cross-section perpendicular to the direction of the low-temperature evaporator and the other side in the direction of the high-temperature absorber, and close the end face on the low-temperature evaporator side of each flat tube. The opposite end face is connected to the dividing wall, and the dividing wall is provided with an opening corresponding to the cross-sectional shape of the flat tube at the connecting portion of each flat tube, thereby reducing the internal space of the flat tube group. It is in opening to the high temperature absorber side of the dividing wall.

そして好ましくは、この扁平管群の上部に、底部が長辺に垂直な仕切りによって分割された滴下トレーを設け、この滴下トレーの底部には各扁平管の位置に対応した溶液滴下孔を設けたものである。   Preferably, a dropping tray whose bottom is divided by a partition perpendicular to the long side is provided at the top of the flat tube group, and a solution dropping hole corresponding to the position of each flat tube is provided at the bottom of the dropping tray. Is.

一体型蒸発吸収器5を構成する、複数の伝熱管群上部から伝熱管内に冷媒液を供給する構成としたので、伝熱管内の二相流が圧力損失の大きいボイド流やスラグ流にならず、管内断面周囲に冷媒の流下液膜が形成され、その内側を冷媒蒸気が流れる環状流となる。従って、圧力損失が小さくなり、流れ方向の圧力分布と蒸発温度の変化が小さくなり、伝熱管全体が有効に働くことによって伝熱面積を小型化できる。   Since the refrigerant liquid is supplied into the heat transfer tube from the upper part of the plurality of heat transfer tube groups constituting the integrated evaporator 5, the two-phase flow in the heat transfer tube becomes a void flow or slag flow with a large pressure loss. First, a falling liquid film of the refrigerant is formed around the cross section in the tube, and an annular flow in which the refrigerant vapor flows inside thereof. Accordingly, the pressure loss is reduced, the pressure distribution in the flow direction and the change in the evaporation temperature are reduced, and the entire heat transfer tube works effectively, whereby the heat transfer area can be reduced.

また、扁平伝熱管を、断面の長い方向が垂直となるように、両端を水平方向に向け、低温蒸発器側の端面を封止して管外面を低温吸収器とし、高温吸収器側の端面を隔壁の高温吸収器側に開放して管内面を高温蒸発器としている。従って、低温蒸発器から低温吸収器への蒸気の流れ、高温蒸発器から高温吸収器への蒸気を、いずれも方向を変えることなく流動させることが可能となっている。その結果、流れの圧力損失によるエネルギー損失が小さくなる。   Also, the flat heat transfer tube is oriented so that the long direction of the cross section is vertical, both ends are horizontal, the end surface on the low-temperature evaporator side is sealed, and the outer surface of the tube is used as a low-temperature absorber, and the end surface on the high-temperature absorber side Is opened to the high-temperature absorber side of the partition wall to make the inner surface of the pipe a high-temperature evaporator. Therefore, it is possible to flow the steam from the low temperature evaporator to the low temperature absorber and the steam from the high temperature evaporator to the high temperature absorber without changing the direction. As a result, energy loss due to flow pressure loss is reduced.

以下、本発明の一実施例を、図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に関わる2段吸収冷凍機の系統図である。2段吸収冷凍機は、高温再生器1,低温再生器2,凝縮器3,高温吸収器4,高温蒸発器と低温吸収器が一体化した一体型蒸発吸収器5,低温蒸発器6,溶液熱交換器71,72,73,冷媒ポンプ51,希薄溶液ポンプ61,溶液ポンプ43,52,濃溶液ポンプ21などを備えている。   FIG. 1 is a system diagram of a two-stage absorption refrigerator according to the present invention. The two-stage absorption refrigerator is composed of a high-temperature regenerator 1, a low-temperature regenerator 2, a condenser 3, a high-temperature absorber 4, a high-temperature evaporator and a low-temperature absorber integrated with each other, a low-temperature evaporator 6, a solution Heat exchangers 71, 72, 73, a refrigerant pump 51, a dilute solution pump 61, solution pumps 43, 52, a concentrated solution pump 21, and the like are provided.

より詳しくは、高温再生器1の上部と低温再生器2とが蒸気配管11を介して接続されている。低温再生器2と凝縮器3とは同一の容器で構成されており、低温再生器側の上部には溶液滴下装置25が、内部には伝熱管22が配置され、伝熱管22の一方端側は絞り23を介して凝縮器3に連通し他方端側は蒸気配管11に接続されている。凝縮器3の内部には伝熱管31が配置され、凝縮器を構成する容器の下方は絞り32を有する配管にて一体型蒸発吸収器5の高温吸収器4側に接続されている。   More specifically, the upper part of the high temperature regenerator 1 and the low temperature regenerator 2 are connected via a steam pipe 11. The low-temperature regenerator 2 and the condenser 3 are composed of the same container, and a solution dropping device 25 is arranged at the upper part on the low-temperature regenerator side, and a heat transfer tube 22 is arranged inside, and one end side of the heat transfer tube 22 Is communicated with the condenser 3 through the throttle 23 and connected to the steam pipe 11 at the other end. A heat transfer tube 31 is disposed inside the condenser 3, and the lower part of the container constituting the condenser is connected to the high-temperature absorber 4 side of the integrated evaporation absorber 5 through a pipe having a throttle 32.

一体型蒸発吸収器5は複数の垂直な伝熱管53群を備えており、これらの伝熱管53の管外(図の左側)が低温吸収器として低温蒸発器6と連通し、管内は高温蒸発器として伝熱管下部の開口部を介して伝熱管53外(図の右側)で高温吸収器4に連通している。また、これらの空間は隔壁58によって分割されている。高温吸収器4,一体型蒸発吸収器5,低温蒸発器6は同一の容器100で構成されており、容器100の底部は各構成機器に対応して溶液タンク42,冷媒タンク55,溶液タンク54,希薄溶液タンク62に分割されている。   The integrated evaporator 5 includes a plurality of vertical heat transfer tubes 53. The outside of the heat transfer tubes 53 (the left side in the figure) communicates with the low temperature evaporator 6 as a low temperature absorber, and the inside of the tubes is heated at high temperature. As a heat exchanger, it communicates with the high-temperature absorber 4 outside the heat transfer tube 53 (on the right side in the figure) through an opening at the bottom of the heat transfer tube. Further, these spaces are divided by a partition wall 58. The high-temperature absorber 4, the integrated evaporation absorber 5, and the low-temperature evaporator 6 are configured by the same container 100, and the bottom of the container 100 corresponds to each component device, and is a solution tank 42, a refrigerant tank 55, and a solution tank 54. , The dilute solution tank 62 is divided.

高温再生器1および低温再生器2では希溶液が加熱濃縮されて濃溶液が発生する。高温再生器1の濃溶液は溶液熱交換器71を介して低温再生器2からの濃溶液と合流し、濃溶液ポンプ21と溶液熱交換器72を介して一部は高温吸収器4の溶液滴下装置45に導かれる。高温吸収器4の溶液タンク42に集められた溶液を一体型蒸発吸収器5に導く管路の途中には、溶液ポンプ43と溶液熱交換器73がそれぞれ配設されている。   In the high temperature regenerator 1 and the low temperature regenerator 2, the dilute solution is heated and concentrated to generate a concentrated solution. The concentrated solution in the high-temperature regenerator 1 merges with the concentrated solution from the low-temperature regenerator 2 through the solution heat exchanger 71, and a part of the solution in the high-temperature absorber 4 through the concentrated solution pump 21 and the solution heat exchanger 72. Guided to the dropping device 45. A solution pump 43 and a solution heat exchanger 73 are respectively provided in the middle of the pipes that guide the solution collected in the solution tank 42 of the high-temperature absorber 4 to the integrated evaporation absorber 5.

冷媒タンク55内に溜まった冷媒液を一体型蒸発吸収器5の管内側に供給するために、冷媒ポンプ51が冷媒タンク55の下方に設けられている。同様に、低温蒸発器6の下部の希薄溶液タンク62に溜まっている希薄溶液を低温蒸発器内に滴下するために、希薄溶液ポンプ61が低温蒸発器の下方に設けられている。高温吸収器4の下方には、溶液タンク42内に溜まった溶液を一体型蒸発吸収器5の管外側に供給するために溶液ポンプ43が、一体型蒸発吸収器5の下部の低温蒸発器側にある溶液タンク54の下方には、溶液を高温再生器1および低温再生器2に送る溶液ポンプ52がそれぞれ配置されている。   A refrigerant pump 51 is provided below the refrigerant tank 55 in order to supply the refrigerant liquid accumulated in the refrigerant tank 55 to the inside of the pipe of the integrated evaporator 5. Similarly, a dilute solution pump 61 is provided below the low temperature evaporator in order to drop the dilute solution stored in the dilute solution tank 62 below the low temperature evaporator 6 into the low temperature evaporator. Below the high temperature absorber 4, a solution pump 43 is provided to supply the solution accumulated in the solution tank 42 to the outside of the tube of the integrated evaporation absorber 5. A solution pump 52 for sending the solution to the high-temperature regenerator 1 and the low-temperature regenerator 2 is disposed below the solution tank 54.

なお、この実施例において、冷媒は水であり、吸収剤は臭化リチウム水溶液である。   In this embodiment, the refrigerant is water and the absorbent is an aqueous lithium bromide solution.

このように構成した2段吸収冷凍機の動作は次の通りである。高温再生器1の内部で図示していない入熱手段により溶液が加熱されて冷媒蒸気が発生する。この冷媒蒸気が蒸気配管11を介して低温再生器2の伝熱管22に導かれて、伝熱管22の内部で凝縮し、絞り23を経て凝縮器3に流入する。低温再生器2の内部では、高温再生器1で発生した蒸気の凝縮熱によって溶液が加熱され、ここでも冷媒蒸気が発生する。この冷媒蒸気は凝縮器の伝熱管31上で管内を流れる冷却水によって冷却されて冷媒液となり、低温再生器2の管内から流入した冷媒液と共に、絞り32を備えた配管を介して一体型蒸発吸収器5の隔壁58によって分割された高温吸収器4側すなわち冷媒タンク55に導かれる。   The operation of the two-stage absorption refrigerator configured as described above is as follows. The solution is heated by heat input means (not shown) inside the high-temperature regenerator 1 to generate refrigerant vapor. This refrigerant vapor is guided to the heat transfer tube 22 of the low-temperature regenerator 2 through the steam pipe 11, condensed inside the heat transfer tube 22, and flows into the condenser 3 through the throttle 23. Inside the low temperature regenerator 2, the solution is heated by the heat of condensation of the steam generated in the high temperature regenerator 1, and refrigerant vapor is also generated here. This refrigerant vapor is cooled by cooling water flowing in the condenser on the heat transfer pipe 31 of the condenser to become a refrigerant liquid, and together with the refrigerant liquid flowing in from the pipe of the low-temperature regenerator 2, integral evaporation is performed via a pipe provided with a throttle 32. It is guided to the high temperature absorber 4 side, that is, the refrigerant tank 55 divided by the partition wall 58 of the absorber 5.

冷媒タンク55の冷媒液は、冷媒ポンプ51によって一体型蒸発吸収器5の上部に導かれる。一体型蒸発吸収器5の上部には冷媒分配室56が設けられている。冷媒分配室56に供給された冷媒液は、冷媒分配室56底部側に垂直に配置された複数の伝熱管53群の各管内に流入して、管外の溶液から熱を奪って蒸発し、冷媒蒸気となる。この冷媒蒸気は伝熱管53群の下部から流出する。そして、伝熱管53群の伝熱管内と連通している高温吸収器4に流入する。   The refrigerant liquid in the refrigerant tank 55 is guided to the upper part of the integrated evaporation absorber 5 by the refrigerant pump 51. A refrigerant distribution chamber 56 is provided in the upper part of the integrated evaporation absorber 5. The refrigerant liquid supplied to the refrigerant distribution chamber 56 flows into the respective tubes of the plurality of heat transfer tubes 53 arranged vertically on the bottom side of the refrigerant distribution chamber 56, evaporates by taking heat from the solution outside the tubes, It becomes refrigerant vapor. This refrigerant vapor flows out from the lower part of the heat transfer tube 53 group. And it flows in into the high temperature absorber 4 which is connected with the inside of the heat exchanger tube of the heat exchanger tube 53 group.

高温吸収器4では、高温再生器1及び低温再生器2で加熱濃縮された濃溶液が、濃溶液ポンプ21によって溶液熱交換器71,72を介して溶液滴下装置45に供給され、そこから伝熱管41群の表面に滴下される。各伝熱管41の管内には冷却水が通水されており、伝熱管41群表面に供給された溶液はこの冷却水に冷却されながら、一体型蒸発吸収器5の伝熱管内から供給された冷媒蒸気を吸収する。この伝熱管41は、高温吸収器を出て凝縮器3内の伝熱管31に接続され、冷却水は凝縮器3を経て装置外に出される。高温吸収器4で冷媒蒸気を吸収して濃度を下げた溶液は、溶液ポンプ43,溶液熱交換器73を通って一体型蒸発吸収器5の低温吸収器を構成する部分(後述する溶液分配室57)に送られる。   In the high temperature absorber 4, the concentrated solution heated and concentrated in the high temperature regenerator 1 and the low temperature regenerator 2 is supplied to the solution dropping device 45 by the concentrated solution pump 21 via the solution heat exchangers 71 and 72 and transmitted from there. It is dropped on the surface of the heat tube 41 group. Cooling water is passed through the tubes of the heat transfer tubes 41, and the solution supplied to the surface of the heat transfer tubes 41 is supplied from the heat transfer tubes of the integrated evaporator 5 while being cooled by the cooling water. Absorbs refrigerant vapor. The heat transfer tube 41 exits the high-temperature absorber and is connected to the heat transfer tube 31 in the condenser 3, and the cooling water is discharged out of the apparatus through the condenser 3. The solution whose concentration has been reduced by absorbing the refrigerant vapor in the high-temperature absorber 4 passes through the solution pump 43 and the solution heat exchanger 73 and constitutes a portion constituting the low-temperature absorber of the integrated evaporation absorber 5 (solution distribution chamber to be described later) 57).

一体型蒸発吸収器5の低温吸収器部分では、高温吸収器から送られた溶液が垂直に配置された伝熱管53群の外表面に供給され、伝熱管53内の冷媒の蒸発熱によって冷却されながら、低温蒸発器12で発生した冷媒蒸気を吸収する。冷媒を吸収してさらに濃度低下した溶液は、一体型蒸発吸収器5の低温蒸発器側下部に形成された溶液タンク54に流下する。   In the low temperature absorber portion of the integrated evaporator 5, the solution sent from the high temperature absorber is supplied to the outer surface of the heat transfer tubes 53 arranged vertically, and is cooled by the evaporation heat of the refrigerant in the heat transfer tubes 53. However, the refrigerant vapor generated in the low temperature evaporator 12 is absorbed. The solution further reduced in concentration by absorbing the refrigerant flows down to the solution tank 54 formed in the lower part of the integrated evaporator 5 on the low temperature evaporator side.

溶液タンク54に溜まった溶液は、溶液ポンプ52により溶液熱交換器73に送られて、高温吸収器4から一体型蒸発吸収器5の低温吸収器部分に送られる溶液と熱交換した後、溶液熱交換器72を経て2つに分岐し、一部は溶液熱交換器71を経て高温再生器1に、残りは低温再生器2の溶液滴下装置25に送られる。   The solution accumulated in the solution tank 54 is sent to the solution heat exchanger 73 by the solution pump 52 and exchanges heat with the solution sent from the high temperature absorber 4 to the low temperature absorber portion of the integrated evaporation absorber 5, and then the solution It branches into two via the heat exchanger 72, and a part is sent to the high temperature regenerator 1 via the solution heat exchanger 71, and the rest is sent to the solution dropping device 25 of the low temperature regenerator 2.

低温蒸発器6内には、内部を冷水あるいはブラインが流れる伝熱管63が配置されている。一体型蒸発吸収器5の高温蒸発器側に設けられた冷媒タンク55の下方に設けられた冷媒ポンプ51が冷媒分配室56へ冷媒を送る配管の途中から、低温蒸発器6の下部に設けた希薄溶液タンク62へ冷媒を送る配管59が分岐している。この分岐した配管59の先端部は、希薄溶液タンク62の液相部である底面に開口している。この配管を経て、冷媒タンク55から希薄溶液タンク62へ冷媒が送られる。この配管59内を流れる冷媒の流量は、配管59の途中に設けられた制御弁59aで制御する。   Inside the low-temperature evaporator 6, a heat transfer tube 63 through which cold water or brine flows is arranged. The refrigerant pump 51 provided below the refrigerant tank 55 provided on the high-temperature evaporator side of the integrated evaporator 5 is provided in the lower part of the low-temperature evaporator 6 from the middle of the pipe for sending the refrigerant to the refrigerant distribution chamber 56. A pipe 59 for feeding the refrigerant to the dilute solution tank 62 is branched. The leading end of the branched pipe 59 is open to the bottom surface, which is the liquid phase part of the dilute solution tank 62. The refrigerant is sent from the refrigerant tank 55 to the diluted solution tank 62 through this pipe. The flow rate of the refrigerant flowing in the pipe 59 is controlled by a control valve 59 a provided in the middle of the pipe 59.

低温蒸発器6の下部に設けられた希薄溶液タンク62には希薄溶液が溜められており、希薄溶液ポンプ61により濃度検出手段64を経て、低温蒸発器6の上部に配置した滴下装置65に送られる。そして、滴下装置65から伝熱管63上に滴下され、希薄溶液中の冷媒すなわち水が伝熱管63の表面で蒸発し、蒸発潜熱により伝熱管63の内部を流れる冷水あるいはブラインを冷却する。   A dilute solution tank 62 provided at the lower part of the low-temperature evaporator 6 stores a dilute solution. The dilute solution pump 61 passes the concentration detection means 64 and sends it to a dropping device 65 disposed at the upper part of the low-temperature evaporator 6. It is done. Then, the refrigerant, that is, water in the dilute solution evaporates on the surface of the heat transfer tube 63 from the dropping device 65 onto the heat transfer tube 63, and cool water or brine flowing through the heat transfer tube 63 is cooled by latent heat of evaporation.

なお、本実施例の2段吸収冷凍機における各種制御動作は、前述の特許文献2に開示されている内容と略同じである。   Various control operations in the two-stage absorption refrigerator of the present embodiment are substantially the same as the contents disclosed in Patent Document 2 described above.

次に、図2および図3を用いて、一体型蒸発吸収器5における作動流体すなわち冷媒液,溶液および冷媒蒸気の流れについて説明する。図2は冷媒分配室56の詳細図、図3は一体型蒸発吸収器における伝熱管周囲の作動流体の流れを表す図である。なお、図3では伝熱管1本を取り出して説明する。   Next, the flow of the working fluid, that is, the refrigerant liquid, the solution, and the refrigerant vapor in the integrated evaporation absorber 5 will be described with reference to FIGS. 2 and 3. FIG. 2 is a detailed view of the refrigerant distribution chamber 56, and FIG. 3 is a view showing the flow of the working fluid around the heat transfer tube in the integrated evaporation absorber. In FIG. 3, one heat transfer tube is taken out for explanation.

図2に示すように冷媒分配室56は、箱型の容器内を仕切り板56bで複数の領域に仕切り、各領域毎に冷媒入口56aが設置されている。また各領域の底面には複数の伝熱管53群を貫通させて接続する穴を開口させ、この穴に、伝熱管の上端が冷媒分配室の底面よりも高くなるように伝熱管を貫通させて接続している。また各伝熱管の上端には、切り欠き53bが設けられている。   As shown in FIG. 2, the refrigerant distribution chamber 56 divides a box-shaped container into a plurality of regions by a partition plate 56b, and a refrigerant inlet 56a is provided for each region. In addition, a hole for penetrating and connecting the plurality of heat transfer tube 53 groups is opened on the bottom surface of each region, and the heat transfer tube is passed through this hole so that the upper end of the heat transfer tube is higher than the bottom surface of the refrigerant distribution chamber. Connected. A notch 53b is provided at the upper end of each heat transfer tube.

冷媒ポンプ51によって冷媒分配室56に送られた冷媒液は、冷媒分配室56の仕切り板51bで仕切られた領域の数に分配されて、各領域の側面に設けられた冷媒入口56aから各領域の内部に流入する。そして、図3に示すように冷媒分配室内で液面を形成し、伝熱管53の上端に設けられた切り欠き53bからオーバーフローして伝熱管53内に流入する。   The refrigerant liquid sent to the refrigerant distribution chamber 56 by the refrigerant pump 51 is distributed to the number of areas partitioned by the partition plate 51b of the refrigerant distribution chamber 56, and each area from the refrigerant inlet 56a provided on the side surface of each area. Flows into the interior. Then, as shown in FIG. 3, a liquid surface is formed in the refrigerant distribution chamber, and overflows from a notch 53 b provided at the upper end of the heat transfer tube 53 and flows into the heat transfer tube 53.

隔壁58の一部がコの字形状に形成され、そのコの字の上部側隔壁(低温吸収底板58b)に複数の垂直な伝熱管53の下端部側が取り付け支持され、コの字の底部側(高温蒸発底板58a)に冷媒液を吐出するように構成してある。   A part of the partition wall 58 is formed in a U shape, and the lower end side of the plurality of vertical heat transfer tubes 53 is attached to and supported by the U side upper partition wall (low temperature absorption bottom plate 58b), and the bottom side of the U shape The refrigerant liquid is discharged to the (high temperature evaporation bottom plate 58a).

切り欠き53bから伝熱管53内に流入した冷媒液111は、図3に示すように伝熱管53の内面に流下液膜110を形成し、伝熱管63外の溶液の流下液膜130から熱を奪ってその一部が蒸発して冷媒蒸気となり、管内の流下液膜の内部を流下する。伝熱管53の出口では、冷媒蒸気122,123は高温吸収器4に流入し、伝熱管出口までに蒸発せずに流下した冷媒液112は、隔壁58の一部である高温蒸発底板58a上に流下して、さらに図1に示した冷媒タンク55に流入する。なお高温蒸発底板58aは、冷媒タンク55に流下する方向に若干傾斜して設置されている。   As shown in FIG. 3, the refrigerant liquid 111 flowing into the heat transfer tube 53 from the notch 53 b forms a falling liquid film 110 on the inner surface of the heat transfer tube 53, and heat is supplied from the falling liquid film 130 of the solution outside the heat transfer tube 63. Part of it is evaporated to become refrigerant vapor, which flows down the falling liquid film in the pipe. At the outlet of the heat transfer tube 53, the refrigerant vapors 122 and 123 flow into the high temperature absorber 4, and the refrigerant liquid 112 that has flowed down without evaporating up to the outlet of the heat transfer tube flows onto the high temperature evaporation bottom plate 58 a that is a part of the partition wall 58. It flows down and further flows into the refrigerant tank 55 shown in FIG. The high temperature evaporation bottom plate 58a is installed with a slight inclination in the direction of flowing down to the refrigerant tank 55.

冷媒タンク55に流入した冷媒液は、凝縮器3から流入した冷媒液と共に、冷媒ポンプ51によって再び冷媒分配室56に送られる。   The refrigerant liquid flowing into the refrigerant tank 55 is sent again to the refrigerant distribution chamber 56 by the refrigerant pump 51 together with the refrigerant liquid flowing in from the condenser 3.

一方、図1の溶液ポンプ43によって一体型蒸発吸収器5の低温吸収器部に送られた溶液は、図3に示した溶液分配室57に導かれる。図には示さないが溶液分配室57は、冷媒分配室56と同様に複数の領域に仕切られている。溶液分配室57には垂直伝熱管群が貫通しており、底板に設けられた伝熱管53の貫通穴は伝熱管の外径よりも若干径の大きな円形となっている。溶液分配室57に導かれた溶液は、この貫通穴と伝熱管53の外面のすき間57aを通って伝熱管53の外表面に供給される。   On the other hand, the solution sent to the low-temperature absorber portion of the integrated evaporation absorber 5 by the solution pump 43 of FIG. 1 is guided to the solution distribution chamber 57 shown in FIG. Although not shown in the drawing, the solution distribution chamber 57 is partitioned into a plurality of regions in the same manner as the refrigerant distribution chamber 56. A vertical heat transfer tube group passes through the solution distribution chamber 57, and the through hole of the heat transfer tube 53 provided in the bottom plate is a circle having a diameter slightly larger than the outer diameter of the heat transfer tube. The solution guided to the solution distribution chamber 57 is supplied to the outer surface of the heat transfer tube 53 through the gap 57 a between the through hole and the outer surface of the heat transfer tube 53.

伝熱管53の外側に供給された溶液は、図3に示すように流下液膜130を形成して、伝熱管53内で蒸発する冷媒の蒸発熱によって冷却されながら、低温蒸発器6から流入した冷媒蒸気120,121を吸収する。そして、隔壁58の一部である低温吸収底板58bの上に一旦流下した後、溶液タンク54に流下する。   The solution supplied to the outside of the heat transfer tube 53 forms a falling liquid film 130 as shown in FIG. 3 and flows from the low temperature evaporator 6 while being cooled by the evaporation heat of the refrigerant evaporating in the heat transfer tube 53. The refrigerant vapors 120 and 121 are absorbed. Then, after flowing down on the low temperature absorption bottom plate 58 b which is a part of the partition wall 58, it flows down to the solution tank 54.

以上説明したように本実施例においては、一体型蒸発吸収器5を構成する、複数の伝熱管群上部から伝熱管内に冷媒液を供給する構成としたので、伝熱管内の二相流が圧力損失の大きいボイド流やスラグ流にならず、管内断面周囲に冷媒の流下液膜が形成され、その内側を冷媒蒸気が流れる環状流となる。従って、圧力損失が小さくなり、流れ方向の圧力分布と蒸発温度の変化が小さくなり、伝熱管全体が有効に働くことによって伝熱面積を小型化できる。   As described above, in the present embodiment, since the refrigerant liquid is supplied into the heat transfer tubes from the upper part of the plurality of heat transfer tube groups constituting the integrated evaporator 5, the two-phase flow in the heat transfer tubes is generated. Instead of a void flow or slag flow with a large pressure loss, a falling liquid film of the refrigerant is formed around the cross section in the tube, and an annular flow in which the refrigerant vapor flows inside is formed. Accordingly, the pressure loss is reduced, the pressure distribution in the flow direction and the change in the evaporation temperature are reduced, and the entire heat transfer tube works effectively, whereby the heat transfer area can be reduced.

また、このとき伝熱管内の圧力及び蒸発温度の分布は伝熱管の上部から下部に向かって徐々に低下する傾向となり、管外を流下する溶液の濃度及び平衡温度もまた、上部から下部に向かって冷媒蒸気を吸収することによって徐々に低下する。従って、伝熱管全長にわたって熱交換温度差を確保して、管内の冷媒蒸発による冷却能力と伝熱管全体の熱交換面積を、管外での冷媒吸収に有効に活用することができる。   At this time, the pressure and evaporation temperature distribution in the heat transfer tube tends to gradually decrease from the top to the bottom of the heat transfer tube, and the concentration and equilibrium temperature of the solution flowing outside the tube also move from the top to the bottom. It gradually decreases by absorbing the refrigerant vapor. Therefore, a heat exchange temperature difference can be ensured over the entire length of the heat transfer tube, and the cooling capacity by the refrigerant evaporation in the tube and the heat exchange area of the entire heat transfer tube can be effectively utilized for refrigerant absorption outside the tube.

また本実施例においては、冷媒分配室56に仕切り板56bを設けて複数の領域に分割し、各領域に予め冷媒液を分配して供給しているので、2段吸収冷凍機本体が傾斜した場合においても、管群全体への冷媒の分配状況の悪化が防止できる。   Further, in this embodiment, the partition plate 56b is provided in the refrigerant distribution chamber 56 and divided into a plurality of areas, and the refrigerant liquid is distributed and supplied in advance to each area, so that the two-stage absorption refrigerator main body is inclined. Even in this case, it is possible to prevent deterioration of the refrigerant distribution state to the entire tube group.

また本実施例においては、冷媒分配室56の底面から各伝熱管53の上端を突き出して、冷媒分配室内の冷媒がオーバーフローによって管内に流入するようにしたので、冷媒の流れが冷媒入口56aの近傍の伝熱管に偏らず、各伝熱管に良好に分配される。   Further, in the present embodiment, the upper end of each heat transfer tube 53 protrudes from the bottom surface of the refrigerant distribution chamber 56 so that the refrigerant in the refrigerant distribution chamber flows into the tube by overflow, so that the refrigerant flow is in the vicinity of the refrigerant inlet 56a. It is distributed well to each heat transfer tube without being biased to the heat transfer tube.

さらに本実施例においては、垂直の伝熱管53群を構成する各伝熱管の上端部に冷媒流入用の切り欠き53bを設けたので、切り欠き53bの数や幅を適切に設けることによって伝熱管内に流入する冷媒液の流量を設定できる。また、この切り欠き53bによって、冷凍機本体の設置時に若干の傾斜が生じても、各領域内における伝熱管毎の冷媒の分配を良好に維持することができる。   Furthermore, in the present embodiment, the notch 53b for refrigerant inflow is provided at the upper end portion of each heat transfer tube constituting the vertical heat transfer tube 53 group, and therefore heat transfer is performed by appropriately providing the number and width of the notches 53b. The flow rate of the refrigerant liquid flowing into the pipe can be set. Moreover, even if a slight inclination occurs during the installation of the refrigerator body, the distribution of the refrigerant for each heat transfer tube in each region can be maintained satisfactorily by the notch 53b.

本実施例では、垂直の伝熱管53群を構成している各伝熱管の内面に、周方向またはらせん状の溝または突起を設けても良い。この場合は伝熱管内の冷媒液の濡れ性向上と伝熱面拡大の効果によって伝熱管が有効に作用し、一体型蒸発吸収器5を小型化できる利点がある。また同様に、伝熱管53外面に周方向またはらせん状の溝もしくは突起を設けても良い。この場合は伝熱管53外の溶液の濡れ性向上と伝熱面拡大の効果によって伝熱管
53が有効に作用し、一体型蒸発吸収器5を小型化できる利点がある。
In the present embodiment, circumferential or spiral grooves or protrusions may be provided on the inner surface of each heat transfer tube constituting the vertical heat transfer tube 53 group. In this case, the heat transfer tube works effectively by the effect of improving the wettability of the refrigerant liquid in the heat transfer tube and the expansion of the heat transfer surface, and there is an advantage that the integrated evaporation absorber 5 can be downsized. Similarly, circumferential or spiral grooves or protrusions may be provided on the outer surface of the heat transfer tube 53. In this case, there is an advantage that the integral evaporator 5 can be miniaturized because the heat transfer tube 53 acts effectively due to the effect of improving the wettability of the solution outside the heat transfer tube 53 and the effect of expanding the heat transfer surface.

次に、本発明の他の実施例について図面を用いて説明する。本実施例では、2段吸収冷凍機全体の概略構成およびサイクルの動作については第1の実施例と同一であり、一体型蒸発吸収器5の構成のみが異なるため、この部分について詳細に説明する。   Next, another embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the overall configuration and cycle operation of the entire two-stage absorption refrigerator are the same as those in the first embodiment, and only the configuration of the integrated evaporation absorber 5 is different. Therefore, this part will be described in detail. .

図4は本実施例に関わる2段吸収冷凍機のサイクル系統図である。図1の実施例と異なる点は一体型蒸発吸収器5の部分である。一体型蒸発吸収器5は複数の扁平伝熱管80と、各扁平伝熱管80の管内に冷媒を分配する冷媒分配ダクト81と、各扁平伝熱管80の内部最上部に設けられた冷媒分配ダクト81から流入した冷媒を扁平伝熱管80の軸方向(扁平方向)に分配して内面に供給する冷媒分配管82とを設けた構成としたものである。すなわち冷媒分配管82は扁平伝熱管80の数だけ設けてある。なお図3に示す溶液分配室57に代えて、高温吸収器4の溶液滴下装置45と同様の構造を持つ溶液滴下装置
85が扁平伝熱管80の外側に溶液を供給するように設置されている。扁平伝熱管80は、図4に示すようにその大部分が隔壁58(分割壁)の低温蒸発器側に位置するように設置されている。
FIG. 4 is a cycle system diagram of the two-stage absorption refrigerator according to the present embodiment. A different point from the embodiment of FIG. 1 is a part of the integrated evaporation absorber 5. The integrated evaporator 5 includes a plurality of flat heat transfer tubes 80, a refrigerant distribution duct 81 that distributes the refrigerant into the tubes of each flat heat transfer tube 80, and a refrigerant distribution duct 81 provided at the uppermost part inside each flat heat transfer tube 80. A refrigerant distribution pipe 82 is provided that distributes the refrigerant flowing in from the axial direction (flat direction) of the flat heat transfer tube 80 and supplies it to the inner surface. That is, the refrigerant distribution pipes 82 are provided as many as the flat heat transfer tubes 80. In place of the solution distribution chamber 57 shown in FIG. 3, a solution dropping device 85 having the same structure as the solution dropping device 45 of the high-temperature absorber 4 is installed so as to supply the solution to the outside of the flat heat transfer tube 80. . As shown in FIG. 4, the flat heat transfer tube 80 is installed so that most of the flat heat transfer tube 80 is located on the low-temperature evaporator side of the partition wall 58 (partition wall).

さらに、一体型蒸発吸収器5の詳しい構造について、図5および図6を用いて説明する。図5は本実施例における一体型蒸発吸収器の冷媒分配部分の詳細図、図6は同じく熱交換部分の詳細を図4に垂直な断面で表した図である。図5に示すように、冷媒分配ダクト81の側面に、冷媒分配ダクト81の軸方向に沿って冷媒分配管82が複数個並べて接続されている。この冷媒分配管82は図6に示すように扁平伝熱管80内の最上部に挿入して設置され、その本数は扁平伝熱管80の本数と同一である。それぞれの冷媒分配管82には、図6に示すように管軸方向から見て左右に複数の冷媒分配孔82aが設けてある。この冷媒分配孔82aは、図5に示すように冷媒分配管82の軸方向に複数個並べられて開口している。   Further, the detailed structure of the integrated evaporation absorber 5 will be described with reference to FIGS. FIG. 5 is a detailed view of the refrigerant distribution portion of the integrated evaporator according to this embodiment, and FIG. 6 is a view showing the details of the heat exchange portion in a cross section perpendicular to FIG. As shown in FIG. 5, a plurality of refrigerant distribution pipes 82 are arranged and connected to the side surface of the refrigerant distribution duct 81 along the axial direction of the refrigerant distribution duct 81. As shown in FIG. 6, the refrigerant distribution pipe 82 is inserted and installed at the top of the flat heat transfer tube 80, and the number thereof is the same as the number of flat heat transfer tubes 80. As shown in FIG. 6, each refrigerant distribution pipe 82 is provided with a plurality of refrigerant distribution holes 82a on the left and right as viewed from the tube axis direction. As shown in FIG. 5, a plurality of the refrigerant distribution holes 82 a are arranged and opened in the axial direction of the refrigerant distribution pipe 82.

複数の扁平伝熱管80は、図6に示すように、断面の長い方向を垂直に、管列が水平方向となるように並べて設置されている。設置方向は、扁平伝熱管80の一方の端部が低温蒸発器6に、反対側の端部が高温吸収器4に向けられており、高温吸収器側の端部付近で隔壁58に固定されている。隔壁58には、扁平伝熱管80の断面形状に基づいて扁平伝熱管を接続するための穴が設けられ、この穴に扁平伝熱管が挿入され、伝熱管周囲と隔壁58の穴の内側は、溶液や冷媒蒸気の漏洩を防ぐために封止されている。   As shown in FIG. 6, the plurality of flat heat transfer tubes 80 are arranged side by side so that the long direction of the cross section is vertical and the tube row is horizontal. The installation direction is such that one end of the flat heat transfer tube 80 is directed to the low-temperature evaporator 6 and the opposite end is directed to the high-temperature absorber 4, and is fixed to the partition wall 58 near the end on the high-temperature absorber side. ing. The partition wall 58 is provided with a hole for connecting the flat heat transfer tube based on the cross-sectional shape of the flat heat transfer tube 80, and the flat heat transfer tube is inserted into this hole, and the periphery of the heat transfer tube and the inside of the hole of the partition wall 58 are Sealed to prevent leakage of solution and refrigerant vapor.

各扁平伝熱管80の低温蒸発器6側の端面は封止され、高温吸収器4側の端面の全面又は下端部は開放されている。その結果、各扁平伝熱管の管外は低温蒸発器6と連通し、管内は高温吸収器4と連通するようになっている。   The end surface on the low-temperature evaporator 6 side of each flat heat transfer tube 80 is sealed, and the entire end surface or the lower end of the end surface on the high-temperature absorber 4 side is open. As a result, the outside of each flat heat transfer tube communicates with the low temperature evaporator 6, and the inside of the tube communicates with the high temperature absorber 4.

扁平伝熱管80の上部には溶液滴下装置85が設置されている。その上部には、高温吸収器4から溶液ポンプ43によって送られた溶液を、扁平伝熱管80の列方向に分配する溶液分配ダクト85aが設けられている。溶液滴下装置85の底部は、仕切り板85cによって扁平伝熱管80の列方向に複数の領域に分割されており、この各領域に対応して、溶液分配ダクト85aの側面に溶液分配孔85bが開口している。また溶液滴下装置85の底部には、各扁平伝熱管に対応した位置に溶液滴下孔85dが設けられている。   A solution dripping device 85 is installed on the top of the flat heat transfer tube 80. A solution distribution duct 85 a for distributing the solution sent from the high-temperature absorber 4 by the solution pump 43 in the row direction of the flat heat transfer tubes 80 is provided at the upper part. The bottom of the solution dropping device 85 is divided into a plurality of regions in the row direction of the flat heat transfer tubes 80 by the partition plate 85c, and a solution distribution hole 85b is opened on the side surface of the solution distribution duct 85a corresponding to each region. is doing. Moreover, 85 d of solution dripping holes are provided in the bottom part of the solution dripping apparatus 85 in the position corresponding to each flat heat exchanger tube.

次に本実施例の一体型蒸発吸収器5における溶液,冷媒液及び冷媒蒸気の流れについて説明する。冷媒ポンプ51によって一体型蒸発吸収器5に送られた冷媒液は、最初に冷媒分配ダクト81に流入し、冷媒分配管82に分配される。そして、それぞれの冷媒分配管82の軸方向に複数設けられた冷媒分配孔82aから、扁平伝熱管80の管内に供給される。   Next, the flow of the solution, the refrigerant liquid, and the refrigerant vapor in the integrated evaporation absorber 5 of the present embodiment will be described. The refrigerant liquid sent to the integrated evaporation absorber 5 by the refrigerant pump 51 first flows into the refrigerant distribution duct 81 and is distributed to the refrigerant distribution pipe 82. Then, a plurality of refrigerant distribution holes 82 a provided in the axial direction of the respective refrigerant distribution pipes 82 are supplied into the flat heat transfer pipe 80.

扁平伝熱管80に供給された冷媒液は、扁平伝熱管80の垂直な内壁の表面に流下液膜110を形成し、扁平伝熱管80外の溶液から熱を奪ってその一部が蒸発して冷媒蒸気となる。この扁平伝熱管80内で発生した冷媒蒸気は隔壁58側端面に設けた開放部から高温吸収器4に流入する。一方、蒸発しきれずに扁平伝熱管内の最下部まで流下した冷媒液は、隔壁58側端面に設けた開放部から冷媒タンク55に流下して、凝縮器3から流入した冷媒液と共に、冷媒ポンプ51によって再び冷媒分配ダクトに送られる。   The refrigerant liquid supplied to the flat heat transfer tube 80 forms a falling liquid film 110 on the surface of the vertical inner wall of the flat heat transfer tube 80, takes heat from the solution outside the flat heat transfer tube 80, and part of it evaporates. It becomes refrigerant vapor. The refrigerant vapor generated in the flat heat transfer tube 80 flows into the high-temperature absorber 4 from an open portion provided on the end face on the partition wall 58 side. On the other hand, the refrigerant liquid that has not completely evaporated and has flowed down to the lowermost part in the flat heat transfer tube flows into the refrigerant tank 55 from the opening provided at the end face on the partition wall 58 side, and together with the refrigerant liquid that has flowed in from the condenser 3 51 is sent again to the refrigerant distribution duct.

高温吸収器4から溶液ポンプ43によって一体型蒸発吸収器5に送られた溶液は、最初に溶液滴下装置85に送られ、溶液分配ダクト85aによって、仕切り板85cで仕切られた各領域に分配される。さらに、溶液滴下装置85の底部に設けられた溶液滴下孔85dから各扁平伝熱管80の外側上端部に滴下される。   The solution sent from the high-temperature absorber 4 to the integrated evaporation absorber 5 by the solution pump 43 is first sent to the solution dropping device 85 and distributed to each region partitioned by the partition plate 85c by the solution distribution duct 85a. The Further, it is dropped from the solution dropping hole 85 d provided at the bottom of the solution dropping device 85 to the outer upper end of each flat heat transfer tube 80.

扁平伝熱管80に滴下された溶液は、管表面に流下液膜130を形成し、管内で蒸発する冷媒の流下液膜110によって冷却されることにより、低温蒸発器で蒸発した冷媒蒸気を吸収しながら流下する。そして、底部の溶液タンク54に流下する。溶液タンク54に溜まった溶液は、溶液ポンプ52によって高温再生器1,低温再生器2に送られる。   The solution dropped on the flat heat transfer tube 80 forms a falling liquid film 130 on the surface of the tube, and is cooled by the flowing liquid film 110 of the refrigerant evaporating in the tube, thereby absorbing the refrigerant vapor evaporated in the low-temperature evaporator. While flowing down. Then, it flows down to the solution tank 54 at the bottom. The solution accumulated in the solution tank 54 is sent to the high temperature regenerator 1 and the low temperature regenerator 2 by the solution pump 52.

以上説明したように本実施例では、扁平伝熱管80を、断面の長い方向が垂直となるように、両端を水平方向に向け、低温蒸発器側の端面を封止して扁平伝熱管外面を低温吸収器とし、高温吸収器側の端面(隔壁58側端面)を開放して扁平伝熱管内を高温蒸発器としている。従って、低温蒸発器から低温吸収器への蒸気の流れ、高温蒸発器から高温吸収器への蒸気を、いずれも方向を変えることなく流動させることが可能となっている。その結果、流れの圧力損失によるエネルギー損失が小さくなる。   As described above, in this embodiment, the flat heat transfer tube 80 is oriented so that the long direction of the cross section is vertical, both ends are directed in the horizontal direction, the end surface on the low-temperature evaporator side is sealed, and the outer surface of the flat heat transfer tube is A low-temperature absorber is used, and the end surface on the high-temperature absorber side (end surface on the partition wall 58 side) is opened to make the inside of the flat heat transfer tube a high-temperature evaporator. Therefore, it is possible to flow the steam from the low temperature evaporator to the low temperature absorber and the steam from the high temperature evaporator to the high temperature absorber without changing the direction. As a result, energy loss due to flow pressure loss is reduced.

また、冷媒蒸気の流路断面積を大きく確保することにより蒸気流速を抑制することができ、冷媒蒸気中に飛散する冷媒液の分離が容易になる。その結果、冷媒の液滴の飛散に起因するサイクルの損失を低減でき、他の損失の要因となる、冷媒液の分離に伴う圧力損失も低減できる。   Further, by ensuring a large flow path cross-sectional area of the refrigerant vapor, the vapor flow velocity can be suppressed, and the separation of the refrigerant liquid scattered in the refrigerant vapor becomes easy. As a result, it is possible to reduce the cycle loss due to the scattering of the refrigerant droplets, and it is possible to reduce the pressure loss associated with the separation of the refrigerant liquid, which causes other losses.

以上の結果本実施例2においては実施例1に対して、さらに高効率な2段吸収冷凍機を得ることができる。   As a result, in the second embodiment, a more efficient two-stage absorption refrigerator can be obtained as compared with the first embodiment.

本発明の実施例1に関わる2段吸収冷凍機の系統図。The system diagram of the two-stage absorption refrigerator related to Example 1 of this invention. 図1の実施例における一体型蒸発吸収器の冷媒分配室の詳細図。FIG. 2 is a detailed view of a refrigerant distribution chamber of the integrated evaporation absorber in the embodiment of FIG. 1. 図1の実施例における一体型蒸発吸収器の熱交換部分の詳細図。FIG. 2 is a detailed view of a heat exchange part of the integrated evaporation absorber in the embodiment of FIG. 1. 本発明の実施例2に関わる2段吸収冷凍機の系統図。The system diagram of the two-stage absorption refrigerator related to Example 2 of this invention. 図4の実施例における一体型蒸発吸収器の冷媒分配部分の詳細図。FIG. 5 is a detailed view of a refrigerant distribution portion of the integrated evaporation absorber in the embodiment of FIG. 4. 図4の実施例における一体型蒸発吸収器の熱交換部分の詳細図。FIG. 5 is a detailed view of a heat exchange part of the integrated evaporation absorber in the embodiment of FIG. 4.

符号の説明Explanation of symbols

1 高温再生器
2 低温再生器
3 凝縮器
4 高温吸収器
5 一体型蒸発吸収器
6 低温蒸発器
11 蒸気配管
21 濃溶液ポンプ
22,31,41,53,63 伝熱管
23,32 絞り
43,52 溶液ポンプ
42,54 溶液タンク
45,85 溶液滴下装置
51 冷媒ポンプ
53b 切り欠き
55 冷媒タンク
56 冷媒分配室
56a 冷媒入口
56b,85c 仕切り板
57 溶液分配室
58 隔壁
58a 高温蒸発底板
58b 低温吸収底板
59 配管
59a 制御弁
61 希薄溶液ポンプ
62 希薄溶液タンク
64 濃度検出手段
65 滴下装置
71,72,73 溶液熱交換器
80 扁平伝熱管
81 冷媒分配ダクト
82 冷媒分配管
85a 溶液分配ダクト
85b 溶液分配孔
85d 溶液滴下孔
100 容器
110 流下液膜
111,112 冷媒液
120〜123 冷媒蒸気
130 流下液膜
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 High temperature absorber 5 Integrated evaporation absorber 6 Low temperature evaporator 11 Steam piping 21 Concentrated solution pump 22, 31, 41, 53, 63 Heat transfer tube 23, 32 Restriction 43, 52 Solution pumps 42, 54 Solution tanks 45, 85 Solution dripping device 51 Refrigerant pump 53b Notch 55 Refrigerant tank 56 Refrigerant distribution chamber 56a Refrigerant inlet 56b, 85c Partition plate 57 Solution distribution chamber 58 Partition wall 58a High temperature evaporation bottom plate 59b Low temperature absorption bottom plate 59 Piping 59a Control valve 61 Dilute solution pump 62 Dilute solution tank 64 Concentration detection means 65 Dripping device 71, 72, 73 Solution heat exchanger 80 Flat heat transfer tube 81 Refrigerant distribution duct 82 Refrigerant distribution pipe 85a Solution distribution duct 85b Solution distribution hole 85d Solution dripping Hole 100 Container 110 Flowing liquid film 111, 112 Refrigerant liquid 120-123 Refrigerant vapor 1 30 Falling liquid film

Claims (11)

低温蒸発器,低温吸収器,高温蒸発器,高温吸収器,再生器,凝縮器,溶液循環ポンプを有し、前記高温蒸発器の蒸発熱によって前記低温吸収器を冷却するように構成した2段吸収冷凍機において、
前記低温蒸発器,低温吸収器,高温蒸発器,高温吸収器を同一の容器で構成し、前記高温蒸発器を複数の垂直な伝熱管の管内として前記高温吸収器側に連通させ、前記低温吸収器を前記複数の垂直な伝熱管の管外として前記低温蒸発器に連通させ、前記複数の垂直な伝熱管の上部から各伝熱管内に冷媒液を供給するように構成したことを特徴とする2段吸収冷凍機。
A two-stage configuration comprising a low-temperature evaporator, a low-temperature absorber, a high-temperature evaporator, a high-temperature absorber, a regenerator, a condenser, and a solution circulation pump, wherein the low-temperature absorber is cooled by the evaporation heat of the high-temperature evaporator. In absorption refrigerator,
The low-temperature evaporator, the low-temperature absorber, the high-temperature evaporator, and the high-temperature absorber are configured in the same container, and the high-temperature evaporator is communicated with the high-temperature absorber side as a plurality of vertical heat transfer tubes. A heat exchanger is connected to the low-temperature evaporator outside the plurality of vertical heat transfer tubes, and a refrigerant liquid is supplied into the heat transfer tubes from above the plurality of vertical heat transfer tubes. Two-stage absorption refrigerator.
請求項1に記載の2段吸収冷凍機において、前記複数の垂直な伝熱管群の上部に冷媒分配室を設け、この冷媒分配室の底面に前記複数の伝熱管を貫通させて前記冷媒分配室内に開口したことを特徴とする2段吸収冷凍機。   2. The two-stage absorption refrigerator according to claim 1, wherein a refrigerant distribution chamber is provided in an upper portion of the plurality of vertical heat transfer tube groups, and the plurality of heat transfer tubes are passed through a bottom surface of the refrigerant distribution chamber. A two-stage absorption refrigerator characterized by having an opening. 請求項2に記載の2段吸収冷凍機において、前記冷媒分配室の底面から前記複数の伝熱管を上方に突き出し、各伝熱管の上端部に冷媒流入用の切り欠きを設けたことを特徴とする2段吸収冷凍機。   The two-stage absorption refrigerator according to claim 2, wherein the plurality of heat transfer tubes protrude upward from a bottom surface of the refrigerant distribution chamber, and a notch for inflow of refrigerant is provided at an upper end portion of each heat transfer tube. Two-stage absorption refrigerator. 請求項に記載の2段吸収冷凍機において、前記複数の垂直な伝熱管群の上部に冷媒分配室を設け、該冷媒分配室は底部が複数の領域に分割されていることを特徴とする2段吸収冷凍機。 In the two-stage absorption refrigerating machine according to claim 1, the coolant distribution chamber provided at an upper portion of the plurality of vertical tube banks, the coolant distribution chamber and characterized in that the bottom portion is divided into regions of multiple Two-stage absorption refrigerator. 請求項1又は2に記載の2段吸収冷凍機において、前記高温蒸発器と低温吸収器を構成する複数の垂直な伝熱管は、その内面に周方向又はらせん状の溝もしくは突起を設けた伝熱管で構成したことを特徴とする2段吸収冷凍機。   The two-stage absorption refrigerator according to claim 1 or 2, wherein the plurality of vertical heat transfer tubes constituting the high-temperature evaporator and the low-temperature absorber are provided with a circumferential or spiral groove or protrusion on the inner surface thereof. A two-stage absorption refrigerator characterized by comprising a heat tube. 請求項3又は4に記載の2段吸収冷凍機において、前記高温蒸発器と低温吸収器を構成する複数の垂直な伝熱管は、その内面に周方向又はらせん状の溝もしくは突起を設けた伝熱管で構成したことを特徴とする2段吸収冷凍機。   5. The two-stage absorption refrigerator according to claim 3, wherein the plurality of vertical heat transfer tubes constituting the high-temperature evaporator and the low-temperature absorber are provided with circumferential or spiral grooves or protrusions on the inner surface thereof. A two-stage absorption refrigerator characterized by comprising a heat tube. 請求項1又は2に記載の2段吸収冷凍機において、前記高温蒸発器と低温吸収器を構成する複数の垂直な伝熱管は、外面に周方向又はらせん状の溝もしくは突起を設けた伝熱管で構成したことを特徴とする2段吸収冷凍機。   The two-stage absorption refrigerator according to claim 1 or 2, wherein the plurality of vertical heat transfer tubes constituting the high temperature evaporator and the low temperature absorber are provided with circumferential or spiral grooves or protrusions on an outer surface. The two-stage absorption refrigerator characterized by comprising. 請求項3又は4に記載の2段吸収冷凍機において、前記高温蒸発器と低温吸収器を構成する複数の垂直な伝熱管は、外面に周方向又はらせん状の溝もしくは突起を設けた伝熱管で構成したことを特徴とする2段吸収冷凍機。   5. The two-stage absorption refrigerator according to claim 3 or 4, wherein the plurality of vertical heat transfer tubes constituting the high temperature evaporator and the low temperature absorber are provided with circumferential or spiral grooves or protrusions on the outer surface. The two-stage absorption refrigerator characterized by comprising. 低温蒸発器,低温吸収器,高温蒸発器,高温吸収器,再生器,凝縮器,溶液循環ポンプを有し、前記高温蒸発器の蒸発熱によって前記低温吸収器を冷却するように構成した2段吸収冷凍機において、
前記低温蒸発器,低温吸収器,高温蒸発器,高温吸収器を同一の容器で構成し、前記高温蒸発器を複数の垂直な伝熱管の管内として前記高温吸収器側に連通させ、前記低温吸収器を前記複数の垂直な伝熱管の管外として前記低温蒸発器に連通させ、前記複数の垂直な伝熱管の上部に各伝熱管内に冷媒液を供給すると共に、前記各伝熱管の上部に希溶液を伝熱管外側に散水するように構成したことを特徴とする2段吸収冷凍機。
A two-stage configuration comprising a low-temperature evaporator, a low-temperature absorber, a high-temperature evaporator, a high-temperature absorber, a regenerator, a condenser, and a solution circulation pump, wherein the low-temperature absorber is cooled by the evaporation heat of the high-temperature evaporator. In absorption refrigerator,
The low-temperature evaporator, the low-temperature absorber, the high-temperature evaporator, and the high-temperature absorber are configured in the same container, and the high-temperature evaporator is communicated with the high-temperature absorber side as a plurality of vertical heat transfer tubes. A heat exchanger outside the tubes of the plurality of vertical heat transfer tubes and communicating with the low temperature evaporator, supplying a refrigerant liquid into the heat transfer tubes above the plurality of vertical heat transfer tubes, and at the top of the heat transfer tubes. A two-stage absorption refrigerator characterized in that the dilute solution is sprinkled on the outside of the heat transfer tube.
低温蒸発器,低温吸収器,高温蒸発器,高温吸収器,再生器,凝縮器,溶液循環ポンプを有し、前記高温蒸発器の蒸発熱によって前記低温吸収器を冷却するように構成した2段吸収冷凍機において、
前記低温蒸発器,低温吸収器,高温蒸発器,高温吸収器を同一の容器で構成し、前記容器内に隔壁を垂直に設け、片側に低温蒸発器,反対側に高温吸収器を設けると共に、前記低温吸収器および前記高温蒸発器は複数の扁平伝熱管から構成され、この扁平伝熱管群は、前記隔壁の低温蒸発器側に設けられ、断面の長い方向を垂直にして、片側を前記低温蒸発器の方向に、反対側を前記高温吸収器の方向に向けて水平方向に並べて設置し、各扁平伝熱管の前記低温蒸発器側の端面を閉じ、反対側の端面は前記隔壁に接続し、前記隔壁には各扁平伝熱管の接続部に断面形状に対応した開口部を設けて前記扁平伝熱管群の内部空間を前記隔壁の高温吸収器側に開口したことを特徴とする2段吸収冷凍機。
A two-stage configuration comprising a low-temperature evaporator, a low-temperature absorber, a high-temperature evaporator, a high-temperature absorber, a regenerator, a condenser, and a solution circulation pump, wherein the low-temperature absorber is cooled by the evaporation heat of the high-temperature evaporator. In absorption refrigerator,
The low-temperature evaporator, the low-temperature absorber, the high-temperature evaporator, and the high-temperature absorber are configured in the same container, the partition is vertically provided in the container, the low-temperature evaporator is provided on one side, and the high-temperature absorber is provided on the opposite side. The low-temperature absorber and the high-temperature evaporator are composed of a plurality of flat heat transfer tubes, and the flat heat transfer tube group is provided on the low-temperature evaporator side of the partition wall, with the long direction of the cross section being vertical, and one side is the low temperature In the direction of the evaporator, the opposite side is installed in the horizontal direction facing the direction of the high-temperature absorber, the end surface of each flat heat transfer tube on the low-temperature evaporator side is closed, and the opposite end surface is connected to the partition wall. The two-stage absorption is characterized in that the partition wall is provided with an opening corresponding to the cross-sectional shape in the connection portion of each flat heat transfer tube, and the internal space of the flat heat transfer tube group is opened to the high-temperature absorber side of the partition wall. refrigerator.
請求項10に記載の2段吸収冷凍機において、
前記扁平伝熱管の内側が前記高温蒸発器となり、その外側が低温吸収器となることを特徴とする2段吸収冷凍機。
The two-stage absorption refrigerator according to claim 10,
A two-stage absorption refrigerator characterized in that the inside of the flat heat transfer tube is the high-temperature evaporator and the outside is a low-temperature absorber.
JP2006274577A 2006-10-06 2006-10-06 2-stage absorption refrigerator Active JP4701147B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006274577A JP4701147B2 (en) 2006-10-06 2006-10-06 2-stage absorption refrigerator
DE102007034710.5A DE102007034710B4 (en) 2006-10-06 2007-07-25 Two-stage absorption cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274577A JP4701147B2 (en) 2006-10-06 2006-10-06 2-stage absorption refrigerator

Publications (3)

Publication Number Publication Date
JP2008095976A JP2008095976A (en) 2008-04-24
JP2008095976A5 JP2008095976A5 (en) 2009-03-19
JP4701147B2 true JP4701147B2 (en) 2011-06-15

Family

ID=39154795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274577A Active JP4701147B2 (en) 2006-10-06 2006-10-06 2-stage absorption refrigerator

Country Status (2)

Country Link
JP (1) JP4701147B2 (en)
DE (1) DE102007034710B4 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283509B2 (en) * 2009-12-03 2012-10-09 Uop Llc Thermal-separation process with absorption heat pump
WO2012114456A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Two-stage absorption refrigerating machine and method for manufacturing same
EP2762800A1 (en) * 2013-02-01 2014-08-06 Basf Se Absorption system for heating or cooling a carrier medium
CN106440475B (en) * 2016-11-19 2022-04-12 双良节能系统股份有限公司 Two-stage cascade single-effect lithium bromide absorption type refrigeration heat pump unit
KR102539454B1 (en) * 2021-06-08 2023-06-01 강주빈 Heat exchange apparatus for odor removing system
CN113405276B (en) * 2021-07-14 2022-07-05 重庆金康赛力斯新能源汽车设计院有限公司 Integrated cold source circulation generator and absorption type refrigerating device
CN114812003A (en) * 2022-02-16 2022-07-29 中船双瑞(洛阳)特种装备股份有限公司 Double-heat-source waste heat recovery type heat pump and heat exchange unit
US12092376B2 (en) * 2022-07-19 2024-09-17 King Fahd University Of Petroleum And Minerals Absorption chiller refrigerator system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028365U (en) * 1983-08-01 1985-02-26 三洋電機株式会社 absorption chiller evaporator
JPS62252896A (en) * 1986-04-25 1987-11-04 Hitachi Ltd Heat transfer fins
JPS6346388A (en) * 1987-06-19 1988-02-27 Hitachi Ltd Film evaporation type heat exchanger
JPH03186162A (en) * 1990-04-11 1991-08-14 Hitachi Ltd Absorption type refrigerating machine
JPH03247970A (en) * 1990-02-23 1991-11-06 Hitachi Ltd Reclaimer-condenser
JPH04190059A (en) * 1990-11-22 1992-07-08 Hitachi Chem Co Ltd Small-sized absorption type water heater/cooler
JPH05196315A (en) * 1992-01-21 1993-08-06 Yazaki Corp Absorption type heat pump
JPH06323678A (en) * 1993-05-13 1994-11-25 Sanyo Electric Co Ltd Absorptive refrigerator
JPH0755288A (en) * 1993-08-10 1995-03-03 Hitachi Zosen Corp Vapor generating absorber for absorption type heat source device
JPH07103673A (en) * 1993-10-05 1995-04-18 Toyo Eng Corp Liquid dispersion device arranged in heat transfer pipe
JPH07139844A (en) * 1993-11-12 1995-06-02 Hitachi Ltd Absorption freezer
JPH08110112A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
JPH0949698A (en) * 1995-08-09 1997-02-18 Ebara Corp Heat exchanger
JP2000266476A (en) * 1999-03-16 2000-09-29 Mitsubishi Heavy Ind Ltd Heat exchanger and absorption refrigerating machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103266A (en) * 1983-11-09 1985-06-07 三菱電機株式会社 Two step absorption type heat pump device
DE3503863A1 (en) * 1985-02-05 1986-08-07 Georg Prof.Dr. 8000 München Alefeld PLANT WITH A HEAT-RECEIVING AND HEAT-RELEASING PROCESS PART AND A HEAT SUPPLY PART CONTAINING AN ABSORBER DEVICE
JP3591356B2 (en) 1999-02-03 2004-11-17 株式会社日立製作所 Absorption refrigerator and method of manufacturing the same
JP2002081805A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Two-stage absorption refrigerator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028365U (en) * 1983-08-01 1985-02-26 三洋電機株式会社 absorption chiller evaporator
JPS62252896A (en) * 1986-04-25 1987-11-04 Hitachi Ltd Heat transfer fins
JPS6346388A (en) * 1987-06-19 1988-02-27 Hitachi Ltd Film evaporation type heat exchanger
JPH03247970A (en) * 1990-02-23 1991-11-06 Hitachi Ltd Reclaimer-condenser
JPH03186162A (en) * 1990-04-11 1991-08-14 Hitachi Ltd Absorption type refrigerating machine
JPH04190059A (en) * 1990-11-22 1992-07-08 Hitachi Chem Co Ltd Small-sized absorption type water heater/cooler
JPH05196315A (en) * 1992-01-21 1993-08-06 Yazaki Corp Absorption type heat pump
JPH06323678A (en) * 1993-05-13 1994-11-25 Sanyo Electric Co Ltd Absorptive refrigerator
JPH0755288A (en) * 1993-08-10 1995-03-03 Hitachi Zosen Corp Vapor generating absorber for absorption type heat source device
JPH07103673A (en) * 1993-10-05 1995-04-18 Toyo Eng Corp Liquid dispersion device arranged in heat transfer pipe
JPH07139844A (en) * 1993-11-12 1995-06-02 Hitachi Ltd Absorption freezer
JPH08110112A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
JPH0949698A (en) * 1995-08-09 1997-02-18 Ebara Corp Heat exchanger
JP2000266476A (en) * 1999-03-16 2000-09-29 Mitsubishi Heavy Ind Ltd Heat exchanger and absorption refrigerating machine

Also Published As

Publication number Publication date
JP2008095976A (en) 2008-04-24
DE102007034710A1 (en) 2008-04-10
DE102007034710B4 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4701147B2 (en) 2-stage absorption refrigerator
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
JP5547560B2 (en) Absorption heat pump
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
KR100346049B1 (en) Absorptive refrigerator and method for manufacturing the same
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2008202824A (en) Absorption type refrigerating device
JP6429550B2 (en) Absorption heat pump
JP4903743B2 (en) Absorption refrigerator
JP5055071B2 (en) Absorption refrigerator
JP4879125B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP6398621B2 (en) refrigerator
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
JP6805473B2 (en) Absorption chiller
JP2005291576A (en) Absorption refrigerator
KR19990029907A (en) Absorption Chiller
JP7080001B2 (en) Absorption chiller
JP2018080907A (en) Absorber and absorption heat pump
KR20100082496A (en) Low-temperature regenerator for absorption type refrigerator
JP4297822B2 (en) Absorption refrigerator
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
JP3684897B2 (en) Absorption refrigerator vertical absorber
JP2517421B2 (en) Absorption refrigerator
JP2014173810A (en) Air-cooling absorption type refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4701147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250