[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4794725B2 - Heating coil for induction heating device - Google Patents

Heating coil for induction heating device Download PDF

Info

Publication number
JP4794725B2
JP4794725B2 JP2000263413A JP2000263413A JP4794725B2 JP 4794725 B2 JP4794725 B2 JP 4794725B2 JP 2000263413 A JP2000263413 A JP 2000263413A JP 2000263413 A JP2000263413 A JP 2000263413A JP 4794725 B2 JP4794725 B2 JP 4794725B2
Authority
JP
Japan
Prior art keywords
heating coil
coil
insulating material
heating
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263413A
Other languages
Japanese (ja)
Other versions
JP2002075613A5 (en
JP2002075613A (en
Inventor
泉生 弘田
武 北泉
祐 福田
英樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000263413A priority Critical patent/JP4794725B2/en
Publication of JP2002075613A publication Critical patent/JP2002075613A/en
Publication of JP2002075613A5 publication Critical patent/JP2002075613A5/ja
Application granted granted Critical
Publication of JP4794725B2 publication Critical patent/JP4794725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般家庭及びレストラン、あるいは工場などで使用される誘導加熱装置に関するもので、さらに詳しくはその加熱コイルに関するものである。
【0002】
【従来の技術】
従来の誘導加熱装置の加熱構造を誘導加熱調理器を例に取り上げ、図26〜28を用いて説明する。図26は従来の誘導加熱調理器の断面図で、1は加熱コイル2から発生する高周波磁界によって誘導加熱される被加熱物、2は被加熱物1を誘導加熱する加熱コイル、3は加熱コイル2に高周波電流を供給するインバータ回路で図には特に記載していないが、加熱コイル2と接続されている。4は被加熱物1がその上面に載置されるプレートでその材質はセラミックである。5は筐体、6は加熱コイル2を載置するコイル台、7はコイル台6に埋設されている磁性体で、材質はフェライトである。磁性体7は加熱コイル2から発生する高周波磁界を効率よく被加熱物1に供給させる目的で用いられている。8は冷却装置で、加熱コイル2の冷却のために加熱コイル2側面から軸流ファンなどを用いて強制空冷にて冷却している。
【0003】
コイル台6を上から見た図を図27に、また下から見た図を図28に示す。図28に示すように磁性体7は、複数の棒体からなり、コイル台6の下面に放射状に配置されている。
【0004】
加熱コイル2のコイル線は、直径0.3mm〜0.5mm程度の素線を30本程度撚り合わせたもので構成されている。素線の材質は銅で、その表面は絶縁物によって覆われており、それぞれの素線が電気的に接続されないようになっている。それぞれの素線は加熱コイル2の始端及び終端にて電気的に接続している。加熱コイル2のコイル線をこのような細い素線を用いている理由は、加熱コイル2に流れる周波数20〜30kHz程度の高周波電流が、表皮効果によりコイル線表面に電流が集中するため、コイル線の表面積を大とする必要があるからである。また撚り合わせている理由は、加熱コイル2が発生する高周波磁界により加熱コイル2のコイル線間に作用する近接効果によって、コイル線に流れる電流分布が不均一となることを防ぐこと、及び加熱コイル2と被加熱物1との間に働く近接効果により、加熱コイル2の表面(被加熱物1側)に電流が集中することを防ぐためである。
【0005】
このような素線を撚り合わせた構成を用いない場合、加熱コイル2の損失が大きくなり、温度上昇及び加熱効率面で問題である。コイル線温度が略180℃を越えると上記素線間及びコイル線間の絶縁が困難となり、この場合コイルとしての機能を果たすことが不可能となる。また図27に示すコイルのターン数は簡易的に示したものであり、実際のターン数は約20ターン以上である。
【0006】
【発明が解決しようとする課題】
しかしながら、この様な従来の誘導加熱装置では、以下に示す課題があった。すなわち、上記したように加熱コイル及びコイル台あるいは、磁性体といった誘導加熱を行うための加熱構成が複雑で、その作製工数や部品コストが大きく、結果商品のコスト上昇をまねくという課題である。特に加熱コイルは複数の素線を撚り合わせる構成であり、その作製工数は極めて大きいものである。
【0007】
こういった背景から近年加熱コイルの製造工程及び製造コストを低減し、安価な装置を提供するために、特開昭60−243996号あるいは特開平4−337606号のように、導電板を渦巻き状に打ち抜く等の工法で、撚り線を用いない簡素なコイル線の加熱コイルが提案されている。また加熱コイルを載置するコイル台に関しては、特開昭61−71581号に示すような棒状磁性体を加熱コイル中心から放射状に配置し、さらに樹脂で形成されるコイル台の内部に埋設するものが提案されている。
【0008】
しかして、この様な撚り線を用いない誘導加熱装置用加熱コイルでは、加熱コイル自身が発生する高周波磁界により、加熱コイルの線間に作用する近接効果によって、コイル線に流れる電流分布が不均一となり、結果コイル損失が大きくなり、装置の効率低下や、加熱コイルの冷却機構が大型化するという課題がやはり存在する。コイル線断面を所定の角度で水平面に対して折曲するという提案も為されているが、加熱コイルから発生する磁界はやはり、コイル線を通過することから(コイル線は銅など比透磁率が1の材質であり、コイル線間も比透磁率1であることから、平等に磁界が透過する)原理的に近接効果を大幅に低減することは困難である。
【0009】
また加熱コイルが載置されるコイル台においては、磁性体の厚みが大であり(棒状形態のため、その飽和磁束密度を考慮して、一般的に5mm程度)、その厚み分と樹脂厚みを足したものがコイル台の厚みとなって(一般的に10mm弱程度)、加熱コイルの横面から冷却風を送風しても、加熱コイル下面の効率的な冷却が困難であり、この場合も装置の効率低下や、冷却機構の大型化を招くといった課題があった。(加熱コイル上面には被加熱物が載置されるプレートがあり、加熱コイルとプレート間は誘導加熱の原理上効率的な加熱のためには約5mm程度は必要であり、極めて薄いため、この面においての冷却も大幅には期待できない)。
【0010】
本発明は上記従来の課題を解決し、簡素な構成で加熱コイル損失及び必要冷却を低減し、安価な誘導加熱装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
前記課題を解決するために本発明は、電気導体を渦巻き状に巻回した加熱コイルと、前記加熱コイルを載置するコイル台と、前記コイル台の下面に設けた磁性体と、前記電気導体に流れる高周波電流の分布の偏りを抑制すべく前記電気導体間にすき間なく設けられ比透磁率が略100のフェライトである電気絶縁材料からなる誘導加熱装置用加熱コイルとするものである。
【0012】
【発明の実施の形態】
請求項1記載の発明は、電気導体を渦巻き状に巻回した加熱コイルと、前記加熱コイルを載置するコイル台と、前記コイル台の下面に設けた磁性体と、前記電気導体に流れる高周波電流の分布の偏りを抑制すべく前記電気導体間にすき間なく設けられ比透磁率が略100のフェライトである電気絶縁材料からなる誘導加熱装置用加熱コイルとするものである。
【0013】
本構成により、コイル線間に比透磁率が1を超える電気絶縁材料を設けているため、コイル線が発生する高周波磁界は、線間の電気絶縁材料に集中して分布することになり、近接効果が大幅に低減し、コイル線内部の電流分布の偏りが減って、加熱コイル損失の低減が可能となるとともに、コイル台の下面にも、磁性体を設けているので、加熱コイルと被加熱物との磁気結合が大となり、加熱コイル損失小、また加熱効率が向上する。
【0014】
請求項2記載の発明は、前記加熱コイルの最外周の前記電気導体より外側に前記電気絶縁材料を設けた請求項1記載の誘導加熱装置用加熱コイルとするものである。
【0015】
本構成により、電気導体から発生する高周波磁界は電気絶縁材料にて被加熱物へ導かれるため漏れ磁界も小となりより輻射ノイズ低減も可能となるものである。
【0016】
【実施例】
(実施例1)
以下、本発明の第1の実施例について図1〜3を用いて説明する。図1は本発明の第1の実施例を示す図で、11は誘導加熱される被加熱物、12は、高周波電流が流れることにより、高周波磁界を発生する渦巻き状に巻回された電気導体で本実施例の場合は銅線を用いている。この渦巻きのターン数は、図1においては簡易的に図示するため4ターン程度であるが実際には20〜50ターン程度である。加熱コイルの内径はφ50mm程度、外形は通常加熱する鍋の外形を鑑みてφ180〜200mm程度である。ターン数が20ターンの場合、電気導体の12の幅は1mm程度で厚みは3mm程度、導体間は2mm程度になる。またターン数が50ターン程度の場合、20ターンの時と同じ幅とした場合、導体間は0.3mm程度となる。電気導体12の幅を小とすると、断面積を同じにするために(損失を大としないために)その厚みを大とせざるを得ないが、厚みを大とすると、被加熱物11との磁気的距離が大となり、結果磁気結合が悪くなって、加熱コイルの損失が大きくなるため、電気導体12の幅を小とすることは困難である。13は、電気導体12の間に設けられた電気絶縁材料で、本実施例の場合、その比透磁率は100程度の樹脂フェライトを用いている。本発明の場合、渦巻き状に巻回された電気導体12を加熱コイルと呼んでいる。
【0017】
14は、被加熱物11を載置するためのプレートで、セラミックでできている。15は加熱コイルを載置するためのコイル台で、樹脂でできている。
【0018】
以上の構成により、電気導体12の間に比透磁率が大なる樹脂フェライトを設けているため、加熱コイルから発生する磁界は選択的に樹脂フェライトを通過することとなり、比透磁率が1である電気導体12には透過しないため、近接効果がおこらず、電気導体12内に流れる高周波電流の分布の偏りが、近接効果によって発生することがないので、加熱コイルの損失を低減することが可能となる。近接効果による影響は特にターン数が大となるとき、すなわち電気導体12間の距離が小となるときに大となるため、ターン数が大であればあるほど、本発明の効果は大きくなるものである。
【0019】
電気絶縁材料13の比透磁率あるいは磁気飽和密度が小の場合は、図2に示すように磁性体15をコイル台15の下面に設ければ良い。また比透磁率あるいは磁気飽和密度が大であっても、磁性体15を設けることにより、加熱コイルと被加熱物11との磁気結合が大となり、加熱コイル損失小、また加熱効率が向上することは言うまでもない。
【0020】
さらに、加熱コイル中心部に別部品(例えば被加熱物温度を間接的に検知するための樹脂に保持されたサーミスタなど)を設けるために図3のように電気絶縁材料13に空隙を設けても良い。
【0021】
(実施例2)
以下、本発明の第2の実施例について図4、5を用いて説明する。図4においては電気絶縁材料20は、電気導体12の外周部外側に設けている。電気絶縁材料は第1の実施例と同様の材質である。
【0022】
本構成により、電気導体12から発生する高周波磁界は電気絶縁材料20を介して被加熱物11へ導かれるため、従来加熱コイル下面に設けられていた磁性体は不要となり、加熱コイルの厚みが小となって、冷却が容易となり小形安価な誘導加熱装置を実現することが可能となるものである。また電気導体12から発生する高周波磁界は電気絶縁材料20にて被加熱物11へ導かれるため漏れ磁界も小となりより輻射ノイズ低減も可能となるものである。
【0023】
さらに図5に示すように本発明の第1の実施例と組み合わせて電気導体12の間にも電気絶縁材料20あるいは13を設けてもよい。この場合は第1及び第2の実施例両方のメリットが得られるものである。
【0024】
(実施例3)
以下、本発明の第3の実施例について図6を用いて説明する。本実施例においては電気絶縁材料21は加熱コイル下面にも一様に設けられ、第1の実施例あるいは第2の実施例にて必要であったコイル台15は不要となる。電気絶縁材料21の材質は第1の実施例と同様である。
【0025】
以上より、加熱コイル下面にも磁性体を設けているので、さらに漏れ磁界が小となり、また磁気結合も大となるため、加熱コイルの損失や発生する輻射ノイズが小となり、加熱効率が高く、磁気遮蔽のための装置の不要な低コストの誘導加熱装置を実現できるものである。また第1あるいは第2の実施例と比べて、同じ性能を得る場合、比透磁率あるいは磁気飽和密度の小なる電気絶縁材料21とすることが可能となりこの面においても低コスト化が可能となる。
【0026】
(実施例4)
以下本発明の第4の実施例について図7を用いて説明する。
【0027】
図7において電気絶縁材料21の一部に貫通穴22が設けられている。本構成とするこ
とにより、冷却に寄与する面積が大となり、加熱コイルの必要冷却が緩和でき、低コスト小形の誘導加熱装置が実現できるものである。
【0028】
(実施例5)
以下本発明の第5の実施例について図8を用いて説明する。図8において電気絶縁材料15の厚みは部分的に異なるものとなっている。すなわち発熱の大なる電気導体12の下面においては薄く、それ以外の部分については厚くしている。以上より発熱の大なる部分において電気絶縁材料15の厚みを小としているため冷却が効率的にできるようになり、同じ冷却風においても加熱コイルの温度を低減することが可能となり、小形低コストの誘導加熱装置を可能とするものである。
【0029】
(実施例6)
以下本発明の第6の実施例について図9を用いて説明する。図9において30は第2の電気絶縁材料で、31は第1の電気絶縁材料であり、第1の電気絶縁材料31の比透磁率または磁気飽和密度は第2の電気絶縁材料30のそれより大としている。第2の電気絶縁材料30の材質は第1の実施例で述べた内容と同様である。以上より、加熱コイル下面の電気絶縁材料の厚みを薄くすることが可能となり、冷却が容易となって、必要冷却の緩和が図れるようになるものである。
【0030】
(実施例7)
以下本発明の第7の実施例について図10を用いて説明する。図10において電気絶縁材料15の被加熱物11に対して下面の表面面積は凹凸形状にすることによって大きくなっている。従って同じ冷却風でも第3の実施例と比べて必要冷却が小となり、低コスト小形の誘導加熱装置が実現できるものである。
【0031】
(実施例8)
以下本発明の第8の実施例について図11を用いて説明する。図11において電気導体12と電気絶縁材料13の間には空隙40が設けられている。以上の構成にすることにより、同じ冷却風でも第3の実施例と比べて必要冷却が小となり、低コスト小形の誘導加熱装置が実現できるものである。
【0032】
(実施例9)
以下本発明の第9の実施例について図12を用いて説明する。図12において41は本実施例の場合熱伝導のよいアルミでできた放熱板で、電気絶縁材料13と接触されている。以上の構成にすることにより、同じ冷却風でも第3の実施例と比べて必要冷却が小となり、低コスト小形の誘導加熱装置が実現できるものである。
【0033】
(実施例10)
以下本発明の第10の実施例について図13を用いて説明する。図13において電気絶縁材料13の熱は高熱伝導体50を介して放熱板41に導かれることになる。以上より放熱板41の載置自由度及び形状自由度が大となり小形低コストの誘導加熱装置を実現することが可能となるものである。
【0034】
(実施例11)
以下本発明の第11の実施例について図14を用いて説明する。図14において内周部の電気絶縁材料13を電気導体12平面よりも被加熱物11側に高く設けている。本構成により、加熱コイルと被加熱物11の磁気結合が大となり、加熱コイルに流れる電流が小とできることから、加熱コイルの損失を低減することが可能となりものである。
【0035】
(実施例12)
以下本発明の第12の実施例について図15を用いて説明する。図15において51は、被加熱物11の温度を間接的に検知する温度センサであり、電気絶縁材料13用いてプレート14に接触させたものである。本構成により、加熱コイルの低損失化と同時に被加熱物の温度をより正確に検知することが可能となるものである。
【0036】
(実施例13)
以下本発明の第13の実施例について図16を用いて説明する。図16において51は、被加熱物11の温度を間接的に検知する温度センサであり、電気絶縁材料13をプレート14に接触させてしかもその内部に埋設されているものである。電気絶縁材13は磁性体のため一般的な樹脂よりも約5倍以上の熱伝導率があるため、本実施例のように熱集約材料としても可能であることから本発明の構成によりより一層被加熱物11の温度を正確に検知することが可能となるものである。
【0037】
(実施例14)
以下本発明の第14の実施例について図17、18を用いて説明する。図17において外周部の電気絶縁材料13を電気導体12平面よりも被加熱物11側に高く設けている。本構成により、加熱コイルと被加熱物11磁気結合が大となり、さらに加熱コイルからの漏れ磁界も低減できるようになり、加熱コイルの損失低減と、不要輻射の低減が可能となるものである。
【0038】
さらに図18に示すように第1の電気絶縁材料60と第2の電気絶縁材料61と2つに分けても良い。この場合は第2の電気絶縁材料61の比透磁率あるいは磁気飽和密度を大とすることにより加熱コイルの低損失化や低コスト化が可能となるものである。
【0039】
(実施例15)
以下本発明の第15の実施例について図19を用いて説明する。図19において電気絶縁材料13は、電気導体12表面を除いて、加熱コイル上面全域に渡って電気導体12平面よりも被加熱物11側に高く設けている。この構成により、加熱コイルと被加熱物11との結合がさらに良くなり、漏れ磁界の低減や加熱コイル電流の低減が可能となるものである。
【0040】
(実施例16)
以下本発明の第16の実施例について、図20を用いて説明する。図20において70は第1の電気絶縁材料であり、電気導体12の外周部に設けられている。71は第2の電気絶縁材料であり、電気導体12の内周部に設けられている。
【0041】
電気絶縁材料71の比透磁率は電気絶縁材料70の比透磁率よりも大としている。以上の構成により、加熱コイルの発生する高周波磁界の密度は加熱コイル中心分すなわち内周部が高いことから、内周部の絶縁体の比透磁率を大とする事によって、より効率的な被加熱物の誘導加熱が可能となるものである。
【0042】
(実施例17)
以下本発明の第17の実施例について図21を用いて説明する。図21において80は第1の電気絶縁材料であり、電気導体12の内周部と外周部の間に設けられている。81は第2の電気絶縁材料であり、電気導体12の内周部及び外周部に設けられている。
【0043】
電気絶縁材料81の比透磁率は電気絶縁材料80の比透磁率よりも大としている。以上の構成により、加熱コイルの発生する高周波磁界の密度は加熱コイル中心分すなわち内周部が高くかつ、内周部−外周部磁束密度よりも外周部近傍の磁束密度が高いことから、より効率的に被加熱物の誘導加熱が可能となるものである。
【0044】
(実施例18)
以下本発明の第18の実施例について図22を用いて説明する。図22において電気導体12は本実施例の場合φ0.3mmの素線を35本撚り合わせたものとしている。以上の構成によって、高周波電流の表皮効果の影響による電流分布の偏りがなくなり、一層加熱コイルの損失低減が可能となるものである。
【0045】
(実施例19)
以下本発明の第19の実施例について図23を用いて説明する。図23において電気導体12は、間に電気絶縁体90を挟んだ2層の構成(第1層の電気導体12aと第2層の電気導体12b)になっている。さらに第1層の電気導体12aと第2層の電気導体12bは、反転部91にて被加熱物11に対して、上下の関係になっている。反転部91にて、上下に反転しない場合、電気導体12に流れる電流は鍋と加熱コイルとの近接効果により、鍋側の層に集中して流れるため、加熱コイルの損失大となるが、本構成のように巻回途中で上下反転することによりそれぞれの層に流れる電流が均一となり、鍋との近接効果の影響を回避できるものである。さらに複数の層にしていることから表皮効果の影響を避けることも可能となり、加えて電気導体間に比透磁率の大なる電気絶縁材料13を設けていることから、電気導体間の近接効果も低減でき、極めて損失の少ない加熱コイルを実現することが可能となる。
【0046】
(実施例20)
以下本発明の第20の実施例について図24を用いて説明する。図24において電気導体12の巻回ピッチは、内周部が大きくなっている。以上より磁束密度の高い部位の導体間隔を大としているので、より一層近接効果の低減を図ることが可能となり、加熱コイルの損失を低減できるものである。
【0047】
(実施例21)
以下本発明の第21の実施例について図25を用いて説明する。図25において電気絶縁材料13及び電気導体12は被加熱物11の面側でプレート14に接触している。本構成により、加熱コイルと被加熱物11との磁気結合は極めて密となり、加熱コイル電流を小とできるため、加熱コイル損失を低減することが可能となるものである。また従来の構成では加熱コイルの被加熱物11側面の冷却が困難となり、たとえ加熱コイル損失が小となっても必要冷却が大となるが、本構成の場合加熱コイルの被加熱物11と逆面の冷却が極めて大であることから可能となるものである。
【0048】
【発明の効果】
以上のように、請求項1記載の発明によれば、電気導体を渦巻き状に巻回した加熱コイルと、前記加熱コイルを載置するコイル台と、前記コイル台の下面に設けた磁性体と、前記導体に流れる高周波電流の分布の偏りを抑制すべく導体間に設けた少なくとも比透磁率が1を越える電気絶縁材料からなる誘導加熱装置用加熱コイルとするものである。
【0049】
本構成により、加熱コイルから発生する高周波磁界は導体間の電気絶縁材料に集中し、導体間に作用する近接効果を大幅に低減することが可能となるので、導体内部の電流分布の偏りが減じ、加熱コイルの損失低減が可能となり、更に、前記加熱コイルを載置するコイル台と、前記コイル台の下面に設けた磁性体とを設けることにより、加熱コイルと被加熱物との磁気結合が大となり、加熱コイル損失小、また加熱効率が向上する。
【0050】
尚、従来の誘導加熱装置で用いていたフェライトは、電気導体であり、本発明のような電気導体間に用いた場合は、絶縁が困難である。また同じようにフェライトを用いて、電気導体の表面に高耐熱電気絶縁樹脂をコートした場合においても、そのコート膜が一部剥
がれた場合など想定するとやはり、絶縁面で問題が生じる。以上のことからも、本発明のように電気絶縁体を用いる意義は極めて大きい。
【0051】
また、請求項2記載の発明によれば、電気導体を渦巻き状に巻回した導体の最外周の導体より外側に比透磁率が1を越える電気絶縁材料を設けたことにより、電気導体から発生する高周波磁界は電気絶縁材料にて被加熱物へ導かれるため漏れ磁界も小となりより輻射ノイズ低減も可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図2】 同、加熱コイル下面に磁性体を配置した場合の形態の構成を示す図
【図3】 同、加熱コイル中心部の電気絶縁体に空隙を設けた形態の構成を示す図
【図4】 本発明の第2の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図5】 同、電気導体内にも電気絶縁材料を設けた形態の構成を示す図
【図6】 本発明の第3の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図7】 本発明の第4の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図8】 本発明の第5の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図9】 本発明の第6の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図10】 本発明の第7の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図11】 本発明の第8の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図12】 本発明の第9の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図13】 本発明の第10の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図14】 本発明の第11の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図15】 本発明の第12の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図16】 本発明の第13の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図17】 本発明の第14の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図18】 同異なる特性の電気絶縁材料を2つの部位に適用した形態の構成を示す図
【図19】 本発明の第15の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図20】 本発明の第16の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図21】 本発明の第17の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図22】 本発明の第18の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図23】 本発明の第19の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図24】 本発明の第20の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図25】 本発明の第21の実施例である誘導加熱装置用加熱コイルの構成を示す図
【図26】 従来の誘導加熱装置の部品構成を示す断面図
【図27】 同、加熱コイルを上から見た図
【図28】 同、加熱コイルを下から見た図
【符号の説明】
12 電気導体
13 電気絶縁材料
20 電気絶縁材料
21 電気絶縁材料
22 貫通穴
30 第2の電気絶縁材料
31 第1の電気絶縁材料
40 空隙
41 放熱板
50 高熱伝導体
51 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating apparatus used in general households, restaurants, factories, and the like, and more particularly to a heating coil thereof.
[0002]
[Prior art]
A heating structure of a conventional induction heating apparatus will be described with reference to FIGS. FIG. 26 is a cross-sectional view of a conventional induction heating cooker, in which 1 is an object to be heated by induction using a high frequency magnetic field generated from the heating coil 2, 2 is a heating coil for induction heating the object to be heated 1, and 3 is a heating coil. Although not particularly shown in the figure, an inverter circuit that supplies a high-frequency current to 2 is connected to the heating coil 2. Reference numeral 4 denotes a plate on which the heated object 1 is placed, and the material thereof is ceramic. 5 is a casing, 6 is a coil base on which the heating coil 2 is placed, 7 is a magnetic body embedded in the coil base 6, and the material is ferrite. The magnetic body 7 is used for the purpose of efficiently supplying a high-frequency magnetic field generated from the heating coil 2 to the article 1 to be heated. A cooling device 8 cools the heating coil 2 by forced air cooling from the side surface of the heating coil 2 using an axial fan or the like.
[0003]
FIG. 27 shows a view of the coil base 6 from above, and FIG. 28 shows a view of the coil base 6 from below. As shown in FIG. 28, the magnetic body 7 is composed of a plurality of rods, and is arranged radially on the lower surface of the coil base 6.
[0004]
The coil wire of the heating coil 2 is configured by twisting about 30 strands having a diameter of about 0.3 mm to 0.5 mm. The material of the strand is copper, and its surface is covered with an insulator so that the strands are not electrically connected. Each strand is electrically connected at the start and end of the heating coil 2. The reason why such a thin wire is used as the coil wire of the heating coil 2 is that a high-frequency current having a frequency of about 20 to 30 kHz flowing through the heating coil 2 is concentrated on the surface of the coil wire due to the skin effect. This is because it is necessary to increase the surface area. The reason for twisting is that the distribution of current flowing in the coil wire is prevented from becoming non-uniform due to the proximity effect acting between the coil wires of the heating coil 2 due to the high-frequency magnetic field generated by the heating coil 2, and the heating coil This is because current is prevented from concentrating on the surface of the heating coil 2 (on the heated object 1 side) due to the proximity effect that acts between the heated object 2 and the heated object 1.
[0005]
When such a configuration in which strands are twisted together is not used, the loss of the heating coil 2 is increased, which is a problem in terms of temperature rise and heating efficiency. When the coil wire temperature exceeds approximately 180 ° C., it becomes difficult to insulate between the above-mentioned strands and between the coil wires, and in this case, it becomes impossible to function as a coil. Further, the number of turns of the coil shown in FIG. 27 is simply shown, and the actual number of turns is about 20 turns or more.
[0006]
[Problems to be solved by the invention]
However, such a conventional induction heating apparatus has the following problems. That is, as described above, a heating configuration for performing induction heating such as a heating coil and a coil base or a magnetic body is complicated, and the manufacturing man-hours and parts costs are large, resulting in an increase in the cost of the product. In particular, the heating coil has a configuration in which a plurality of strands are twisted together, and its manufacturing man-hour is extremely large.
[0007]
From such a background, in order to reduce the manufacturing process and manufacturing cost of the heating coil and to provide an inexpensive apparatus, the conductive plate is formed in a spiral shape as disclosed in JP-A-60-243996 or JP-A-4-337606. A heating coil having a simple coil wire that does not use a stranded wire has been proposed by a method such as punching. As for the coil base on which the heating coil is mounted, a rod-like magnetic body as shown in JP-A-61-71581 is arranged radially from the center of the heating coil, and is embedded in a coil base made of resin. Has been proposed.
[0008]
In such a heating coil for an induction heating apparatus that does not use a stranded wire, the current distribution flowing through the coil wire is uneven due to the proximity effect that acts between the wires of the heating coil due to the high-frequency magnetic field generated by the heating coil itself. As a result, there are still problems that the coil loss is increased, the efficiency of the apparatus is reduced, and the cooling mechanism of the heating coil is enlarged. Proposals have been made to bend the coil wire cross section at a predetermined angle with respect to the horizontal plane, but the magnetic field generated from the heating coil still passes through the coil wire (the coil wire has a relative permeability such as copper). is one of the material, since the inter-coil wire is also relative permeability 1, it is difficult to significantly reduce the equally magnetic field is transmitted) principle proximity effect.
[0009]
Moreover, in the coil stand on which the heating coil is placed, the thickness of the magnetic material is large (since its saturation magnetic flux density is taken into consideration because of the rod-like form), the thickness and the resin thickness are The sum is the thickness of the coil stand (generally less than about 10 mm), and even if cooling air is blown from the side surface of the heating coil, it is difficult to efficiently cool the lower surface of the heating coil. There existed a subject that the efficiency reduction of an apparatus and the enlargement of a cooling mechanism were caused. (There is a plate on the top of the heating coil where the object to be heated is placed. Between the heating coil and the plate, about 5 mm is necessary for efficient heating in principle of induction heating. Cooling on the surface cannot be expected significantly).
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems, to reduce a heating coil loss and necessary cooling with a simple configuration, and to provide an inexpensive induction heating apparatus.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a heating coil in which an electric conductor is wound in a spiral shape, a coil base on which the heating coil is placed, a magnetic body provided on the lower surface of the coil base, and the electric conductor In order to suppress the uneven distribution of the high-frequency current flowing in the coil, the heating coil for the induction heating device is made of an electrically insulating material which is a ferrite having a relative permeability of about 100 and provided between the electrical conductors.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a heating coil in which an electric conductor is wound in a spiral shape, a coil base on which the heating coil is placed, a magnetic body provided on a lower surface of the coil base, and a high frequency flowing in the electric conductor In order to suppress the uneven distribution of current, the heating coil for induction heating apparatus is made of an electrically insulating material that is a ferrite having a relative permeability of approximately 100 and provided between the electrical conductors.
[0013]
With this configuration, since an electrical insulating material having a relative permeability exceeding 1 is provided between the coil wires, the high-frequency magnetic field generated by the coil wires is concentrated and distributed in the electrical insulating material between the wires. The effect is greatly reduced, the bias of the current distribution inside the coil wire is reduced, the heating coil loss can be reduced, and the magnetic material is also provided on the lower surface of the coil base, so that the heating coil and the heated object are heated. Magnetic coupling with objects increases, heating coil loss is reduced, and heating efficiency is improved.
[0014]
According to a second aspect of the present invention, there is provided the heating coil for an induction heating device according to the first aspect, wherein the electric insulating material is provided outside the electric conductor on the outermost periphery of the heating coil.
[0015]
With this configuration, the high-frequency magnetic field generated from the electric conductor is guided to the object to be heated by the electrically insulating material, so that the leakage magnetic field is reduced and the radiation noise can be further reduced.
[0016]
【Example】
(Example 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a first embodiment of the present invention, in which 11 is an object to be heated by induction heating, and 12 is an electric conductor wound in a spiral shape that generates a high-frequency magnetic field when a high-frequency current flows. In the present embodiment, copper wire is used. The number of turns of the spiral is about 4 turns for the sake of simplicity in FIG. 1, but is actually about 20 to 50 turns. The inner diameter of the heating coil is about φ50 mm, and the outer shape is about φ180 to 200 mm in view of the outer shape of the pan that is normally heated. When the number of turns is 20, the width of the electric conductor 12 is about 1 mm, the thickness is about 3 mm, and the distance between the conductors is about 2 mm. When the number of turns is about 50 turns and the width is the same as that for 20 turns, the distance between the conductors is about 0.3 mm. If the width of the electrical conductor 12 is small, the thickness must be increased in order to have the same cross-sectional area (in order not to increase the loss), but if the thickness is increased, It is difficult to reduce the width of the electric conductor 12 because the magnetic distance becomes large, resulting in poor magnetic coupling and increased heating coil loss. Reference numeral 13 denotes an electrically insulating material provided between the electrical conductors 12, and in the case of the present embodiment, resin ferrite having a relative magnetic permeability of about 100 is used. In the case of the present invention, the electric conductor 12 wound in a spiral shape is called a heating coil.
[0017]
Reference numeral 14 denotes a plate for placing the article to be heated 11 made of ceramic. Reference numeral 15 denotes a coil base for mounting the heating coil, which is made of resin.
[0018]
With the above configuration, since the resin ferrite having a large relative magnetic permeability is provided between the electric conductors 12, the magnetic field generated from the heating coil selectively passes through the resin ferrite, and the relative magnetic permeability is 1. Since the electric conductor 12 does not pass through, the proximity effect does not occur, and the bias of the distribution of the high-frequency current flowing in the electric conductor 12 does not occur due to the proximity effect, so that it is possible to reduce the loss of the heating coil. Become. The effect of the proximity effect is particularly great when the number of turns is large, that is, when the distance between the electrical conductors 12 is small. Therefore, the larger the number of turns, the greater the effect of the present invention. It is.
[0019]
When the relative permeability or magnetic saturation density of the electrical insulating material 13 is small, the magnetic body 15 may be provided on the lower surface of the coil base 15 as shown in FIG. Even if the relative permeability or the magnetic saturation density is large, the provision of the magnetic body 15 increases the magnetic coupling between the heating coil and the object 11 to be heated, reduces the heating coil loss, and improves the heating efficiency. Needless to say.
[0020]
Further, in order to provide another part (for example, a thermistor held by a resin for indirectly detecting the temperature of an object to be heated) at the center of the heating coil, a gap may be provided in the electrical insulating material 13 as shown in FIG. good.
[0021]
(Example 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. In FIG. 4, the electrical insulating material 20 is provided outside the outer peripheral portion of the electrical conductor 12. The electrically insulating material is the same material as in the first embodiment.
[0022]
With this configuration, the high-frequency magnetic field generated from the electric conductor 12 is guided to the object to be heated 11 through the electric insulating material 20, so that the magnetic body conventionally provided on the lower surface of the heating coil becomes unnecessary, and the thickness of the heating coil is small. Thus, cooling becomes easy and a small and inexpensive induction heating device can be realized. In addition, since the high frequency magnetic field generated from the electric conductor 12 is guided to the object 11 to be heated by the electric insulating material 20, the leakage magnetic field is reduced and radiation noise can be reduced.
[0023]
Further, as shown in FIG. 5, an electrical insulating material 20 or 13 may be provided between the electrical conductors 12 in combination with the first embodiment of the present invention. In this case, the merits of both the first and second embodiments can be obtained.
[0024]
(Example 3)
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, the electrical insulating material 21 is uniformly provided on the lower surface of the heating coil, and the coil base 15 required in the first embodiment or the second embodiment is not necessary. The material of the electrical insulating material 21 is the same as that in the first embodiment.
[0025]
As described above, since the magnetic body is also provided on the lower surface of the heating coil, the leakage magnetic field is further reduced and the magnetic coupling is also increased, so that the loss of the heating coil and generated radiation noise are reduced, and the heating efficiency is high. A low-cost induction heating device that does not require a device for magnetic shielding can be realized. Further, in the case where the same performance is obtained as compared with the first or second embodiment, it is possible to obtain the electric insulating material 21 having a low relative permeability or magnetic saturation density, and also in this aspect, the cost can be reduced. .
[0026]
Example 4
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
[0027]
In FIG. 7, a through hole 22 is provided in a part of the electrical insulating material 21. By adopting this configuration, the area contributing to cooling becomes large, the necessary cooling of the heating coil can be relaxed, and a low-cost and small induction heating apparatus can be realized.
[0028]
(Example 5)
A fifth embodiment of the present invention will be described below with reference to FIG. In FIG. 8, the thickness of the electrical insulating material 15 is partially different. That is, the lower surface of the electric conductor 12 generating a large amount of heat is thin, and the other portions are thick. As described above, since the thickness of the electrical insulating material 15 is reduced in the portion where the heat generation is large, the cooling can be efficiently performed, and the temperature of the heating coil can be reduced even with the same cooling air. An induction heating device is possible.
[0029]
(Example 6)
A sixth embodiment of the present invention will be described below with reference to FIG. In FIG. 9, 30 is a second electrically insulating material, 31 is a first electrically insulating material, and the relative permeability or magnetic saturation density of the first electrically insulating material 31 is higher than that of the second electrically insulating material 30. It ’s big. The material of the second electrically insulating material 30 is the same as that described in the first embodiment. As described above, the thickness of the electrically insulating material on the lower surface of the heating coil can be reduced, cooling becomes easy, and the necessary cooling can be relaxed.
[0030]
(Example 7)
A seventh embodiment of the present invention will be described below with reference to FIG. In FIG. 10, the surface area of the lower surface of the object 11 to be heated of the electrical insulating material 15 is increased by making it uneven. Therefore, even with the same cooling air, the required cooling is small compared to the third embodiment, and a low-cost and small induction heating apparatus can be realized.
[0031]
(Example 8)
Hereinafter, an eighth embodiment of the present invention will be described with reference to FIG. In FIG. 11, a gap 40 is provided between the electric conductor 12 and the electric insulating material 13. With the above configuration, the required cooling is small compared with the third embodiment even with the same cooling air, and a low-cost and small induction heating apparatus can be realized.
[0032]
Example 9
A ninth embodiment of the present invention will be described below with reference to FIG. In FIG. 12, reference numeral 41 denotes a heat radiating plate made of aluminum having good heat conductivity in the case of this embodiment, and is in contact with the electrical insulating material 13. With the above configuration, the required cooling is small compared with the third embodiment even with the same cooling air, and a low-cost and small induction heating apparatus can be realized.
[0033]
(Example 10)
A tenth embodiment of the present invention will be described below with reference to FIG. In FIG. 13, the heat of the electrical insulating material 13 is guided to the heat radiating plate 41 through the high thermal conductor 50. As described above, the placement freedom and the shape freedom of the heat sink 41 are increased, and a small and low-cost induction heating device can be realized.
[0034]
(Example 11)
Hereinafter, an eleventh embodiment of the present invention will be described with reference to FIG. In FIG. 14, the electrically insulating material 13 in the inner periphery is provided higher on the heated object 11 side than the plane of the electric conductor 12. With this configuration, the magnetic coupling between the heating coil and the object to be heated 11 is increased, and the current flowing through the heating coil can be reduced, so that the loss of the heating coil can be reduced.
[0035]
(Example 12)
A twelfth embodiment of the present invention will be described below with reference to FIG. In FIG. 15, reference numeral 51 denotes a temperature sensor that indirectly detects the temperature of the object to be heated 11, which is brought into contact with the plate 14 using the electrical insulating material 13. With this configuration, it is possible to more accurately detect the temperature of the object to be heated while simultaneously reducing the loss of the heating coil.
[0036]
(Example 13)
A thirteenth embodiment of the present invention will be described below with reference to FIG. In FIG. 16, reference numeral 51 denotes a temperature sensor that indirectly detects the temperature of the object 11 to be heated. The temperature sensor 51 is brought into contact with the plate 14 and embedded therein. Since the electrical insulating material 13 is a magnetic substance and has a thermal conductivity of about 5 times or more than that of a general resin, it can be used as a heat intensive material as in the present embodiment. It becomes possible to accurately detect the temperature of the article 11 to be heated.
[0037]
(Example 14)
A fourteenth embodiment of the present invention will be described below with reference to FIGS. In FIG. 17, the electrical insulating material 13 at the outer peripheral portion is provided higher on the heated object 11 side than the plane of the electrical conductor 12. With this configuration, the magnetic coupling between the heating coil and the object to be heated 11 becomes large, and the leakage magnetic field from the heating coil can also be reduced, so that the loss of the heating coil and unnecessary radiation can be reduced.
[0038]
Further, as shown in FIG. 18, the first electric insulating material 60 and the second electric insulating material 61 may be divided into two. In this case, the loss and cost of the heating coil can be reduced by increasing the relative permeability or magnetic saturation density of the second electrical insulating material 61.
[0039]
(Example 15)
A fifteenth embodiment of the present invention will be described below with reference to FIG. In FIG. 19, the electric insulating material 13 is provided higher on the heated object 11 side than the plane of the electric conductor 12 over the entire upper surface of the heating coil except for the surface of the electric conductor 12. With this configuration, the coupling between the heating coil and the object to be heated 11 is further improved, and the leakage magnetic field and the heating coil current can be reduced.
[0040]
(Example 16)
A sixteenth embodiment of the present invention will be described below with reference to FIG. In FIG. 20, reference numeral 70 denotes a first electrical insulating material, which is provided on the outer peripheral portion of the electrical conductor 12. Reference numeral 71 denotes a second electrically insulating material, which is provided on the inner peripheral portion of the electric conductor 12.
[0041]
Relative permeability of the electrically insulating material 71 are larger than the relative permeability of the electrically insulating material 70. With the above configuration, since the density of the high frequency magnetic field generated by the heating coil is high at the center of the heating coil, i.e., the inner peripheral portion, increasing the relative permeability of the insulator on the inner peripheral portion can increase the effective coverage. Induction heating of the heated object is possible.
[0042]
(Example 17)
A seventeenth embodiment of the present invention will be described below with reference to FIG. In FIG. 21, reference numeral 80 denotes a first electrically insulating material, which is provided between the inner periphery and the outer periphery of the electric conductor 12. Reference numeral 81 denotes a second electrically insulating material, which is provided on the inner periphery and the outer periphery of the electric conductor 12.
[0043]
Relative permeability of the electrically insulating material 81 are larger than the relative permeability of the electrically insulating material 80. With the above configuration, the density of the high frequency magnetic field generated by the heating coil is higher at the center of the heating coil, i.e., the inner periphery, and the magnetic flux density near the outer periphery is higher than the inner periphery-outer periphery magnetic flux density. In particular, induction heating of the object to be heated is possible.
[0044]
(Example 18)
The eighteenth embodiment of the present invention will be described below with reference to FIG. In FIG. 22, the electric conductor 12 is formed by twisting 35 strands of φ0.3 mm in the case of this embodiment. With the above configuration, the bias of the current distribution due to the skin effect of the high-frequency current is eliminated, and the loss of the heating coil can be further reduced.
[0045]
(Example 19)
The nineteenth embodiment of the present invention will be described below with reference to FIG. In FIG. 23, the electric conductor 12 has a two-layer structure (first-layer electric conductor 12a and second-layer electric conductor 12b) with an electric insulator 90 interposed therebetween. Further, the first-layer electric conductor 12 a and the second-layer electric conductor 12 b are in a vertical relationship with respect to the object to be heated 11 at the inversion portion 91. If the reversing unit 91 does not flip up and down, the current flowing through the electric conductor 12 flows in a concentrated manner in the pan-side layer due to the proximity effect between the pan and the heating coil, which increases the loss of the heating coil. By flipping up and down in the middle of winding as in the configuration, the current flowing in each layer becomes uniform, and the influence of the proximity effect with the pan can be avoided. Furthermore, since it is made of a plurality of layers, it is possible to avoid the influence of the skin effect. In addition, since the electrical insulating material 13 having a large relative permeability is provided between the electrical conductors, the proximity effect between the electrical conductors is also achieved. A heating coil that can be reduced and has very little loss can be realized.
[0046]
(Example 20)
The twentieth embodiment of the present invention will be described below with reference to FIG. In FIG. 24, the winding pitch of the electric conductor 12 is large at the inner periphery. As described above, the distance between the conductors in the part having a high magnetic flux density is increased, so that the proximity effect can be further reduced and the loss of the heating coil can be reduced.
[0047]
(Example 21)
The twenty-first embodiment of the present invention will be described below with reference to FIG. In FIG. 25, the electrical insulating material 13 and the electrical conductor 12 are in contact with the plate 14 on the surface side of the object to be heated 11. With this configuration, the magnetic coupling between the heating coil and the object to be heated 11 becomes extremely dense and the heating coil current can be reduced, so that the heating coil loss can be reduced. Further, in the conventional configuration, it is difficult to cool the side surface of the object to be heated 11 of the heating coil, and even if the heating coil loss is small, the necessary cooling becomes large. This is possible because the surface is extremely cooled.
[0048]
【The invention's effect】
As described above, according to the first aspect of the present invention, the heating coil in which the electric conductor is wound in a spiral shape, the coil base on which the heating coil is placed, and the magnetic body provided on the lower surface of the coil base, The induction coil heating coil is made of an electrically insulating material having at least a relative permeability of more than 1 provided between the conductors so as to suppress the uneven distribution of the high-frequency current flowing through the conductor.
[0049]
With this configuration, the high-frequency magnetic field generated from the heating coil is concentrated on the electrically insulating material between the conductors, and the proximity effect acting between the conductors can be greatly reduced, reducing the bias in the current distribution inside the conductors. The loss of the heating coil can be reduced, and further, by providing a coil base on which the heating coil is mounted and a magnetic body provided on the lower surface of the coil base, the magnetic coupling between the heating coil and the object to be heated can be achieved. The heating coil loss is reduced and the heating efficiency is improved.
[0050]
In addition, the ferrite used with the conventional induction heating apparatus is an electrical conductor, and when it is used between electrical conductors like this invention, insulation is difficult. Similarly, even when ferrite is used to coat the surface of the electrical conductor with a high heat resistance electrical insulating resin, there is still a problem with the insulating surface assuming that the coating film is partially peeled off. From the above, the significance of using an electrical insulator as in the present invention is very significant.
[0051]
According to the second aspect of the present invention, an electrical insulating material having a relative permeability of more than 1 is provided outside the outermost conductor of a conductor wound in a spiral shape. Since the high-frequency magnetic field is guided to the object to be heated by the electrically insulating material, the leakage magnetic field is reduced and the radiation noise can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a heating coil for an induction heating apparatus according to a first embodiment of the present invention. FIG. 2 is a diagram showing a configuration of a form when a magnetic body is arranged on the lower surface of the heating coil. 3] The figure which shows the structure of the form which provided the space | gap in the electrical insulator of the heating coil center part. [FIG. 4] The figure which shows the structure of the heating coil for induction heating apparatuses which is the 2nd Example of this invention. 5] The figure which shows the structure of the form which provided the electrically insulating material also in the electric conductor same. [FIG. 6] The figure which shows the structure of the heating coil for induction heating apparatuses which is the 3rd Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is the 4th Example of this invention. [FIG. 8] The figure which shows the structure of the heating coil for induction heating apparatuses which is the 5th Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is the 6th Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is an Example. FIG. 11 is the figure which shows the structure of the heating coil for induction heating apparatuses which is the 8th Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is an Example. FIG. 13 The figure which shows the structure of the heating coil for induction heating apparatuses which is a 10th Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is an Example. FIG. 15 The figure which shows the structure of the heating coil for induction heating apparatuses which is a 12th Example of this invention. The figure which shows the structure of the heating coil for induction heating apparatuses which is an Example. [FIG. 17] The figure which shows the structure of the heating coil for induction heating apparatuses which is a 14th Example of this invention. Figure showing the configuration of a form in which the material is applied to two parts. FIG. 20 is a diagram showing a configuration of a heating coil for an induction heating device according to a fifteenth embodiment of the present invention. FIG. 20 is a diagram showing a configuration of a heating coil for an induction heating device according to a sixteenth embodiment of the present invention. FIG. 22 is a diagram showing a configuration of a heating coil for an induction heating apparatus according to a seventeenth embodiment of the present invention. FIG. 22 is a diagram showing a configuration of a heating coil for an induction heating apparatus according to an eighteenth embodiment of the present invention. FIG. 24 is a diagram showing a configuration of a heating coil for an induction heating apparatus according to a nineteenth embodiment of the present invention. FIG. 24 is a diagram showing a configuration of a heating coil for an induction heating apparatus according to a twentieth embodiment of the present invention. FIG. 26 is a sectional view showing the structure of a conventional induction heating device according to the twenty-first embodiment of the present invention. FIG. 26 is a sectional view showing the structure of a conventional induction heating device. FIG. Fig. 28 Same as above, view of heating coil Akira]
DESCRIPTION OF SYMBOLS 12 Electrical conductor 13 Electrical insulation material 20 Electrical insulation material 21 Electrical insulation material 22 Through-hole 30 2nd electrical insulation material 31 1st electrical insulation material 40 Air gap 41 Heat sink 50 High thermal conductor 51 Temperature sensor

Claims (2)

電気導体を渦巻き状に巻回した加熱コイルと、前記加熱コイルを載置するコイル台と、前記コイル台の下面に設けた磁性体と、前記電気導体に流れる高周波電流の分布の偏りを抑制すべく前記電気導体間にすき間なく設けられ比透磁率が略100のフェライトである電気絶縁材料からなる誘導加熱装置用加熱コイル。A heating coil in which an electric conductor is wound in a spiral shape, a coil base on which the heating coil is placed, a magnetic body provided on the lower surface of the coil base, and a distribution of high-frequency current flowing in the electric conductor are suppressed. Accordingly , a heating coil for an induction heating device, which is made of an electrically insulating material which is a ferrite having a relative permeability of about 100 and is provided between the electrical conductors. 前記加熱コイルの最外周の前記電気導体より外側に前記電気絶縁材料を設けた請求項1記載の誘導加熱装置用加熱コイル。  The heating coil for an induction heating apparatus according to claim 1, wherein the electrical insulating material is provided outside the electrical conductor on the outermost periphery of the heating coil.
JP2000263413A 2000-08-31 2000-08-31 Heating coil for induction heating device Expired - Fee Related JP4794725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263413A JP4794725B2 (en) 2000-08-31 2000-08-31 Heating coil for induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263413A JP4794725B2 (en) 2000-08-31 2000-08-31 Heating coil for induction heating device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009036195A Division JP2009105078A (en) 2009-02-19 2009-02-19 Heating coil for induction heating device
JP2009242029A Division JP4915444B2 (en) 2009-10-21 2009-10-21 Heating coil for induction heating device

Publications (3)

Publication Number Publication Date
JP2002075613A JP2002075613A (en) 2002-03-15
JP2002075613A5 JP2002075613A5 (en) 2007-09-20
JP4794725B2 true JP4794725B2 (en) 2011-10-19

Family

ID=18750961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263413A Expired - Fee Related JP4794725B2 (en) 2000-08-31 2000-08-31 Heating coil for induction heating device

Country Status (1)

Country Link
JP (1) JP4794725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470015A (en) * 2013-09-18 2015-03-25 美的集团股份有限公司 Coil plate and coil with same and coil panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328917A (en) * 2006-06-06 2007-12-20 Mitsubishi Electric Corp Induction-heating cooker
JP5121606B2 (en) * 2008-07-09 2013-01-16 東京特殊電線株式会社 Spiral coil
EP2477197A1 (en) 2009-09-11 2012-07-18 Panasonic Corporation Electromagnetic induction coil unit and electromagnetic induction device
CN103250465B (en) * 2010-12-02 2015-08-05 松下电器产业株式会社 Load coil and induction heating equipment
CN104582049B (en) * 2013-10-21 2017-06-06 美的集团股份有限公司 Coil panel, coil panel component and electromagnetic oven

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166694U (en) * 1980-05-15 1981-12-10
JP2001297869A (en) * 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd Heating coil for induction heating device
JP2002043044A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Heating coil for induction heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470015A (en) * 2013-09-18 2015-03-25 美的集团股份有限公司 Coil plate and coil with same and coil panel
CN104470015B (en) * 2013-09-18 2017-08-04 美的集团股份有限公司 Coil plate and coil and coil panel with it

Also Published As

Publication number Publication date
JP2002075613A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US20130270260A1 (en) Induction heating coil and induction heating device
US20090066453A1 (en) Choke of electric device
JP4794725B2 (en) Heating coil for induction heating device
JP2009105078A (en) Heating coil for induction heating device
JP4915444B2 (en) Heating coil for induction heating device
JP3941500B2 (en) Induction heating device
JP2004171927A (en) Induction heating coil and induction heating device using it
JP5649402B2 (en) Power coil
JPH11102781A (en) High-frequency forced cooling composite conductor and electromagnetic induction heating coil
WO1997020451A1 (en) An induction heating hotplate
JP4491983B2 (en) Induction heating coil
JPH10223365A (en) Induction heating cooking device
JP6028213B2 (en) Induction heating coil and method of manufacturing induction heating coil
JP3675015B2 (en) Induction heating device manufacturing method
JP3178119B2 (en) Gas-cooled current leads for superconducting coils
JP4366293B2 (en) Induction heating cooker
JP5558305B2 (en) Induction heating apparatus and heated object
JP4924683B2 (en) Heating coil for induction heating device
JPH04366587A (en) Induction heating device
JP3653889B2 (en) Induction heating device
JP4457500B2 (en) Heating coil for induction heating device
JP2002043044A (en) Heating coil for induction heating device
JP4457517B2 (en) Induction heating device
JP4765173B2 (en) Heating coil for induction heating device
JP5558304B2 (en) Induction heating apparatus and heated object

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100729

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees