[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4799085B2 - Process for producing optically active N-substituted aminoacyl cyclic urea derivative - Google Patents

Process for producing optically active N-substituted aminoacyl cyclic urea derivative Download PDF

Info

Publication number
JP4799085B2
JP4799085B2 JP2005254614A JP2005254614A JP4799085B2 JP 4799085 B2 JP4799085 B2 JP 4799085B2 JP 2005254614 A JP2005254614 A JP 2005254614A JP 2005254614 A JP2005254614 A JP 2005254614A JP 4799085 B2 JP4799085 B2 JP 4799085B2
Authority
JP
Japan
Prior art keywords
group
substituent
formula
compound
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005254614A
Other languages
Japanese (ja)
Other versions
JP2007063231A (en
Inventor
孝洋 大石
義則 平井
宏明 川嵜
忠 諸島
伸夫 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005254614A priority Critical patent/JP4799085B2/en
Publication of JP2007063231A publication Critical patent/JP2007063231A/en
Application granted granted Critical
Publication of JP4799085B2 publication Critical patent/JP4799085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、強いアンジオテンシン変換酵素阻害作用を有することが知られている有用な医薬化合物である光学活性N置換アミノアシル環状尿素誘導体およびその塩の製造法に関する。   The present invention relates to a method for producing an optically active N-substituted aminoacyl cyclic urea derivative and a salt thereof, which are useful pharmaceutical compounds known to have a strong angiotensin converting enzyme inhibitory action.

光学活性N置換アミノアシル環状尿素誘導体の製造法としては、大別して以下の2種の方法が知られている。
1)前記式(1)で表される光学活性環状尿素カルボン酸誘導体と、光学活性N置換アミノ酸誘導体の活性エステルとの縮合反応による方法(特許文献1、特許文献2、非特許文献1、非特許文献2および非特許文献3)
2)前記式(1)で表される光学活性環状尿素カルボン酸誘導体と光学活性乳酸誘導体の縮合反応により得られた化合物に、光学活性アミノ酸誘導体を反応させる方法(特許文献1、特許文献3、特許文献4、非特許文献1、非特許文献2、非特許文献3および非特許文献4)
1)および2)のいずれの方法においても、化合物(1)の反応部位はアミドであるが故に、その窒素原子は求核性に乏しく、KOtBu等の強塩基を用いて活性化する必要がある。しかしながら、このような強塩基を用いると、化合物(1)の光学純度の低下を引き起こすことなく縮合反応を実施するには、−40oC以下という超低温で反応を行わねばならず、特殊設備が必要である。したがって、1)および2)のいずれの方法も工業生産上、実用的かつ経済的な方法とは言い難く、医薬化合物として有用な光学活性N置換アミノアシル環状尿素誘導体の実用的かつ経済的な製造法の開発が待ち望まれている。
特公昭60−58233 特開2000−270882 特公平6−45603 US4686295 Arzneim-Forsch/Drug Res.,42(2),457(1992) J.Med.Chem.,32,289(1989) Chem.Pharm.Bull.,39(6),1374(1991) Peptide Chemistry,637(1987)
As a method for producing an optically active N-substituted aminoacyl cyclic urea derivative, the following two methods are roughly known.
1) A method by a condensation reaction between an optically active cyclic urea carboxylic acid derivative represented by the above formula (1) and an active ester of an optically active N-substituted amino acid derivative (Patent Document 1, Patent Document 2, Non-Patent Document 1, Non-Patent Document 1, Patent Document 2 and Non-Patent Document 3)
2) A method of reacting an optically active amino acid derivative with a compound obtained by the condensation reaction of an optically active cyclic urea carboxylic acid derivative represented by the above formula (1) and an optically active lactic acid derivative (Patent Document 1, Patent Document 3, (Patent Document 4, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4)
In both methods 1) and 2), since the reaction site of compound (1) is an amide, its nitrogen atom has poor nucleophilicity and must be activated using a strong base such as KO t Bu. There is. However, when such a strong base is used, in order to carry out the condensation reaction without causing a decrease in the optical purity of the compound (1), the reaction must be carried out at an ultra-low temperature of −40 ° C. or less, and special equipment is required. is necessary. Therefore, neither of the methods 1) and 2) are practical and economical methods for industrial production, and a practical and economical method for producing optically active N-substituted aminoacyl cyclic urea derivatives useful as pharmaceutical compounds. The development of is awaited.
Shoko 60-58233 JP 2000-270882 A JP 6-45603 US4686295 Arzneim-Forsch / Drug Res. , 42 (2), 457 (1992) J. et al. Med. Chem. , 32, 289 (1989) Chem. Pharm. Bull. 39 (6), 1374 (1991) Peptide Chemistry, 637 (1987)

上記に鑑み、本発明の目的は、光学活性N置換アミノアシル環状尿素誘導体およびその塩を簡便かつ工業的に有利に製造できる実用的な方法を提供することにある。   In view of the above, an object of the present invention is to provide a practical method by which an optically active N-substituted aminoacyl cyclic urea derivative and a salt thereof can be produced conveniently and industrially advantageously.

本発明者らは上記に鑑み鋭意検討を行った結果、光学活性環状尿素カルボン酸誘導体をマグネシウム化合物と反応させることにより活性化させた後に、光学活性N置換アミノ酸Nカルボキシ無水物または光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体と反応させることにより、超低温を用いなくても化合物(1)の光学純度の低下を引き起こすことなく光学活性なNアミノアシル環状尿素誘導体が製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above, the present inventors have activated an optically active cyclic urea carboxylic acid derivative by reacting with a magnesium compound, and then optically active N-substituted amino acid N carboxyanhydride or optically active N-substituted. It has been found that by reacting with a reactive derivative of a carboxyl group of an amino acid derivative, an optically active N aminoacyl cyclic urea derivative can be produced without causing a decrease in the optical purity of the compound (1) without using an ultra-low temperature. It came to complete.

すなわち本発明は、 一般式(1);     That is, the present invention relates to the general formula (1);

Figure 0004799085
Figure 0004799085

(式中、*は不斉炭素原子を表し、nは1〜4の整数を表し、R1は置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基、置換基を有していてもよいC7〜C20のアラルキル基を表し、R2は水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表す)で表される光学活性環状尿素カルボン酸誘導体をマグネシウム化合物と反応させ、続いて、一般式(4); (In the formula, * represents an asymmetric carbon atom, n represents an integer of 1 to 4, and R 1 has an optionally substituted C 1 to C 20 alkyl group or substituent. An optionally substituted C 6 to C 20 aryl group, an optionally substituted C 7 to C 20 aralkyl group, and R 2 represents a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, substituted a silyl group which may have a group, and represented) an aralkyl group of the alkyl group or substituent optionally C 7 -C 20 optionally having which may have a substituent C 1 -C 20 The optically active cyclic urea carboxylic acid derivative represented is reacted with a magnesium compound, followed by general formula (4);

Figure 0004799085
Figure 0004799085

(式中、R3は水素原子、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表し、R4、R5は、それぞれ独立に置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基または置換基を有していてもよいC7〜C20のアラルキル基を表し、互いに異なっていても同じであってもよい。*は前記と同じ意味を表す)で表される光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体と反応させ、必要に応じてR2を除去することを特徴とする一般式(3); (In the formula, R 3 represents a hydrogen atom, an optionally substituted C 1 to C 20 alkyl group or an optionally substituted C 7 to C 20 aralkyl group, and R 4 , R 5 each independently has a C 1 to C 20 alkyl group which may have a substituent, a C 6 to C 20 aryl group which may have a substituent, or a substituent. Represents a C 7 to C 20 aralkyl group which may be different or the same, and * represents the same meaning as described above.) Reaction of carboxyl group of optically active N-substituted amino acid derivative A general formula (3) characterized in that R 2 is removed if necessary by reacting with a functional derivative;

Figure 0004799085
Figure 0004799085

(式中、*、n、R1、R3、R4、R5は前記と同じ意味を表す。R9は水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表す。)で表される光学活性N置換アミノアシル環状尿素誘導体およびその塩の製造法に関する。 (In the formula, *, n, R 1 , R 3 , R 4 and R 5 represent the same meaning as described above. R 9 has a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, or substituent. A silyl group that may be substituted, a C 1 to C 20 alkyl group that may have a substituent, or a C 7 to C 20 aralkyl group that may have a substituent. The present invention relates to a method for producing an active N-substituted aminoacyl cyclic urea derivative and a salt thereof.

本発明により、強いアンジオテンシン変換酵素阻害作用を有することが知られている有用な医薬化合物である光学活性N置換アミノアシル環状尿素誘導体およびその塩を、簡便かつ工業的に有利に製造できる。   According to the present invention, an optically active N-substituted aminoacyl cyclic urea derivative and a salt thereof, which are useful pharmaceutical compounds known to have a strong angiotensin converting enzyme inhibitory action, can be conveniently and industrially advantageously produced.

以下、本発明を詳細に説明する。なお、本発明において「光学活性」とは、不斉炭素原子を有する化合物において、その立体配置がSまたはRに少しでも偏っている場合を指し、また、不斉炭素原子を複数有する化合物においては、各々の不斉炭素原子の立体配置がSまたはRに少しでも偏っていることを指す。本発明において不斉炭素原子の立体配置はR配置でもS配置でもよいが、最終生成物の有用性から不斉炭素原子の立体配置はすべてS配置であることが好ましい。   Hereinafter, the present invention will be described in detail. In the present invention, “optical activity” refers to a compound having an asymmetric carbon atom, the configuration of which is slightly deviated from S or R, and in a compound having a plurality of asymmetric carbon atoms. Indicates that the configuration of each asymmetric carbon atom is slightly biased toward S or R. In the present invention, the configuration of the asymmetric carbon atom may be either the R configuration or the S configuration, but it is preferable that the configuration of all the asymmetric carbon atoms is the S configuration because of the usefulness of the final product.

また、「置換基を有していてもよい」とは、他の原子あるいは置換基によって置換されていてもよいことを示し、置換基としては例えば、水酸基、アルコキシ基、アミノ基、ハロゲン原子等が挙げられる。   Further, “may have a substituent” means that it may be substituted by another atom or substituent, and examples of the substituent include a hydroxyl group, an alkoxy group, an amino group, a halogen atom, and the like. Is mentioned.

まず、一般式(1);   First, general formula (1);

Figure 0004799085
Figure 0004799085

で表される光学活性環状尿素カルボン酸誘導体をマグネシウム化合物と反応させる方法について説明する。 A method of reacting the optically active cyclic urea carboxylic acid derivative represented by the formula (1) with a magnesium compound will be described.

前記式(1)で表される化合物(以下、化合物(1))において、R1は置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC7〜C20のアラルキル基または置換基を有していてもよいC620のアリール基を表す。置換基を有していてもよいC1〜C20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t−ブチル基、イソペンチル基、n−オクチル基、トリフルオロメチル基などが挙げられる。置換基を有していてもよいC7〜C20アラルキル基としては、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェネチル基、2−フェネチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。置換基を有していてもよいC620のアリール基としては例えばフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−ニトロフェニル基、3−ニトロフェニル基、4−ニトロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基などを挙げることができる。R1として好ましくはメチル基またはベンジル基であり、さらに好ましくはメチル基である。R2は水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC7〜C20のアラルキル基を表す。マグネシウムハライドとしては、マグネシウムフルオライド、マグネシウムクロライド、マグネシウムブロマイド、マグネシウムヨーダイドがあげられる。アルカリ金属としては、例えば、リチウム、ナトリウム、カリウムなどが挙げられ、またアルカリ土類金属としては、例えば、マグネシウム、カルシウム、バリウムなどが挙げられる。置換基を有していてもよいシリル基としては、例えば、トリメチルシリル基,トリエチルシリル基,フェニルジメチルシリル基などが挙げられる。置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC7〜C20アラルキル基としては、前記と同様なものが挙げられる。好ましくは除去の容易さなどから、水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、アルキル基、アラルキル基があげられ、さらに好ましくは水素原子、マグネシウムクロライド、マグネシウムブロマイド、ナトリウム、カリウム、マグネシウム、t−ブチル基またはベンジル基が好適に用いられる。とりわけ好ましくは水素原子、t−ブチル基またはベンジル基である。*は不斉炭素原子を表す。nは1〜4の整数を表し、好ましくはnが1である。 In the compound represented by the formula (1) (hereinafter referred to as compound (1)), R 1 may have a C 1 to C 20 alkyl group which may have a substituent, or may have a substituent. It may have an aralkyl group or a substituent of C 7 -C 20 aryl group optionally C 6 ~ 20. The alkyl group optionally C 1 -C 20 which may have a substituent, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, s- butyl, t- butyl group, An isopentyl group, n-octyl group, trifluoromethyl group and the like can be mentioned. Examples of the C 7 to C 20 aralkyl group which may have a substituent include a benzyl group, a 4-methylbenzyl group, a 3-methylbenzyl group, a 2-methylbenzyl group, a 4-methoxybenzyl group, and a 3-methoxybenzyl group. Group, 2-methoxybenzyl group, 1-phenethyl group, 2-phenethyl group, 1- (4-methylphenyl) ethyl group, 1- (4-methoxyphenyl) ethyl group, 3-phenylpropyl group, 2-phenylpropyl Groups and the like. As the aryl group include a phenyl group optionally C 6 ~ 20 may have a substituent group, 2-methoxyphenyl group, 3-methoxyphenyl group, a 4-methoxyphenyl group, 2-nitrophenyl group, 3-nitrophenyl Groups, 4-nitrophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group and the like. R 1 is preferably a methyl group or a benzyl group, and more preferably a methyl group. R 2 represents a hydrogen atom, a magnesium halide, an alkali metal, an alkaline earth metal, a silyl group which may have a substituent, a C 1 to C 20 alkyl group which may have a substituent, or a substituent. It represents a C 7 to C 20 aralkyl group which may be present. Examples of the magnesium halide include magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide. Examples of the alkali metal include lithium, sodium, and potassium, and examples of the alkaline earth metal include magnesium, calcium, and barium. Examples of the silyl group that may have a substituent include a trimethylsilyl group, a triethylsilyl group, and a phenyldimethylsilyl group. Examples of the C 1 to C 20 alkyl group which may have a substituent and the C 7 to C 20 aralkyl group which may have a substituent include the same as those described above. Preferably, from the viewpoint of easy removal, a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, alkyl group, aralkyl group, and more preferably a hydrogen atom, magnesium chloride, magnesium bromide, sodium, potassium, magnesium, A t-butyl group or a benzyl group is preferably used. Particularly preferred is a hydrogen atom, t-butyl group or benzyl group. * Represents an asymmetric carbon atom. n represents an integer of 1 to 4, and preferably n is 1.

化合物(1)は、前記特許文献1、非特許文献2などに記載の方法にて製造することができる。   Compound (1) can be produced by the methods described in Patent Document 1, Non-Patent Document 2, and the like.

反応は、適当な溶媒中、マグネシウム化合物と化合物(1)を混合するだけで行うことができる。マグネシウム化合物としては一般式(5);
6MgX (5)
または一般式(6);
The reaction can be carried out only by mixing the magnesium compound and compound (1) in a suitable solvent. As a magnesium compound, general formula (5);
R 6 MgX (5)
Or general formula (6);

Figure 0004799085
Figure 0004799085

で表される化合物があげられる。 The compound represented by these is mention | raise | lifted.

前記式(5)で表されるマグネシウム化合物(以下、化合物(5))において、R6は置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC2〜C20のアルケニル基、置換基を有していてもよいC6〜C20のアリール基または置換基を有していてもよいC7〜C20のアラルキル基を表す。置換基を有していてもよいC1〜C20のアルキル基、C6〜C20のアリール基および置換基を有していてもよいC7〜C20のアラルキル基としては前記と同様のものが挙げられる。置換基を有していてもよいC2〜C20のアルケニル基としては、ビニル基、プロペニル基、2−メチルプロペニル基、ブテニル基などが挙げられる。R6として好ましくは、メチル基、エチル基、イソプロピル基、n−ブチル基、t−ブチル基などが挙げられ、より好ましくはt−ブチル基である。Xはハロゲン原子を表し、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。好ましくは臭素原子または塩素原子である。化合物(5)は、市販のものを好適に使用することができる。 In the magnesium compound represented by the formula (5) (hereinafter referred to as compound (5)), R 6 may have a C 1 to C 20 alkyl group which may have a substituent, or may have a substituent. alkenyl group optionally C 2 -C 20, an aryl group or an optionally substituted C 7 -C 20 aralkyl group good C 6 -C 20 which may have a substituent. Alkyl group which may have a substituent C 1 -C 20, similar to the above as the aralkyl group C 6 -C 20 aryl group and may have a substituent group C 7 -C 20 Things. The alkenyl group optionally C 2 -C 20 which may have a substituent, a vinyl group, propenyl group, 2-methyl propenyl group, butenyl group. R 6 is preferably a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, and more preferably a t-butyl group. X represents a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A bromine atom or a chlorine atom is preferred. A commercially available compound (5) can be preferably used.

前記式(6)で表されるマグネシウム化合物(以下、化合物(6))において、R7およびR8はそれぞれ独立に、置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC1〜C20のアリール基、置換基を有していてもよいC7〜C20のアラルキル基または置換基を有していてもよいシリル基を表し、互いに異なっていても同じでもよい。置換基を有していてもよいC1〜C20のアルキル基、C6〜C20のアリール基、置換基を有していてもよいC7〜C20のアラルキル基および置換基を有していてもよいシリル基としては前記と同様のものが挙げられる。R7およびR8として好ましくはイソプロピル基である。Xは前述の通りである。また化合物(6)は、化合物(5)と相当するアミンとの反応により、容易に調製することができる。 In the magnesium compound represented by the formula (6) (hereinafter referred to as compound (6)), R 7 and R 8 are each independently a C 1 -C 20 alkyl group optionally substituted. aryl group optionally C 1 -C 20 which may have a group, an aralkyl group or an optionally substituted silyl group which may have a substituent C 7 -C 20, with each other They may be different or the same. A optionally substituted C 1 -C 20 alkyl group, aryl group C 6 -C 20, aralkyl group and substituent of the C 7 -C 20 which may have a substituent Examples of the silyl group that may be included include those described above. R 7 and R 8 are preferably an isopropyl group. X is as described above. Compound (6) can be easily prepared by reacting compound (5) with the corresponding amine.

使用する溶媒は一般的な有機溶媒であれば特に限定されるものではないが、例えば、ベンゼンあるいはトルエンなどの置換ベンゼン類、塩化メチレンなどのクロロアルカン類、テトラヒドロフランあるいはジエチルエーテルなどのエーテル類、ヘキサンあるいはペンタンなどのアルカン類、ジメチルホルムアミドやN−メチルピロリドンあるいはヘキサメチルリン酸トリアミドなどの非プロトン性極性溶媒が挙げられる。上記溶媒は単独で用いてもよく、2種類以上を併用してもよい。なお、2種以上を混合して用いる場合には、その混合割合は特に限定されるものではない。上記溶媒においては、エーテル類を使用することが好ましく、より好ましくはテトラヒドロフランである。   The solvent to be used is not particularly limited as long as it is a general organic solvent. For example, substituted benzenes such as benzene or toluene, chloroalkanes such as methylene chloride, ethers such as tetrahydrofuran or diethyl ether, hexane, and the like. Alternatively, an aprotic polar solvent such as alkanes such as pentane, dimethylformamide, N-methylpyrrolidone, or hexamethylphosphoric acid triamide may be used. The said solvent may be used independently and may use 2 or more types together. In addition, when mixing and using 2 or more types, the mixing ratio is not specifically limited. In the said solvent, it is preferable to use ethers, More preferably, it is tetrahydrofuran.

温度は特に限定されるものではなく、化合物(1)の光学純度の低下を抑制するためには40oC以下で活性化を行うことが好ましく、より好ましくは30oC以下、とりわけ好ましくは10℃以下である。反応温度の下限としては実施可能な温度であれば特に制限されないが、工業的に実施容易な点から好ましくは−40℃以上、より好ましくは−20℃以上である。 The temperature is not particularly limited, and activation is preferably performed at 40 ° C. or lower, more preferably 30 ° C. or lower, particularly preferably 10 in order to suppress a decrease in optical purity of the compound (1). It is below ℃. The lower limit of the reaction temperature is not particularly limited as long as it is a feasible temperature, but is preferably −40 ° C. or higher, more preferably −20 ° C. or higher, from the viewpoint of easy industrial implementation.

反応に要する時間は特に限定されないが、生産性の観点から、通常は30分〜20時間程度である。   The time required for the reaction is not particularly limited, but is usually about 30 minutes to 20 hours from the viewpoint of productivity.

マグネシウム化合物の使用量としては、特に限定されるものではないが、光学純度低下及び不純物生成の抑制のためには、化合物(1)に対して0.8〜1.5倍モル使用することが好ましく、より好ましくは0.9〜1.1倍モル、とりわけ好ましくは0.95〜1.0倍モルである。   The amount of the magnesium compound used is not particularly limited, but in order to reduce the optical purity and suppress the generation of impurities, it may be used in an amount of 0.8 to 1.5 moles relative to the compound (1). More preferably, it is 0.9 to 1.1 times mole, and particularly preferably 0.95 to 1.0 times mole.

反応の濃度は特に限定されるものではないが、化合物(1)の濃度が5〜80wt%が好ましく、さらに好ましくは10〜60wt%である。反応を円滑に進行させかつ、経済上の観点から、とりわけ好ましくは10〜30wt%である。   The concentration of the reaction is not particularly limited, but the concentration of the compound (1) is preferably 5 to 80 wt%, more preferably 10 to 60 wt%. From the viewpoint of allowing the reaction to proceed smoothly and economically, it is particularly preferably 10 to 30 wt%.

得られた活性化された化合物(1)を含む溶液は、溶媒を除去し固体として用いてもよいし、溶液のまま用いてもよい。操作の簡便さや安定性の観点から、溶液のまま次工程の反応に供することが好ましい。   The solution containing the obtained activated compound (1) may be used as a solid after removing the solvent, or may be used as a solution. From the viewpoint of ease of operation and stability, it is preferable to use the solution as it is for the next step.

次に、前述の方法で活性化された化合物(1)と一般式(4);   Next, the compound (1) activated by the above-mentioned method and the general formula (4);

Figure 0004799085
Figure 0004799085

で表される光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体を反応させて、必要に応じてR2を除去し、一般式(3); The in reactive derivative of the carboxyl group of the optically active N-substituted amino acid derivative represented by reacting the R 2 is removed as necessary, general formula (3);

Figure 0004799085
Figure 0004799085

で表される光学活性N置換アミノアシル環状尿素誘導体を得る方法について説明する。 A method for obtaining an optically active N-substituted aminoacyl cyclic urea derivative represented by the formula:

前記式(4)で表される光学活性N置換アミノ酸誘導体(以下、化合物(4))において、*は前記に同じである。R3は水素原子、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表す。置換基を有していてもよいC1〜C20のアルキル基および置換基を有していてもよいC7〜C20のアラルキル基としては、前記と同様なものが挙げられる。R3として好ましくはエチル基またはベンジル基であり、さらに好ましくはエチル基である。R4、R5は、それぞれ独立に置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基または置換基を有していてもよいC7〜C20のアラルキル基を表し、互いに異なっていても同じであってもよい。置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基または置換基を有していてもよいC7〜C20のアラルキル基としては、前記と同様なものが挙げられる。R4としては、イソブチル基、イソペンチル基、n−オクチル基、ベンジル基または2−フェネチル基が好ましく、特に好ましくは2−フェネチル基である。R5としてはメチル基またはエチル基が好ましく、さらに好ましくはメチル基である。また、化合物(4)は、例えば特開昭61−178954記載の方法により製造することができる。 In the optically active N-substituted amino acid derivative represented by the formula (4) (hereinafter referred to as compound (4)), * is the same as described above. R 3 represents a hydrogen atom, a C 1 to C 20 alkyl group which may have a substituent, or a C 7 to C 20 aralkyl group which may have a substituent. Examples of the C 1 to C 20 alkyl group which may have a substituent and the C 7 to C 20 aralkyl group which may have a substituent include the same as those described above. R 3 is preferably an ethyl group or a benzyl group, and more preferably an ethyl group. R 4 and R 5 each independently have a C 1 to C 20 alkyl group which may have a substituent, a C 6 to C 20 aryl group which may have a substituent, or a substituent. Represents an optionally substituted C 7 to C 20 aralkyl group, which may be the same or different. Which may have a substituent C 1 -C 20 alkyl, C 7 may have an aryl group or a substituted group substituents optionally C 6 -C 20 optionally having -C 20 Examples of the aralkyl group include the same groups as described above. R 4 is preferably an isobutyl group, an isopentyl group, an n-octyl group, a benzyl group or a 2-phenethyl group, particularly preferably a 2-phenethyl group. R 5 is preferably a methyl group or an ethyl group, more preferably a methyl group. Compound (4) can be produced, for example, by the method described in JP-A-61-178954.

化合物(4)におけるカルボキシル基の反応性誘導体としては、特に限定されず、カルボキシル基が活性化されていれば良い。例えば「ペプチド合成の基礎と実験」(泉屋信夫、加藤哲夫、青柳東彦、脇道典著、丸善株式会社)に記載のNカルボキシ無水物、酸ハロゲン化物、混合酸無水物、活性エステル、活性アミド、チオエステルなどが挙げられる。化合物(4)のカルボキシル基の反応性誘導体は、化合物(4)から調製してもよいし、化合物(4)以外の化合物から調製してもよい。また、市販品を用いることもできる。例えば、Nカルボキシ無水物は、一般式(2);   The reactive derivative of the carboxyl group in the compound (4) is not particularly limited as long as the carboxyl group is activated. For example, N carboxy anhydrides, acid halides, mixed acid anhydrides, active esters, active amides described in “Basics and Experiments of Peptide Synthesis” (Nobuo Izumiya, Tetsuo Kato, Toshihiko Aoyagi, Noriaki Wakido, Maruzen Co., Ltd.) And thioester. The reactive derivative of the carboxyl group of the compound (4) may be prepared from the compound (4) or may be prepared from a compound other than the compound (4). Commercial products can also be used. For example, N carboxyanhydride has the general formula (2);

Figure 0004799085
Figure 0004799085

で表される。前記式(2)で表される化合物(化合物(2))において、R3、R4、R5、*は前述の通りである。化合物(2)は例えばUS4686295記載の方法により製造することができる。 It is represented by In the compound represented by the formula (2) (compound (2)), R 3 , R 4 , R 5 and * are as described above. Compound (2) can be produced, for example, by the method described in US Pat. No. 4,686,295.

活性エステルとしては、1−ヒドロキシベンゾトリアゾールまたは1−ヒドロキシコハク酸イミドなどとの活性エステルがあげられる。これらは化合物(4)と1−ヒドロキシベンゾトリアゾールまたは1−ヒドロキシコハク酸イミドを、例えばジシクロヘキシルカルボジイミドのような縮合剤の存在下に反応させることにより調製することができる。   Examples of the active ester include active esters with 1-hydroxybenzotriazole or 1-hydroxysuccinimide. These can be prepared by reacting compound (4) with 1-hydroxybenzotriazole or 1-hydroxysuccinimide in the presence of a condensing agent such as dicyclohexylcarbodiimide.

化合物(4)のカルボキシル基の反応性誘導体としては、化合物(4)のNカルボキシ無水物および活性エステルが好ましい。Nカルボキシ無水物がより好ましく、化合物(2)としては一般式(8);   As the reactive derivative of the carboxyl group of compound (4), N-carboxy anhydride and active ester of compound (4) are preferred. N carboxy anhydride is more preferable, and the compound (2) is represented by the general formula (8);

Figure 0004799085
Figure 0004799085

で表される化合物がより好ましい。 The compound represented by these is more preferable.

次に、前記式(3)で表される光学活性N置換アミノアシル環状尿素誘導体(以下、化合物(3))について説明する。化合物(3)において、R1、R3、R4、R5、*、nは前述の通りである。R9は水素原子またはR2を表し、具体的には、水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基またはC7〜C20のアラルキル基を表し、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC7〜C20アラルキル基としては、前記と同様なものが挙げられる。化合物(3)としては一般式(9); Next, the optically active N-substituted aminoacyl cyclic urea derivative represented by the above formula (3) (hereinafter referred to as compound (3)) will be described. In the compound (3), R 1 , R 3 , R 4 , R 5 , *, n are as described above. R 9 represents a hydrogen atom or R 2 , and specifically includes a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, silyl group which may have a substituent, or substituent. an aralkyl group of alkyl or C 7 -C 20 good C 1 -C 20, magnesium halide, an alkali metal, alkaline earth metal, a silyl group which may have a substituent, substituted Examples of the optionally substituted C 1 to C 20 alkyl group and the optionally substituted C 7 to C 20 aralkyl group include those described above. As compound (3), general formula (9);

Figure 0004799085
Figure 0004799085

で表される化合物、または、一般式(7); Or a compound represented by the general formula (7):

Figure 0004799085
Figure 0004799085

で表される化合物があげられる。   The compound represented by these is mention | raise | lifted.

前記式(9)および(7)で表される化合物(以下、化合物(9)および化合物(7))においてR1、R2、R3、R4、R5、*、nは前記に同じである。 R 1 , R 2 , R 3 , R 4 , R 5 , *, n in the compounds represented by the formulas (9) and (7) (hereinafter referred to as the compound (9) and the compound (7)) are the same as above. It is.

「必要に応じてR2を除去し」とは、R2を除去してもよいし、除去しなくてもよいことを意味する。R2を除去しなかった場合は、化合物(3)として化合物(9)が得られ、R2を除去した場合は化合物(3)として化合物(7)が得られる。ただし、化合物(1)においてR2が水素原子である場合は、化合物(1)と化合物(4)のカルボキシル基の反応性誘導体との反応後、R2を除去しなくとも化合物(7)を得ることができる。 “Removing R 2 as necessary” means that R 2 may or may not be removed. When R 2 is not removed, compound (9) is obtained as compound (3), and when R 2 is removed, compound (7) is obtained as compound (3). However, when R 2 is a hydrogen atom in the compound (1), the compound (7) can be converted without removing R 2 after the reaction between the compound (1) and the reactive derivative of the carboxyl group of the compound (4). Obtainable.

まず、活性化された化合物(1)と化合物(4)のカルボキシル基の反応性誘導体を反応させて化合物(9)を得る方法について説明する。   First, a method for obtaining the compound (9) by reacting the activated compound (1) with the reactive derivative of the carboxyl group of the compound (4) will be described.

反応は、試剤の添加順や添加時間は特に限定されず、適当な溶媒中で混合するだけで速やかに進行する。使用する溶媒は一般的な有機溶媒であれば特に限定されるものではないが、具体的には、例えば、ベンゼンあるいはトルエンなどの置換ベンゼン類、塩化メチレン等のクロロアルカン類、テトラヒドロフランあるいはジエチルエーテルなどのエーテル類、ヘキサンあるいはペンタン等のアルカン類、ジメチルホルムアミドやN−メチルピロリドンあるいはヘキサメチルリン酸トリアミドなどの非プロトン性極性溶媒が挙げられる。上記溶媒は単独で用いてもよく、2種類以上を併用してもよい。なお、2種以上を混合して用いる場合には、その混合割合は特に限定されるものではない。活性化された化合物(1)を溶液として用いる場合には、化合物(1)の活性化に使用されたものと同一の溶媒を用いることが好ましく、上記溶媒においては、エーテル類を使用することが好ましく、より好ましくはテトラヒドロフランである。   The order of addition of the reagents and the addition time are not particularly limited, and the reaction proceeds rapidly only by mixing in an appropriate solvent. The solvent to be used is not particularly limited as long as it is a general organic solvent. Specifically, for example, substituted benzenes such as benzene or toluene, chloroalkanes such as methylene chloride, tetrahydrofuran or diethyl ether, etc. Ethers, alkanes such as hexane or pentane, aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone or hexamethylphosphoric triamide. The said solvent may be used independently and may use 2 or more types together. In addition, when mixing and using 2 or more types, the mixing ratio is not specifically limited. When the activated compound (1) is used as a solution, it is preferable to use the same solvent as that used for the activation of the compound (1). In the above solvent, ethers may be used. Tetrahydrofuran is more preferable.

反応温度は特に限定されるものではなく、反応が円滑に進行する温度で行えばよいが、化合物(1)の光学純度の低下を抑制するためには40oC以下で反応を行うことが好ましく、より好ましくは30oC以下、とりわけ好ましくは10℃以下である。反応温度の下限としては実施可能な温度であれば特に制限されないが、工業的に実施容易な点から好ましくは−40℃以上、より好ましくは−20℃以上である。 The reaction temperature is not particularly limited and may be performed at a temperature at which the reaction proceeds smoothly. However, in order to suppress a decrease in the optical purity of the compound (1), the reaction is preferably performed at 40 ° C. or lower. , More preferably 30 ° C. or less, particularly preferably 10 ° C. or less. The lower limit of the reaction temperature is not particularly limited as long as it is a feasible temperature, but is preferably −40 ° C. or higher, more preferably −20 ° C. or higher, from the viewpoint of easy industrial implementation.

反応時間は原料が十分に消費すればよく、特に限定されないが、生産性の観点から、通常は1時間〜7日程度である。化合物(4)におけるカルボキシル基の反応性誘導体がNカルボキシ無水物(2)である場合には、反応は1〜20時間程度で進行する。   The reaction time is not particularly limited as long as the raw material is sufficiently consumed, but is usually about 1 hour to 7 days from the viewpoint of productivity. When the reactive derivative of the carboxyl group in compound (4) is N-carboxy anhydride (2), the reaction proceeds in about 1 to 20 hours.

また、化合物(1)の使用量は、特に限定されるものではないが、例えば、化合物(4)に対して0.8〜2倍モル量が好ましく、さらに好ましくは0.9〜1.5倍モル量であり、とりわけ好ましくは1〜1.2倍モル量である。   Moreover, the usage-amount of a compound (1) is although it does not specifically limit, For example, 0.8-2 times mole amount is preferable with respect to a compound (4), More preferably, it is 0.9-1.5. It is a double molar amount, particularly preferably 1 to 1.2 molar amount.

反応の濃度は、反応が円滑に進行する濃度で行えばよく、特に限定されるものではなく、均一な溶液でも不均一な懸濁状態でも行うことができる。好ましくは化合物(1)の濃度が5〜80wt%であり、さらに好ましくは10〜60wt%である。反応を円滑に進行させかつ、経済上の観点から、とりわけ好ましくは10〜30wt%である。   The concentration of the reaction may be a concentration at which the reaction proceeds smoothly, and is not particularly limited, and can be performed in a uniform solution or a non-uniform suspension state. The concentration of compound (1) is preferably 5 to 80 wt%, more preferably 10 to 60 wt%. From the viewpoint of allowing the reaction to proceed smoothly and economically, it is particularly preferably 10 to 30 wt%.

反応後の後処理は、特に限定されるものではないが、例えば水で反応を停止し、生じた不溶性マグネシウム化合物をろ別、ろ液を適当な有機溶媒で抽出することにより実施できる。ここで用いる抽出溶媒としては、特に限定されないが、例えば、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、四塩化炭素、ジエチルエーテル、酢酸エチルが好ましく、より好ましくはトルエン、酢酸エチルである。後処理時に生じる不溶性マグネシウム化合物はろ過にて除去する必要があるが、反応を適当な酸で停止することにより、反応系中のマグネシウム化合物を水に溶解するマグネシウム塩とし、これを分液により水層に除去することも可能である。特に、アルカリ性条件下で化合物(39)が不安定な場合は、中性から酸性条件下に後処理を行う方が好ましく、この場合、酸を添加してpHを管理する方法などが用いられる。用いる酸としては、水に溶解するマグネシウム塩を形成するものであれば特に限定されるものではないが、例えば酢酸、ギ酸、塩酸、硫酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸などが挙げられ、経済的な観点や汎用性から、鉱酸が好ましく、より好ましくは塩酸または硫酸である。また反応を酸で停止する場合に、加える酸の量は特に限定されるものではないが、pHが低くなりすぎると品質の低下を招く場合には、反応停止途中もしくは反応停止後の最終pHを3〜7の範囲となるように加える酸の量を調整し、反応停止を行うことが好ましい。生じたマグネシウム塩を水洗で除去した後に、有機層を濃縮することで化合物(9)を得ることができる。また、適当な酸との塩として水に抽出することもできる。得られた光学活性N置換アミノアシル環状尿素誘導体(9)は、シリカゲルカラムクロマトグラフィーなどで精製してもよいし、特に精製することなく次工程に供してもよい。   The post-treatment after the reaction is not particularly limited, but can be carried out, for example, by stopping the reaction with water, filtering off the resulting insoluble magnesium compound, and extracting the filtrate with a suitable organic solvent. The extraction solvent used here is not particularly limited. For example, benzene, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride, diethyl ether, and ethyl acetate are preferable, and toluene and ethyl acetate are more preferable. The insoluble magnesium compound produced during post-treatment needs to be removed by filtration, but by stopping the reaction with an appropriate acid, the magnesium compound in the reaction system is converted into a magnesium salt that dissolves in water, and this is separated into water. It is also possible to remove it in layers. In particular, when compound (39) is unstable under alkaline conditions, it is preferable to carry out post-treatment under neutral to acidic conditions. In this case, a method of controlling the pH by adding an acid or the like is used. The acid to be used is not particularly limited as long as it forms a magnesium salt that dissolves in water. For example, acetic acid, formic acid, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid From the economical viewpoint and versatility, a mineral acid is preferable, and hydrochloric acid or sulfuric acid is more preferable. In addition, when the reaction is stopped with an acid, the amount of acid to be added is not particularly limited. However, if the pH is too low and the quality is deteriorated, the final pH during or after the reaction is stopped. It is preferable to stop the reaction by adjusting the amount of acid added so as to be in the range of 3-7. After removing the produced magnesium salt by washing with water, the organic layer is concentrated to obtain the compound (9). It can also be extracted into water as a salt with a suitable acid. The obtained optically active N-substituted aminoacyl cyclic urea derivative (9) may be purified by silica gel column chromatography or the like, or may be subjected to the next step without particular purification.

化合物(4)におけるカルボキシル基の反応性誘導体がNカルボキシ無水物(2)である場合には、上記後処理により脱炭酸が進行し、化合物(9)を好適に得ることができる。   When the reactive derivative of the carboxyl group in compound (4) is N-carboxy anhydride (2), decarboxylation proceeds by the post-treatment, and compound (9) can be suitably obtained.

次に、上記方法で得られた化合物(9)において、必要に応じてR2を除去する方法について説明する。 Next, a method for removing R 2 as necessary in the compound (9) obtained by the above method will be described.

2を除去する方法としては加水分解や加水素分解などで行うことができる。 R 2 can be removed by hydrolysis, hydrogenolysis, or the like.

2が3級アルキル基である場合には、酸処理による加水分解でR2を除去することができる。酸処理は適当な溶媒中で、酸と接触させることにより容易に行うことができる。例えば、塩化水素含有ジオキサンあるいは適当な有機溶媒と塩酸もしくは硫酸の混合系が挙げられるが、これらに限定されるものではない。有機溶媒としては、例えば、ベンゼンあるいはトルエンなどの置換ベンゼン類、塩化メチレンなどのクロロアルカン類、テトラヒドロフランあるいはジエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、メチルブチルケトンなどのケトン類、アセトニトリル、プロピオニトリル、ブチロニトリルなどのニトリル類が挙げられる。上記溶媒は単独で用いてもよく、2種類以上を併用してもよく、含水させても、水との2相系でもよいが、汎用性や安全性から、好ましくはトルエンである。また、水単独でも実施可能である。なお、2種以上を混合して用いる場合には、その混合割合は特に限定されるものではない。 When R 2 is a tertiary alkyl group, R 2 can be removed by hydrolysis by acid treatment. The acid treatment can be easily performed by contacting with an acid in an appropriate solvent. Examples include hydrogen chloride-containing dioxane or a mixed system of a suitable organic solvent and hydrochloric acid or sulfuric acid, but are not limited thereto. Examples of the organic solvent include substituted benzenes such as benzene and toluene, chloroalkanes such as methylene chloride, ethers such as tetrahydrofuran and diethyl ether, ketones such as acetone, methyl ethyl ketone, and methyl butyl ketone, acetonitrile, and propionitrile. And nitriles such as butyronitrile. The above solvents may be used singly or in combination of two or more, and may be hydrated or may be a two-phase system with water, but is preferably toluene from the viewpoint of versatility and safety. It can also be carried out with water alone. In addition, when mixing and using 2 or more types, the mixing ratio is not specifically limited.

酸の使用量は、特に限定されるものではないが、化合物(9)に対して1〜100倍モル量が好ましく、1〜50倍モル量がさらに好ましい。反応を円滑に進めなおかつ経済上の観点から、とりわけ2〜15倍モル量が好ましい。   Although the usage-amount of an acid is not specifically limited, 1-100 times mole amount is preferable with respect to a compound (9), and 1-50 times mole amount is more preferable. From the viewpoint of proceeding the reaction smoothly and economically, the molar amount is particularly preferably 2 to 15 times.

反応温度は、反応が円滑に進行する温度であればよく、溶媒の沸点などにもよるので特に限定されるものではないが、0〜100oCで反応を行うことが好ましく、より好ましくは10〜50oCである。また、反応時間は原料が消失するまで行えばよく、特に限定されるものではないが、1〜48時間程度が好ましく、さらに好ましくは1〜24時間である。
反応の濃度は、化合物(9)が使用する有機溶媒中、5〜50wt%であることが好ましく、反応を円滑に進めるためには5〜30wt%であることが、特に好ましい。
The reaction temperature may be any temperature at which the reaction proceeds smoothly and is not particularly limited because it depends on the boiling point of the solvent and the like, but the reaction is preferably performed at 0 to 100 ° C., more preferably 10 ~ 50 ° C. The reaction time may be carried out until the raw material disappears, and is not particularly limited, but is preferably about 1 to 48 hours, and more preferably 1 to 24 hours.
The concentration of the reaction is preferably 5 to 50 wt% in the organic solvent used by the compound (9), and particularly preferably 5 to 30 wt% in order to facilitate the reaction.

得られた生成物は、酸との塩として析出する場合にはろ過にて取得してもよいし、溶媒を除去することにより取得してもよく、必要に応じてカラムクロマトグラフィーや晶析などの方法にて精製してもよい。   The obtained product may be obtained by filtration when it is precipitated as a salt with an acid, or may be obtained by removing the solvent. If necessary, column chromatography, crystallization, etc. You may refine | purify by the method of.

2がアラルキル基である場合には、加水素分解によりR2を除去することができる。加水素分解は、水素及び触媒の存在下、適当な溶媒中で行うことができる。触媒としては、一般的な金属触媒を用いることができる。例えばパラジウム炭素,パラジウム黒,酸化白金などが好ましい。触媒の使用量としては、触媒の種類によって異なり、反応が完結するのに充分な量であれば特に限定されるものではないが、触媒となる金属が化合物(39)に対して、0.01〜10wt%が好ましく、0.1〜5wt%がより好ましい。 When R 2 is an aralkyl group, R 2 can be removed by hydrogenolysis. The hydrogenolysis can be carried out in a suitable solvent in the presence of hydrogen and a catalyst. As the catalyst, a general metal catalyst can be used. For example, palladium carbon, palladium black, platinum oxide and the like are preferable. The amount of the catalyst used varies depending on the type of the catalyst, and is not particularly limited as long as it is an amount sufficient to complete the reaction. However, the amount of the metal used as the catalyst is 0.01% relative to the compound (39). -10 wt% is preferable, and 0.1-5 wt% is more preferable.

使用する有機溶媒としては、特に限定されるものではないが、例えば、メタノール、エタノール、プロパノールなどのアルコール類が好ましい。反応の濃度は特に限定されるものではないが、化合物(9)が、1〜50wt%であることが好ましく、1〜30wt%であることがより好ましい。   Although it does not specifically limit as an organic solvent to be used, For example, alcohols, such as methanol, ethanol, and propanol, are preferable. The concentration of the reaction is not particularly limited, but the compound (9) is preferably 1 to 50 wt%, and more preferably 1 to 30 wt%.

反応温度は、反応が円滑に進行する温度であれば特に限定されるものではないが、0〜50oCが好ましい。また水素圧も特に限定されないが、1〜5気圧で反応を行うことが好ましい。得られた生成物は、触媒をろ別した後に、溶媒を除去することにより取得でき、必要に応じてカラムクロマトグラフィーや晶析などの方法にて精製してもよい。 The reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but 0 to 50 ° C. is preferable. The hydrogen pressure is not particularly limited, but the reaction is preferably performed at 1 to 5 atmospheres. The obtained product can be obtained by removing the solvent after filtering the catalyst, and may be purified by a method such as column chromatography or crystallization as necessary.

加水分解や加水素分解の条件により、R3が同時に除去されても良い。 Depending on the conditions of hydrolysis and hydrogenolysis, R 3 may be removed at the same time.

次に、化合物(7)を酸と塩を形成させて取得する方法について説明する。   Next, a method for obtaining compound (7) by forming a salt with an acid will be described.

前記式(7)で表される化合物(以下、化合物(7))は、化合物(1)においてR2が水素原子である化合物と化合物(4)のカルボキシル基の反応性誘導体との反応で得ることができる。また、化合物(1)においてR2が水素原子以外である場合は、化合物(1)と化合物(4)のカルボキシル基の反応性誘導体との反応で得られた化合物においてR2を上記の方法で除去して得ることができる。 The compound represented by the formula (7) (hereinafter referred to as compound (7)) is obtained by reacting the compound in which R 2 is a hydrogen atom in compound (1) with the reactive derivative of the carboxyl group of compound (4). be able to. Also, when R 2 is other than hydrogen atoms in the compound (1) in the compound (1) and the compound (4) compound obtained by a reaction of the reactive derivative of the carboxyl group of the R 2 in the manner described above It can be obtained by removing.

塩の取得法に関し、化合物(7)が製造工程において塩として析出する場合は、そのままろ過して取得してもよいし、有機溶剤に抽出した後、酸を添加するといった方法を行ってもよい。しかし、これらの方法において、例えば一般式(4)で表される化合物などを同伴するため、より高純度の目的物の取得には至らない場合がある。そこで、これらを除去し、より高純度の目的物を得るためには、一般式(7)で表される化合物を、水性液中で酸と塩形成させる方法が好ましい。   Regarding the method for obtaining a salt, when the compound (7) precipitates as a salt in the production process, it may be obtained by filtration as it is, or after extraction into an organic solvent, a method of adding an acid may be performed. . However, in these methods, for example, since a compound represented by the general formula (4) is accompanied, acquisition of a higher-purity target product may not be achieved. Therefore, in order to remove these and obtain a higher-purity target product, a method of forming a salt of the compound represented by the general formula (7) with an acid in an aqueous liquid is preferable.

一般式(7)で表される化合物は、一旦、適当な有機溶剤で抽出した後、適切なpHにて水に再抽出して得た水性液であってもよく、溶剤を濃縮除去して得られた一般式(7)で表される化合物を、適切なpHにて水性液に溶解してもよく、さらには、上述した公知の塩形成法で単離したものを、適切なpHで水性液に溶解したものでもよい。本発明の方法により得られたものについては、品質、操作性、及び、経済性から、有機溶剤に抽出後に水に再抽出することが好ましい。   The compound represented by the general formula (7) may be an aqueous liquid obtained by once extracting with an appropriate organic solvent and then re-extracting into water at an appropriate pH. The obtained compound represented by the general formula (7) may be dissolved in an aqueous solution at an appropriate pH, and further, an isolated product obtained by the above-described known salt formation method at an appropriate pH. It may be dissolved in an aqueous liquid. About what was obtained by the method of this invention, it is preferable to re-extract to water after extraction to an organic solvent from quality, operativity, and economical efficiency.

水性液は、上述したような操作で得られるものであり、水単独でもよく、水と水混和有機溶剤との混合物であってもよい。一般式(7)で表される化合物の性質や共存する不純物などにより、その種類、混合比などを好適に選択することができる。ここでの水混和有機溶剤とは、常圧下、0〜100℃において、水と完全に混和するものである。   The aqueous liquid is obtained by the operation as described above, and may be water alone or a mixture of water and a water-miscible organic solvent. Depending on the properties of the compound represented by the general formula (7) and the coexisting impurities, the type and mixing ratio can be suitably selected. The water-miscible organic solvent here is one that is completely miscible with water at 0 to 100 ° C. under normal pressure.

抽出溶剤としては、特に限定されないが、例えば、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、四塩化炭素、ジエチルエーテル、酢酸エチルが好ましく、より好ましくはトルエン、酢酸エチルである。抽出時のpHは3〜5が好ましい。   Although it does not specifically limit as an extraction solvent, For example, benzene, toluene, xylene, a methylene chloride, chloroform, carbon tetrachloride, diethyl ether, and ethyl acetate are preferable, More preferably, they are toluene and ethyl acetate. The pH during extraction is preferably 3-5.

抽出液から水への再抽出は、pHを5〜9に調整することで実施でき、抽出率の向上や生成物の分解抑止を目的とする場合、pHを5〜7とするのがより好ましい。   The re-extraction from the extract into water can be carried out by adjusting the pH to 5-9, and when the purpose is to improve the extraction rate or to suppress the decomposition of the product, the pH is more preferably 5-7. .

再抽出によって得られた水性液は、適当な酸を用い、pHを1〜4に調整することで塩を形成し、結晶として析出させることができる。この結晶をろ過により分離することで、不純物を母液側に除去しつつ、目的物の塩を結晶として得ることができる。塩形成に用いる酸は、特に限定されないが、メタンスルホン酸、p−トルエンスルホン酸、ギ酸、酢酸、トリフルオロ酢酸、シュウ酸、マロン酸などの有機酸、あるいは、塩酸、硫酸などの鉱酸が挙げられる。操作性、安全性、価格などの工業的有利性の観点からは、塩酸、硫酸などの鉱酸が好ましい。尚、pHは、化合物によっても最適な値が異なる為に限定できないが、上述の1〜4の範囲で好適に実施可能である。結晶の析出量は、pHの微調整による至適化で制御可能であるが、pH調整により副生する系中の無機塩濃度を高めることでも制御可能である。また、別途、塩化ナトリウム、塩化カリウム、塩化リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムなどの無機塩を添加してもよい。   The aqueous liquid obtained by re-extraction can form a salt by adjusting the pH to 1 to 4 using an appropriate acid, and can be precipitated as crystals. By separating the crystals by filtration, the target salt can be obtained as crystals while removing impurities on the mother liquor side. The acid used for salt formation is not particularly limited, but organic acids such as methanesulfonic acid, p-toluenesulfonic acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid and malonic acid, or mineral acids such as hydrochloric acid and sulfuric acid may be used. Can be mentioned. From the viewpoint of industrial advantages such as operability, safety and price, mineral acids such as hydrochloric acid and sulfuric acid are preferred. In addition, although pH cannot be limited because an optimal value changes also with compounds, it can implement suitably in the above-mentioned 1-4 range. The amount of crystals precipitated can be controlled by optimizing the pH by fine adjustment, but can also be controlled by increasing the concentration of inorganic salt in the by-product system by adjusting the pH. Separately, inorganic salts such as sodium chloride, potassium chloride, lithium chloride, sodium sulfate, potassium sulfate, and magnesium sulfate may be added.

塩形成温度は、特に限定されず、溶剤の沸点以下、凝固点以上で好適に実施できるが、経済的な効果などから必要以上に高温や低音にする必要は無く、0〜100℃の間で好適に実施できる。   The salt formation temperature is not particularly limited and can be suitably carried out at the boiling point of the solvent or lower and above the freezing point. However, it is not necessary to make the temperature and the sound lower than necessary for economic effects, and is preferably between 0 to 100 ° C. Can be implemented.

また、ろ過は、加圧ろ過、遠心分離等、一般に工業的な生産で実施する方法で実施すればよく、限定されない。   Moreover, filtration may be performed by the method generally implemented by industrial production, such as pressure filtration and centrifugation, and is not limited.

尚、言うまでも無く、各操作を不活性ガス雰囲気下で実施するのが好ましい。   Needless to say, it is preferable to perform each operation in an inert gas atmosphere.

以下に実施例を挙げ、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、テトラヒドロフラン10gに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(5.0g、25.0mmol、99.6%ee)を懸濁し、−5℃に冷却した。−5〜5℃でt−BuMgCl(1.77mol/kgトルエン−THF溶液、13.5g、23.9mmol)を40分かけて添加し、1時間撹拌した。この溶液に、−4〜−1℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(50wt%テトラヒドロフラン溶液、13.9g、22.8mmol)を1時間かけて添加し、3時間撹拌した。反応溶液を、35%塩酸を用いてpH3〜7を保持しながら1〜10℃で水(10mL)に投入した。混合液は分層するので有機層を分取し、水(10mL)で2回洗浄した。得られた溶液を下記に示す分析条件においてHPLCにより定量分析した結果、表題化合物が、9.9g(21.4mmol、収率94%)生成していることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル由来の不斉炭素の光学純度を求めたところ、99.4%deであった。1H NMR(CDCl3、400MHz)δ:7.30−7.14(m、5H)、4.71(q、1H、J=6.8Hz)、4.63(dd、1H、J=10.3、4.2Hz)、4.20−4.09(m、2H)、3.69(t、1H、J= 9.5 Hz)、3.31(dd、1H、J=9.5、4.2Hz)、3.26(t、1H、J=6.8Hz)、2.87(s、3H)、2.75−2.61(m、2H)、2.03−1.86(m、2H)、1.46(s、9H)、1.35(d、3H、J=6.8Hz)、1.27(t、3H、J=7.1Hz)

HPLC定量分析条件
カラム:YMC−Pack ODS−AQ AQ−303 250mmx4.6mmID
カラム温度:40℃
検出:UV210nm
溶離液A:0.5%KH2PO4
溶離液B:アセトニトリル
グラジエントプログラム:
Example 1 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (5.0 g, 25.0 mmol, 99. 6% ee) was suspended and cooled to -5 ° C. At −5 to 5 ° C., t-BuMgCl (1.77 mol / kg toluene-THF solution, 13.5 g, 23.9 mmol) was added over 40 minutes and stirred for 1 hour. To this solution was added N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (50 wt% tetrahydrofuran solution, 13.9 g, 22. 8 mmol) was added over 1 hour and stirred for 3 hours. The reaction solution was poured into water (10 mL) at 1-10 ° C. while maintaining pH 3-7 using 35% hydrochloric acid. Since the liquid mixture was separated, the organic layer was separated and washed twice with water (10 mL). The obtained solution was quantitatively analyzed by HPLC under the following analysis conditions. As a result, it was found that the title compound was produced in an amount of 9.9 g (21.4 mmol, yield 94%). The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester was determined by HPLC and found to be 99.4% de. 1 H NMR (CDCl 3, 400 MHz) δ: 7.30-7.14 (m, 5H), 4.71 (q, 1H, J = 6.8 Hz), 4.63 (dd, 1H, J = 10. 3, 4.2 Hz), 4.20-4.09 (m, 2H), 3.69 (t, 1H, J = 9.5 Hz), 3.31 (dd, 1H, J = 9.5, 4.2 Hz), 3.26 (t, 1H, J = 6.8 Hz), 2.87 (s, 3H), 2.75-2.61 (m, 2H), 2.03-1.86 ( m, 2H), 1.46 (s, 9H), 1.35 (d, 3H, J = 6.8 Hz), 1.27 (t, 3H, J = 7.1 Hz)

HPLC quantitative analysis condition column: YMC-Pack ODS-AQ AQ-303 250 mm × 4.6 mm ID
Column temperature: 40 ° C
Detection: UV210nm
Eluent A: 0.5% KH 2 PO 4 water Eluent B: Acetonitrile gradient program:

Figure 0004799085
Figure 0004799085

HPLC光学純度分析条件
カラム:nacalai tesque cosmosil 5C18−AR−II250mmx4.6mmID
カラム温度:40℃
検出:UV210nm
流速:1.5mL/min
溶離液:アセトニトリル/0.5wt%KH2PO4水(pH3.0)=30/70(vol/vol)
保持時間
4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル:41.2分
4(R)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル:45.8分

(実施例2)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、テトラヒドロフラン10gに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(5.0g、25.0mmol、99.6%ee)を懸濁し、5℃に冷却した。5〜13℃でt−BuMgCl(1.77mol/kgトルエン−THF溶液、16.9g、29.9mmol)を15分かけて添加し、30分撹拌した。この溶液に、2〜8℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(50wt%テトラヒドロフラン溶液、13.9g、22.8mmol)を7分かけて添加し、1時間撹拌した。反応溶液を、35%塩酸を用いてpH3〜7を保持しながら、1〜10℃で水(10mL)に投入した。混合液は分層するので有機層を分取し、水(10mL)で2回洗浄した。得られた溶液を上記分析条件にてHPLCにより定量分析した結果、表題化合物が、9.6g(20.8mmol、収率91%)生成していることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル由来の不斉炭素の光学純度を求めたところ、99.4%deであった。

(実施例3)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、テトラヒドロフラン10gに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(5.0g、25.0mmol、99.6%ee)を懸濁し、5℃に冷却した。5〜6℃でt−BuMgCl(1.77mol/kgトルエン−THF溶液、16.9g、29.9mmol)を6時間かけて添加し、1時間撹拌した。この溶液に、3〜5℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(50wt%テトラヒドロフラン溶液、13.9g、22.8mmol)を3.5時間かけて添加し、15時間撹拌した。反応溶液を、35%塩酸を用いてpH3〜7を保持しながら、1〜10℃で水(10mL)に投入した。混合液は分層するので有機層を分取し、水(10mL)で2回洗浄した。得られた溶液を上記分析条件にてHPLCにより定量分析した結果、表題化合物が、9.5g(20.6mmol、収率90%)生成していることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル由来の不斉炭素の光学純度を求めたところ、98.6%deであった。

(実施例4)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、N−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン(0.69g、2.45mmol)および1−ヒドロキシコハク酸イミド(0.30g、2.58mmol)をテトラヒドロフラン(11.6mL)に溶解し、該溶液にジシクロヘキシルカルボジイミド(0.52g、2.54mmol)を撹拌下6〜7℃で加え、同温にて6時間撹拌した。不溶物をろ別後、ろ液を減圧濃縮して、N−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニンコハク酸イミドエステルを得た。(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(0.50g、2.51mmol、99.4%ee)をテトラヒドロフラン(6mL)に溶解し、該溶液にt−BuMgCl(1.77mol/kgトルエン−THF溶液、1.49g、2.63mmol)を約6℃で加えた。混合物を同温で約1時間撹拌後、N−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニンコハク酸イミドエステルのテトラヒドロフラン(9.5mL)溶液を6〜10℃で加えた。混合物を室温にて3.5日撹拌後、水(20mL)に反応混合物と1規定塩酸をpHが6.5となるまで加えた。混合物を酢酸エチル(20mL)で2回抽出し、有機層を合わせて6%炭酸水素ナトリウム水溶液で洗浄後、硫酸ナトリウムで乾燥した。有機層を減圧濃縮し、NMRにより分析することで表題化合物が0.26g(0.57mmol、23.2mol%)生成していることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル由来の不斉炭素の光学純度を求めたところ、91.0%deであった。

(実施例5)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、n−BuMgCl(1.80mol/kgトルエン−THF溶液、0.67g、1.21mmol)にジイソプロピルアミン(0.16g、1.45mmol)を40℃で加え、1時間撹拌した。反応液に(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(1.0mol/Lテトラヒドロフラン溶液、1.0mL、1.0mmol、99.4%ee)を6〜8℃で添加した。10℃で1.5時間撹拌後、反応液にN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(1.0mol/Lテトラヒドロフラン溶液、1.0mL、1.0mmol)を6〜10℃で滴下し、10〜20℃にて5時間撹拌した。反応液に水(10mL)を添加し、酢酸エチル(10mL)で2回抽出した。有機層を合わせ、不溶物をろ別後、水(10mL)で洗浄し、減圧濃縮した。得られた無色油状物をNMRにて分析した結果、表題化合物が0.22g(0.47mmol、収率39%)生成していることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル由来の不斉炭素の光学純度を求めたところ、100.0%deであった。

(実施例6)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル
窒素雰囲気下、テトラヒドロフラン2mLに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル(0.47g、2.0mmol、エナンチオマー不検出)を溶解し、3℃に冷却した。3〜6℃でt−BuMgCl(1.77mol/kgトルエン−THF溶液、1.21g、2.1mmol)を5分かけて添加し、1時間撹拌した。この溶液に、3−6℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(0.63g/mLテトラヒドロフラン溶液、1.0mL、2.1mmol)を1分かけて添加し、7時間撹拌した。反応液に10%クエン酸水溶液(4mL)と水(6mL)、酢酸エチル(10mL)を投入した。混合液は分層するので有機層を分取し、減圧濃縮した。得られた無色油状物をNMRにより分析した結果、表題化合物が0.73g(1.5mmol、収率74%)生成していることが判った。1H NMR(CDCl3、400MHz)δ7.41−7.26(m、5H)、5.21(d、1H、J=12.2Hz)、5.17(d、1H、J=12.2Hz)、4.21(dd、1H、J=9.3、4.9Hz)、3.67−3.58(m、2H)、3.77(s、3H)

1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル光学純度分析条件
カラム:ダイセルCHIRALPAK AD−H 250mmx4.6mmID
カラム温度:40℃
検出:UV254nm
溶離液:エタノール
流速:0.3mL/min
(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル:保持時間21.7分
(4R)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル:保持時間18.5分

(実施例7)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
窒素雰囲気下、N,N−ジメチルホルムアミド1mLに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸(99.8mg、0.692mmol)を加え、4℃に冷却した。5〜15℃でt−BuMgCl(1.77mol/kgトルエン−THF溶液、0.834g、15.0mmol)を2分間で滴下し、22℃へ昇温した後、50分撹拌した。この溶液を5℃まで冷却し、5〜7℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(23wt%N,N−ジメチルホルムアミド溶液、1.17g、0.696mmol)を添加し、22℃へ昇温した後、19時間撹拌した。この溶液をHPLCにより定量分析した結果、表題化合物が、159.9mg(0.394mmol、収率50.7%)生成していることが判った(80area%)。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸由来の不斉炭素の光学純度を求めたところ、90.7%deであった。1H NMR(DMSO、400MHz)δ:7.32−7.18(m、5H)、5.15(q、1H、J=6.6Hz)、4.75(q、1H、J=10.5、4.2Hz)、4.28−4.08(m、2H)、4.02(s(br)、1H)、3.79(t、1H、J=10.3Hz)、3.46(q、1H、J=10.3、4.2Hz)、2.78(s、3H)、2.83−2.54(m、2H)、2.15(q、2H、J=13.9、7.8Hz)、1.54(d、3H、J=6.8Hz)、1.23(t、3H、J=7.1Hz)

HPLC定量および光学純度分析条件
カラム:nacalai tesque cosmosil 5C18−AR−II250mmx4.6mmID
カラム温度:40℃
検出:UV210nm
流速:0.5mL/min
溶離液:アセトニトリル/0.5wt%KH2PO4水(pH3.0)=30/70(vol/vol)
4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸:保持時間13.1分
4(R)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸:保持時間10.7分

(実施例8)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
14%塩化水素ジオキサン溶液(56.4g、216mmol)に4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(30wt%トルエン溶液、33.5g、21.7mmol)を添加し、25℃で6時間撹拌した。析出した結晶をろ別し、酢酸エチルで洗浄した後乾燥し、得られた結晶を上記分析条件にてHPLCにより定量分析した結果、表題化合物が8.8g(20.0mmol,収率92%)生成していることが判った(99.4%de)。

(実施例9)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(20wt%トルエン溶液、50.0g、21.7mmol)に35%塩酸(7.5g、72.0mmol)を添加し、40℃で12時間撹拌した。反応混合物を0℃まで冷却した後、析出した結晶をろ別した。結晶を酢酸エチルで洗浄した後乾燥し、得られた結晶を上記分析条件にてHPLCにより定量分析した結果、表題化合物が6.4g(14.5mmol,収率67%)生成していることが判った(98.6%de)。N−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニンの混入量は0.1%であった。

(実施例10)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(20wt%トルエン溶液、50.0g、21.7mmol)に35%塩酸(7.5g、72.0mmol)を添加し、40℃で12時間撹拌した。反応混合物を0℃まで冷却した後、30%水酸化ナトリウム水溶液を加え、pHを4に調整すると二層に分層した。この有機層と、水層から酢酸エチル(30mL)にて2回抽出した有機層を混合し、液量が約1/4程度になるまで濃縮した。0℃まで冷却した後、水(20mL)、次いで30%水酸化ナトリウム水溶液を加え、pHを6とした。水層を分け取り、25℃まで昇温後、35%塩酸を加え、pH2に調整した。0℃まで冷却し、析出した結晶をろ別した。結晶を酢酸エチルで洗浄した後乾燥し、得られた結晶を上記分析条件にてHPLCにより定量分析した結果、表題化合物が6.9g(15.6mmol,収率72%)生成していることが判った(98.6%de)。尚、N−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニンは検出されなかった。

(実施例11)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル(0.69g、1.4mmol)をエタノール(10mL)に溶解し、10%Pd/C(50%wet、43.3mg)を加え、水素置換した。室温にて2時間撹拌後、不溶物をろ別した。ろ液を減圧濃縮して得られた白色個体をNMRにより分析した結果、表題化合物が定量的に得られていることが判った(79.7%de)。

(比較例1)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル
窒素雰囲気下、(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸t−ブチルエステル(0.50g、2.49mmol、78%ee)をテトラヒドロフラン(4.0mL)に溶解し、約−12℃に冷却した。窒素気流下、t−ブトキシカリウム(0.65mol/L THF溶液、4.0mL、2.61mmol)を添加し、同温度で5分撹拌した。反応混合物にN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(0.31mol/Lテトラヒドロフラン溶液、8mL、2.48mmol)を−12〜−6℃で滴下し、同温度で3時間撹拌した。反応液に水(10mL)を加え、テトラヒドロフランを留去後、酢酸エチル(10mL)で2回抽出した。有機層を水(10mL)で洗浄後、得られた溶液を減圧濃縮した。NMRより表題化合物が971.8mg(2.11mmol、収率84.9%)生成していることが分かった(20%de)。
HPLC optical purity analysis condition column: nacalai tesque cosmosil 5C18-AR-II 250 mm x 4.6 mm ID
Column temperature: 40 ° C
Detection: UV210nm
Flow rate: 1.5 mL / min
Eluent: acetonitrile / 0.5 wt% KH 2 PO 4 water (pH 3.0) = 30/70 (vol / vol)
Retention time 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazolidine-4 -Carboxylic acid t-butyl ester: 41.2 min 4 (R) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] Propionyl} -2-oxoimidazolidine-4-carboxylic acid t-butyl ester: 45.8 minutes

Example 2 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (5.0 g, 25.0 mmol, 99. 6% ee) was suspended and cooled to 5 ° C. At 5 to 13 ° C., t-BuMgCl (1.77 mol / kg toluene-THF solution, 16.9 g, 29.9 mmol) was added over 15 minutes and stirred for 30 minutes. To this solution was added N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (50 wt% tetrahydrofuran solution, 13.9 g, 22.8 mmol) at 2-8 ° C. Was added over 7 minutes and stirred for 1 hour. The reaction solution was poured into water (10 mL) at 1-10 ° C. while maintaining pH 3-7 using 35% hydrochloric acid. Since the liquid mixture was separated, the organic layer was separated and washed twice with water (10 mL). The obtained solution was quantitatively analyzed by HPLC under the above analysis conditions. As a result, it was found that the title compound was produced in an amount of 9.6 g (20.8 mmol, yield 91%). The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester was determined by HPLC and found to be 99.4% de.

Example 3 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (5.0 g, 25.0 mmol, 99. 6% ee) was suspended and cooled to 5 ° C. At 5-6 ° C., t-BuMgCl (1.77 mol / kg toluene-THF solution, 16.9 g, 29.9 mmol) was added over 6 hours and stirred for 1 hour. To this solution was added N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (50 wt% tetrahydrofuran solution, 13.9 g, 22.8 mmol) at 3-5 ° C. Was added over 3.5 hours and stirred for 15 hours. The reaction solution was poured into water (10 mL) at 1-10 ° C. while maintaining pH 3-7 using 35% hydrochloric acid. Since the liquid mixture was separated, the organic layer was separated and washed twice with water (10 mL). As a result of quantitative analysis of the obtained solution by HPLC under the above analysis conditions, it was found that the title compound was produced in an amount of 9.5 g (20.6 mmol, yield 90%). The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester was determined by HPLC and found to be 98.6% de.

Example 4 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester Under nitrogen atmosphere, N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine (0.69 g, 2.45 mmol) and 1-hydroxysuccinic acid Imide (0.30 g, 2.58 mmol) was dissolved in tetrahydrofuran (11.6 mL), and dicyclohexylcarbodiimide (0.52 g, 2.54 mmol) was added to the solution at 6-7 ° C. with stirring. Stir for hours. The insoluble material was filtered off, and the filtrate was concentrated under reduced pressure to obtain N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine succinimide ester. (4S) -1-Methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (0.50 g, 2.51 mmol, 99.4% ee) was dissolved in tetrahydrofuran (6 mL), and t -BuMgCl (1.77 mol / kg toluene-THF solution, 1.49 g, 2.63 mmol) was added at about 6 ° C. After the mixture was stirred at the same temperature for about 1 hour, a solution of N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine succinimide ester in tetrahydrofuran (9.5 mL) was added at 6 to 10 ° C. added. The mixture was stirred at room temperature for 3.5 days, and then the reaction mixture and 1N hydrochloric acid were added to water (20 mL) until the pH reached 6.5. The mixture was extracted twice with ethyl acetate (20 mL), and the organic layers were combined, washed with 6% aqueous sodium hydrogen carbonate solution, and dried over sodium sulfate. The organic layer was concentrated under reduced pressure and analyzed by NMR, which revealed that 0.26 g (0.57 mmol, 23.2 mol%) of the title compound was produced. The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester was determined by HPLC and found to be 91.0% de.

Example 5 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester Under a nitrogen atmosphere, diisopropylamine (0.16 g, 1.45 mmol) was added to n-BuMgCl (1.80 mol / kg toluene-THF solution, 0.67 g, 1.21 mmol). Added at 0 ° C. and stirred for 1 hour. (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (1.0 mol / L tetrahydrofuran solution, 1.0 mL, 1.0 mmol, 99.4% ee) was added to the reaction solution. Added at ~ 8 ° C. After stirring at 10 ° C. for 1.5 hours, the reaction solution was mixed with N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (1.0 mol / L tetrahydrofuran solution, 1 0.0 mL, 1.0 mmol) was added dropwise at 6 to 10 ° C., and the mixture was stirred at 10 to 20 ° C. for 5 hours. Water (10 mL) was added to the reaction mixture, and the mixture was extracted twice with ethyl acetate (10 mL). The organic layers were combined, insolubles were filtered off, washed with water (10 mL), and concentrated under reduced pressure. As a result of analyzing the obtained colorless oil by NMR, it was found that 0.22 g (0.47 mmol, yield 39%) of the title compound was produced. Moreover, when the optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester was determined by HPLC, it was 100.0% de.

Example 6 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid benzyl ester Dissolve (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid benzyl ester (0.47 g, 2.0 mmol, enantiomer not detected) in 2 mL of tetrahydrofuran under nitrogen atmosphere And cooled to 3 ° C. At 3-6 ° C., t-BuMgCl (1.77 mol / kg toluene-THF solution, 1.21 g, 2.1 mmol) was added over 5 minutes and stirred for 1 hour. To this solution was added N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (0.63 g / mL tetrahydrofuran solution, 1.0 mL, 0.1 mmol) was added over 1 minute and stirred for 7 hours. A 10% aqueous citric acid solution (4 mL), water (6 mL), and ethyl acetate (10 mL) were added to the reaction solution. Since the mixed solution was separated, the organic layer was separated and concentrated under reduced pressure. The obtained colorless oil was analyzed by NMR, and it was found that 0.73 g (1.5 mmol, yield 74%) of the title compound was produced. 1 H NMR (CDCl 3, 400 MHz) δ 7.41-7.26 (m, 5H), 5.21 (d, 1H, J = 12.2 Hz), 5.17 (d, 1H, J = 12.2 Hz) 4.21 (dd, 1H, J = 9.3, 4.9 Hz), 3.67-3.58 (m, 2H), 3.77 (s, 3H)

1-methyl-2-oxoimidazolidine-4-carboxylic acid benzyl ester optical purity analysis condition column: Daicel CHIRALPAK AD-H 250 mm × 4.6 mm ID
Column temperature: 40 ° C
Detection: UV254nm
Eluent: Ethanol flow rate: 0.3 mL / min
(4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid benzyl ester: retention time 21.7 minutes (4R) -1-methyl-2-oxoimidazolidine-4-carboxylic acid benzyl ester: retention time 18.5 minutes

Example 7 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo lysine-4-carboxylic acid under a nitrogen atmosphere, N, N- dimethylformamide 1mL of (4S)-1-methyl-2-oxo-imidazolidine-4-carboxylic acid (99.8 mg, 0.692 mmol) was added, 4 ° C. Cooled to. T-BuMgCl (1.77 mol / kg toluene-THF solution, 0.834 g, 15.0 mmol) was added dropwise at 5 to 15 ° C. over 2 minutes, and the temperature was raised to 22 ° C., followed by stirring for 50 minutes. The solution was cooled to 5 ° C. and N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (23 wt% N, N-dimethylformamide at 5-7 ° C. Solution, 1.17 g, 0.696 mmol) was added, the temperature was raised to 22 ° C., and the mixture was stirred for 19 hours. As a result of quantitative analysis of this solution by HPLC, it was found that the title compound was produced (159.9 mg, 0.394 mmol, yield 50.7%) (80 area%). The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid was determined by HPLC and found to be 90.7% de. 1 H NMR (DMSO, 400 MHz) δ: 7.32-7.18 (m, 5H), 5.15 (q, 1H, J = 6.6 Hz), 4.75 (q, 1H, J = 10. 5, 4.2 Hz), 4.28-4.08 (m, 2H), 4.02 (s (br), 1 H), 3.79 (t, 1 H, J = 10.3 Hz), 3.46 (Q, 1H, J = 10.3, 4.2 Hz), 2.78 (s, 3H), 2.83-2.54 (m, 2H), 2.15 (q, 2H, J = 13. 9, 7.8 Hz), 1.54 (d, 3 H, J = 6.8 Hz), 1.23 (t, 3 H, J = 7.1 Hz)

HPLC quantification and optical purity analysis condition column: nacalai tesque cosmosil 5C18-AR-II 250 mm x 4.6 mm ID
Column temperature: 40 ° C
Detection: UV210nm
Flow rate: 0.5 mL / min
Eluent: acetonitrile / 0.5 wt% KH 2 PO 4 water (pH 3.0) = 30/70 (vol / vol)
4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazolidine-4-carvone Acid: Retention time 13.1 min 4 (R) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2 -Oxoimidazolidine-4-carboxylic acid: retention time 10.7 minutes

Example 8 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo To a lysine-4-carboxylic acid 14% hydrogen chloride dioxane solution (56.4 g, 216 mmol), 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl -3-Phenylpropyl) amino] propionyl} -2-oxoimidazolidine-4-carboxylic acid t-butyl ester (30 wt% toluene solution, 33.5 g, 21.7 mmol) was added and stirred at 25 ° C. for 6 hours. . The precipitated crystals were separated by filtration, washed with ethyl acetate and dried. The obtained crystals were quantitatively analyzed by HPLC under the above analysis conditions. As a result, the title compound was 8.8 g (20.0 mmol, yield 92%). It was found to be produced (99.4% de).

Example 9 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxo 35% hydrochloric acid (7.5 g, 72.0 mmol) was added to imidazolidine-4-carboxylic acid t-butyl ester (20 wt% toluene solution, 50.0 g, 21.7 mmol), and the mixture was stirred at 40 ° C. for 12 hours. After the reaction mixture was cooled to 0 ° C., the precipitated crystals were filtered off. The crystals were washed with ethyl acetate and dried, and the obtained crystals were quantitatively analyzed by HPLC under the above analysis conditions. As a result, it was found that the title compound was formed in an amount of 6.4 g (14.5 mmol, yield 67%). Okay (98.6% de). The mixing amount of N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine was 0.1%.

Example 10 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxo 35% hydrochloric acid (7.5 g, 72.0 mmol) was added to imidazolidine-4-carboxylic acid t-butyl ester (20 wt% toluene solution, 50.0 g, 21.7 mmol), and the mixture was stirred at 40 ° C. for 12 hours. After the reaction mixture was cooled to 0 ° C., a 30% aqueous sodium hydroxide solution was added to adjust the pH to 4, and the two layers were separated. This organic layer and the organic layer extracted twice from the aqueous layer with ethyl acetate (30 mL) were mixed and concentrated until the liquid volume was about 1/4. After cooling to 0 ° C., water (20 mL) and then 30% aqueous sodium hydroxide solution were added to adjust the pH to 6. The aqueous layer was separated and heated to 25 ° C., and 35% hydrochloric acid was added to adjust the pH to 2. The solution was cooled to 0 ° C., and the precipitated crystals were separated by filtration. The crystals were washed with ethyl acetate and dried, and the obtained crystals were quantitatively analyzed by HPLC under the above analysis conditions. As a result, it was confirmed that the title compound was produced in an amount of 6.9 g (15.6 mmol, yield 72%). Okay (98.6% de). N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine was not detected.

Example 11 4 (S) -1-Methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxo Imidazolidine-4-carboxylic acid benzyl ester (0.69 g, 1.4 mmol) was dissolved in ethanol (10 mL), 10% Pd / C (50% wet, 43.3 mg) was added, and hydrogen substitution was performed. After stirring at room temperature for 2 hours, the insoluble material was filtered off. A white solid obtained by concentrating the filtrate under reduced pressure was analyzed by NMR. As a result, it was found that the title compound was quantitatively obtained (79.7% de).

Comparative Example 1 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo Lysine-4-carboxylic acid t-butyl ester (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid t-butyl ester (0.50 g, 2.49 mmol, 78% ee) was added under nitrogen atmosphere. Dissolved in tetrahydrofuran (4.0 mL) and cooled to about −12 ° C. Under a nitrogen stream, t-butoxypotassium (0.65 mol / L THF solution, 4.0 mL, 2.61 mmol) was added, and the mixture was stirred at the same temperature for 5 minutes. N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (0.31 mol / L tetrahydrofuran solution, 8 mL, 2.48 mmol) was added to the reaction mixture at −12 to − The solution was added dropwise at 6 ° C. and stirred at the same temperature for 3 hours. Water (10 mL) was added to the reaction mixture, tetrahydrofuran was distilled off, and the mixture was extracted twice with ethyl acetate (10 mL). The organic layer was washed with water (10 mL), and the resulting solution was concentrated under reduced pressure. From NMR, it was found that the title compound was produced in an amount of 971.8 mg (2.11 mmol, yield 84.9%) (20% de).


(比較例2)4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸
窒素雰囲気下、テトラヒドロフラン2mLに(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル(0.23g、1.00mmol、エナンチオマー不検出)を溶解し、4℃に冷却した。4〜7℃でt−BuOK(0.66mol/Lテトラヒドロフラン溶液、1.5mL、0.99mmol)を2分かけて添加し、5分撹拌した。この溶液に、5−7℃でN−(1−(S)−エトキシカルボニル−3−フェニルプロピル)−L−アラニン−N−カルボキシ無水物(0.21g/mLテトラヒドロフラン溶液、1.5mL、1.03mmol)を2分かけて添加し、4時間撹拌した。反応液に10%クエン酸水溶液(10mL)と酢酸エチル(10mL)を投入した。混合液は分層するので有機層を分取し、6%炭酸水素ナトリウム水溶液(10mL)で洗浄後、減圧濃縮した。得られた無色油状物をNMRにより分析した結果、表題化合物が0.24g(0.49mmol、収率50%)生成していることが判った。

Comparative Example 2 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazo lysine-4-carboxylic acid under a nitrogen atmosphere, was dissolved in tetrahydrofuran 2mL of (4S)-1-methyl-2-oxo-imidazolidine-4-carboxylic acid benzyl ester (0.23 g, 1.00 mmol, enantiomer not detected), Cooled to 4 ° C. At 4 to 7 ° C., t-BuOK (0.66 mol / L tetrahydrofuran solution, 1.5 mL, 0.99 mmol) was added over 2 minutes and stirred for 5 minutes. To this solution was added N- (1- (S) -ethoxycarbonyl-3-phenylpropyl) -L-alanine-N-carboxyanhydride (0.21 g / mL tetrahydrofuran solution, 1.5 mL, 0.03 mmol) was added over 2 minutes and stirred for 4 hours. A 10% aqueous citric acid solution (10 mL) and ethyl acetate (10 mL) were added to the reaction solution. Since the mixture was separated, the organic layer was separated, washed with a 6% aqueous sodium hydrogen carbonate solution (10 mL), and concentrated under reduced pressure. As a result of analyzing the obtained colorless oil by NMR, it was found that 0.24 g (0.49 mmol, yield 50%) of the title compound was produced.

得られた4(S)−1−メチル−3−{(2S)−2−[N−((1S)−1−エトキシカルボニル−3−フェニルプロピル)アミノ]プロピオニル}−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル(0.37g、0.46mmol)をエタノール(10mL)に溶解し、10%Pd/C(50%wet、24.6mg)を加え、水素置換した。室温にて4時間撹拌後、不溶物をろ別した。ろ液を減圧濃縮して得られた白色個体をNMRにより分析した結果、表題化合物が定量的に得られていることが判った。また、HPLCにより(4S)−1−メチル−2−オキソイミダゾリジン−4−カルボン酸ベンジルエステル由来の不斉炭素の光学純度を求めたところ、9.7%deであった。   Obtained 4 (S) -1-methyl-3-{(2S) -2- [N-((1S) -1-ethoxycarbonyl-3-phenylpropyl) amino] propionyl} -2-oxoimidazolidine- 4-Carboxylic acid benzyl ester (0.37 g, 0.46 mmol) was dissolved in ethanol (10 mL), 10% Pd / C (50% wet, 24.6 mg) was added, and hydrogen substitution was performed. After stirring at room temperature for 4 hours, insoluble matters were filtered off. As a result of NMR analysis of the white solid obtained by concentrating the filtrate under reduced pressure, it was found that the title compound was obtained quantitatively. The optical purity of the asymmetric carbon derived from (4S) -1-methyl-2-oxoimidazolidine-4-carboxylic acid benzyl ester was determined by HPLC and found to be 9.7% de.

Claims (15)

一般式(1);
Figure 0004799085
(式中、*は不斉炭素原子を表し、nは1〜4の整数を表し、R1は置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基、置換基を有していてもよいC7〜C20のアラルキル基を表し、R2は水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表す)で表される光学活性環状尿素カルボン酸誘導体を、一般式(5);
6 MgX (5)
(式中、R 6 は置換基を有していてもよいC 1 〜C 20 のアルキル基、置換基を有していてもよいC 2 〜C 20 のアルケニル基、置換基を有していてもよいC 6 〜C 20 のアリール基または置換基を有していてもよいC 7 〜C 20 のアラルキル基を表し、Xはハロゲン原子を表す)または下記式(6);
Figure 0004799085
(式中、Xは前記と同じ意味を表し、R 7 およびR 8 はそれぞれ独立に、置換基を有していてもよいC 1 〜C 20 のアルキル基、置換基を有していてもよいC 6 〜C 20 のアリール基、置換基を有してもよいC 7 〜C 20 のアラルキル基または置換されていてもよいシリル基を表し、互いに異なっていても同じでもよい)で表されるマグネシウム化合物と反応させ、続いて、一般式(4);
Figure 0004799085
(式中、R3は水素原子、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表し、R4、R5は、それぞれ独立に置換基を有していてもよいC1〜C20のアルキル基、置換基を有していてもよいC6〜C20のアリール基または置換基を有していてもよいC7〜C20のアラルキル基を表し、互いに異なっていても同じであってもよい。*は前記と同じ意味を表す)で表される光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体と反応させ、必要に応じてR2を除去することを特徴とする一般式(3);
Figure 0004799085
(式中、*、n、R1、R3、R4、R5は前記と同じ意味を表す。R9は水素原子、マグネシウムハライド、アルカリ金属、アルカリ土類金属、置換基を有していてもよいシリル基、置換基を有していてもよいC1〜C20のアルキル基または置換基を有していてもよいC7〜C20のアラルキル基を表す。)で表される光学活性N置換アミノアシル環状尿素誘導体およびその塩の製造法。
General formula (1);
Figure 0004799085
(In the formula, * represents an asymmetric carbon atom, n represents an integer of 1 to 4, and R 1 has an optionally substituted C 1 to C 20 alkyl group or substituent. An optionally substituted C 6 to C 20 aryl group, an optionally substituted C 7 to C 20 aralkyl group, and R 2 represents a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, substituted a silyl group which may have a group, and represented) an aralkyl group of the alkyl group or substituent optionally C 7 -C 20 optionally having which may have a substituent C 1 -C 20 The optically active cyclic urea carboxylic acid derivative represented by the general formula (5);
R 6 MgX (5)
(In the formula, R 6 has an optionally substituted C 1 to C 20 alkyl group, an optionally substituted C 2 to C 20 alkenyl group, and an optionally substituted group. Or a C 6 -C 20 aryl group or a C 7 -C 20 aralkyl group which may have a substituent , and X represents a halogen atom) or the following formula (6):
Figure 0004799085
(In the formula, X represents the same meaning as described above, and R 7 and R 8 each independently have a C 1 to C 20 alkyl group which may have a substituent, and may have a substituent. A C 6 -C 20 aryl group, a C 7 -C 20 aralkyl group which may have a substituent or an optionally substituted silyl group, which may be different or the same. Reacting with a magnesium compound, followed by general formula (4);
Figure 0004799085
(In the formula, R 3 represents a hydrogen atom, an optionally substituted C 1 to C 20 alkyl group or an optionally substituted C 7 to C 20 aralkyl group, and R 4 , R 5 each independently has a C 1 to C 20 alkyl group which may have a substituent, a C 6 to C 20 aryl group which may have a substituent, or a substituent. Represents a C 7 to C 20 aralkyl group which may be different or the same, and * represents the same meaning as described above.) Reaction of carboxyl group of optically active N-substituted amino acid derivative A general formula (3) characterized in that R 2 is removed if necessary by reacting with a functional derivative;
Figure 0004799085
(In the formula, *, n, R 1 , R 3 , R 4 and R 5 represent the same meaning as described above. R 9 has a hydrogen atom, magnesium halide, alkali metal, alkaline earth metal, or substituent. A silyl group that may be substituted, a C 1 to C 20 alkyl group that may have a substituent, or a C 7 to C 20 aralkyl group that may have a substituent. Process for producing active N-substituted aminoacyl cyclic urea derivatives and salts thereof.
前記式(4)で表される光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体が、前記式(4)で表される化合物のカルボキシル基のNカルボキシ無水物または活性エステルである請求項1記載の製造法。   The reactive derivative of the carboxyl group of the optically active N-substituted amino acid derivative represented by the formula (4) is an N carboxyl anhydride or an active ester of the carboxyl group of the compound represented by the formula (4). The manufacturing method described. 前記式(4)で表される光学活性N置換アミノ酸誘導体のカルボキシル基の反応性誘導体が一般式(2);
Figure 0004799085
(式中、R3、R4、R5、*は前記と同じ意味を表す。)で表される光学活性N置換アミノ酸Nカルボキシ無水物である請求項1または2記載の製造法。
The reactive derivative of the carboxyl group of the optically active N-substituted amino acid derivative represented by the formula (4) is represented by the general formula (2);
Figure 0004799085
(Wherein R 3 , R 4 , R 5 , * represent the same meaning as described above), the production method according to claim 1 or 2, wherein the optically active N-substituted amino acid N carboxy anhydride is represented.
6が置換基を有していてもよいC1〜C20の3級アルキル基である請求項1〜3のいずれかに記載の製造法。 The production method according to claim 1, wherein R 6 is a C 1 to C 20 tertiary alkyl group which may have a substituent. 7とR8がイソプロピル基である請求項1〜4のいずれかに記載の製造法。 R < 7 > and R < 8 > is an isopropyl group, The manufacturing method in any one of Claims 1-4 . 前記式(1)で表される化合物と前記式(4)で表される化合物との一連の反応を40℃以下で行う請求項1〜のいずれかに記載の製造法。 The manufacturing method in any one of Claims 1-5 which perform a series of reaction with the compound represented by said Formula (1), and the compound represented by said Formula (4) at 40 degrees C or less. 2が置換基を有していてもよいC1〜C20の3級アルキル基である請求項1〜のいずれかに記載の製造法。 Process according to any one of claims. 1 to 6 R 2 is a tertiary alkyl group optionally C 1 -C 20 which may have a substituent. 2が置換基を有していてもよいC7〜C20のアラルキル基である請求項1〜のいずれかに記載の製造法。 Process according to any one of claims. 1 to 6 R 2 is an aralkyl group optionally C 7 -C 20 which may have a substituent. 請求項1〜8のいずれかに記載の方法により得られた一般式(7);
Figure 0004799085
で表される化合物を、酸と塩を形成させることを特徴とする、前記式(7)で表される化合物の塩の取得法。
General formula (7) obtained by the method according to any one of claims 1 to 8 ;
Figure 0004799085
A method for obtaining a salt of a compound represented by the formula (7), wherein the compound represented by the formula is formed into a salt with an acid.
水性液中で酸と塩を形成させることを特徴とする、請求項記載の取得法。 The method according to claim 9 , wherein a salt is formed with an acid in an aqueous liquid. 塩の形成が、pH5〜9に調整した水性液を酸と混合させてpH1〜4に調整することによる請求項9または10に記載の取得法。 The acquisition method according to claim 9 or 10 , wherein the salt is formed by mixing an aqueous liquid adjusted to pH 5 to 9 with an acid to adjust to pH 1 to 4. 酸が鉱酸である、請求項9〜11のいずれか記載の取得法。 The acquisition method according to claim 9 , wherein the acid is a mineral acid. 水性液中に無機塩が共存する、請求項10〜12のいずれか記載の取得法。 The acquisition method according to any one of claims 10 to 12 , wherein an inorganic salt coexists in the aqueous liquid. nで表される整数が1である請求項1〜13のいずれかに記載の製造法。 The production method according to any one of claims 1 to 13 , wherein the integer represented by n is 1. *で表される不斉炭素の立体配置が全てS配置である請求項1〜14のいずれかに記載の製造法。 The production method according to any one of claims 1 to 14 , wherein all of the configuration of the asymmetric carbon represented by * is an S configuration.
JP2005254614A 2005-09-02 2005-09-02 Process for producing optically active N-substituted aminoacyl cyclic urea derivative Active JP4799085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254614A JP4799085B2 (en) 2005-09-02 2005-09-02 Process for producing optically active N-substituted aminoacyl cyclic urea derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254614A JP4799085B2 (en) 2005-09-02 2005-09-02 Process for producing optically active N-substituted aminoacyl cyclic urea derivative

Publications (2)

Publication Number Publication Date
JP2007063231A JP2007063231A (en) 2007-03-15
JP4799085B2 true JP4799085B2 (en) 2011-10-19

Family

ID=37925818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254614A Active JP4799085B2 (en) 2005-09-02 2005-09-02 Process for producing optically active N-substituted aminoacyl cyclic urea derivative

Country Status (1)

Country Link
JP (1) JP4799085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024632B (en) * 2021-03-28 2023-03-28 山东中健康桥制药有限公司 Preparation method of imidapril hydrochloride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058233B2 (en) * 1982-05-24 1985-12-19 田辺製薬株式会社 2-oxoimidazolidine derivative and its production method
JP4576649B2 (en) * 1999-10-29 2010-11-10 東ソー株式会社 Novel oxazolidinone derivatives and uses thereof

Also Published As

Publication number Publication date
JP2007063231A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP3473976B2 (en) Method for producing alanylglutamine
KR100476636B1 (en) Process for the preparation of S-(-)-amlodipine by use of L-(+)-tartrate
KR101098116B1 (en) Improved process for preparing rebamipide
JP4799085B2 (en) Process for producing optically active N-substituted aminoacyl cyclic urea derivative
JP2011098975A (en) Chiral pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and method for producing crystal structure transformation product thereof
JP2000351776A (en) Production of optically active homocysteinethiolactone salt and its intermediate
JP2008115178A (en) PRODUCTION METHOD OF DIPHENYLALANINE-Ni(II) COMPLEX
JPWO2013011999A1 (en) Process for producing optically active 2-methylproline derivative
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
US20020198400A1 (en) Synthesis of 3-amino-3-aryl propanoates
JP2002371060A (en) Method for producing optically active aminopiperidine derivative
JP2008169204A (en) Method for preparing (1r, 2r)-2-amino-1-cyclopentanol
JP2008115179A (en) Production method of optically active 2-[(n-benzylprolyl)amino]benzophenone compound
JP2004231521A (en) Method for synthesizing 3-chloro-5-nitrotoluene
JP3740783B2 (en) Process for producing 4- (2-alkenyl) -2,5-oxazolidinediones
JP2000026384A (en) Production of optically active 4-amino-3-(dihalogeno- substituted phenyl)butyric acid
US20070037854A1 (en) Process for preparing sulfonamide-containing indole compounds
JP3832919B2 (en) Method for producing optically active cyanohydrin
JP2012041277A (en) Improved method for producing 1, 3-disubstituted pyrrolidine compound or salt thereof
JPH10101629A (en) Production of optically active butyric acid derivative
JP2006282605A (en) Preparation method of (3s, 4r)-trans-4-(4-fluorophenyl)-3-hydroxymethyl piperidine (+)-2&#39;-chlorotartranyl acid monohydrate and method for recovering optical resoluting agent
JP2007230906A (en) Method for preparing n, n-dimethylcarbamoylmethyl 4-hydroxyphenylacetate
JP2003064023A (en) Method of producing optically active hydroxybutyric acid derivative
JPH10130204A (en) Production of 4-halogeno-3-trifluoromethylphenoxybutanoic acid esters
JPWO2008026527A1 (en) Method for producing 3-cyanopyrrolidine derivatives and salts thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250