[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4795289B2 - Optical device apparatus having coupled optical waveguide - Google Patents

Optical device apparatus having coupled optical waveguide Download PDF

Info

Publication number
JP4795289B2
JP4795289B2 JP2007078765A JP2007078765A JP4795289B2 JP 4795289 B2 JP4795289 B2 JP 4795289B2 JP 2007078765 A JP2007078765 A JP 2007078765A JP 2007078765 A JP2007078765 A JP 2007078765A JP 4795289 B2 JP4795289 B2 JP 4795289B2
Authority
JP
Japan
Prior art keywords
waveguide
coupled
optical
waveguides
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078765A
Other languages
Japanese (ja)
Other versions
JP2008241834A (en
Inventor
純一郎 杉坂
宗継 山本
誠 岡野
和弘 小森
豊彦 谷田貝
雅英 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007078765A priority Critical patent/JP4795289B2/en
Publication of JP2008241834A publication Critical patent/JP2008241834A/en
Application granted granted Critical
Publication of JP4795289B2 publication Critical patent/JP4795289B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、フォトニック結晶を用いた結合光導波路を有する光デバイス装置に関する。   The present invention relates to an optical device device having a coupled optical waveguide using a photonic crystal.

誘電体に空間的な周期屈折率構造を作製した人工結晶をフォトニック結晶と呼び、特定の帯域の光の存在を禁止する現象が現れる。これは固体結晶中の電子に対するバンドギャップに対応させ、フォトニックバンドギャップと呼ばれている。この現象を利用すると、光を微小空間内に強く閉じ込めることができ、多数の光学素子を集積化させた微小光波回路の実現が期待されている。   An artificial crystal in which a spatial periodic refractive index structure is formed in a dielectric is called a photonic crystal, and a phenomenon that prohibits the presence of light in a specific band appears. This corresponds to the band gap for electrons in the solid crystal and is called a photonic band gap. By utilizing this phenomenon, light can be confined strongly in a minute space, and realization of a minute light wave circuit in which many optical elements are integrated is expected.

2次元フォトニック結晶とは、2次元周期的屈折率分布をもつ光材料であり、例えば、図1のような空気円孔を六方格子状に配置した六方格子2次元フォトニック結晶構造が考えられる。ここで、単位構造、結晶格子としては、それぞれ任意の構造が許される。空気円孔以外の単位構造としては、例えば、三角孔、誘電体円柱等が挙げられる。また、六方格子以外の結晶格子としては、例えば、正方格子、長方格子等が挙げられる。   The two-dimensional photonic crystal is an optical material having a two-dimensional periodic refractive index distribution. For example, a hexagonal lattice two-dimensional photonic crystal structure in which air holes are arranged in a hexagonal lattice shape as shown in FIG. 1 can be considered. . Here, arbitrary structures are allowed as the unit structure and the crystal lattice. Examples of the unit structure other than the air hole include a triangular hole and a dielectric cylinder. Examples of crystal lattices other than the hexagonal lattice include a tetragonal lattice and a rectangular lattice.

2次元フォトニック結晶中に、周期的な屈折率分布を乱す線状の欠陥を作製すると、光は欠陥内に強く閉じ込められ、欠陥方向に伝播する。これは光導波路として機能する。   When a linear defect that disturbs the periodic refractive index distribution is produced in the two-dimensional photonic crystal, light is strongly confined in the defect and propagates in the defect direction. This functions as an optical waveguide.

周期的な屈折率分布を乱す欠陥構造としては、様々な構造が考えられる。例えば、誘電体を付加する方法(図2(a))、誘電体を除去する方法(図2(b))、結晶構造をシフトする方法(図2(c))等が挙げられる。また、これらを同時に組み合わせて欠陥構造を形成することも可能である。   Various structures are conceivable as the defect structure that disturbs the periodic refractive index distribution. For example, a method of adding a dielectric (FIG. 2A), a method of removing the dielectric (FIG. 2B), a method of shifting the crystal structure (FIG. 2C), and the like can be mentioned. It is also possible to form a defect structure by combining these simultaneously.

2次元フォトニック結晶光導波路の導波モードは特異な分散関係を示し、さらに分散関係は結晶構造を変調させることで制御可能である。この特徴を利用した分散補償素子や光遅延素子などの実現が期待されている。   The waveguide mode of the two-dimensional photonic crystal optical waveguide shows a unique dispersion relationship, and the dispersion relationship can be controlled by modulating the crystal structure. Realization of a dispersion compensation element, an optical delay element, and the like using this feature is expected.

2次元フォトニック結晶を用いた光デバイス装置の一例として、方向性結合器がある。フォトニック結晶を用いた一般的な構造を図3に示す。これは2本の導波路を平行に配置した結合導波路の両端を、それぞれ2本の単一直線導波路に接続させたものである。   One example of an optical device device using a two-dimensional photonic crystal is a directional coupler. A general structure using a photonic crystal is shown in FIG. In this case, both ends of a coupled waveguide in which two waveguides are arranged in parallel are connected to two single linear waveguides, respectively.

方向性結合器の透過スペクトルは、本来Bar方向とCross方向が相補的に変化する特性を示す。しかし実際に測定して得られる透過スペクトルは、図4に示すように相補的に変化する特性は見られなかった。   The transmission spectrum of a directional coupler inherently shows the characteristic that the Bar direction and the Cross direction change complementarily. However, the transmission spectrum obtained by actual measurement did not show complementary characteristics as shown in FIG.

図5(a)は、従来の分岐導波路を伝播する光の磁場分布、(b)は他方の入力導波路を逆流する反射スペクトルと結合導波路入力端におけるBar、Cross方向の透過スペクトルである。他方の入力導波路を逆流する光の強度は0、結合導波路入力端におけるCross方向の透過光強度も0であることが理想的であるが、結合導波路端における反射により、他方の入力導波路(斜め単一導波路)へ光が逆流しており、Cross方向への光の漏れも大きい。これは磁場分布から分かるように、大部分の透過光が結合導波路内部へ閉じ込められないモードへ結合しているためである。   FIG. 5A is a magnetic field distribution of light propagating through a conventional branching waveguide, and FIG. 5B is a reflection spectrum that flows backward through the other input waveguide and a transmission spectrum in the Bar and Cross directions at the input end of the coupled waveguide. . Ideally, the intensity of the light that flows back through the other input waveguide is 0, and the transmitted light intensity in the Cross direction at the input end of the coupled waveguide is also 0, but the other input guide is reflected by reflection at the end of the coupled waveguide. Light flows backward to the waveguide (slant single waveguide), and light leakage in the Cross direction is also large. This is because most of the transmitted light is coupled to a mode that is not confined inside the coupling waveguide, as can be seen from the magnetic field distribution.

図6は計測中の方向性結合器を上方から撮影した写真である。結合導波路両端で光が上方へ散乱され、明るいスポットとなって観測されている。   FIG. 6 is a photograph of the directional coupler being measured taken from above. Light is scattered upward at both ends of the coupled waveguide and observed as bright spots.

また従来の(折れ)曲がり導波路を含まず、導波路中の光散乱や反射を回避する手法として、図7(b)のようにフォトニック結晶光導波路を自由曲線に沿って緩やかに歪曲させた導波路が提案されている。この光導波路は導波光の進行方向を緩やかに変えることができる。
このフォトニック結晶光導波路は、本発明の前提となるもので、「2次元フォトニック結晶において格子点を結ぶ直線を自由曲線に沿って歪曲させ、それに合わせて結晶構造全体を変形させるとともに、自由曲線上の屈折率構造を除去し、上記自由曲線を導波路中心線とした光導波路」と定義する。
上記フォトニック結晶光導波路は、図7の空気円孔六方格子フォトニック結晶に限らず、図8の正方格子、円や三角形の半導体ロッドの周期構造など、あらゆる2次元フォトニック結晶に適用できる。
As a method for avoiding light scattering and reflection in the waveguide without including the conventional (bent) bent waveguide, the photonic crystal optical waveguide is gently distorted along a free curve as shown in FIG. 7B. Waveguides have been proposed. This optical waveguide can gently change the traveling direction of the guided light.
This photonic crystal optical waveguide is a premise of the present invention. “In a two-dimensional photonic crystal, a straight line connecting lattice points is distorted along a free curve, and the entire crystal structure is deformed accordingly. The refractive index structure on the curve is removed, and the optical curve is defined as the waveguide having the free curve as the center line of the waveguide.
The photonic crystal optical waveguide is not limited to the air hole hexagonal lattice photonic crystal of FIG. 7, but can be applied to any two-dimensional photonic crystal such as the square lattice of FIG.

上記光導波路を2本のフォトニック結晶単一導波路から方向性結合器の1対の結合導波路へ接続するための分岐導波路へ適用することで、方向性結合器の特性を改善することができる。それには、2本の湾曲導波路を図9のように接合させて用いればよい。しかし、上記光導波路においても本来のフォトニック結晶の並進対称性を失っているため、接合部分で屈折率の周期構造が大きく乱れ、光を導波させることができない問題点がある。
Y. Tanakaet.al, Jpn J. Appl.Phys. 44, 4971 (2005) N.Yamamoto et.al, Opt.Express 14 1223 (2006)
Improve the characteristics of the directional coupler by applying the above optical waveguide to a branching waveguide for connecting two photonic crystal single waveguides to a pair of coupled waveguides of a directional coupler Can do. For this purpose, two curved waveguides may be joined as shown in FIG. However, the optical waveguide also loses the translational symmetry of the original photonic crystal, so that there is a problem that the periodic structure of the refractive index is greatly disturbed at the junction and light cannot be guided.
Y. Tanakaet.al, Jpn J. Appl.Phys. 44, 4971 (2005) N. Yamamoto et.al, Opt.Express 14 1223 (2006)

本発明は、独立した複数のフォトニック結晶自由曲線光導波路を、光学的に結合した状態へと反射・散乱を抑制しながら滑らかに移行させる光デバイス装置を得ることを課題とする。   An object of the present invention is to obtain an optical device device that smoothly shifts a plurality of independent photonic crystal free-curve optical waveguides to an optically coupled state while suppressing reflection and scattering.

本発明の課題を解決する手段は次のとおりである。
(1)独立した複数のフォトニック結晶自由曲線光導波路を、導波路同士が重複し、屈折率の周期性が失われた領域において、誘電体変化構造を変調することにより、単一導波路の導波モードから、結合導波路の導波モードへ断熱的に変化させることを特徴とする結合光導波路を有する光デバイス装置。
(2)接線方向及び法線方向に空気孔を周期的に配置した半導体スラブ上のフォトニック結晶自由曲線光導波路に対し、接合部付近の空気孔の位置及び半径を変調することにより、上記誘電体変化構造を変調することを特徴とする(1)に記載の結合光導波路を有する光デバイス装置。
(3)上記フォトニック結晶自由曲線光導波路を用いて2本の単一導波路と1対の結合導波路を接続させることを特徴とする(1)又は(2)に記載の結合光導波路を有する光デバイス装置。
Means for solving the problems of the present invention are as follows.
(1) A plurality of independent photonic crystal free-curve optical waveguides can be obtained by modulating the dielectric change structure in a region where the waveguides overlap each other and the periodicity of the refractive index is lost. An optical device having a coupled optical waveguide, wherein the waveguide mode is adiabatically changed from a waveguide mode to a waveguide mode of a coupled waveguide.
(2) For the photonic crystal free-curve optical waveguide on the semiconductor slab in which the air holes are periodically arranged in the tangential direction and the normal direction, by modulating the position and radius of the air holes near the junction, the dielectric The optical device apparatus having the coupled optical waveguide according to (1), wherein the body change structure is modulated.
(3) The coupled optical waveguide according to (1) or (2), wherein two single waveguides and a pair of coupled waveguides are connected using the photonic crystal free curve optical waveguide. Optical device apparatus having.

本発明によれば、独立した複数のフォトニック結晶自由曲線光導波路を、導波路間が近接し、光学的に結合した状態へと反射・散乱を抑制しながら滑らかに移行させることができる。このため、導波路同士を、光学特性を劣化させずに接合することができる。   According to the present invention, a plurality of independent photonic crystal free-curve optical waveguides can be smoothly transferred to a state where the waveguides are close to each other and optically coupled while suppressing reflection and scattering. For this reason, the waveguides can be joined without degrading the optical characteristics.

以下本発明について実施例を例示して説明する。
断熱曲がり導波路を利用して、2本の単一導波路から方向性結合器の結合導波路へ接続する分岐導波路へ適用した実施例について説明する。本発明では円弧状断熱曲がり導波路を、図10のように接合することで、単一導波路の伝播モードを結合導波路の伝播モードに反射・散乱なく変換する。
すなわち2つの曲がり導波路AとBの接合面については、円の重なり方に応じて次のように処理する。(a):A とB の円が離れている場合、接近した円の半径を大きくする、または円の位置を接合線側へシフトさせる。(b):A とB の円が接近した場合、接近した円の半径を小さくする、または円の位置を接合線から離れる方向へシフトさせる。(c):A とB の円が重複した場合、元の円孔を除去し接合線(破線で示す) の位置に大きな円孔を作成する。(d):A とB の円が大きく重複した場合、元の円孔を除去し接合線(破線で示す) の位置に小さな円孔を作成する。(e):A とB の円が接合線を完全に超えた場合、接合線を越えた円孔を除去する。
Hereinafter, the present invention will be described by way of examples.
An embodiment applied to a branching waveguide connected to a coupling waveguide of a directional coupler from two single waveguides using an adiabatic curved waveguide will be described. In the present invention, arc-shaped adiabatic bent waveguides are joined as shown in FIG. 10 to convert the propagation mode of a single waveguide into the propagation mode of a coupled waveguide without reflection or scattering.
That is, the joint surface between the two bent waveguides A and B is processed as follows according to the way the circles overlap. (a): When the circles A and B are separated, the radius of the approaching circle is increased or the position of the circle is shifted to the joining line side. (b): When the circles A and B approach, the radius of the approaching circle is reduced or the position of the circle is shifted away from the joint line. (c): When A and B circles overlap, the original circular hole is removed and a large circular hole is created at the position of the joining line (shown by a broken line). (d): When the circles A and B are largely overlapped, the original circular hole is removed and a small circular hole is created at the position of the joining line (shown by a broken line). (e): When the circles A and B completely exceed the joint line, the circular hole beyond the joint line is removed.

接合線付近の変調方法の一例を以下に示す。接合線のy座標を0、各空気円孔の座標を(xc,yc)、半径をrcとおき、接合線上側(y>0側)の断熱曲がり導波路については、
(1)yc≦-0.5 の場合、この円孔を除去する。(図10の(f))
(2)-0.5 ≦ yc < 0.25 の場合、この円孔を除去し、位置(xc, 0)(接合線上) に半径yc +rc の円孔を作成する。(図10の(d)、(e))
(3)0.25 ≦ y < 0.5 の場合、この円孔の半径を2.5rc|yc| に変更する。(図10の(b)、(c))
接合線下側(y<0)の断熱曲がり導波路については接合線に関して鏡映対称性が保たれるように同様の変調を行う。
An example of the modulation method near the joint line is shown below. The y coordinate of the joint line is 0, the coordinates of each air hole is (xc, yc), the radius is rc, and the adiabatic curved waveguide on the upper side of the joint line (y> 0 side)
(1) When yc ≦ −0.5, this circular hole is removed. ((F) in FIG. 10)
(2) When -0.5 ≦ yc <0.25, this circular hole is removed, and a circular hole with a radius yc + rc is created at the position (xc, 0) (on the joining line). ((D), (e) in Fig. 10)
(3) If 0.25 ≤ y <0.5, change the radius of this hole to 2.5rc | yc |. ((B) and (c) in Fig. 10)
For the adiabatic bent waveguide on the lower side of the joint line (y <0), the same modulation is performed so that the reflection symmetry is maintained with respect to the joint line.

図10(a)は、断熱Y分岐導波路を伝播する光の磁場分布、(b)は他方の入力導波路を逆流する反射スペクトルと結合導波路入力端におけるBar、Cross方向の透過スペクトルである。従来の分岐導波路に対して計算した結果(図5)と比較して、反射光が大幅に抑制され、結合導波路入力端におけるCross方向への光の漏れも抑制できている。   FIG. 10A shows the magnetic field distribution of light propagating through the adiabatic Y-branch waveguide, and FIG. 10B shows the reflection spectrum flowing back through the other input waveguide and the transmission spectrum in the Bar and Cross directions at the input end of the coupled waveguide. . Compared with the result calculated for the conventional branching waveguide (FIG. 5), reflected light is greatly suppressed, and leakage of light in the cross direction at the input end of the coupled waveguide can also be suppressed.

図12は、断熱変化構造を用いた方向性結合器のパワースペクトル計測結果である。結合導波路両端以外の構造、すなわち結合導波路部分の構造は図7の計測に用いたものと等しく、長さも36aに揃えている。Bar方向とCross方向の出力強度が相補的に変動しており、方向性結合器本来の特性が正しく得られている。   FIG. 12 shows power spectrum measurement results of the directional coupler using the adiabatic change structure. The structure other than both ends of the coupled waveguide, that is, the structure of the coupled waveguide portion is the same as that used in the measurement of FIG. 7, and the length is also set to 36a. The output intensities in the Bar direction and the Cross direction fluctuate complementarily, and the original characteristics of the directional coupler are correctly obtained.

図13は、図10に示す分岐導波路を用いて作製される光バッファ回路である。本発明により従来の急峻な曲がり部分をすべて除去することができるため、方向性結合器、およびリング導波路内部において散乱・反射による光学特性の劣化を大幅に低減できる。   FIG. 13 shows an optical buffer circuit fabricated using the branching waveguide shown in FIG. According to the present invention, since all of the conventional sharp bends can be removed, deterioration of optical characteristics due to scattering / reflection in the directional coupler and the ring waveguide can be greatly reduced.

図14に作製した断熱分岐導波路のSEM像を示す。作製はすべて電子ビームリソグラフィ技術を用いている。本発明の構造は、自由曲線導波路形成のための特殊な構造や作製工程は必要とせず、2次元フォトニック結晶作製のための設備および作製工程をそのまま使用できる。   FIG. 14 shows an SEM image of the manufactured adiabatic branching waveguide. All fabrication uses electron beam lithography technology. The structure of the present invention does not require a special structure or manufacturing process for forming a free-form curve waveguide, and equipment and a manufacturing process for manufacturing a two-dimensional photonic crystal can be used as they are.

2次元フォトニック結晶の構造例Example structure of two-dimensional photonic crystal 2次元フォトニック結晶線導波路の作成方法の例Example of how to create a two-dimensional photonic crystal line waveguide 従来の曲がり導波路を用いた方向性結合器Conventional directional coupler using curved waveguide 従来の曲がり導波路を用いた方向性結合器の透過スペクトルTransmission spectrum of a directional coupler using a conventional curved waveguide (a):従来型Y分岐導波路を伝播する光の磁場分布と、(b):結合導波路端で反射され、他方の入力導波路を逆流する反射スペクトルと、入力側結合導波路端におけるBar、Cross方向の透過スペクトル(a): Magnetic field distribution of light propagating through a conventional Y-branch waveguide, (b): Reflected spectrum reflected at the end of the coupled waveguide and flowing back through the other input waveguide, and at the end of the input-side coupled waveguide Transmission spectra in the Bar and Cross directions 従来の曲がり導波路を用いた方向性結合器を計測中に上方から撮影した写真Photograph taken from above during measurement of a directional coupler using a conventional curved waveguide 自由曲線光導波路(六方格子の場合)Free curve optical waveguide (in case of hexagonal lattice) 自由曲線光導波路(正方格子の場合)Free curve optical waveguide (in the case of square lattice) 2本の自由曲線導波路それぞれの片方の導波路端同士を接近させる概念図Conceptual diagram of approaching one waveguide end of each of two free-curve waveguides 円弧状自由曲線光導波路2本を接合させて設計した結合導波路用分岐・合波導波路A branching / combining waveguide for coupling waveguides designed by joining two circular free-form optical waveguides 図10の構造を導入した分岐導波路を伝播する光の磁場分布と、(b):結合導波路端で反射され、他方の入力導波路を逆流する反射スペクトルと、入力側結合導波路端におけるBar、Cross方向の透過スペクトルFIG. 10 shows a magnetic field distribution of light propagating through a branching waveguide in which the structure of FIG. 10 is introduced; (b): a reflection spectrum reflected at the end of the coupled waveguide and flowing back through the other input waveguide; Transmission spectra in the Bar and Cross directions 図10の構造を導入した分岐導波路を使用した方向性結合器の透過スペクトルTransmission spectrum of directional coupler using branching waveguide with the structure of FIG. 図10の構造を導入した分岐導波路を使用した方向性結合器、および自由曲線導波路を用いた、急峻な曲がりを用いない光バッファ回路A directional coupler using a branching waveguide having the structure of FIG. 10 and an optical buffer circuit using a free curve waveguide without a sharp bend 断熱構造を導入した分岐導波路のSEM写真SEM photograph of branching waveguide with heat insulation structure

Claims (3)

独立した複数のフォトニック結晶自由曲線光導波路を、導波路同士が重複し、屈折率の周期性が失われた領域において、誘電体変化構造を変調することにより、単一導波路の導波モードから、結合導波路の導波モードへ断熱的に変化させることを特徴とする結合光導波路を有する光デバイス装置。   Multiple independent photonic crystal free-curve optical waveguides can be used to modulate a single-waveguide waveguide mode by modulating the dielectric change structure in a region where the waveguides overlap and the periodicity of the refractive index is lost. Device device having a coupled optical waveguide, wherein the optical waveguide device is adiabatically changed to a waveguide mode of the coupled waveguide. 接線方向及び法線方向に空気孔を周期的に配置した半導体スラブ上のフォトニック結晶自由曲線光導波路に対し、接合部付近の空気孔の位置及び半径を変調することにより、上記誘電体変化構造を変調することを特徴とする請求項1に記載の結合光導波路を有する光デバイス装置。   For a photonic crystal free-curve optical waveguide on a semiconductor slab in which air holes are periodically arranged in the tangential and normal directions, the dielectric change structure is modulated by modulating the position and radius of the air holes near the junction. The optical device apparatus having a coupled optical waveguide according to claim 1, wherein: 上記フォトニック結晶自由曲線光導波路を用いて2本の単一導波路と1対の結合導波路を接続させることを特徴とする請求項1又は2に記載の結合光導波路を有する光デバイス装置。   3. The optical device apparatus having a coupled optical waveguide according to claim 1, wherein two single waveguides and a pair of coupled waveguides are connected using the photonic crystal free curve optical waveguide.
JP2007078765A 2007-03-26 2007-03-26 Optical device apparatus having coupled optical waveguide Expired - Fee Related JP4795289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078765A JP4795289B2 (en) 2007-03-26 2007-03-26 Optical device apparatus having coupled optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078765A JP4795289B2 (en) 2007-03-26 2007-03-26 Optical device apparatus having coupled optical waveguide

Publications (2)

Publication Number Publication Date
JP2008241834A JP2008241834A (en) 2008-10-09
JP4795289B2 true JP4795289B2 (en) 2011-10-19

Family

ID=39913312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078765A Expired - Fee Related JP4795289B2 (en) 2007-03-26 2007-03-26 Optical device apparatus having coupled optical waveguide

Country Status (1)

Country Link
JP (1) JP4795289B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281869B2 (en) * 2014-02-27 2018-02-21 国立大学法人大阪大学 Directional coupler and multiplexer / demultiplexer devices
CN114815052B (en) * 2022-04-21 2023-06-09 上海大学 Photonic crystal optical router with crossed waveguide structure
WO2024176971A1 (en) * 2023-02-24 2024-08-29 公立大学法人大阪 Method for producing photonic device, and photonic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766844B2 (en) * 1999-09-25 2006-04-19 有限会社オートクローニング・テクノロジー Lattice modulation photonic crystal
JP3743637B2 (en) * 2001-08-23 2006-02-08 独立行政法人理化学研究所 Photonic crystal and optical waveguide element

Also Published As

Publication number Publication date
JP2008241834A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Liu et al. Design of a compact photonic-crystal-based polarizing beam splitter
WO2012046401A1 (en) Optical conversion element and optical conversion element manufacturing method
JP3809167B2 (en) Photonic crystal structure for mode conversion
US6728457B2 (en) Waveguides in two dimensional slab photonic crystals with noncircular holes
JP5359750B2 (en) Optical waveguide device
JP6000904B2 (en) Polarization conversion element
JP5315999B2 (en) Waveguide connection structure
JP2009510505A (en) Optical element having tapered portion for reducing loss in optical waveguide process
JP2002365453A (en) Waveguide
US6782169B2 (en) System for efficient coupling to photonic crystal waveguides
JP4795289B2 (en) Optical device apparatus having coupled optical waveguide
KR20090032674A (en) Optical coupler
Khandokar et al. Performance enhanced butt coupling for effective interconnection between fiber and silicon nanowire
Kurt Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits
JP2010085564A (en) Optical waveguide circuit and optical circuit device
Dai et al. High transmission in 120-degree sharp bends of inversion-symmetric and inversion-asymmetric photonic crystal waveguides
Sugisaka et al. Development of curved two-dimensional photonic crystal waveguides
JPWO2004081627A1 (en) Light incidence method and structure to photonic crystal optical waveguide
Yucel et al. Polarization-independent unidirectional light transmission by an annular photonic crystal prism
Baba et al. Light propagation characteristics of defect waveguides in a photonic crystal slab
KR20090092037A (en) Nano plasmonic integrated circuits and optical integrated circuit module using thereof
Patri et al. Compact grating coupler using asymmetric waveguide scatterers
TWI777694B (en) Photonic crystal-based directional coupler
Bagci et al. Influences of supercell termination and lateral row number on the determination of slow light properties of photonic crystal waveguides
Ghaffari et al. Bi-periodic photonic crystal Y-splitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4795289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees