JP4796200B2 - Exhaust gas purification catalyst and method for regenerating the same - Google Patents
Exhaust gas purification catalyst and method for regenerating the same Download PDFInfo
- Publication number
- JP4796200B2 JP4796200B2 JP2010254467A JP2010254467A JP4796200B2 JP 4796200 B2 JP4796200 B2 JP 4796200B2 JP 2010254467 A JP2010254467 A JP 2010254467A JP 2010254467 A JP2010254467 A JP 2010254467A JP 4796200 B2 JP4796200 B2 JP 4796200B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- composite oxide
- gas purification
- nox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、排気ガス浄化用の触媒およびその再生処理方法に関し、例えば自動車、工場などからの排ガスを浄化する排気ガス浄化触媒として用いることができる。 The present invention relates to an exhaust gas purifying catalyst and a regeneration treatment method thereof, and can be used as an exhaust gas purifying catalyst for purifying exhaust gas from automobiles, factories, and the like.
従来、種々の排気ガス浄化触媒が開発されている。しかしながら、従来の排気ガス浄化触媒は、耐硫黄性が低いため、例えば硫黄成分を含有する燃料が燃焼して排出された排気ガスを処理する場合には、触媒性能が劣化する問題がある。 Conventionally, various exhaust gas purification catalysts have been developed. However, since the conventional exhaust gas purification catalyst has low sulfur resistance, for example, when exhaust gas discharged by combustion of a fuel containing a sulfur component is treated, there is a problem that the catalyst performance deteriorates.
例えば、排気ガス中にSOx(硫黄酸化物)が含まれている場合には、排気ガス浄化触媒であるNOx(窒素酸化物)吸収剤に吸収されるガス成分には、NOxだけではなくSOxも含まれる。NOx吸収剤に吸収されたSOxは、NOx吸収剤への流入排気ガスの空燃比を単にリッチにしただけではNOx吸収剤から放出されないため、NOx吸収剤に吸収されたSOxの量は次第に増大する。この結果、NOx吸収剤が吸収することができるNOxの量が低下し、最終的にはNOxをほとんど吸収できなくなってしまう。 For example, when SOx (sulfur oxide) is contained in the exhaust gas, not only NOx but also SOx is included in the gas component absorbed by the NOx (nitrogen oxide) absorbent that is the exhaust gas purification catalyst. included. Since SOx absorbed in the NOx absorbent is not released from the NOx absorbent simply by making the air-fuel ratio of the exhaust gas flowing into the NOx absorbent simply rich, the amount of SOx absorbed in the NOx absorbent gradually increases. . As a result, the amount of NOx that can be absorbed by the NOx absorbent decreases, and finally, NOx can hardly be absorbed.
NOx吸収剤に吸収されたSOxを除去する技術としては、NOx吸収剤に硫酸塩(BaSO4)の形態で安定化した硫黄酸化物を、600℃以上に加熱して分解し、この際にNOx吸収剤に流入する排気ガスの空燃比をリッチ状態としてNOx吸収剤からSOxを放出させる技術が知られている(下記、特許文献1〜3を参照。)。
As a technique for removing SOx absorbed in the NOx absorbent, sulfur oxide stabilized in the form of sulfate (BaSO 4 ) in the NOx absorbent is heated to 600 ° C. or more and decomposed. A technique for releasing SOx from a NOx absorbent by setting the air-fuel ratio of exhaust gas flowing into the absorbent to a rich state is known (see
また、NOx吸収剤の前段にSOx吸脱剤を配置し、NOx吸収剤によるSOx吸収(硫黄被毒)を抑制する技術が知られている(下記、特許文献4を参照。)。さらに、排気ガス浄化触媒の担体として、酸化チタンなど酸性度の高い担体を用いてSOxを近接しにくくする技術が知られている。これによれば、酸化チタンなどの担体はSOxを吸収しにくく、また吸収されたSOxは担体に担持されるNOx吸収剤に吸収された場合に比べて低温で脱離しやすいため、硫黄被毒を防止することができる(下記、特許文献5を参照。)。
In addition, a technique is known in which a SOx adsorbing / desorbing agent is disposed in front of the NOx absorbent to suppress SOx absorption (sulfur poisoning) by the NOx absorbent (see
上述するように、排気ガス浄化触媒に吸収されたSOxを除去するためには、例えば、600℃以上の高温で触媒を加熱し、SOxを除去する方法が採用されているが、この際の加熱温度はNOx処理(除去)温度より高いため、別途の外部熱源又は非常に高温な排気ガスを必要とする。また、触媒を高温で加熱することにより、触媒が劣化してしまったり、触媒の劣化防止のための非常に高価な耐熱材料が必要となったりする。 As described above, in order to remove SOx absorbed in the exhaust gas purification catalyst, for example, a method of heating the catalyst at a high temperature of 600 ° C. or higher and removing SOx is employed. Since the temperature is higher than the NOx treatment (removal) temperature, a separate external heat source or a very hot exhaust gas is required. In addition, when the catalyst is heated at a high temperature, the catalyst is deteriorated, or a very expensive heat-resistant material for preventing deterioration of the catalyst is required.
また、例えば、NOx吸収剤を硫黄被毒から保護するためのSOx吸脱剤が特別に必要となる。さらに、酸化チタンなど酸性度の高い担体を用いても、担体に担持されるNOx吸収剤に排気ガスが接触することには変わりはなく、経時劣化を完全に抑制することはできない。 Further, for example, an SOx adsorbent / desorbent for protecting the NOx absorbent from sulfur poisoning is specially required. Furthermore, even when a highly acidic carrier such as titanium oxide is used, the exhaust gas contacts the NOx absorbent supported on the carrier, and deterioration over time cannot be completely suppressed.
本発明は、上記状況に鑑みてなされたものであり、SOx被毒から低温で迅速に再生することが可能であり、この結果、耐硫黄特性について高い耐久性を有する排気ガス浄化用の触媒およびその再生処理方法を提供することを目的とする。本発明に係る排気ガス浄化用の触媒は、例えば自動車、工場などからの排ガスを浄化する排気ガス浄化触媒として用いることができる。 The present invention has been made in view of the above situation, and can be quickly regenerated from SOx poisoning at low temperatures. As a result, a catalyst for exhaust gas purification having high durability with respect to sulfur resistance characteristics and An object of the present invention is to provide a reproduction processing method. The exhaust gas purifying catalyst according to the present invention can be used as an exhaust gas purifying catalyst for purifying exhaust gas from, for example, automobiles and factories.
上記課題を解決する本発明に係る排気ガス浄化用の触媒は、
排ガス中のNOxを除去する排気ガス浄化用の触媒であって、
一般式:La1-xBaxCoOyの複合酸化物触媒を含有し、
Au,Ag,Pt,Pd,Ir,Rh及びRuからなる群のうちの少なくとも一種の元素が当該複合酸化物触媒に担持されているか、又は当該複合酸化物触媒中に含有されていることを特徴とする排気ガス浄化用の触媒である。
ただし、0<x<1であり、2≦y≦4である。
The exhaust gas purifying catalyst according to the present invention that solves the above problems is
A catalyst for exhaust gas purification that removes NOx in exhaust gas,
Containing a complex oxide catalyst of general formula: La 1-x Ba x CoO y ,
At least one element selected from the group consisting of Au, Ag, Pt, Pd, Ir, Rh and Ru is supported on or contained in the composite oxide catalyst. The exhaust gas purifying catalyst.
However, 0 <x <1 and 2 ≦ y ≦ 4.
一般式:L1-xBaxCoOyの材料とは、一般的にABO3(酸素量は、A サイト又はBサイトの成分により変動する場合がある。)で示されるペロブスカイト系材料である。本発明では、B サイトをコバルト(Co)とすると共に、Aサイトをランタノイド系元素のみで形成するのではなく一部をバリウム(Ba)により置換した。 The material of the general formula: L 1-x Ba x CoO y is a perovskite material generally represented by ABO 3 (the amount of oxygen may vary depending on the components of the A site or the B site). In the present invention, the B site is made of cobalt (Co), and the A site is not formed only by the lanthanoid element, but a part thereof is substituted by barium (Ba).
NOx除去性能はバリウム置換量に依存し、0.5≦x≦1.0の置換量のときが好ましく、特にxが約0.7のときに優れたNOx除去性能を有する。 The NOx removal performance depends on the amount of barium substitution, and is preferably a substitution amount of 0.5 ≦ x ≦ 1.0, and particularly has excellent NOx removal performance when x is about 0.7.
触媒に担持されているとは、複合酸化物触媒の表面に付着している状態や、マクロレベルの塊として触媒内部に存在する状態をいう。また、触媒中に含有されているとは、ミクロレベルで触媒内部に存在する状態をいい、例えば、上記種々の元素が、Aサイト又はBサイト内に含まれて、ペロブスカイト結晶構造の一部を形成している場合などである。
なお、上記複合酸化物触媒はペロブスカイト相に限定されるものではなく、調製条件によっては、ペロブスカイト相以外に各構成元素の出発原料物質(酸化物、水酸化物、塩化物、炭酸塩、硝酸塩など)、各構成元素の酸化物、ペロブスカイト相以外の複合酸化物などの状態を含む場合もある。
“Supported by the catalyst” means a state of being attached to the surface of the composite oxide catalyst or a state of being present inside the catalyst as a macro-level lump. Further, being contained in the catalyst means a state existing inside the catalyst at a micro level. For example, the above various elements are included in the A site or the B site, and a part of the perovskite crystal structure is formed. This is the case.
The composite oxide catalyst is not limited to the perovskite phase. Depending on the preparation conditions, the starting material of each constituent element other than the perovskite phase (oxide, hydroxide, chloride, carbonate, nitrate, etc.) ), Oxides of each constituent element, and complex oxides other than the perovskite phase.
上記複合酸化物触媒は、SOx被毒から低温で迅速に再生することが可能という優れた特徴を有しており、例えば、液体中の硫黄成分が触媒作用を阻害する液系で用いる場合など、排気ガス浄化用の触媒以外に種々の用途が考えられる。しかしながら、上記複合酸化物触媒は、NOx除去性能をも有しているため、特に、排気ガス浄化用の触媒として用いることにより、効果的な使用方法とすることができる。 The composite oxide catalyst has an excellent feature that it can be rapidly regenerated from SOx poisoning at a low temperature. For example, when used in a liquid system in which a sulfur component in a liquid inhibits catalytic action, Various uses other than the catalyst for exhaust gas purification are conceivable. However, since the composite oxide catalyst also has NOx removal performance, it can be used effectively as an exhaust gas purifying catalyst.
また、上記課題を解決する本発明に係る排気ガス浄化用の触媒の再生処理方法は、
600℃以下にて空燃比をリッチ状態とした排ガスを上記排ガス浄化用の触媒に接触させることにより、当該排ガス浄化用の触媒に吸収されたSOxを除去することを特徴とする排ガス浄化用の触媒の再生処理方法である。
Further, an exhaust gas purification catalyst regeneration method according to the present invention that solves the above problems is
An exhaust gas purifying catalyst characterized by removing SOx absorbed by the exhaust gas purifying catalyst by bringing the exhaust gas having a rich air-fuel ratio at 600 ° C. or less into contact with the exhaust gas purifying catalyst. This is a reproduction processing method.
本発明に係る排気ガス浄化用の触媒によれば、SOx被毒から低温(600℃以下)で迅速に再生することが可能であり、耐硫黄特性について高い耐久性を有する触媒とすることができる。また、低温かつ短時間で再生することができるため、触媒に対する再生時の熱ダメージを格段に抑制することができ、長寿命の触媒とすることができる。更に、従来触媒と比較し、短時間で再生できるため、燃料ガスの無駄を少なくすることができる。このような効果を有する本発明に係る触媒は、例えば自動車、工場などからの排ガスを浄化する排気ガス浄化触媒として用いることができる。 The exhaust gas purifying catalyst according to the present invention can be rapidly regenerated from SOx poisoning at a low temperature (600 ° C. or lower), and can be a catalyst having high durability with respect to sulfur resistance. . Moreover, since it can reproduce | regenerate in low temperature and a short time, the thermal damage at the time of reproduction | regeneration with respect to a catalyst can be suppressed markedly, and it can be set as a long life catalyst. Furthermore, since it can be regenerated in a short time compared to conventional catalysts, waste of fuel gas can be reduced. The catalyst according to the present invention having such effects can be used as an exhaust gas purification catalyst for purifying exhaust gas from, for example, automobiles and factories.
実施形態に係る複合酸化物触媒を以下に説明するが、本発明は以下の実施形態に限定されるものではない。第1の実施形態として、一般式:L1-xBaxCoOyの材料の複合酸化物触媒について説明する。また、第2の実施形態として、一般式:BaBxOyの材料の複合酸化物触媒について説明する。 The composite oxide catalyst according to the embodiment will be described below, but the present invention is not limited to the following embodiment. As a first embodiment, a composite oxide catalyst of a material of the general formula: L 1-x Ba x CoO y will be described. Further, as a second embodiment, a composite oxide catalyst made of a material of the general formula: BaB x O y will be described.
<複合酸化物触媒の調製方法>
これらの複合酸化物触媒は、各金属元素の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩又は塩化物などを所定の割合で混合し、最終的に600〜1000℃、好ましくは700〜900℃で2〜10時間程度焼成して調製することができる。
<Method for preparing composite oxide catalyst>
These composite oxide catalysts are prepared by mixing oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates or chlorides of each metal element at a predetermined ratio, and finally 600 to It can be prepared by firing at 1000 ° C., preferably 700 to 900 ° C. for about 2 to 10 hours.
更に、Au,Ag,Pt,Pd,Ir,Rh及びRuなどの金属元素を担持又は含有させる場合には、上記焼成後の複合酸化物触媒にこれらの金属元素を含ませてから更に焼成して調製したり、上記種々の金属塩とともに混合して同時に焼成して調製したりすればよい。 Furthermore, when supporting or containing metal elements such as Au, Ag, Pt, Pd, Ir, Rh, and Ru, these metal elements are included in the composite oxide catalyst after calcination, followed by further calcination. What is necessary is just to prepare, or to mix with the said various metal salt, and to bake simultaneously and to prepare.
上記各金属元素の塩の混合法としては、それぞれの金属塩を固体状態で混合する方法、それぞれの金属塩の溶液(水溶液など)を混合した後、蒸発乾固する方法、それぞれの金属塩の混合溶液をアンモニア水等のアルカリ溶液で加水分解する共沈法などを用いることができる。具体的には、ボールミル混合による固相法、共沈法、熱分解法などが採用できる。 As a method for mixing each metal element salt, a method in which each metal salt is mixed in a solid state, a method in which each metal salt solution (such as an aqueous solution) is mixed and then evaporated to dryness, A coprecipitation method in which the mixed solution is hydrolyzed with an alkaline solution such as aqueous ammonia can be used. Specifically, a solid phase method by ball mill mixing, a coprecipitation method, a thermal decomposition method, or the like can be employed.
より具体的には、例えばL1-xBaxCoOyの材料の複合酸化物触媒を調製するに当たり、原料物質として、水酸化ランタン、炭酸バリウム及び酸化コバルトを用意する。これらの原料物質を所望のバリウム置換量やAサイト及びBサイトの最適バランスが得られるような割合で仮混合する。更に溶媒(エタノールや分散剤など)を加えて、ボールミルで20時間混合する。その後、120℃で乾燥させ、850℃で10時間焼成することにより複合酸化物触媒を得た。 More specifically, for example, lanthanum hydroxide, barium carbonate, and cobalt oxide are prepared as raw materials for preparing a composite oxide catalyst of a material of L 1-x Ba x CoO y . These raw materials are temporarily mixed in such a ratio that the desired amount of barium substitution and the optimal balance between the A site and the B site can be obtained. Further, a solvent (ethanol, dispersant, etc.) is added and mixed for 20 hours with a ball mill. Then, it dried at 120 degreeC and obtained the complex oxide catalyst by baking at 850 degreeC for 10 hours.
更に、得られた複合酸化物触媒にロジウム(Rh)を担持させるため、複合酸化物触媒に硝酸ロジウム溶液を含浸(ロジウム量として1wt%)させた後、500℃で5時間焼成した。 Further, in order to support rhodium (Rh) on the obtained composite oxide catalyst, the composite oxide catalyst was impregnated with a rhodium nitrate solution (1 wt% as the amount of rhodium) and then calcined at 500 ° C. for 5 hours.
<複合酸化物触媒の性能の評価方法>
複合酸化物触媒の性能の評価方法としては、まず、NOx除去性能(初期性能)を測定してある複合酸化物触媒を硫黄被毒させた後、Sパージ再生を実施し、再生後の複合酸化物触媒のNOx除去性能を測定する。そして、硫黄被毒により劣化したNOx除去性能が、初期のNOx除去性能の約50%にまで回復(回復率が50%)するのに必要とされるSパージ再生時間を求めて、該再生時間の長さにより評価した。すなわち、Sパージ再生によりNOx除去性能が回復する時間が短時間な触媒ほど、優れた触媒という評価になる。
<Method for evaluating performance of composite oxide catalyst>
As a method for evaluating the performance of the composite oxide catalyst, first, the composite oxide catalyst whose NOx removal performance (initial performance) has been measured is sulfur-poisoned, and then S purge regeneration is performed, and the composite oxidation after regeneration is performed. The NOx removal performance of the product catalyst is measured. Then, the S purge regeneration time required for the NOx removal performance deteriorated by sulfur poisoning to recover to about 50% of the initial NOx removal performance (recovery rate is 50%) is obtained, and the regeneration time is determined. The length was evaluated. That is, a catalyst having a shorter time for recovering NOx removal performance by S purge regeneration is evaluated as a superior catalyst.
硫黄被毒の条件としては、硫黄分(SO2)が200ppm、酸素(O2)及び水分(H2O)がそれぞれ10%のガスを、温度350℃、ガス流量500ml/分、空塔速度SV(=通ガス流量(m3/h)/触媒容量(m3))30000h-1で8時間、複合酸化物触媒に接触させた。 Conditions for sulfur poisoning include a gas having a sulfur content (SO 2 ) of 200 ppm, oxygen (O 2 ) and water (H 2 O) of 10%, a temperature of 350 ° C., a gas flow rate of 500 ml / min, and a superficial velocity. The composite oxide catalyst was contacted at SV (= gas flow rate (m 3 / h) / catalyst capacity (m 3 )) 30000 h −1 for 8 hours.
また、Sパージ再生の条件としては、一酸化窒素(NO)が500ppm、一酸化炭素(CO)が4%、炭化水素(C3H6)が100ppm、二酸化炭素(CO2)が6%のガスを、温度475℃、ガス流量350ml/分で所定時間、複合酸化物触媒に接触させた。 The conditions for the S purge regeneration are as follows: nitrogen monoxide (NO) is 500 ppm, carbon monoxide (CO) is 4%, hydrocarbon (C 3 H 6 ) is 100 ppm, and carbon dioxide (CO 2 ) is 6%. The gas was brought into contact with the composite oxide catalyst at a temperature of 475 ° C. and a gas flow rate of 350 ml / min for a predetermined time.
また、NOx除去性能の評価条件としては、NOを500ppm、COを4%、C3H6を100ppm、CO2を6%含むリッチガスと、NOを500ppm、COを240ppm、C3H6を100ppm、CO2を4.8%、O2を10%含むリーンガスとを交互(リーンガス57秒、リッチガス3秒)に、ガス流量350ml/分、空塔速度SV300000h-1で、複合酸化物触媒に接触させた。そして、触媒を通過する前のNO量と、触媒通過後のNO量とを比較することによりNOx除去性能を測定した。
The evaluation conditions for the NOx removal performance are: rich gas containing 500 ppm NO, 4% CO, 100 ppm C 3 H 6 and 6% CO 2 , 500 ppm NO, 240 ppm CO, 100 ppm C 3 H 6 , Contact with the composite oxide catalyst alternately with lean gas containing 4.8% CO 2 and 10% O 2 (lean gas 57 seconds,
<第1の実施形態>
第1の実施形態に係る複合酸化物触媒は、一般式:L1-xBaxCoOyの材料の複合酸化物触媒であり、具体的には、1wt%Rh/La0.3Ba0.7CoOyである。すなわち、x=0.7とし、ロジウム(Rh)を1wt%担持させた複合酸化物触媒である。
<First Embodiment>
The composite oxide catalyst according to the first embodiment is a composite oxide catalyst of a material of the general formula: L 1-x Ba x CoO y , specifically, 1 wt% Rh / La 0.3 Ba 0.7 CoO y is there. That is, it is a composite oxide catalyst in which x = 0.7 and 1 wt% rhodium (Rh) is supported.
なお、L成分はランタン(La)に限られず、ランタノイド(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)を構成する元素のうち少なくとも一種であればよく、0<x≦1であり、2≦y≦4であればよい。また、担持又は含有させる金属元素としては、Au,Ag,Pt,Pd,Ir,Rh及びRuが挙げられる。 The L component is not limited to lanthanum (La), but is an element constituting lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). At least one of them may be sufficient, 0 <x ≦ 1, and 2 ≦ y ≦ 4. Moreover, Au, Ag, Pt, Pd, Ir, Rh, and Ru are mentioned as a metal element to carry | support or contain.
また、比較例に係る従来触媒としては、Pt−Rh/Ba/金属酸化物を用意した。すなわち、Al2O3、CeO2、ZrO2、TiO2等の金属酸化物の担体に、アルカリ土類金属であるバリウム(Ba)と、貴金属である白金(Pt)及びロジウム(Rh)とを担持させた触媒である。 Moreover, Pt-Rh / Ba / metal oxide was prepared as a conventional catalyst according to the comparative example. That is, an alkaline earth metal barium (Ba) and noble metals platinum (Pt) and rhodium (Rh) are supported on a metal oxide carrier such as Al 2 O 3 , CeO 2 , ZrO 2 , and TiO 2. A supported catalyst.
図1は、第1の実施形態に係る複合酸化物触媒と従来の触媒とのNOx除去性能の回復速度を比較した図である。同図に示すように、硫黄被毒により劣化したNOx除去性能が、初期のNOx除去性能の約50%にまで回復(回復率が50%)するのに必要とされるSパージ再生時間は、従来の触媒では30分であるのに対して、第1の実施形態に係る複合酸化物触媒では3分であった。 FIG. 1 is a diagram comparing the recovery rates of NOx removal performance between the composite oxide catalyst according to the first embodiment and a conventional catalyst. As shown in the figure, the S purge regeneration time required for the NOx removal performance deteriorated by sulfur poisoning to recover to about 50% of the initial NOx removal performance (recovery rate is 50%) is: While it was 30 minutes with the conventional catalyst, it was 3 minutes with the composite oxide catalyst according to the first embodiment.
すなわち、第1の実施形態に係る複合酸化物触媒は、475度という低温のSパージ再生であっても、極めて短時間にNOx除去性能が回復する触媒であることが分かる。 That is, it can be seen that the complex oxide catalyst according to the first embodiment is a catalyst whose NOx removal performance is recovered in a very short time even when the S purge regeneration is performed at a low temperature of 475 degrees.
図2は、第1の実施形態に係る複合酸化物触媒のNOx除去性能の回復速度と触媒組成に係る係数xとの関係図である。同図に示すように、硫黄被毒により劣化したNOx除去性能が回復する速度は、複合酸化物触媒のAサイトにおけるランタン成分のバリウム置換量により変化することが分かる。 FIG. 2 is a relationship diagram between the recovery rate of the NOx removal performance of the composite oxide catalyst according to the first embodiment and the coefficient x related to the catalyst composition. As shown in the figure, it can be seen that the speed at which the NOx removal performance deteriorated by sulfur poisoning recovers varies depending on the amount of barium substitution of the lanthanum component at the A site of the composite oxide catalyst.
詳細に説明すれば、x=0.2のときに回復率50%に必要とされるS パージ再生時間は約7分であり、x=0.7まではxの増加に伴って再生時間が徐々に短くなり、x=0.7のときに約3分となる。一方、x=0.7よりバリウム置換量が多くなると再生時間が徐々に長くなり、x=1.0のときに約5分となる。したがって、バリウム置換量としては、好ましくは0.5≦x≦1.0であり、特にxが約0.7のときに優れたNOx除去性能を有する。 More specifically, the S purge regeneration time required for a recovery rate of 50% when x = 0.2 is about 7 minutes, and the regeneration time increases as x increases until x = 0.7. The time is gradually shortened to about 3 minutes when x = 0.7. On the other hand, when the amount of barium substitution increases from x = 0.7, the regeneration time gradually increases, and when x = 1.0, it takes about 5 minutes. Therefore, the amount of barium substitution is preferably 0.5 ≦ x ≦ 1.0, and particularly has excellent NOx removal performance when x is about 0.7.
<第2の実施形態>
第2の実施形態に係る複合酸化物触媒は、一般式:BaBxOyの材料の複合酸化物触媒であり、具体的には、1wt%Rh/BaBxOyである。すなわち、ロジウム(Rh)を1wt%担持させた複合酸化物触媒である。
<Second Embodiment>
The composite oxide catalyst according to the second embodiment is a composite oxide catalyst of a material of the general formula: BaB x O y , specifically, 1 wt% Rh / BaB x O y . That is, it is a composite oxide catalyst supporting 1 wt% rhodium (Rh).
なお、B成分はTi,V,Cr,Mn,Fe,Co,Ni,Cu,Ce,Zr及びWからなる群のうち少なくとも一種であればよく、0<x≦1またはxは1よりも大きく、1≦y≦4であればよい。また、担持又は含有させる金属元素としては、Au,Ag,Pt,Pd,Ir,Rh及びRuが挙げられる。 The B component may be at least one of the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ce, Zr, and W, and 0 <x ≦ 1 or x is larger than 1. 1 ≦ y ≦ 4. Moreover, Au, Ag, Pt, Pd, Ir, Rh, and Ru are mentioned as a metal element to carry | support or contain.
Bサイトの係数xが、0<x≦1の場合には、Bサイトを構成する金属元素の量に比べてAサイトを構成するバリウム元素が過剰となり、バリウム元素が酸化物や炭酸塩などとして存在している場合がある。一方、Bサイトの係数xが、1より大きい場合には、Aサイトを構成するバリウム元素の量に比べてBサイトを構成する金属元素の量が過剰となり、Bサイトを構成する金属元素が酸化物などとして存在している場合がある。 When the coefficient x of the B site is 0 <x ≦ 1, the barium element constituting the A site is excessive compared to the amount of the metal element constituting the B site, and the barium element is converted into an oxide, carbonate, or the like. May exist. On the other hand, when the coefficient x of the B site is larger than 1, the amount of the metal element constituting the B site is excessive compared with the amount of the barium element constituting the A site, and the metal element constituting the B site is oxidized. It may exist as a thing.
図3は、第2の実施形態に係る複合酸化物触媒のNOx除去性能の回復速度と触媒組成に係る係数xとの関係図である。同図に示すように、硫黄被毒により劣化したNOx除去性能が回復する速度は、複合酸化物触媒のBサイトを構成する元素の係数xにより変化することが分かる。 FIG. 3 is a relationship diagram between the recovery rate of the NOx removal performance of the composite oxide catalyst according to the second embodiment and the coefficient x related to the catalyst composition. As shown in the figure, it can be seen that the speed at which the NOx removal performance deteriorated due to sulfur poisoning recovers varies depending on the coefficient x of the elements constituting the B site of the composite oxide catalyst.
詳細に説明すれば、x=1のときに回復率50%に必要とされるSパージ再生時間は約9分であり、xの増加に伴って再生時間が徐々に短くなり、x=4のときに約5分となる。係数xがいずれの値であっても再生時間は10分以下であり、再生に30分も必要とされる従来の触媒と比較して、優れたNOx除去性能を有することが分かる。 More specifically, the S purge regeneration time required for the recovery rate of 50% when x = 1 is about 9 minutes, and the regeneration time gradually decreases as x increases, so that x = 4 Sometimes about 5 minutes. Regardless of the value of the coefficient x, the regeneration time is 10 minutes or less, and it can be seen that the catalyst has excellent NOx removal performance as compared with a conventional catalyst that requires 30 minutes for regeneration.
Claims (2)
一般式:La1-xBaxCoOyの複合酸化物触媒を含有し、
Au,Ag,Pt,Pd,Ir,Rh及びRuからなる群のうちの少なくとも一種の元素が当該複合酸化物触媒に担持されているか、又は当該複合酸化物触媒中に含有されている
ことを特徴とする排気ガス浄化用の触媒。
ただし、0<x<1であり、2≦y≦4である。 A catalyst for exhaust gas purification that removes NOx in exhaust gas,
Containing a complex oxide catalyst of general formula: La 1-x Ba x CoO y ,
At least one element selected from the group consisting of Au, Ag, Pt, Pd, Ir, Rh and Ru is supported on or contained in the composite oxide catalyst. Exhaust gas purification catalyst.
However, 0 <x <1 and 2 ≦ y ≦ 4.
ことを特徴とする排ガス浄化用の触媒の再生処理方法。 The exhaust gas having a rich air-fuel ratio at 600 ° C. or lower is brought into contact with the exhaust gas purification catalyst according to claim 1 to remove SOx absorbed by the exhaust gas purification catalyst. A method for regenerating a catalyst for exhaust gas purification.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010254467A JP4796200B2 (en) | 2010-11-15 | 2010-11-15 | Exhaust gas purification catalyst and method for regenerating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010254467A JP4796200B2 (en) | 2010-11-15 | 2010-11-15 | Exhaust gas purification catalyst and method for regenerating the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005019066A Division JP2006205021A (en) | 2005-01-27 | 2005-01-27 | Composite oxide catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011041951A JP2011041951A (en) | 2011-03-03 |
JP4796200B2 true JP4796200B2 (en) | 2011-10-19 |
Family
ID=43829783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010254467A Active JP4796200B2 (en) | 2010-11-15 | 2010-11-15 | Exhaust gas purification catalyst and method for regenerating the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4796200B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014142956A1 (en) | 2013-03-15 | 2014-09-18 | Intel Corporation | Logic chip including embedded magnetic tunnel junctions |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3298873B2 (en) * | 1990-10-26 | 2002-07-08 | 大阪瓦斯株式会社 | NOx removal method |
JP2558568B2 (en) * | 1992-01-20 | 1996-11-27 | 財団法人石油産業活性化センター | Catalyst for catalytic reduction of nitrogen oxides |
JP4098835B2 (en) * | 1993-12-07 | 2008-06-11 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP4055256B2 (en) * | 1998-07-17 | 2008-03-05 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
JP2000051700A (en) * | 1998-08-11 | 2000-02-22 | Nissan Motor Co Ltd | Exhaust emission purifying catalyst and its production |
JP2002188435A (en) * | 2000-10-12 | 2002-07-05 | Toyota Motor Corp | Exhaust gas purifying filter |
JP2002161781A (en) * | 2000-11-29 | 2002-06-07 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
JP3800080B2 (en) * | 2001-11-30 | 2006-07-19 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
-
2010
- 2010-11-15 JP JP2010254467A patent/JP4796200B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011041951A (en) | 2011-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012093599A1 (en) | Exhaust gas purifying catalyst | |
EP2286896A2 (en) | Catalyst for removing nox from exhaust gas of lean-burning automobiles or incinerators | |
JP3952617B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP2008136951A (en) | Composite oxide for exhaust gas cleaning catalyst, exhaust gas cleaning catalyst, and diesel exhaust gas purifying filter | |
JP4796200B2 (en) | Exhaust gas purification catalyst and method for regenerating the same | |
JP6106197B2 (en) | NOx storage reduction type exhaust gas purification catalyst and exhaust gas purification method using the catalyst | |
JP4985351B2 (en) | Exhaust gas treatment catalyst and exhaust gas purification device | |
JP4941731B2 (en) | Exhaust gas purification system | |
JP5388052B2 (en) | Exhaust gas treatment catalyst | |
JP2006205021A (en) | Composite oxide catalyst | |
JP4665047B2 (en) | Exhaust gas purification catalyst and method for regenerating the same | |
JP6036276B2 (en) | Exhaust purification catalyst and method for producing exhaust purification catalyst | |
JP2003144926A (en) | Catalyst for cleaning exhaust gas of internal combustion engine, exhaust gas cleaning method and exhaust gas cleaning apparatus | |
JP2001198455A (en) | Nitrogen oxide adsorbent and its use | |
JP4415726B2 (en) | Exhaust gas purification catalyst and oxygen storage material for exhaust gas purification catalyst | |
JPH04215845A (en) | Catalyst for purifying exhaust gas | |
JP5160282B2 (en) | Exhaust gas purification material and exhaust gas purification filter | |
JP5163955B2 (en) | Exhaust gas purification catalyst | |
JP4835043B2 (en) | Exhaust gas purification catalyst | |
JP2000325780A (en) | Nitrogen oxide and/or sulfur oxide adsorbent | |
JP2002320847A (en) | Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide | |
JP2001293366A (en) | SOx ABSORBENT AND EXHAUST GAS CLEANING CATALYST USING THE SAME | |
JP4962753B2 (en) | Sulfur oxide absorber and exhaust gas purification device | |
JP5673173B2 (en) | Exhaust gas purification catalyst | |
JPWO2009044736A1 (en) | Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110728 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4796200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |